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We introduce a Bayesian optimization approach to guide the sputter deposition of molybdenum thin films, aiming to
achieve desired residual stress and sheet resistance while minimizing susceptibility to stochastic fluctuations during
deposition. Thin films are pivotal in numerous technologies, including semiconductors and optical devices, where their
properties are critical. Sputter deposition parameters, such as deposition power, vacuum chamber pressure, and working
distance, influence physical properties like residual stress and resistance. Excessive stress and high resistance can impair
device performance, necessitating the selection of optimal process parameters. Furthermore, these parameters should
ensure the consistency and reliability of thin film properties, assisting in the reproducibility of the devices. However,
exploring the multidimensional design space for process optimization is expensive. Bayesian optimization is ideal
for optimizing inputs/parameters of general black-box functions without reliance on gradient information. We utilize
Bayesian optimization to optimize deposition power and pressure using a custom-built objective function incorporating
observed stress and resistance data. Additionally, we integrate prior knowledge of stress variation with pressure into
the objective function to prioritize films least affected by stochastic variations. Our findings demonstrate that Bayesian
optimization effectively explores the design space and identifies optimal parameter combinations meeting desired stress
and resistance specifications.

I. INTRODUCTION

Recent advances in computational, machine learning and
statistical methods have significantly impacted the capabilities
for optimally designing metallurgical thin films. Thin films
are used in various microelectronics, optics, and mechanical
applications ranging from integrated circuits to reflective
or protective coatings. Among metallurgical thin films,
refractory metals are beneficial due to their remarkable
resistance to heat and wear. Their high melt temperatures,
low diffusivity, and good electrical conductivity often make
them ideal for applications involving elevated temperatures
and electronics. Thermally stable contacts, Ohmic contacts,
and interconnects are prevalent in the semiconductor industry,
and all capitalize on such properties of refractory metal
thin films and coatings1–3. Notably, refractory thin films
can be fabricated using various methods, such as chemical
vapor deposition, sputter deposition, and vacuum thermal
evaporation. The requisite process steps, conditions, and
tolerances play a crucial role in achieving target properties,
such as low resistance during the fabrication of thin films for
specific applications.

Determining the best process conditions to fabricate thin
films with desired properties requires optimizing the process-
property models. Often, information about such models
is limited, necessitating exploring the process conditions
space. Exploration based on expert intuition and grid
search4 has been used for optimizing process conditions
for thin films. However, these methods may require many

experiments to be carried out, depending on the dimension of
the process and property parameters (design space), making
them time-consuming and costly. Due to experimental budget
constraints, an efficient design of experiments (DoE) to search
for the optimum is imperative. In addition to producing thin
films with target properties, the optimal properties achieved
must remain robust to unavoidable process fluctuations. This
robustness is essential to ensure consistently good process
target properties, sometimes at the expense of some sub-
optimality. A highly optimized but non-robust process output
is not a desirable setup for a manufacturing context.

Over the years, various DoE methods5–7 have been
proposed to guide toward optimum process conditions
sequentially. These DoE methods involve iteratively
exploring sampled processing conditions and learning a
process-property surrogate model (response surface) to
determine the next set of process conditions for experiments.
DoE methods typically sample process conditions using Latin
hypercube sampling, full factorial8,9, or central composite10

to learn a response surface. For robust design, methods
such as the Taguchi method11 have been proposed to handle
experimental noise. The extension of DoE methods for
constraint optimizations has also been suggested in work such
as that by Jones et al.12. However, these methods learn
a predefined parametric form, such as linear and quadratic
surfaces, which limits their applicability to complex systems.
Additionally, these methods tend to be exploitative and often
converge to a local optimum, requiring extensive parameter
space exploration to reach the global optimum. Extensive
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exploration increases the number of trials exponentially,
making classical DoE methods costly for resource-intensive
experiments such as sputtering deposition.

Data-driven Bayesian optimization (BayesOpt) algorithms
have been found to model complex systems and explore the
process conditions more efficiently13,14. Unlike classical DoE
methods, BayesOpt employs a probability distribution over
functions using nonparametric models such as the Gaussian
process. The flexibility of this nonparametric model enables
learning complex nonlinear relationships. Furthermore, the
probability distribution quantifies uncertainties, which help
differentiate the regions of parameter space as explored and
unexplored, helping to balance exploitation and exploration.
Balancing exploitation and exploration helps prevent locally
optimal solutions and suboptimal searches, leading to faster
convergence to a global optimum. Due to its probabilistic
structure, BayesOpt can also handle experimental noise with
fewer trials than the Taguchi method. Further, various
BayesOpt algorithms15–18 have been proposed to obtain
robust process output efficiently.

In materials manufacturing, Bayesian optimization has
guided experiments and optimized process conditions for
desired properties. It has been demonstrated that BayesOpt
converges faster than traditional DoE methods in multiple
material science applications19,20. In particular, BayesOpt
has optimized thin film growth targeting desired properties.
Studies have successfully optimized crystal structures21,
optical contrast22, residual resistivity ratio23, and contact
resistance24. In recent years, various strategies based
on BayesOpt have been suggested to address challenging
optimization problems in material science, such as multi-
objective problems25,26, and mixed-variable problems with
robust design27.

In this work, we present a Bayesian optimization
construction to identify process conditions that satisfy
multiple property constraints for thin films while
simultaneously maximizing optimized process robustness
against minor variations in sputter deposition conditions.
To our knowledge, existing work for optimizing thin film
deposition has not addressed the challenge of concurrently
identifying process conditions that aim to satisfy both
optimality and robustness.

The proposed approach is tested on molybdenum (Mo) thin
films, a well-studied refractory metal, with results readily
validated against existing literature. Coatings with Mo have
practical uses, such as in Mo/Si multilayers for extreme-UV
optics28,29 and back contacts in CIGS solar cells30,31. In the
latter application, and often generally, the Mo layer should
have low electrical resistance and residual stress to ensure
good adhesion to other layers. We used these criteria to build
an objective function for the Bayesian optimization of Mo
films presented here.

In our BayesOpt guided experiment, we fabricated Mo thin
films using sputter deposition, a well-established technique
compatible with refractory metal microelectronics. We
deposited a range of films with various sputter powers and
argon (Ar) pressures – two process parameters that typically
significantly influence film properties. We then used data

from measurements of these fundamental properties (e.g.,
resistance, stress) to update the process-property model and
calculate the next set of deposition conditions to explore. We
repeated this process until a stable set of conditions was found
that produced Mo thin films with the desired properties.

We observed that BayesOpt can guide the sputter deposition
experiment efficiently. With a few additional experiments
and prior knowledge, the algorithm explored feasible power
and pressure values, ultimately discovering the optimal
configuration that satisfied the desired criteria for Mo
films. It was also observed that along with being robust
to experimental noise during deposition, our BayesOpt
construction was also robust to unquantified environmental
uncertainties due to deposition chamber cleaning.

The remainder of this article is organized as follows. In
section II, we discuss the design objectives for Mo thin
film. In section III, we elucidate the Bayesian optimization
methodology employed to achieve the design specifications.
Section IV delves into the details of our experimental setup.
Section V presents the obtained results, and in section VI, we
draw our conclusions from the study.

II. DESIGN SPECIFICATIONS FOR THIN FILMS

We aim to discover power and pressure conditions for
sputter deposition of Mo thin films such that they meet the
following design specifications (criteria):

1. The first criterion requires that the films exhibit residual
stresses in the range of (−300 MPa, 300 MPa). For
Mo thin films, this range is considered acceptable for
low residual stress. A low residual stress criterion is
crucial for ensuring the integrity of the resulting thin
film against various failure mechanisms. Like almost all
thin film applications, films must adhere to a substrate
or underlying surface. Films with large residual stresses
are more susceptible to failure mechanisms such as
buckling, cracking, and delamination – phenomena
detrimental to the device or coating’s overall function32.

2. The second criterion specifies that the films exhibit
resistance below 3 Ω/sq, which falls within an
acceptable range for low sheet resistance. In most
microelectronic applications, it is also crucial that metal
layers have low resistance to minimize losses and
resistive heating.

3. The third criterion requires that the films be as dense as
possible in a qualitative sense. Density plays a crucial
role in critical applications, such as microelectronics,
where low-density metal layers lead to higher resistance
(pores/voids restrict electrical paths). We enforce this
criterion by favoring design configurations where the
derivative of stress with Ar pressure is positive. This
criterion is supported by the behavior of magnetron-
sputtered metal films. These films demonstrate a
compressive-to-tensile stress transition with increasing
process pressure. Films with stress near this transition
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(characterized by a large, positive slope) are generally
denser than those deposited at higher pressures,
assuming other factors are held similar. At Ar pressures
greater than this transition point — where the derivative
of stress becomes negative — films are typically
underdense and porous32.

4. Finally, the fourth objective requires that the films’
stress be least susceptible to pressure fluctuations. As
already discussed, sputtered metal films can undergo a
large change in stress over a narrow range of process
conditions. Film stress can be particularly sensitive
to sputter pressure. We target a robust set of process
conditions where a slightly different pressure causes
a minimal change in the film stress. We achieve
this objective by minimizing the derivative of the
stress with Ar pressure. This objective helps address
the manufacturing challenge of finding deposition
conditions where the properties of a sputter-deposited
metal are robust to process fluctuations.

III. OPTIMIZATION FOR DESIGN SPECIFICATIONS

We use BayesOpt to iteratively search for the optimal power
and pressure pairs within the bounded domain of feasible
sputter deposition configurations, denoted by X ⊂ R2

≥0 such
that they satisfy the design specifications as discussed in
Section II.

In the following, we introduce our notation. During each
iteration of experiments, thin films are deposited using a given
process condition (design point) xxx = (xpo,xpr) ∈ X , where
the subscript “po" and “pr" denotes the power and pressure
dimension respectively. Subsequently, their stress S(xxx) and
sheet resistance R(xxx) are measured. The set of n power and
pressure pairs at which thin film measurements have been
collected is denoted asD= [xxx1,xxx2, . . . ,xxxn], whereD⊂X . The
set of the outputs of any function y(xxx) at the observed pairs
are denoted as y(D) = [y(xxx1),y(xxx2) . . .y(xxxn)]

T . The set of
collected property measurements with corresponding process
conditions {D,S(D),R(D)} is referred to as the observed
dataset.

The primary challenge lies in the fact that the stress S(xxx)
and sheet resistance R(xxx) functions are unknown (black box).
The only information available is the set of measurements of
stress, S(D) and sheet resistance R(D) at observed design
points D. Using the available information, we first obtain
an objective function (Section III A), which we then optimize
using the Bayesian optimization algorithm (Section III B) to
satisfy the design specifications. The method is summarized
in algorithm 1.

A. Obtaining a Unified Design Objective

The choice of the objective function is made such that it
inherently accounts for all design specifications. First, we
start by selecting four distinct smooth functions, f1, f2, f3, f4 :

Algorithm 1 Bayesian Optimization of Sputter Deposition
Configuration.
Input: Set of prior sputter configurations D, stress and sheet

resistance values M = (S(D),R(D)). Predefined εpo, εpr and
stagnation limit N.

Output: Optimal solution xxx∗ and maximum value f (xxx∗)
1: Initialize stagnation count, n = 0
2: while n < N do
3: Compute f1(D) . . . f4(D) using M in Eq. (3.1)-Eq. (3.5).
4: Compute f (D), Eq. (3.6).
5: Compute µpos(xxx) and σpos(xxx), Eq. (3.10).
6: Compute the optimal solution xxx∗ using Eq. (3.16).
7: if |x∗old,pr− x∗pr|< εpr and |x∗old,po− x∗po|< εpo then
8: n++
9: else

10: n = 0
11: end if
12: Store : xxx∗old← xxx∗

13: Compute the next design point x̄xx using Eq. (3.15).
14: Deposit thin films with process conditions x̄xx.
15: Measure stress s̄ = S(x̄xx) and sheet resistance r̄ = R(x̄xx)
16: Update the current dataset:

D←D∪{x̄xx} and M←M∪{(s̄, r̄)}

17: end while
18: Report xxx∗ as optimal solution.

X →R, that satisfy the four design specifications individually.
Afterward, we combine the separate functions into a single
unified smooth function, f , that serves as an objective for our
optimization. Selecting smooth functions helps effectively fit
the objective function by the surrogate model in the Bayesian
algorithm. The four functions are defined in the following.

With Ts defined as a threshold stress magnitude, we employ
the first objective f1(xxx) to enforce the requirement that the
stress satisfies −Ts ≤ S(xxx)≤ Ts. Thus, f1(xxx) is defined as

f1(xxx) = τ(Ts +S(xxx))+ τ(Ts−S(xxx)) (3.1)

where

τ(z) =
1

1+ exp−z z ∈ R

is the standard logistic function, which maps its input to a
range between 0 and 1 with a smooth step-like transition. This
objective maps the stress values to (0,1) such that f1(xxx) ≃ 1
for S(xxx) ∈ [−Ts,Ts] and 0 elsewhere.

The second objective requires the films to have R(xxx) < Tr,
where Tr is a specified threshold sheet resistance value. This
objective is enforced using f2(xxx), a modified form of the
logistic function, given as

f2(xxx) =
1

1+ exp−m(Tr−R(xxx))
, (3.2)

where the scalar m controls the transition slope in range
(0,1). This function maps R(xxx) values below Tr to 1, and 0
elsewhere.

The third objective, requiring the thin films to be dense,
is enforced by ensuring that the derivative of stress with
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pressure is positive, ∂S(xxx)
∂xpr

> 0, as discussed in Section II.
Since the function of stress S(xxx) is unknown, to obtain
the derivative, we first fit a Gaussian process (GP) mean
interpolant g(xxx) over stress observations and then compute its
derivative with respect to pressure. Selecting the GP mean as
an interpolant eliminates the need to make assumptions about
stress’s functional form. The details about the GP construction
are provided in Section III B 1. The GP mean function is given
by

S(xxx)≈ g(xxx) = kφ (xxx,D)(kφ (D,D)+σ
2
noiseIn)

−1S(D), (3.3)

where In = diag(1, . . . ,1)∈Rn×n, we presume a zero GP prior
mean function, additive Gaussian independent identically
distributed data noise with zero mean and σ2

noise variance, and
kφ (·, ·) is a squared exponential radial basis function (RBF)
kernel with hyperparameters φ . The kernel structure follows
the formulation defined in Eq. 3.11, Section III B 2, and its
hyperparameters are tuned similarly. It is important to note
that g(xxx) differs from the surrogate model utilized in the
context of Bayesian optimization as described in Section III B.
To ensure clarity, we will use the term ’interpolant’ to
represent g(xxx) for the rest of the article. With this surrogate
for S(xxx) in hand, the 3rd objective is met using a hyperbolic
tangent function, and f3(xxx), defined as

f3(xxx) =
tanh(gpr(xxx))+1

2
; gpr(xxx) :=

∂g(xxx)
∂xpr

. (3.4)

where, f3(xxx) takes the derivative of stress with pressure as
input and maps to 1 for the nonnegative input and 0 elsewhere.

The final objective requires minimal film stress dependence
on pressure fluctuation. To achieve this, we maximize the
function f4(xxx), defined as

f4(xxx) =
−gpr(xxx)

B
+1, (3.5)

where B is a constant scale factor. This function output
increases linearly with decreasing gpr(xxx). We enforce the
f4(xxx) range to be roughly between 0 and 1, aligning it in scale
with the other three functions, with a suitable choice of B.

Finally, we define the composite function f (xxx) as

f (xxx) = f1(xxx) f2(xxx) f3(xxx) f4(xxx). (3.6)

The overall output is influenced by all functions, effectively
taking care of all four criteria. The composite function f (xxx) is
the objective function for our optimization problem.

We have illustrated the behavior of these functions in Fig. 1,
where we offer an example of stress and sheet resistance in a
one-dimensional pressure-variation context for a fixed power
condition. The stress and sheet resistance dependence on
pressure is shown in Figs. 1a and 1b. The corresponding
profiles of f1, f2, f3, f4 are shown in Figs. 1c, 1d, 1e, and
1f, respectively. The final objective function f is shown in
Fig. 1g. Notably, for this example, the maximum of f lies
at a pressure value of 2 mTorr for the given power setting,
indicating the deposition conditions that satisfy the design
criteria.

Note that the four design criteria can be conceptualized
as elements of a constrained optimization problem, with
the first three criteria formulated as constraints and the
fourth used as the objective function. One way to solve
this problem involves using a Lagrangian approach, where
constraints are included with penalties33 within the objective
function, transforming the problem into an unconstrained
optimization task. This adjustment removes the strict
criteria of the original constraints, opting instead to penalize
deviations from them, effectively relaxing the constraint
criteria. Several extensions of BayesOpt algorithms have also
been proposed to solve constrained optimization problems
where the methods leverage variants of acquisition functions
such as expected improvement34,35 and predictive entropy
search with constraints36. However, these variants of
acquisition functions for constrained problems can be costly
for resource-intensive experiments, as they can result in the
rejection of exploitation-based proposals. Given the limited
experimental budget, we opted to formulate the problem in a
manner inspired by filter-based optimization approaches37,38.
The proposed approach prioritizes the search toward the
feasible space, reducing the number of trials required to
achieve the optimum.

B. Bayesian Optimization Algorithm

The BayesOpt algorithm aims to find a design that
optimizes the objective function f (·) by iteratively evaluating
f (·) at existing design points and using these evaluations,
f (D) to propose new design points. The process involves
two tasks: (1) building a probabilistic surrogate model from
the existing observations; see Section III B 1, and (2) using
an acquisition function that guides experiments where to
sample next in search space; see Section III B 3. The iteration
process continues until a termination criterion is achieved; see
Section III C.

1. Building Surrogate Model of Objective Function

We use a Gaussian process39 (GP) as the surrogate model,
which, when fitted to (D, f (D)), provides a probabilistic
prediction of f (xxx) at all points xxx ∈ X . This information is
used in the acquisition function to sample the next point. GPs
are nonparametric models, which makes them highly flexible
to fit complex mappings.

A GP is a probability distribution over random functions
that are jointly Gaussian at any finite set of points. It is defined
by its mean function µ(xxx) and covariance function k(xxx,xxx′).
In our present setting, we define the covariance function as
a squared exponential kernel kθ (xxx,xxx′), specified later in this
section so that we write the GP as

f̂ (xxx)∼ GP(µ(xxx),kθ (xxx,xxx′)) ∀xxx ∈ X . (3.7)

Here, f̂ is a surrogate function of f , sampled from the
Gaussian process GP . Using observed data independent
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Fig. 1. Figures 1a and 1b illustrate the stress and resistance variations with pressure for a fixed power, respectively. For the
given stress and resistance profiles, the behavior of the four design criteria functions f1, f2, f3, and f4 are shown in Figs. 1c, 1d,
1e, 1f, respectively. The pressure values at which these functions reach their maximum satisfy the corresponding design
criteria. The pressure that maximizes the unified objective function f , shown in Fig. 1g, satisfies all design criteria.



6

coordinates D = [xxx1, . . . ,xxxn], we define a prior distribution

GP(µ(D),kθ (D,D)), (3.8)

where µ(D) = [µ(xxx1),µ(xxx2) . . .µ(xxxn)] is the prior mean
vector and kθ (D,D) ∈ Rn×n is the prior covariance matrix.
The estimate of the function f at any unobserved design point
xxx∗ is obtained using the following posterior distribution

P( f̂ (xxx∗)| f (D),θ) =N (µpos(xxx∗),σ2
pos(xxx

∗)), (3.9)

where, with kθ (xxx∗,D) ∈ R1×n, kθ (D,xxx∗) ∈ Rn×1, presuming
additive Gaussian independent identically distributed data
noise with zero mean and σ2

noise variance, and a prior GP mean
function µ(xxx)≡ 000, we have

µpos(xxx∗) = kθ (xxx∗,D)(kθ (D,D)+σ
2
noiseIn)

−1 f (D)
σ

2
pos(xxx

∗) = kθ (xxx∗,xxx∗)−
kθ (xxx∗,D)(kθ (D,D)+σ

2
noiseIn)

−1kθ (D,xxx∗)
(3.10)

The µpos(xxx∗) and σ2
pos(xxx

∗) are the posterior mean and
variance of the function f at xxx∗ conditioned on the observed
data, respectively. We employ an anisotropic squared
exponential RBF kernel, where, for any two points (xxx,xxx′),

kθ (xxx,xxx′) = A · exp
(
−(xxx− xxx′)T M−1(xxx− xxx′)

)
(3.11)

where M = diag(lpo, lpr)∈R2, and (lpo, lpr) are the correlation
lengths in the power and pressure directions, respectively. The
values of hyperparamters θ = {A, lpo, lpr} are selected using
hyperparamter tuning, discussed in Section III B 2. Finally,
the posterior mean and variance at all points in search spaceX
is used to estimate the acquisition function; see Section III B 3.

2. Selecting Hyperparameters of Gaussian Process

The hyperparameters θ used in the Gaussian process for
building the surrogate model during Bayesian optimization
and the hyperparameters φ for the interpolant g(xxx) are selected
by maximizing the log-likelihood of the observed data f (D),
as shown below with λ := (θ ,σnoise)

θ̂ = argmax
θ

logP( f (D)|λ ) (3.12)

logP( f (D)|λ ) =−1
2

f (D)T (kθ (D,D)+σ
2
noiseIn)

−1 f (D)

− 1
2

log |kθ (D,D)+σ
2
noiseIn|

− n
2

log2π. (3.13)

The optimization problem, Eq. (3.12), is solved using gradient
descent on Eq. (3.13). Since the unified objective function
f (·) is deterministic, we choose a predetermined small value
of σnoise = 0.01 for regularization purposes. As for the GP
regression context for the stress surrogate in Eq. (3.3) above,
we used σnoise = 0.058 based on the observed data noise from
the experiments conducted prior to BayesOpt.

3. Acquisition Function

The acquisition function provides the means for BayesOpt
to balance exploration and exploitation. We use the upper
confidence bound (UCB) as the acquisition function to sample
new power and pressure values where the sputter deposition
is conducted. We chose UCB given its simplicity and broad
utility. The UCB acquisition function characterizes the input
space X into regions for exploration with high uncertainty
and regions for exploitation that likely contain the objective
function’s optimum. The UCB function is the sum of the
posterior mean and scaled standard deviation obtained from
the surrogate model, given by

ucb(xxx) = µpos(xxx)+β ·σpos(xxx), (3.14)

where the hyperparameter β controls the balance between
exploration and exploitation. A larger value of β will drive
the BayesOpt algorithm to enhance its priority for exploration
over exploitation. The solution of the UCB optimization
problem is the next design point in the search space X , given
by

x̄xx = argmax
xxx∈X

ucb(xxx). (3.15)

The optimal solution of the UCB function is obtained using
gradient-based optimizer L-BFGS-B with several random
starts to estimate good hyperparameter values. The optimum
value x̄xx is the next point where subsequent sputter deposition
is conducted.

C. Algorithm termination strategy

Our approach for algorithm termination hinges on
achieving the convergence of the optimal solution xxx∗. During
BayesOpt guided search, the optimal solution at each iteration
is identified as the configuration within the current dataset D
that maximizes the objective function f (x) as shown below.

xxx∗ = argmax
xxx∈D

f (xxx) (3.16)

The optimal solution is determined by simply identifying the
configuration for which the function attains its maximum
value in the set f (D). We monitor the optimal solution at
each iteration until its value remains stagnated for a maximum
predefined count. Subsequently, we assess all four objective
criteria, objective function, and uncertainty and conclude the
termination of the experiment.

IV. EXPERIMENTAL SETUP

For this work, the stress and sheet resistance threshold
values were chosen as Ts = 300 MPa and Tr = 3 Ω/sq.
The BayesOpt-guided experiment was started with the initial
measurements of stress and sheet resistance of the thin film,
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deposited using 27 different configurations of power and
pressure settings, as shown in Fig. 2.

At each iteration, a pair of power and pressure settings
for the sputter deposition of Mo films was recommended by
the BayesOpt algorithm. Subsequently, the deposited films’
stress and sheet resistance were measured and fed back into
the BayesOpt algorithm for the next iteration. Section IV A
describes the settings under which the Bayesian optimization
algorithm was executed. Section IV B describes the sputter
deposition of Mo films, and sections IV D and IV E describe
the measurements of stress and sheet resistance, respectively.
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Fig. 2. The plots depict the variations of residual stress,
shown in Fig. 2a, and variations of sheet resistance, shown in
Fig. 2b with pressure and powers in the dataset before
Bayesian optimization. The observations from the plots
assisted in constructing the objective functions.

A. Bayesian optimization and objective function setup

The BayesOpt algorithm was initialized using stress
and sheet resistance measurements for the 27 initial
configurations. The BayesOpt search space, X , was defined
between the pressure values of 2 mTorr to 23 mTorr and the
power values ranging from 50 W to 750 W. The objective
function constants were set as m= 5 in Eq. (3.2) and B= 1900
in Eq. (3.5). The Gaussian process hyperparameters φ , for the

interpolant g(xxx) and θ for the surrogate model, were tuned as
explained in Section III B 2. Finally, β = 1 was used for the
UCB function.

The code for the BayesOpt algorithm was implemented
in Python 3.9.2 and executed on a Ubuntu 20.04.6 LTS 64-
bit machine with 32 Gb RAM and 11th Gen Intel Core i7-
1185G7 @ 3.00GHz × 8 processor. During each iteration,
the algorithm required roughly 10 − 12 minutes to finish
the computation and provide the next sputter deposition
configuration.

B. Thin Film Deposition

(a) Process Chamber

(b) Sputtering Process

Fig. 3. Vacuum chamber geometry, as shown in Fig. 3a, is
used for physical vapor deposition employing a top-down
sputter geometry with true planetary sample stage motion
(i.e., orbit + spin). Ultra-high-purity argon gas is consistently
introduced into the chamber and regulated by a mass flow
controller (MFC). Fig. 3b shows the cross-section drawing of
key atomistic processes involved in sputtering, transport, and
film growth.

Molybdenum films were sputter deposited in an Innotec
240 SD system, as illustrated in Fig. 3. Before deposition,
the chamber was cryo-pumped to a base pressure of ≤ 5×
10−7 Torr. A planar target 20.32 cm (8 inches) in diameter
and made of high-purity Mo (99.95%) was used to deposit
the material in a sputter-down configuration. The substrate
rotation stage consists of six platens moving in planetary
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motion, with a working distance of ≈9.25 cm between the
substrates and target. All films were deposited onto 5.08 cm
(2 inches) diameter Si (100) substrates with 400 nm of
thermal oxide. These substrates were chosen because they
possess a single biaxial modulus, significantly simplifying
internal stress value calculations using Stoney’s equation.
Three nominally identical Si wafers were loaded onto three
platens for redundancy for each deposition. Ultra-high purity
argon flowed into the chamber at 50 sccm, and its working
pressure was maintained via a downstream pressure control
(throttled gate valve). Ar pressure was held constant and
monitored to ensure any changes in pressure were < 1% for
each deposition. The same deposition time was used for all
sputter pressures so that the samples spent similar time in the
flux of the sputter gun.

C. Substrate and Film Thickness

Substrate thickness was measured at five locations on
each wafer using a drop gauge. Each deposition included
an additional Si piece of ≈ 1 sq. cm for film thickness
measurements. A portion of this ride-along sample
was masked with Kapton tape so that its removal after
deposition would create a step edge amenable to thickness
measurements. To maintain congruity with other Si
substrates, witness pieces were of similar thickness, placed in
the center of a deposition platen at the same working distance,
and exposed to the flux for the same time as other samples. A
DEKTAK XT surface profilometer measured the film height at
five step-edge locations, from which an average film thickness
was obtained.

D. Stress Measurement of Films

Before the Mo deposition, an FLX2320-S wafer scanning
instrument, which measures the deflection from an incident
laser beam, was used to determine an initial radius of
curvature for each wafer. After deposition, each coated
wafer was re-measured with the instrument to find the post-
deposition wafer radius of curvature. Using these values
– together with the film thickness, the wafer thickness
measured previously, and the biaxial modulus of Si (100) – the
average in-plane stress of the film was calculated according to
Stoney’s equation40.

E. Sheet Resistance Measurement of Films

The Mo film’s room temperature sheet resistance
measurements were made using a four-point probe and
a constant current source and meter. Samples were probed
with a single tip assembly having four 100 µm radius
tips arranged with 1.0 mm spacing. Sheet resistance was
measured six times for each of the Mo-coated wafers at
three locations relative to the wafer flat (top, bottom, and
center) and in forward bias and reverse bias at each position.

Insulating substrates (i.e., with thermal oxide) helped isolate
the measurement to be only of the film.

V. RESULTS

The BayesOpt-guided sputter deposition experiment
continued for 10 iterations until the change in optimal
configuration xxx∗ = (2 mTorr,620 W) no longer exceeded the
predefined thresholds in both power (εpr = 0.5) and pressure
(εpo = 10).

During each iteration of the experiments, multiple thin
films were deposited using the configuration proposed by
BayesOpt, denoted as x̄xx, and their properties were measured.
Subsequently, these measured properties were used to
update the objective function f (x) and estimate the optimal
configuration, xxx∗. For additional information about the
experiments and property measurements, please refer to
Appendix A.

The trends of the BayesOpt algorithm proposals are
discussed in Section V A, and the rationale behind the
conclusion about the optimal solution is detailed in Section
V B. For the convenience of the discussion, we denote the
subregion of the search space X , with pressure < 3 mTorr
as X1 and that with pressure ≥ 3 mTorr as X2.

A. Bayesian Optimization iteration trends

The trends in the configurations proposed by BayesOpt,
denoted as x̄xx, for the next sputter deposition experiment at
each iteration are shown in Fig. 4. It was observed that for
the first six iterations, BayesOpt proposed configurations with
a fixed pressure value of 2 mTorr and varying power (region
X1). Then, in later iterations, it proposed configurations in the
complementary region, X2. To offer insight into the rationale
behind the suggested trends, the contour plots of the posterior
mean µpos(xxx), standard deviation σpos(xxx) and ucb(xxx) at the
first, seventh, and tenth iterations are shown in Figs. 5, 6 and
7 respectively.

During the first six iterations, as shown e.g. for the first
iteration in Fig. 5, contour plots show that the posterior
mean, µpos(xxx) in X1 dominated the standard deviation term,
β ·σpos(xxx) in the entire search space in terms of influencing
ucb(xxx). The high posterior mean in X1 was due to high values
in the first three design criteria, f1, f2, f3, suggesting a likely
location for the objective function maxima. Accordingly, the
algorithm exploited the region X1 to find the optimum. Later,
during iterations 7, 8 and 9, as shown e.g. for the seventh
iteration in Fig. 6, contour plots show the standard deviation,
β ·σpos(xxx) in the region X2 dominating the posterior mean in
terms of influencing ucb(xxx). Hence, the algorithm explored
the region X2 due to the lack of observations causing high
local uncertainty. In the 10th iteration, as shown in Fig. 7,
the algorithm revisited exploitation within the X1 region,
only to shift back to exploration in the X2 region during
the 11th iteration. In summary, the algorithm goes back
and forth between exploration and exploitation to efficiently
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Fig. 4. The figures illustrate trends observed during the
BayesOpt guided search, including the proposed sputter
deposition configuration for the next iteration and the optimal
configuration in that iteration. Figs. 4a and 4b show pressure
and power trends over iterations, respectively. See Table II in
appendix A for the specific values.

search for the optimal solution by balancing the need to gather
information about the objective function and leveraging that
information to refine the search.

During the experiments, we evaluated the optimal solution
xxx∗ at each iteration, as shown in Fig. 4. It was observed
that the optimal solution changed during the initial iterations
until it remained consistent at (2 mTorr,620 W) for the last
four iterations. The Bayesian optimization algorithm was
terminated based on the convergence of the optimal solution
xxx∗.

Note that the final/converged optimal values of stress and
resistance, (2 mTorr,620 W) were in fact proposed at iteration
5, but the “optimal“ solution identified by our iterative method
remained consistent only after iteration 8. This delay occurred
because our algorithm also attempts to learn accurate values
of the objective function f at the observed configurations D.
The evaluation of the objective function depends not only on
the values of stress and resistance but also on the derivative
of stress with pressure, refer Eq. 3.6. Since we cannot
directly obtain the derivative values from the experiments,
we rely on the interpolant, g(xxx) for calculations. As more
experiments are conducted, g(xxx) converges to a more accurate
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Fig. 5. The figure shows the contour plots of exploitation
term, µpos in Fig. 5a, exploration term β ·σpos in Fig. 5b, and
UCB in Fig. 5c for the first iteration with β = 1. At this
iteration, BayesOpt is exploiting the region X1.
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Fig. 6. The figure shows the contour plots of exploitation
term, µpos in Fig. 6a, exploration term β ·σpos in Fig. 6b, and
UCB in Fig. 6c for the seventh iteration with β = 1. At this
iteration, BayesOpt is exploring the region X2.
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Fig. 7. The figure shows the contour plots of exploitation
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UCB in Fig. 7c for the tenth iteration with β = 1. At this
iteration, BayesOpt is exploring the region X2.
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representation of the stress function S(xxx) in the region X1,
as does its derivative. This leads to the convergence of our
estimated objective function values f (D). Thus, the delayed
convergence of the optimal solution highlights the algorithm’s
process of learning and adapting to the characteristics of
the objective function, ultimately leading to more accurate
estimates over time.

B. Validating the optimal solution

Based on the observations in Fig. 4 and termination
criterion discussed in Section III C, the optimal configuration
was concluded as (2 mTorr,620 W). For verification that the
optimal configuration for the sputter deposition satisfied the
design objectives, we analyzed the sheet resistance values,
the interpolant g(xxx) for stress, and the derivative gpr(xxx) at
the observed configurations D. These results are illustrated
in Fig. 8. The optimal configuration was first observed in
iteration 5, with resulting stresses (−180.9,−218.0,−215.5)
MPa and sheet resistances (0.68,0.68,0.77) Ω/sq, refer
appendix A for details. These values satisfy stress
requirements in [−300,300] MPa, and sheet resistance < 3
Ω/sq. The optimum is indicated in the field plots in Fig. 8d,
putting it in the context of the overall variation of the fields of
interest. The derivative of stress with pressure is positive at
the optimum, and the overall objective function is high.

For further clarity, we plot the variation of gpr(xxx) and
f (xxx) with power, at the optimal pressure of 2 mTorr, in
Fig. 9. Here, we see, indeed, the optimal power at 620 W.
Note that the derivative is, in fact, minimal around 200 W;
however, clearly, the region preceding 300 W fails to meet
the other three criteria, such that full objective function f (xxx)
is relatively low in that region. Evidently, the configuration
with the smallest derivative value that fulfills all criteria is
found at 620 W, exhibiting notably low uncertainty given
the locally high data density. We note that the other cluster
with high f (xxx), although not as high as the optimum, is
the region around (2 mTorr,320 W). It is possible that this
region, with further exploration, might be competitive with
the optimum. However, since we stopped at ten iterations,
given experimental budget constraints, we have the optimal
solution at xxx∗ = (2 mTorr, 620 W).

The optimal configuration (2 mTorr, 620 W) met the
stress and resistance criteria, with stress values of
(−180.9,−218.0,−215.5)MPa and sheet resistances
of (0.68,0.68,0.77)Ω/sq. Further, to ensure that this
configuration is least affected by minor pressure fluctuations,
additional experiments were conducted in the region X1
to analyze the sensitivity of film stress to pressure. We
conducted experiments around the optimal power setting of
620 W, exploring values at 590 W and 650 W, each differing
by 30 W from the optimal setting. Additionally, we varied the
pressure incrementally by 0.5 mTorr, starting at the optimal
pressure of 2 mTorr. The observations of mean stress for
this experimental setup are shown in Table I. More detailed
information on these additional experiments is provided
in Appendix B. For sensitivity analysis, we computed the

derivative of stress with pressure corresponding to each
power setting, as presented in the table. Results revealed that
stress exhibited the least sensitivity to pressure at (2 mTorr,
620 W), with a derivative value of 339.23, which increased
away from the optimal conditions in either power or pressure
while satisfying all the other criteria, further supporting the
conclusions drawn from the BayesOpt algorithm.

Table I. Table displaying the mean of residual stresses in thin
films deposited using the utilized configuration xxx during
supplementary experiments. The sensitivity of stress to
pressure was analyzed by computing the derivative of stress
with respect to pressure for each power setting. The
derivative is smallest at (2mTorr,620W), further supporting
the optimum observed in Fig. 9.

utilized
configuration

mean stress (MPa) derivative of stress
with pressure

xxx S̄ ∆S̄
∆xpr

(2,590) −85.58 975.5
(2.5,590) 402.17
(2,620) −44.00 399.23
(2.5,620) 155.62 1030.16
(3,620) 670.70
(2,650) −256.62 1115.6
(2.5,650) 301.06

VI. CONCLUSION

We used Bayesian optimization to identify optimal
operating conditions for the sputter deposition of Mo
thin films on Si, targeting desired robust film properties.
Specifically, the objective was to find a combination of
power and pressure such that film stress is in the range of
(−300,300) MPa, the sheet resistance is below 3 mTorr, and
the film is dense. We used a positive derivative of stress
vs. pressure requirement to identify sputter configurations
that lead to dense films. Although density was not directly
measured in this work, we reasonably conclude that the
positive stress gradient requirement promoted denser films.
This is supported by our previous studies of Mo films
using the same apparatus described herein, which show by
Rutherford Backscattering Spectrometry that lower process
pressures (near the positive stress gradient) produce denser
films41. Further, to promote stability in stress against pressure
fluctuation, we targeted conditions with a low gradient of
stress vs. pressure. Four distinct smooth functions were
employed to achieve these objectives, using a unified objective
function obtained by multiplying the individual objective
functions.

The Bayesian optimization algorithm performs an adaptive
search over the parameter space for optimal solutions,
iteratively proposing the next sputter configuration for thin
film fabrication and subsequent stress and sheet resistance
measurement. In each iteration, stress values for thin films
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(a) residual stress interpolant, g(xxx) in MPa (b) derivative of stress with pressure, gpr(xxx)

(c) sheet resistance, R(xxx) in Ω/sq (d) objective function, f (xxx)

Fig. 8. The figure shows the contour plots of stress in Fig. 8a, the derivative of stress with pressure in Fig. 8b, the sheet
resistance in Fig. 8c, and the objective function f in Fig. 8d after 10 iterations. The optimal conditions are achieved at
(2 mTorr,620 W), ensuring that the observed stress falls within the range of [−300,300] MPa, the sheet resistance is below 3
Ω/sq, and the derivative is both positive and at its minimum, fulfilling all specified criteria.

obtained from known configurations were utilized to construct
a Gaussian process mean interpolant, whose derivative can
be evaluated analytically. The objective function values at
the known configurations were derived from sheet resistance,
stress, and the derivative of stress with respect to pressure. A
Gaussian process was fitted to these objective function values,
providing predictive posterior mean and variance. These,
in turn, were used to compute the upper confidence bound
function, guiding the algorithm to propose the next sputter
deposition configuration. The Bayesian optimization guided
search continued for 10 iterations until the calculated optimal
solution at each step remained consistent. It was observed
that the sputter configuration that maximized the objective
function was (2 mTorr, 620 W).

The value of stress, sheet resistance, and derivative of stress
with pressure were verified at the optimal solution. It was

observed that all the criteria were satisfied. The stress values
at the optimal configuration were (−180.9,−218.0,−215.5)
MPa, falling within the desired range of (−300,300) MPa,
satisfying the first criteria. Similarly, the sheet resistance
measurements were (0.68,0.68,0.77) Ω/sq remaining below
3 Ω/sq which satisfied the second criteria. Finally,
the derivative of stress with pressure at the optimal
configuration was positive and sufficiently low, satisfying
the last two criteria. Moreover, further experiments
conducted for sensitivity analysis near the BayesOpt proposed
optimum configuration provided supporting evidence that this
configuration was indeed at a local optimum.

We found that Bayesian optimization efficiently explored
the configuration space, identifying regions likely to yield
optimal results. This work also showed that a unified
objective function can simultaneously achieve multiple
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Fig. 9. The plot in Fig. 9a illustrates the plots of the
derivative of stress with pressure, gpr(xxx) against power.
Similarly, Fig. 9b illustrates the GP fit of the objective
function f (xxx) based on observations at D. Fig. 9b presents
the variations of the posterior mean, µpos(xxx), (as a dashed
line) and the standard deviation, σpos(xxx), (as a shaded area)
with power. with the posterior mean represented and the
standard deviation The peak value of the objective function is
identified at the point (2 mTorr,620 W). Both plots are
shown for the pressure 2 mTorr, after 10 iterations.

desired properties of Mo thin films while ensuring their
robustness against minor variations in sputter deposition
conditions. While we did not explore different weighting
of the various objectives, e.g. where weight exponents
(w1, . . . ,w4) are used, resulting in f (xxx) := ∏i f wi

i (xxx),
this can easily be done, allowing evaluation of selective
weighting strategies. Moreover, comparing the convergence
and efficiency of constrained optimization using a filter-
based objective function with other Bayesian optimization
approaches that incorporate constraints would be useful. The
present approach can be extended to more complex problems
involving high dimensional multimodal datasets involving e.g.
X-ray diffraction and scanning electron microscope image
data.
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Appendix A: Data from Bayesopt guided experiments

This section provides comprehensive information about
the BayesOpt guided experiments. The values of the
proposed configurations x̄xx, and optimal configurations xxx∗

during Bayesian optimization, discussed Fig. 4, are listed
in Table II. The proposed configurations were rounded off
for the experiments, as feasible power values were restricted
to multiples of 10 W, and feasible pressure values were
constrained to increments of 0.5 mTorr. The corresponding
feasible configurations used during the experiments are also
listed in the table.

At each iteration, several films were deposited using the
respective utilized configuration, and their residual stress and
sheet resistance were measured, as detailed in Tables III
and IV, respectively. Note that more than three depositions
were performed for iterations 3 and 4. During the series
of experiments, chamber cleaning became necessary due to
the accumulation of previously sputtered materials inside the
chamber. Over time, this buildup can peel off from chamber
components and contaminate samples or cause arcing during a
deposition. The cleaning process can also introduce moisture
and other vapors into the chamber, which is known to affect
the film properties of depositions immediately following the
cleaning42. This effect likely explains a larger variation
in stress values of iterations 3 and 4, which include films
deposited before and after chamber cleaning.

Table II. Tabulated data showing trends in configurations
observed during the BayesOpt guided search at each
iteration. The feasible configurations utilized for the
experiments are shown in the fourth column.

Iteration Optimal Proposed Utilized
i xxx∗ x̄xx xxx
1 (2.0,750) (2.0,648.28) (2.0,650)
2 (2.0,750) (2.0,433.32) (2.0,430)
3 (2.0,750) (2.0,558.49) (2.0,560)
4 (2.0,650) (2.0,667.06) (2.0,670)
5 (2.0,650) (2.0,615.34) (2.0,620)
6 (2.0,620) (2.0,322.11) (2.0,320)
7 (2.0,320) (4.35,323.98) (4.5,320)
8 (2.0,620) (18.46,302.29) (18.5,300)
9 (2.0,620) (6.08,644.67) (6.0,650)

10 (2.0,620) (2.0,236.79) (2.0,240)
11 (2.0,620) (12.24,305.94) Stopped

Appendix B: Data from experiments for optimum verification

This appendix provides comprehensive information about
the additional experiments conducted for verification of the
optimum solution obtained by Bayesian optimization. The
experiments were conducted with configurations near the
optimal configuration to observe the sensitivity of residual
stress dependence on pressure to process variations. For
each configuration, three films were deposited, and the

Table III. Residual stress measurements, along with their
computed mean and standard deviation at each iteration of
the BayesOpt guided experiments.

i Utilized Measurements in MPa mean stdev
1 (2.0,650) −123.5,−134.8,−191 −149.8 36.2
2 (2.0,430) 330.0,353.5,349.8 344.4 12.6
3 (2.0,560) 97.9,40.1,105.5,

28.3,−15.3,3.2
43.3 49.2

4 (2.0,670) 111.2,−239.6,−171.1,
−354,−411.1,−73.9,
−276.6,−309.3

−243.4 117.9

5 (2.0,620) −180.9,−218.0,−215.5 −204.8 20.7
6 (2.0,320) 148.1,218.6,164.0 176.9 37.0
7 (4.5,320) 1648.4,1660.3,1626.8 1645.2 17.0
8 (18.5,300) 39.7,38.4,36.4 38.2 1.7
9 (6.0,650) 1534.3,1549.20,1528.03 1537.2 10.9

10 (2.0,240) 766.4,756.8,722.1 748.4 23.3

Table IV. Sheet resistance measurements, along with their
computed mean and standard deviation at each iteration of
the BayesOpt guided experiments.

i Utilized Measurements in Ω/sq mean stdev
1 (2.0,650) 0.87,0.86,0.85 0.86 0.01
2 (2.0,430) 0.74,0.74,0.73 0.74 0.01
3 (2.0,560) 0.64,0.64,0.63,

0.84,0.78,0.81
0.72 0.10

4 (2.0,670) 0.72,0.66,0.70,
0.65,0.65,0.66, 0.74,0.72

0.69 0.04

5 (2.0,620) 0.68,0.68,0.77 0.71 0.05
6 (2.0,320) 1.44,1.44,1.42 1.43 0.01
7 (4.5,320) 1.68,1.68,1.7 1.69 0.01
8 (18.5,300) 8.04,7.9,8.14 8.03 0.12
9 (6.0,650) 1.68,1.68,1.70 1.69 0.01

10 (2.0,240) 0.81,0.82,0.85 0.83 0.02

residual stress and sheet resistance were measured as shown
in Tables V and VI, respectively.

Note that small differences in the stress measurements
were observed at (2.0 mTorr, 620 W) as compared to the
corresponding measurements taken during the BayesOpt-
guided experiments. Given the significant time gap
between experiments, several factors may have influenced
the discharge voltage of the sputter target. These include
small target impedance changes when the target is installed
and re-installed, the number of kWh the target has been
used, and small pressure differences that are outside what
the capacitance manometer on the system can measure.
Nevertheless, thin-film stress and resistivity exhibit similar
trends with power and pressure despite minor deviations in
absolute values. Additionally, all design criteria continue to be
satisfied at the optimum configuration proposed by BayesOpt.
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Table V. Measurements of residual stress, along with their
computed mean and standard deviation during the additional
experiments.

Utilized Measurements in MPa mean stdev
(2.0,590) −64.50,−84.73,−107.52 −85.58 21.52
(2.5,590) 382.83,409.49,414.19 402.17 16.91
(2.0,620) −52.34,−35.65,−19.57 −43.99 16.39
(2.5,620) 140.26,175.44,151.19 155.63 18.01
(3.0,620) 679.36,691.20,641.25 670.60 26.10
(2.0,650) −303.79,−254.90,−211.19 −256.63 46.32
(2.5,650) 292.57,314.78,295.83 301.06 11.99

Table VI. Measurements of sheet resistance, along with their
computed mean and standard deviation during the additional
experiments.

Utilized Measurements in Ω/sq mean stdev
(2.0,590) 0.63,0.61,0.62 0.62 0.01
(2.5,590) 0.74,0.71,0.72 0.72 0.01
(2.0,620) 0.78,0.77,0.76 0.77 0.01
(2.5,620) 0.62,0.61,0.64 0.62 0.01
(3.0,620) 0.66,0.65,0.67 0.66 0.01
(2.0,650) 0.58,0.57,0.57 0.57 0.01
(2.5,650) 0.61,0.59,0.60 0.60 0.01
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