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ABSTRACT Identifying Ordinary Differential Equations (ODEs) from measurement data requires both
fitting the dynamics and assimilating, either implicitly or explicitly, the measurement data. The Sparse
Identification of Nonlinear Dynamics (SINDy) method involves a derivative estimation (and optionally,
smoothing) step and a sparse regression step on a library of candidate ODE terms. Kalman smoothing
is a classical framework for assimilating the measurement data with known noise statistics. Previously,
derivatives in SINDy and its python package, pysindy, had been estimated by finite difference, L1 total
variation minimization, or local filters like Savitzky-Golay. In contrast, Kalman allows discovering ODEs
that best recreate the essential dynamics in simulation, even in cases when it does not perform as well at
recovering coefficients, asmeasured by their F1 score andmean absolute error.We have incorporatedKalman
smoothing, alongwith hyperparameter optimization, into the existing pysindy architecture, allowing for rapid
adoption of the method. Numerical experiments on a number of dynamical systems showKalman smoothing
to be the most amenable to parameter selection and best at preserving problem structure in the presence of
noise.

INDEX TERMS Dynamical systems, machine learning, sparse regression, optimization, Kalman smoothing,
SINDy, differential equations.

I. INTRODUCTION

The method of Sparse Identification of Nonlinear Dynamics
(SINDy) [Brunton et al., 2016, Brunton andKutz, 2022] seeks
to discover a differential or partial differential equation gov-
erning an arbitrary, temporally measured system. The method
takes as input some coordinate measurements over time,
such as angles between molecular bonds [Boninsegna et al.,
2018] or a spatial field, such as wave heights [Rudy et al.,
2017], and returns the best ordinary or partial differential
equation (ODE or PDE) from a library of candidate terms.
However, the method struggles to accommodate significant
measurement noise, which is typical of real-world systems.
On the other hand, Kalman theory [Kalman, 1960, Kalman
and Bucy, 1961] has a half-century history of assimilating
measurement noise to smooth a trajectory, with well-studied
and rigorously characterized noise properties [Welch et al.,
1995]. We integrate the mature and well-established theory of
Kalman with the emerging SINDy technology and combine
with generalized cross validation (GCV) parameter selection

for systematic practical applications. Our Kalman SINDy
architecture is shown to be competitive with other combina-
tions of data smoothing and system identification techniques,
and has a significant advantage in preservation of problem
structure and ease of parameter selection.

Model discovery methods are emerging as a critical com-
ponent in data-driven engineering design and scientific dis-
covery. Enabled by advancements in computational power,
optimization schemes, andmachine learning algorithms, such
techniques are revolutionizing what can be achieved from
sensor measurements deployed in a given system. Of inter-
est here is the discovery of dynamic models, which can be
constructed from a diversity of techniques, including simple
regression techniques such as the dynamic mode decompo-
sition (DMD) [Kutz et al., 2016, Ichinaga et al., 2024] to
neural networks such as physics-informed neural networks
(PINNs) [Raissi et al., 2019]. In such models, the objective
is to construct a proxy model for the observed measurements
which an be used to characterize and reconstruct solutions.
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While DMD provides an interpretable model in terms of
a modal decomposition, most neural network architectures
remain black-box without a clear view of the underlying
dynamical processes. Although the number of techniques
available are beyond the scope of this paper to review [Cuomo
et al., 2022, North et al., 2023], SINDy is perhaps the leading
data-driven model discovery method for interpretable and/or
explainable dynamic models as it looks to infer the govern-
ing equations underlying the observed data. As such, it dis-
covers relationships between spatial and/or temporal deriva-
tives, which is the underlying mathematical representation
of physics and engineering based systems since the time of
Newton.

The SINDy regression architecture seeks to robustly estab-
lish relationships between derivatives. Emerging from [Brun-
ton et al., 2016, Brunton and Kutz, 2022], all variants aim to
discover a sparse symbolic representation of an autonomous
or controlled system, ẋ = f (x). A diversity of methodological
innovations have been introduced into the SINDy discovery
framework to make it robust and stable, including the weak
form optimization by Messenger and Bortz [Messenger and
Bortz, 2021a,b]. This approach solves the sparse regression
problem after integrating the data over random control vol-
umes, providing a dramatic improvement to the noise ro-
bustness of the algorithm. Weak form optimization may be
thought of as a generalization of the integral SINDy [Scha-
effer and Mccalla, 2017] to PDE-FIND. Further improve-
ments to noise robustness and limited data may be obtained
through ensembling techniques [Fasel et al., 2022], which
use robust statistical bagging to learn inclusion probabilities
for the sparse terms ξ, similar to Bayesian inference [Gao
and Kutz, 2022, Gao et al., 2023, Hirsh et al., 2022]. Many
methodological innovations are integrated in the open-source
PySINDy software library [Kaptanoglu et al., 2022], reducing
the barrier to entry when applying these methods to new
problems. Additional techniques for learning dynamics from
data include PDE-NET [Long et al., 2019, 2018] and the
Bayesian PDE discovery from data [Atkinson, 2020]. Sym-
bolic learning has also been developed, including symbolic
learning on graph neural networks [Cranmer et al., 2019,
2020, Sanchez-Gonzalez et al., 2020].

Kalman smoothing, which this paper integrates with
SINDy, has a long history of assimilating measurement data
in time series. From its debut in Kalman [1960], Kalman
and Bucy [1961], engineering practice and design have used
it for control and prediction across the real world, e.g. in
radar systems, econometric variables, weather prediction, and
more. The family of Kalman methods encompasses both
smoothing, after-the-fact techniques, and filtering, real-time
updates, that derive from the same assumptions for distribu-
tions. The Kalman smoother can be considered as a best-fit
Euler update, the maximum likelihood estimator of Brownian
motion, or as the best linear fit of an unknown system. The
best fit/maximum likelihood view extends the classic Kalman
updates to a rich family of efficient generalized Kalman
smooth algorithms for signals corrupted by outliers, nonlinear

models, constraints through side information, and a myriad
of other applications, see Aravkin et al. [2017, 2012], Jonker
et al. [2019]. In the simplest invocation, the Kalman estimator
is determined given only the ratio of measurement noise
to the process’s underlying stochastic noise. Fixing both of
these parameters allows Kalman methods to also identify the
variance of the associated estimator. Furthermore, a line of
research aims to identify parameters purely from data, includ-
ing Barratt and Boyd [2020], van Breugel et al. [2020], Jonker
et al. [2020]. Manymethods include their own parameters and
are not guaranteed a solution, but are an improvement on the
indeterminate nature of direct maximum likelihood or MAP
likelihood.

This paper introduces Kalman smoothing as the derivative
estimation step in SINDy in distinction with the L1 total vari-
ation minimization or Savitzky-Golay smoothers common
in application. It is not the first to combine Kalman meth-
ods with SINDy; Rosafalco et al. [2024] utilize Ensemble
Kalman Filtering (EKF) to identify a partially-known system
as a portion of a multi-step method, and Wang et al. [2022]
apply Kalman filtering to the ODE coefficients as a way of
modeling a non-stationary but separable system. This paper’s
introduction of Kalman smoothing a continuous process loss
for derivative estimation, on the other hand, begins to align
the derivative estimation step to the symbolic regression step.
It allows engineering applications to incorporate SINDy esti-
mation with a well-established and familiar data assimilation
technique whose noise properties are well understood.

Section two describes the individual methods of SINDy
and Kalman smoothing, providing some literature review.
In section three, experiments demonstrate the advantages of
incorporating Kalman with SINDy. The paper concludes with
avenues for future research in section four.

II. BACKGROUND

A. SINDY

SINDy [Brunton et al., 2016] is a family of emerging meth-
ods for discovering the underlying dynamics of a system
governed by unknown or partially-known [Champion et al.,
2020] differential equations. It can handle ODEs as well as
PDEs [Rudy et al., 2017], and has been used for protein
folding [Boninsegna et al., 2018], chemical reaction net-
works [Hoffmann et al., 2019], plasma physics [Guan et al.,
2021], and more. Most invocations occur through the pysindy
Python package, but innovations such as Langevin Regres-
sion [Callaham et al., 2021] or Rudy et al. [2019] exist as
independent code.

Given some variable of interest X and a library of functions
Θ (including spatial derivatives, when relevant) SINDy seeks
to find the coefficients Ξ of the differential equation:

Ẋ = ΞΘ(X), (1)
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FIGURE 1. The SINDy method, applied to fitting a sinusoid. Taking
noisy data, it identifies the model _x = ξ1θ1(x) + ξ2θ2(x), rejecting θ0.

where

X ∈ Rn×m = x(t1)...x(tm): system of n coordinates at m timepoints.

Θ(X) ∈ Rp×m: library of p functions evaluated at m timepoints

Ξ ∈ Rn×p: coefficients for n equations of p functions

The function library written as a time-independent quantity
refers to the collectionΘ = [θ1, . . . θp]

T , where θi : Rn → R.
Examples include the family of all degree-2 polynomials of n
inputs, mixed sines and cosines of certain frequencies, or any
user-specified family.

The method generally presumes the measurements (Z )
faithfully reflect system state (X ) and proceeds in two steps:

1) Estimate the time derivatives of the system ̂̇X = F(Z)
for some smoothing function F.

2) Choosing a sparse regression method, solve the prob-

lem argmin
sparse Ξ

∥∥∥̂̇X − ΞΘ(X)
∥∥∥2.

This general process is sketched out in Fig. 1. Researchers
have tried a few different methods for calculating the deriva-
tives, broadly grouped into global methods (e.g. L-1 total

variation minimization of Chartrand et al. [2011]) and local
methods (e.g. Savitzky-Golay smoothing). Different ways
of applying sparsity has attracted more attention, including
sequentially thresholding linear regression, nonconvex penal-
ties such as L-0 with a relaxation-based minimization method
[Champion et al., 2020, Zheng et al., 2018], an L-0 constraint
[Bertsimas and Gurnee, 2023], and Bayesian methods for a
prior distribution such as spike-slab or regularized horseshoe
priors [Gao and Kutz, 2022, Hirsh et al., 2022]. The latter
two papers also demonstrate an interesting line of innovation,
eschewing derivatives and using the integral of function li-
brary in the loss term. A related approach instead uses the
weak form of the differential equation, yielding a solution
that is convex, but which does not provide as straightforward
an interpretation of the measurement noise. Most of these
methods can benefit from ensembling the data and library
terms, as in Fasel et al. [2022], but others, such as Kaptanoglu
et al. [2021] for identifying Galerkin modes of globally stable
fluid flows, require a specific form of function library.
This paper seeks to make SINDy more resilient to noise

by taking a data assimilation approach. It instead presents the
Kalman SINDy steps:

1) Estimate the state and time derivatives of the system̂̇X , X̂ = F(X) where F applies Kalman smoothing.
2) Choosing a sparse regression method, solve the prob-

lem argmin
sparse Ξ

∥∥∥̂̇X − ΞΘ(X̂)
∥∥∥2.

B. KALMAN SMOOTHING
Kalman filtering and smoothing refers to a group of optimal
estimation techniques to assimilate measurement noise to a
random process. Filtering refers to incorporating new mea-
surements in real-time, while smoothing refers to estimating
the underlying state or signal using a complete trajectory
of (batch) measurements. While the processes this paper is
concerned with are not random, in the first step of SINDy they
are unknown, and so probabilistic language is appropriate.
In adding Kalman smoothing to SINDy, we introduce a

distinction between the measurement variables and the state
variables of the dynamical system in equation 1. As such, the
inputs to the problem becomem time points of measurements
of k variables (Z ∈ Rk×m) and a linear transform from the
state to the measurement variablesH ∈ Rn×k describing how
the process is measured.
Measurement error is assumed to be normally distributed

with HX − Z ∼ σzN (0,R) where the covariance matrix R ∈
Rk×k . Measurement regimes where noise is autocorrelated or
varies over time can be accomodated by flattening HX − Z
and describing R ∈ Rnk×nk .
As a simplifying assumption for experiments in this paper,

we use R = I . Two parameters are required: σz, the measure-
ment noise standard deviation, and σx , the process velocity
standard deviation per unit time. If only point estimates of the
state are required, and posterior uncertainty is not, it suffices
to use the ratio ρ = (σz/σx)

2.
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FIGURE 2. Explanatory depiction of Kalman filtering. A previous iteration gives a distribution p(xi−1, _xi−1). Multiplication by an update matrix
produces the predictions p(xi , _xi |xi−1, _xi−1). Simultaneously, measurements zi are taken that, with known measurement noise, give p(zi |xi ).
Multiplication gives the joint distribution p(xi , _xi , zi |xi−1, _xi−1), from which the conditional distribution p(xi , _xi |zi , xi−1, _xi−1) can be calculated,
shown in Eaton [2007]

Each process is assumed to have an independent, Brownian
velocity. This leads to Kalman smoothing estimator:

argmin
X ,Ẋ

∥HX − Z∥R−1
2
+ ρ∥G[Ẋ ,X ]∥Q−1

2
. (2)

Here, G is a linear transform to separate [Ẋ ,X ] into inde-
pendent, mean-zero increments, and Q is the covariance of
those increments. A graphic displaying Kalman filtering is
shown in Fig. 2. To illustrate the ideas, the figure presents
step-by-step filtering updates; however, batch smoothing is
used for the model discovery applications presented in the
experiments.

We use the generalized cross validation of Barratt and
Boyd [2020] to choose ρ. This strategy chooses ρ in order to
minimize the loss on awitheld set of data.While the algorithm
described in that paper is not guaranteed to find a minimum,
heuristic experience has shown that the longer the trajectory,
the more likely their algorithm will succeed. The experiments
in the next section show that this strategy works reasonably
well.

The generalized cross validation approach of Barratt and
Boyd [2020] witholds some measurement points in order to
find the values ofH ,R,G, andQ that produce estimates X̂ that
fit witheld data most accurately. This powerful approach can
apply to all linear systems but comes with the burdens of non-
convexity. In our work, we presume to know themeasurement
parameters andmost of the process parameters - after all, ‘‘po-
sition is the integral of velocity", implies certain constraints
on G and Q. The method accomodates these constraints via
specification of a prox function.

III. EXPERIMENTS
We seek to evaluate Kalman smoothing as a step in SINDy
in comparison to other noise-mitigation innovations. We sim-
ulate eight dynamical systems1 with noisy measurements
across a variety of initial conditions, discovering ODEs from
SINDy with different smoothing methods. The trials are
run across a range of durations and relative noise levels,
calculated as the noise-to-signal ratio of the measurement
variance with the system’s mean squared value. To compare
the methods, we then integrate the discovered equations and
observe how well they preserve the system’s structure as well
as directly comparing the coefficients through the F1 score
and mean absolute error (MAE).
We compare the results of SINDy with Kalman smoothing

and the hyperparameter optimization of Barratt and Boyd
[2020] in comparison with alternative smoothing methods:
L-1 total variation minimization and Savitzky-Golay. The
latter smoothing methods have been modified to pass the
not just the smoothed derivatives ̂̇X , but also the smoothed
position estimates X̂ to the second step of SINDy. They
also each require a parameter: TV requires a coefficient for
the L-1 regularizer and Savitzky-Golay requires a smoothing
window. These are gridsearched over a wide range, although
it is worth noting that choosing the gridsearched optimum
requires knowledge of the true system, in distinction to the hy-
perparameter optimization method used for Kalman smooth-
ing. We also compare with a gridsearched Kalman smoothing
to directly evaluate the efficacy of the generalized cross-
validation hyperparameter selection.
Beyond the differentiation step, the SINDy models also

1Cubic Harmonic Oscillator, Duffing, Hopf, Lotka-Volterra, Rossler, Sim-
ple Harmonic Oscillator (SHO), Van Der Pol Oscillator, and Lorenz-63
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specify a function library and optimizer. The feature library
used for all experiments was cubic polynomials, including
mixed terms and a constant term. The optimizer was the
mixed-integer SINDy optimizer of Bertsimas and Gurnee
[2023], configured with the correct number of nonzero terms
a priori, and ensembled over 20 models each trained on 60%
of the data. Presenting SINDy with the known number of
nonzero coefficients is an attempt to present a best case,
where we can ameliorate any interaction between the smooth-
ing method and sparsification parameters. A full list of ODE,
simulation, and experimental parameters are shown in the
Appendix, tables I and II.

Methods can be compared in several ways: by the coef-
ficients of the equations they discover, by their accuracy in
forecasting derivatives, and how well the discovered system
recreates observed dynamics in simulation. As Gilpin [2023]
notes, there are many metrics for scoring dynamical system
discovery, and themerit of a metric depends upon both the use
case and whether the trajectory considered is one of impor-
tance. For instance, in controls engineering, the local deriva-
tive and very short-term forecasting is the primary imperative.
On the other hand, for reduced-order PDE models, recreating
larger-scale phenomena in simulationmay bemore important.
Finally, in high-dimensional network dynamics, the accuracy
of identifying connectivity, as measured by coefficient F1
score, is most important.

As the coefficient metrics are the most straightforwards,
and we compare methods by F1 score and Mean Absolute
Error as the duration of training data increases, and separately,
as the measurement noise increases.We also visually evaluate
howwell the discoveredODEs, simulated from random initial
conditions in a test set, track the true data and display relevant
behavior.

A. RUNNING EXPERIMENTS
In a desire to make the experiments not just reproducible, but
also reusable, we have separated the method, experiment, and
experiment runner into separate packages. Methodological
improvements include adding Kalman smoothing and a entry
point for hyperparameter optimization to the derivative
package, as well as an API for returning not just the deriva-
tives, but the smoothed coordinates themselves (employed
for Kalman and Total Variation). In pysindy, we enabled
incorporating the smoothed coordinates into successive prob-
lem steps. It should be noted that previous experiments using
pysindy’s derivative estimation would re-use the noisy co-
ordinates in function library evaluation.

Withinpysindy, we redefined ensembling in amore flex-
ible way to apply to a greater variety of underlying optimizers,
such as the MIOSR one used in these experiments. The stan-
dardization of interfaces allows us to compose SINDy exper-
iments in the pysindy-experiments package [Stevens-
Haas and Bhangale, 2024]. It allows a standard API to specify
data generation, model building, and evaluation.

Finally, in order to make it easier to collaborate and re-
produce experiments, we expanded the mitosis package

[Stevens-Haas, 2024]. This package allows specifying exper-
iment parameters and groups in a declarative manner, which
leads to more readable diffs. It also pins reproducibility infor-
mation for any experiment run. Further reproducibility info is
in the Appendix.

B. RESULTS
We find that SINDy with Kalman smoothing recovers the
problem structure in application as well or better than com-
peting methods. Models discovered in this manner track the
essential dynamics in most cases. SINDywith Kalman hyper-
parameter optimization tends to perform worse than that with
Savitzky-Golay, but on par with Total Variation gridsearched
optima, and is itself outperformed only slightly by theKalman
gridsearched optima.While hyperparameter optimization im-
poses some runtime cost, it does not require access to the true
data, making those results all the more inspiring for field use
cases. Simulations of discovered models across all ODEs and
methods are shown in Fig. 3
Surprisingly, methods that smooth better, as shown in Fig.

4 do not necessarily recreate the essential dynamics better in
simulation. As a case in point, the Kalman-smoothed training
data itself does not seem as accurate as data smoothed by L-1
Total Variation in the the SHO trial.
Even more surprisingly, despite performing well in sim-

ulation, SINDy with Kalman hyperparameter optimization
performs middlingly in the coefficient metrics. If there’s
anything that appears consistent about Kalman with GCV, it
is that, with a long enough duration, performance appears
insensitive regardless of noise, as shown in Fig. 6. Across
the range of noise levels sampled, either Savitzky-Golay or
Kalman (gridsearched) perform the best, depending upon sys-
tem. As expected, Kalman (gridsearched) always outperforms
Kalman GCV, but it is interesting to note that at some dura-
tions and noise levels Kalman GCV occasionally outperforms
Savitzky-Golay (e.g. Rossler, Hopf). Coefficient metrics by
data duration is shown in Fig. 5.
Generally, MAE seems to provide a better indication of

whichmethodwill perform better in simulation than F1 score.
Nevertheless, there are cases where the MAE scores of dif-
ferent methods do not indicate which method performs better
in simulation, and where effective smoothing does not predict
effective system recovery. As one case in point, Kalman GCV
and Total Variation smoothing appears most accurate for the
Hopf system in Fig. 4. However, the coefficient metrics show
that either Kalman or Savitzky-Golay recovered the system
equations better, and Fig. 3 shows that Savitzky-Golay recon-
structed the dynamics more accurately. Similarly, methods
have a wide range of performance on MAE and F1 score on
the Rossler system, despite all simulationsmissing the chaotic
behavior.

IV. CONCLUSION
This paper has demonstrated that Kalman smoothing is a
useful addition to SINDy. It makes themethodmore generally
applicable across domains. The Kalman smoother behaves
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FIGURE 3. The simulation of discovered models compared to test data. Kalman appears better for half of eight ODEs. It represents the essential
behavior of more ODEs than TV and Savitzky-Golay. Kalman with auto-hyperparameter selection performs similarly to total variation on a gridsearch.
10% relative noise, 8 seconds of data.

FIGURE 4. The smoothing of training data, performed by different differentiation methods prior to SINDy fit. It does not appear to be the case that a
more visually accurate smoothing yields a model that behaves more correctly in simulation. Nevertheless, as Fig. 3 shows, Kalman-smoothed
trajectories lead to better models in simulation. 10% relative noise, 8 seconds of data.

optimally for the simplest systems and provides a familiar
process to the controls engineering community. It also ap-
pears to perform better at preserving global system struc-
ture in simulation. Incorporating the GCV hyperparameter
optimization of Barratt and Boyd [2020] may not recover
the best model, but it allows one to at least recover useful
models without relying on an accurate parametrization a pri-
ori, particularly if substantial training data exists. However,
‘‘best model" means different things for different use cases.
For uncovering connections between variables, such as in
neural activity or chemical reaction networks Hoffmann et al.
[2019], the performance on coefficient F1 metrics indicates
that more accurate parameter tuning is essential.

The field is rife with a diversity of follow up studies. Firstly,

since Kalman smoothing and SINDy regression loss terms
both accommodate variable timesteps, a natural innovation is
to combine the two into a single optimization problem. Hirsh
et al. [2022] and Rudy et al. [2019] introduce a single-step
optimization, but do not evaluate their single step methods in
comparison to the mathematically nearest two-step SINDy.
As a result, it is difficult to evaluate that aspect of their inno-
vations in isolation. Following this line of inquiry, producing
a single-step SINDy that utilizes Kalman loss could allow
a more clear trade-off between measurement noise or the
coefficient sparsity.
In parallel, more could be done to give hyper-parameter

optimization access to the terms in the SINDy expression.
The method of Barratt and Boyd [2020] is supremely general,

6 VOLUME 11, 2023
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FIGURE 5. How well different smoothing methods in SINDy recover the ODE coefficients as data duration increases

FIGURE 6. How well different smoothing methods in SINDy recover the ODE coefficients as noise increases

with no intrinsic understanding of the process variance or
measurement noise. Applying that knowledge to their prox-
gradient method was part of this paper. However, the method
is nonconvex, which became problematic with the restriction
to the scalar ρ in equation 2.Moreover, on the path to a single-
step SINDy lies an opportunity to use knowledge of the ODE
terms in hyper-parameter optimization. In a related note, van
Breugel et al. [2020] also provide hyper-parameter estimation
techniques for Savitzky-Golay that could be evaluated in the

experiments of this paper.
Kalman SINDy could also be more directly compared to

Weak SINDy [Messenger and Bortz, 2021a], which aims at
the same goal of reducing the sensitivity to noise. However,
it’s implementation in pysindy does not allow for simulation,
and modifying existing code to provide that comparison is an
investigation in its own right and a necessary next step.
Finally, the interpretation of Kalman smoothing as the

maximum likelihood estimator for Brownian motion suggests

VOLUME 11, 2023 7
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that it could inform the attempts at a stochastic SINDy, for
which Callaham et al. [2021] and Boninsegna et al. [2018]
have made the first steps. Stochastic SINDy in those cases
aimed for the use cases of noise arising from PDE discretiza-
tion and inherently statistical mechanics, but the general for-
mulation also has use in any randomly-forced system, such as
HVAC controls for a building or mapping a limited part of a
chemical reaction network.

APPENDIX.
This paper is built from https://github.com/Jacob-Stevens-
Haas/Kalman-SINDy-paper. To run the experiments, in-
stall the package located in images/gen_image and run
the commands in images/gen_image/run_exps.sh. Each ex-
periment trial will generate a pseudorandom hex key
for reproducibility. To build the final figures, edit im-
ages/gen_image/composite_plots.py with the keys to the ex-
perimental results and run it.

While the exact parametrization is in the experimental
configuration and package defaults, it is recreated here in
Tables I and II.
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System ODE Experiment parameters x0 mean

Linear Damped Oscillator ẋ =

[
−α β
−β −α

]
x (0,0) α = .1, β = 2

Lorenz ẋ =

 σ(x2 − x1)
x1(ρ− x3)− x2
x1x2 − βx3

 σ = 10, ρ = 28, β = 8/3 (0, 0, 15)

Cubic Damped Oscillator ẋ =

[
−α β
−β −α

] [
x31
x32

]
α = .1, β = 2 (0,0)

Duffing ẋ =

[
x2

−αx2 − βx1 − γx31

]
α = .2, β = .05, γ = 1 (0,0)

Hopf ẋ =

[
−αx1 − βx2 − γx1(x21 + x22 )
βx1 − αx2 − γx2(x21 + x22 )

]
α = .05, β = 1, γ = 1 (0,0)

Lotka-Volterra ẋ =

[
αx1 − βx1x2
βx1x2 − 2αx2

]
α = 5, β = 1 (5, 5)

Rossler ẋ =

 −x2 − x3
x1 + αx2

β + (x1 − γ)x3

 α = .2, β = .2, γ = 5.7 (0,0,0)

Van der Pol Oscillator ẋ =

[
x2

α(1− x21 )x2 − x1

]
α = .5 (0,0)

TABLE I. The parametrization of ODEs used in these experiments. Mostly from defaults in the pysindy package.

Parameter Value
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Measurement error elative noise (default) 10%
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SINDy model
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Optimizer Mixed Integer Optimizer
L2 regularization (coefficitents) (α) 0.01
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Unbiasing Yes

Feature normalization No
Ensembling data bagging

Number of bags 20
Experiment

Trajectory duration (grid) 0.5, 1, 2, 4, 8, 16
Relative noise (grid) 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

Measurement:Process variance (Kalman grid) 1e-4, 1e-3, 1e-2, 1e-1, 1
L1 regularization (derivative) (TV grid) 1e-4, 1e-3, 1e-2, 1e-1, 1
Window length (Savitzky-Golay grid) 5, 8, 12, 15

TABLE II. Parametrization of data, SINDy models, and experiments
conducted.
*Lotka-Volterra uses a gamma distribution, rather than normal, in order to
enforce nonnegativity.
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