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ABSTRACT
On March 13, 2024, Ethereum implemented EIP-4844, designed to
enhance its role as a data availability layer. While this upgrade
reduces data posting costs for rollups, it also raises concerns about
its impact on the consensus layer due to increased propagation sizes.
Moreover, the broader effects on the overall Ethereum ecosystem
remain largely unexplored.

In this paper, we conduct an empirical analysis of EIP-4844’s
impact on consensus security, Ethereum usage, rollup transaction
dynamics, and the blob gas fee mechanism. We explore changes in
synchronization times, provide quantitative assessments of rollup
and user behaviors, and deepen the understanding of the blob
gas fee mechanism, highlighting both enhancements and areas of
concern post-upgrade.

KEYWORDS
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1 INTRODUCTION
Increasing scalability without compromising security and decen-
tralization is regarded as a core challenge[6] for most public
blockchains, such as Bitcoin and Ethereum. To address the grow-
ing demand for transactions and pave the way for mass adop-
tion, diverse approaches have been explored since 2017, includ-
ing plasma chains[38], sidechains, and state channels[11]. More
recently, strategies like increasing the block gas limit[48] and par-
allelizing execution[16, 17] have garnered attention.

Among these solutions, rollups have emerged as a primary point
of research since 2018[13, 33, 47], becoming a critical part in the
recent Ethereum roadmap. Distinct from earlier methods such
as Plasma and sidechains, which struggled with data availability
problem[38] and centralization, rollups could benefit from the ro-
bust security of the Ethereum mainnet[34]. They process transac-
tions off-chain and post summarized batches back to Layer 1 for
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final verification. This approach significantly reduces the computa-
tional burden on Ethereum, potentially lowering transaction fees
while maintaining strong security.

Security advantages have propelled rollups to significant promi-
nence, with the total economic value secured by rollup solutions sur-
passing 40 billion dollars as of April 2024, according to L2beat[26].
Leading platforms like Arbitrum, Optimism, and Base process ap-
proximately five million transactions daily, and dozens of new
rollups are planning to launch.

Despite these gains in scalability, challenges remain due to
the limited capacity of Ethereum mainnet[35], which serves as
a data availability layer essential for validating rollup transac-
tions. In response, Ethereum researchers are attempting to enhance
Ethereum’s function as a DA layer for rollups.

A pivotal development in addressing these limitations is the
introduction of EIP-4844, or Proto-Danksharding, which was imple-
mented on March 13, 2024[7]. This protocol introduces blobs, a new
data structure temporarily accessible for 18 days, unlike traditional
calldata that is permanently stored. This adjustment aims to reduce
the cost of data posted by rollups significantly. EIP-4844 also ushers
in a new blob gas fee market, marking the first introduction of a
multidimensional fee market in Ethereum. While this has success-
fully reduced rollup data posting costs[1], a thorough examination
of its broader impacts on Ethereum ecosystem is crucial.

In this paper, we aim to provide a comprehensive analysis of
EIP-4844’s impact on consensus security, Ethereum usage, rollup
transaction dynamics, and the new blob gas fee mechanism, offering
insights that could help evaluate the protocol change.

Motivation. The changes introduced by EIP-4844 could increase
the time required for nodes to validate slots and reach consensus,
potentially affecting Ethereum’s consensus security. This increased
data size, up to 768KiB per slot in extreme cases, may lead to more
forked and missing slots, impacting chain stability. Additionally,
this could create disparities among validators, as those with better
resources may have an advantage in successfully proposing beacon
blocks(slot)[50]

Moreover, understanding the dynamics of the new blob gas fee
market is crucial. This market manages the fees associated with new
blob structures. Deeply comprehending this market is essential for
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evaluating fee mechanisms, enhancing predictability, and develop-
ing optimized fee strategies for decentralized applications (DApps).
Insights from studies like [31], which explore optimal batching
strategies in single-dimensional gas fee markets, underscore the
need for adaptations in this new multidimensional context.

Furthermore, an empirical analysis of how EIP-4844 affects
Ethereum usage and rollup behavior is imperative. It is important
to determine whether there has been a significant change in total
user engagement or an increase in rollup fees. Such analysis will
help evaluate the effectiveness of this protocol change and guide
further improvements based on the real user behavior data. Previ-
ous studies like [30], which analyzed the impacts of EIP-1559 on
user waiting times, orphan slot occurrence, and fee dynamics, have
provided valuable insights into Ethereum’s evolving fee markets.
However, research specifically focused on EIP-4844 remains scarce,
indicating a need for comprehensive studies that can inform future
enhancements and ensure robustness in Ethereum’s infrastructure.

Challenges and Our Approach. Conducting a comprehensive
analysis of EIP-4844 posed several significant challenges, each re-
quiring effective solutions to ensure the robustness and accuracy
of our findings:

Data Collection on Slot Synchronization Delays. Unlike persis-
tent on-chain data, information on slot synchronization delays is
ephemeral and highly variable, influenced by factors such as hard-
ware capabilities and geographic location. To capture a compre-
hensive range of real-time data on slot reception, processing, and
synchronization times, we deployed three Ethereum full nodes on
AWS instances with identical hardware specifications distributed
across Paris, Singapore, and Virginia. This setup allowed us to ob-
serve slot sync times across different network conditions. However,
it also posed challenges, such as occasional node downtime and
the complex task of managing log files to accurately interpret each
timing event. We ensured that nodes remain online to collect ac-
curate data and meticulously extract relevant timing information
from client source code. These efforts were crucial for ensuring the
reliability of our findings.

Data Gathering from Multiple Rollup Networks. The varied archi-
tectures and rapid block times of rollups present significant data
collection challenges. These challenges are amplified by the unique
transaction function names used by each rollup. To address these
complexities, we first identified known rollup addresses through
resources like Etherscan[4] and L2BEAT[26]. For ten major rollups1,
we analyzed transaction functions to classify them according to
their purpose—either for data availability or execution. Leveraging
block explorers, our own archive nodes, and tools like Ethernow[3],
we meticulously collected and decoded transaction data. This al-
lowed us to compile a detailed dataset, such as user delays and
transaction volumes, which was crucial for our in-depth analysis.

Evaluating the Blob Gas Fee Market. One major challenge was
selecting an appropriate analysis period for the blob gas markets,
given their volatility since inception. Initially, the blob gas base
fee mostly stayed at the minimum of 1 wei, with occasional spikes,
such as a peak at 654 Gwei, before reverting to 1 wei. To effectively
capture the characteristics of the blob gas base fee, we focused on

1Arbitrum One, Optimism, Base, Blast, Starknet, zkSync Era, dYdX V3, Linea, Mode,
Scroll

a specific period2 where it exceeded 0.1 Gwei, allowing for a more
meaningful analysis of its behavior under varied market conditions.

Another is that the absence of a direct priority fee mechanism
for blobs added complexity to assessing market dynamics. We de-
veloped a metric that combines the gas priority fee with gas used
and blob gas base fee. Validated through VAR modeling, this metric
effectively quantifies user demand reflection in blob gas pricing,
providing crucial insights into the market’s functionality.

Our contributions. Our main contributions in this paper are
as follows:

• We detail the potential negative impacts of EIP-4844 on
Ethereum’s consensus security, specifically addressing the
increase in fork rates and identifying their primary causes.
This analysis helps clarify concerns within the community
about the stability of the network post-update.

• Through comprehensive visualizations and statistical analy-
ses, we illustrate the effects of EIP-4844 on Ethereum usage
and rollup transactions. Our findings confirm whether the
upgrade successfully incentivized rollup activities through
reduced fees and explore the changes in user delay, indicat-
ing an overall increase.

• We introduce and justify the blob gas priority fee metric,
demonstrating its utility in predicting blob gas base fees. It
provides insights into the new blob gas feemarket dynamics.
We also discuss the evaluation of blob gas fee mechanism
design utilizing the priority fee metric.

• Our extensive data collection includes time series data on
slot arrivals, processing times, and blob arrivals, as well as
detailed rollup transactions and Ethereum usage metrics
from various sources. We make this dataset fully available
to the research community, providing a valuable resource
for further investigation.

2 BACKGROUND
2.1 Rollup
Ethereum operates as a decentralized state machine where transac-
tions, bundled into blocks, transition the state representing account
balances and smart contract values. Achieving consensus on state
changes among all network participants is crucial for maintaining
the integrity of the blockchain [49].

Scalability remains a significant challenge for Ethereum, largely
because every node must execute all transactions and reach con-
sensus. In contrast to centralized systems like VISA, which handle
over 2000 transactions per second[23], Ethereum manages about 15
transactions per second. This limitation restricts wider blockchain
adoption [6].

Rollups address Ethereum’s scalability challenges by using a
two-layer model: off-chain execution and on-chain settlement. In
this model, transactions are processed off-chain and summarized
back to a smart contract on the Ethereummainnet. This method sig-
nificantly reduces transaction fees and increases scalability by less-
ening the load on the base layer[42]. Additionally, because rollups
post their results to the mainnet, they inherit the security properties

2From block number 19,518,097 to block number 19,587,588
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Figure 1: Interaction between rollup and Layer 1.

of Ethereum, ensuring that off-chain computations can be verified.
The transaction workflow in rollups includes:

(1) Submission of transactions to the rollup chain, either di-
rectly or via a Layer 1 bridging smart contract.

(2) Execution of transactions in batches by rollup sequencers.
(3) Aggregation and reporting of the transaction results and up-

dated state summaries by sequencers to their corresponding
smart contracts on the Ethereum mainnet.

(4) On-chain verification of the state updates’ correctness on
the Ethereum mainnet.

Rollups are classified into two types based on their verification
methods on Ethereum: Optimistic and Validity rollups. Validity
rollups, such as zk-rollups, submit transaction data along with a
new state root and a validity proof—a concise proof confirming the
accuracy of the new state root derived from the executed transac-
tions. In contrast, Optimistic rollups publish only the transaction
data and state root, assuming correctness unless challenged during
a dispute period initiated by verifiers if inconsistencies in the posted
state changes are detected [46].

2.2 EIP-4844
2.2.1 Data Availability in Rollups. Data availability(DA) ensures
that specific data can be accessed at a given point in time and
verified as accessible at that same point in the future. Unlike per-
manent data storage, DA does not imply indefinite data retention
but ensures that data is temporarily accessible for verification and
auditing purposes.

In the context of Ethereum rollups, DA is crucial for ensuring user
security[44], with numerous researches focusing on enhancing this
aspect[18, 25, 43]. It guarantees that users can access transaction
data temporarily to verify state updates or reconstruct the rollup’s
current state. For instance, in optimistic rollups, users require DA
extending beyond the challenge period (typically 7-12 days) to
validate state changes confidently.

The assurance of DA is vital because, without it, users must rely
solely on the trustworthiness of rollup operators. This reliance can
expose users to risks if operators act maliciously or withhold data,
compromising the integrity of the rollup[20].

Prior to the implementation of EIP-4844, Ethereum rollups typ-
ically used Ethereum’s calldata—a space within transactions des-
ignated for storing function call arguments—for DA. This method

involves storing compressed transaction data in calldata, where
the cost is 16 gas per non-zero byte and 4 gas per zero byte[24].
EIP-4844 aims to refine this model by introducing more efficient
data handling mechanisms to reduce costs and improve scalabil-
ity, addressing both the economic and performance limitations of
previous approaches.

2.2.2 Blob-carrying transaction. The Ethereum network has a cur-
rent block gas limit of 30M gas, which theoretically allows for a
maximum block size of 1.8MB when filled solely with calldata. This
scenario represents a potential worst-case scenario for network
block size. Further reducing the cost of calldata to enhance scala-
bility risks permitting unsustainable block sizes, posing significant
network overloading risks [8].

Tomitigate these concerns and improve DAwithout significantly
impacting the network’s maximum block size, EIP-4844, also known
as Proto-DankSharding, introduces the concept of blob-carrying
transactions. These transactions incorporate a new data structure
called a blob, which consists of 4096 field elements, each 32 bytes
in size, amounting to a total of 128KiB per blob. Rather than stor-
ing blobs directly within transactions, they are represented by a
versioned hash of the blob’s KZG commitment hash and are tem-
porarily maintained on the consensus layer for a duration of 18
days before deletion.

The design choice to exclude blobs from permanent storage on
the execution layer significantly enhances gas efficiency. This is
because blobs, unlike traditional calldata, do not incur the high gas
costs associated with permanent data storage. The lifecycle of a
blob, from creation to expiration, is illustrated in Figure 2.

Figure 2: Lifecycle of a blob

2.2.3 Blob gas fee market. The implementation of EIP-4844 intro-
duced a distinct fee market for blob gas, incurred by transactions
carrying blobs. Each blob consumes a constant 131, 072 = 217 blob
gas units. The base fee for one unit of blob gas is dynamically ad-
justed every block in response to network congestion, mirroring
the mechanism established by EIP-1559[40] for gas.

The blob gas base fee adjustment follows a specific formula
aimed at maintaining an optimal number of blobs per block. The
target number of blobs is set at three per block. The base fee is
adjusted based on the actual usage compared to this target:

𝐵blob gas,𝑘+1 = 𝐵blob gas,𝑘 × exp
(𝑢 − 𝑡

8𝑡

)
where:

• 𝐵blob gas,𝑘 represents the base fee for blob gas in block 𝑘 ,
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• 𝑢 denotes the total blob gas used in block 𝑘 ,
• 𝑡 is the target blob gas usage, set at 3 × 131, 072 blob gas

units per block.

2.3 VAR(Vector Autoregression)
VAR is a statistical model designed to analyze multivariate time
series data[19]. It extends the univariate autoregressive model by
allowing multiple interdependent time series to be modeled simul-
taneously. In a VAR model, each variable is a linear function of past
lags of itself and past lags of other variables in the system. A VAR
model of order 𝑝 (VAR(p)) is specified as follows:

𝑌𝑡 = 𝑐 + Φ1𝑌𝑡−1 + Φ2𝑌𝑡−2 + · · · + Φ𝑝𝑌𝑡−𝑝 + 𝜖𝑡 (1)
where 𝑌𝑡 is a vector of endogenous variables at 𝑡 , 𝑐 is a con-

stant vector, Φ1,Φ2, . . . ,Φ𝑝 are coefficient matrices, and 𝜖𝑡 is an
error term vector. Unlike simple linear regression which assesses
static relationships, VARmodels the dynamic interaction among the
variables over time, capturing the internal mechanics of systems.

3 DATA
Data Availability. All data and code utilized in this study are
openly accessible to ensure the reproducibility of our analyses and
to support further research. These resources can be found at 3.

3.1 Consensus security data
To mitigate geographical biases and better isolate the impact of net-
work speed variations across different locations, we deployed three
Ethereum full nodes with homogeneous hardware configurations
and client versions. Each node was hosted on an AWS t3.xlarge in-
stance equipped with Ubuntu 22.04, featuring 4 vCPUs and 16GB of
memory, and ran identical software stacks—Geth 1.13.14[45] as the
execution client and Prysm v5.0.0[27] as the consensus client. These
nodes were located in distinct geographic regions: Virginia, Paris,
and Singapore. This setup ensured that any observed differences
in data propagation and processing times could be predominantly
attributed to network latency rather than variations in hardware
performance or software configurations.

In this study, we analyze slots from 8,570,000 to 8,626,175 rep-
resenting eight days prior to the implementation of EIP-4844, and
slots 8,626,176 to 8,839,999 covering approximately four weeks fol-
lowing its introduction. However, as indicated in the subsequent
analysis of the fork rate, there exists data anomalies between slots
from 8,720,000 to 8,740,000 due to incorrect implementations by
other network entities. Since these anomalies stem from mistakes
at the application level and not from the EIP-4844 specification it-
self, they are excluded from the analysis. Going forward, slots from
8,570,000 to 8,626,175, before the introduction of EIP-4844, will be
referred to as pre-4844, and slots from 8,626,176 and 8,720,000, and
8,740,000 to 8,839,999 after its implementation will be alternately
referred to as post-4844.

The following data fields were extracted from the debug mode
log file in the Prysm client:

• receive_time: The time when the consensus client re-
ceived the slot, measured from the start of the slot

3https://github.com/etelpmoc/eip4844

• chain_service_provide_time: The time taken by the
consensus client to execute the slot, update the consen-
sus state and execution layer state, and the fork choice.

• data_availability_time: The time the consensus client
waits for any blobs that have not yet arrived after executing
the slot.

• sync_time: The time when the consensus client synced the
slot, measured from the start of the slot

To better understand the significance of these fields, it is essential
to comprehend the operational flow of the consensus client. Figure 3
illustrates the client workflow, which details how data is processed
and logged within the system.

Figure 3: Operational flow of the consensus client

When the consensus client receives the slot, it is recorded as
receive_time. Upon receiving a slot, the Prysm client simulta-
neously updates the consensus state and triggers the execution
of the execution payload(block) within the execution layer. Since
blobs are propagated separately from the block itself, it is neces-
sary to verify the arrival of all blobs before selecting a fork. The
duration required to ensure all blobs have arrived is referred to as
the data_availability_time. Once all blobs are arrived, the fork
choice process begins, which includes the verification of attesta-
tions and the handling of potential reorganizations. The moment
when the slot processing is completed is recorded as the sync_time.
The time difference between the reception of the slot and its syn-
chronization, excluding the data_availability_time, is recorded
as the chain_service_process_time.

3.2 Ethereum usage data
To assess the impact of EIP-4844 on Ethereum usage effectively, we
focused on the top 10 rollups by Total Value Locked (TVL) as re-
ported by L2BEAT[26]. As of April 28, 2024, these rollups—Arbitrum
One, Optimism, Base, Blast, Starknet, zkSync Era, Linea, dYdX v3,
Mode Network, and Scroll—account for 98.5% of the ecosystem’s
TVL. We gathered data from sender addresses associated with these
rollups, which are pivotal in committing transaction batches and
verifying state differences. Our study spans 180,000 blocks before
and after the implementation of EIP-4844, covering the period from
February 17 to April 7, 2024.

https://github.com/etelpmoc/eip4844
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Figure 4: Illustration of the data collection and preprocessing for Arbitrum blocks

A significant challenge in this analysis is distinguishing the trans-
actions that contribute directly to Ethereum’s role as a DA layer.
Not all transactions from rollups serve this function; for instance,
zk rollups often utilize Ethereum more for execution than for DA.
Importantly, execution transactions, which are not DA transactions,
cannot be replaced with blob transactions. To navigate this, we
categorized transactions into two groups based on their roles: trans-
actions from optimistic rollups that commit batches are deemed DA
transactions, while for zk rollups, only those committing batches
and posting state updates are classified as DA transactions. The
specific sender addresses and their categorization are detailed in
Appendix Table 10.

Data extraction was performed using an Erigon[28] archive node,
from which we retrieved gas fees, blob gas fees, and the sizes of
calldata and blobs used by the identified rollup sender addresses.
This data helped us derive three key metrics to analyze Ethereum’s
usage dynamics: posted data size, total fees paid, and the cost of
posting 1MiB on the Ethereum network.

3.3 Rollup Transactions Data
To assess the impact of EIP-4844 on rollup transaction dynamics,
we conducted a comprehensive analysis focusing on the changes in
rollup transaction volumes and delays between rollup and Ethereum
blocks. The analysis period spans 100,000 blocks before and after
the implementation of EIP-4844.

Our data were sourced from transactions sent by recognized
rollup addresses on the Ethereum network. Among the various
transaction types initiated by rollups, we specifically collected
batch transactions, which compress all individual rollup transac-
tions. These transactions are crucial for ensuring user security by
mitigating operator risk and safeguarding user funds. Batch trans-
actions typically precede other transaction types such as proving
and finalizing transactions, reflecting their foundational role in
securing user interactions on rollups. We regard the timestamp
of batch transaction sent to Ethereum as the settlement of rollup
transactions, and calculate the delay by getting the time difference
from rollup block timestamp.

The following common process was employed to extract data on
rollup transactions and user delays:

(1) Filter rollup transactions from the Ethereum mainnet using
known rollup sender addresses.

(2) Decode the data from rollup batch transactions.

(3) Acquire rollup block data from external sources and inte-
grate this data with (2) to analyze user delays and transac-
tion metrics.

Figure 4 illustrates an example of the process of our data collec-
tion and preprocessing for Arbitrum blocks.

Each rollup employs unique encoding mechanisms, often modi-
fied by updates such as span-batch mechanisms[37], which posed
significant decoding challenges. Additionally, the rapid block times
and large data volumes of rollups like Arbitrum (0.26 seconds) and
Optimism (2 seconds) necessitated the use of specialized tools and
methods for data collection and analysis, as maintaining full nodes
for all monitored rollups was infeasible.

We utilized a variety of rollup explorers and batch decoding
tools tailored to each rollup’s specific needs. Details on the specific
tools and data sources used are provided in Appendix Table 9. Our
analysis concentrated on six rollups—Arbitrum One, Optimism,
Base, Starknet, zkSync Era, and Linea—where we were able to
obtain decoded batch transaction data.

3.4 Blob gas fee data
To conduct a comprehensive analysis of the blob gas fee mechanism,
we collected data from our Erigon archive node on the base fees for
blob gas, as well as the gas and blob gas usage for each transaction
within selected blocks. To explore the new blob gas market, we
specifically analyzed data from blocks 19,518,097 to 19,587,588,
during which the blob gas base fee exceeded 0.1 Gwei.

Blob gas market period The blob gas base fee update rule
adjusts the base fee upward when average usage surpasses three
blobs per block. Given the gradual uptake of blobs by rollups and
their limited use by DApps, the blob gas base fee typically hovered
around 1 wei for a considerable duration.

Our analysis concentrates on the period during which base fees
rose above 0.1 Gwei, corresponding with heightened blob activity.
This period commenced at block 19,518,097, triggered by the activa-
tion of blob submission services that briefly elevated the blob base
fee. Although demand receded and the base fee reverted to 1 wei
by block 19,587,588, the fluctuations within this interval are crucial
for comprehending potential reactions of the blob gas fee market
to increased DApp engagement. Focusing on this period allows for
a detailed examination of the blob gas fee market’s behavior under
conditions of active blob utilization.

Blob gas priority fee. Unlike the gas fee update rule, where
users can set a maximum priority fee per gas unit, the blob gas fee
mechanism lacks this functionality. In the blob gas market, there is
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only a base fee, which is automatically adjusted based on network
congestion. Users must implicitly set a blob gas priority fee, as
illustrated in Figure 5.

Figure 5: Implicit priority fee of blob gas

To effectively evaluate the blob gas base fee update rule, it is
crucial to quantify the excess demand for blob gas. In the traditional
gas market, the priority fee of a transaction serves as an indicator
of how well the base fee reflects actual user demand. Consequently,
we have developed a new metric to represent the blob gas priority
fee using the following formula:

For each 𝑘-th block containing multiple transactions, we define
the following parameters:

• 𝐵gas,𝑘 and 𝐵blob gas,𝑘 : Base fees for gas and blob gas in the
𝑘-th block.

• 𝑃gas,𝑖,𝑘 and 𝑃blob gas,𝑖,𝑘 : Priority fees for gas and blob gas
for the 𝑖-th transaction in the 𝑘-th block.

• 𝐸𝑖,𝑘 : Effective prices for 𝑖-th transaction in the 𝑘-th block.
• 𝐺𝑖,𝑘 and 𝐷𝑖,𝑘 : Amounts of gas and blob gas used in the 𝑖-th

transaction in the 𝑘-th block.
The blob gas priority for each transaction can be expressed as:

Pblob gas,𝑖,𝑘 := ©«
(𝐸𝑖,𝑘 − 𝐵blob gas,𝑘 −median

tx∈𝑘
(𝑃gas,𝑡𝑥,𝑘 )) ×𝐺𝑖,𝑘

𝐷𝑖,𝑘

ª®¬
+

To find implicit priority fee for blob gas, we used median priority
fee of other transactions in the same block as a proxy for gas priority
fee, and subtracted it from the total fee paid.

4 EMPIRICAL RESULTS
4.1 Consensus security
EIP-4844 introduces blobs, a new data type to be propagated and
processed. Blobs add new burden for consensus layer[8], potentially
slowing validator performance and prolonging the time required to
achieve consensus. Such delays could threaten the security of the
consensus network. Our thorough examination of the impact of EIP-
4844 on Ethereum’s consensus security has yielded the following
key findings:

(1) Fork Rate Increase: We present evidence that the fork rate
has risen since the implementation of EIP-4844, from 3.097
to 6.707 slots per 2000 slots, suggesting a direct impact on
network stability. This increase hints at possible challenges
to network stability.

(2) Slot Sync Time Increase: We observed an increase in
slot synchronization times, correlating with the quantity
of blobs per slot. Given that delayed slot synchronization
can heighten the fork rate, this extended sync time likely
contributes to the observed increase in forks.

Figure 6: Change in fork rate pre-4844 and post-4844, with
an anomaly between slots 8,720,000 and 8,740,000 due to an
implementation bug

(3) Analysis of Slot Sync Time Components: Our analysis
identifies receive time as the component most significantly
affected by EIP-4844, which has led to increased sync times.
Conversely, the DA time remains minimal and shows no
direct correlation with the number of blobs, suggesting that
blob propagation minimally impacts consensus delays.

4.1.1 Fork rate. A fork occurs when different validators view dis-
tinct slots, which share the same parent slot, as valid. Frequent
forks can compromise consensus security by invalidating transac-
tions within orphaned slots and diminishing the network’s ability
to process transactions efficiently. Forks also potentially increase
the vulnerability of forked slots to consensus attacks [22, 41] for
malicious purposes, such as stealing MEV(Maximal Extractable
Value) or double spending.

To determine if EIP-4844 has increased these risks, we analyzed
changes in the fork rate, defined as the number of forked slots per
2,000 slots. Figure 6 shows the fork rate in relation to the num-
ber of blobs. Notably, a significant increase is observed between
slots 8,720,000 and 8,740,000, initially perceived as a threat to con-
sensus security. This spike was later attributed to a bug in the
implementation of EIP-4844 by some network participants, which
went undetected until an increase in blob activity occurred [21].

Based on this analysis, we determined that the sharp increase
in the fork rate during the spike was not a direct result of the
EIP-4844 specification. Nevertheless, our further investigations re-
veal that, even after excluding this anomalous spike period, the
average fork rate has still risen from 3.097 to 6.707 slots per 2,000
slots—an increase of 116.538%. This notable elevation in the fork
rate necessitates additional research to clarify its underlying causes.

4.1.2 Sync time. An increase in sync time can be a major contrib-
utor to a higher fork rate, as forks occur when a proposer fails
to synchronize new slots with preceding ones. To confirm the re-
lationship between fork rate and sync time, we applied a logistic
regressionmodel. The analysis showed that an increase in sync time
is significantly associated with the likelihood of a slot being forked,
with a coefficient of 1.5×10−3 (p-value < 0.001) for sync time, and a
model intercept of -10.9497 (p-value < 0.001). These results suggest
that slots with longer sync times have a higher probability of being
forked, underlining the impact of sync time on fork rate. Figure 7
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Figure 7: Distribution of sync time in forked blocks and non
forked blocks with fitted logistic regression

visualizes this relationship, clearly demonstrating that forked slots
typically experience longer sync times than non-forked slots.

The average sync time rose by approximately 140.065ms, from
2267.436ms to 2407.501ms. Figure 8b demonstrates that the increase
in sync time correlates with the number of blobs per slot. Interest-
ingly, slots without blobs also experienced an increase in sync time
by about 77.967ms. Determining the precise cause of this increase
is challenging; it could stem from operations which run fixed num-
ber of times to support EIP-4844, such as blob gas calculations, or
possibly from other minor updates included in the Dencun upgrade.
For our analysis, we have excluded the delays associated with slots
without blobs, offering a conservative estimate of the impact of
EIP-4844.

Therefore, the minimal increase attributable to EIP-4844 can
be conservatively estimated at 62.098ms, accounting for only half
of the observed increments in sync time and fork rates. However,
it is vital to dissect which components of sync time EIP-4844 im-
pacts. Such an analysis not only clarifies the direct impacts but
also enriches future research on blob-related technologies like
Danksharding[12]. Comprehensive understanding of these dynam-
ics is crucial for the refinement and development of forthcoming
protocols.

We have conducted detailed examinations of three specific com-
ponents of sync time—receive time, CSP time, and DA time—as
depicted in Figure 3. Our findings reveal that the most significant
impact of EIP-4844 was on receive time, contributing approximately
56.102ms to the overall increase in sync time. In contrast, DA time,
newly added, did not show as significant an impact as expected,
and CSP time appeared unaffected by EIP-4844, according to our
conservative analysis.

4.1.3 Receive time. Receive time is a critical component of sync
time, particularly due to its influence on validator. According to
Ethereum consensus specifications [15], validators are expected to
attest to the current slot only if they receive a valid block within
the first 4 seconds. Additionally, the proposer boost mechanism,
introduced to mitigate balancing attacks [36], grants an extra 40% of
votes to slots arriving within this time frame in the fork choice rule
[2]. Slots that fail to meet this attestation deadline do not receive the
proposer boost, increasing their susceptibility to balancing attacks.

Figure 9b shows the average receive time by city and overall, with
a noticeable increase from 1759.066 ms to 1840.032 ms—an elevation
of approximately 80.966 ms. Figure 9c further demonstrates that

(a) Average sync times across
different cities and overall

(b) Sync time variation in rela-
tion to the number of blobs

Figure 8: Impact of EIP-4844 on sync times, illustrating an
increase correlated with the number of blobs

receive time is correlated with the number of blobs; slots without
blobs post-EIP-4844 have similar receive times to those before the
implementation, while increases are proportional to blob counts.

After subtracting the 24.864 ms increase in receive time of slots
without blobs, we estimate that the minimum impact of EIP-4844 is
56.102 ms. This increment comprises the majority of the observed
rise in sync time, suggesting that EIP-4844 predominantly affect the
receive time. This impact likely stems from the additional responsi-
bilities of proposers to handle blob data from execution clients and
generate KZG commitments for blobs.

Figure 9a illustrates the distribution of receive times before and
after the implementation of EIP-4844, showing a slight overall shift
towards longer times. Notably, the proportion of slots arriving after
4000ms increased from approximately 0.18% to 0.415% after EIP-
4844—a more than two-fold increase. These data suggest that the
likelihood of slots falling victim to reorg attacks has risen follow-
ing the introduction of EIP-4844, as slots arriving later are more
vulnerable to reorg attacks.

4.1.4 Chain service process time. Chain Service Process (CSP) time
is a crucial component affecting the synchronization time of a slot.
With the implementation of EIP-4844, new procedures were added,
including the validation and storage of versioned hashes of KZG
commitments within the execution engine. The increase in CSP
time—from 482.565ms to 536.043ms, or about 53.478ms, while the
average CSP time for blob-free slots was 52.779. This observation,
specified in Appendix Figure 18, suggests that CSP time does not
correlate with the number of blobs. Therefore, we conclude that
the overall rise in CSP time might not directly result from EIP-4844.

4.1.5 Data availability time. DA time, a new delay introduced by
EIP-4844, represents the duration spent waiting for blobs to arrive
after slot execution and beacon state updates are completed. Ana-
lyzing metric is particularly important as it is newly introduced by
EIP-4844.

Figure 10b shows that as the number of blobs increases, the
time difference between the arrival of the first and last blobs also
increases, hinting at potential delays. However, Figure 10a shows
that the actual waiting time for blob arrival is minimal, averaging
only about 13.417 ms overall, and just 0.956 ms bigger than slots
without any blobs. Even in slots with six blobs, the delay remains
below 17.5 ms, dropping to 4.619 ms when excluding slots without
blobs, which is relatively minor.
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(a) Distribution of receive time before and after EIP-4844

(b) Average receive time by city
and overall

(c) Average receive time by the
number of blobs

Figure 9: Impact of EIP-4844 on receive time. The increase
in receive time, particularly in slots with higher blob counts,
indicates heightened risk for reorganization attacks.

(a) Average DA time by the
number of blobs, showingmin-
imal delay increases even with
additional blobs

(b) Difference in arrival times
between the first and last
blob, indicating increased de-
lay with more blobs

Figure 10: Impact of EIP-4844 on DA times

This apparent contradiction is resolved by the independent prop-
agation of blobs from the slot. It allows the consensus layer (CL) to
proceed with tasks related to the slot, such as block execution and
state transitions, while waiting for blobs, which may arrive more
slowly. Remarkably, in 35.519% of cases, the last blob arrived even
before the slot itself. This strategy of separating blob propagation
from slot propagation effectively minimizes any delays caused by
blob transmission. Therefore, despite some impact on consensus
security, our findings suggest that the effect of waiting times for
blobs is not substantial.

4.2 Ethereum usage
The effectiveness of EIP-4844 hinges on its primary objective: to
enhance the efficiency of Ethereum as a DA layer for rollups. We
performed a detailed examination of changes in Ethereum usage by
the top 10 rollups following the implementation of EIP-4844. Our
key findings include:

(1) The total data size posted by rollups on Ethereum as a DA
layer has increased markedly, while the calldata size has de-
creased substantially. This shift is particularly pronounced
in optimistic rollups compared to zk rollups.

(2) The total fees paid by rollups for DA have significantly
decreased, alongside a considerable reduction in the cost
per MiB of DA.

(3) There has been a significant reduction in the total gas used
by rollups, primarily driven by decreased gas consumption
in optimistic rollups.

4.2.1 Total amount of data posted. This section examines the total
data size posted on Ethereum, focusing on its role as a DA layer.
Our data include only transactions that commit batches or update
states, specified in Appendix Table 10.

Figure 11a demonstrates a significant increase in the total data
size posted, with the average data size per block rising from 0.084
MiB to 0.183 MiB, representing a 116.8% increase. Conversely, the
size of calldata posted decreased by 56.8%, reducing to 0.036 MiB.

Figures 11b and 11c detail the changes in optimistic and zk
rollups, respectively. Both types of rollups recorded substantial
increases in total data size, each by over 100%. Optimistic rollups,
in particular, demonstrated a significant reduction in calldata size
by 81%, indicating a notable shift towards using blobs. Zk rollups
showed a smaller decrease in calldata usage, from 0.035 MiB to
0.027 MiB.

These findings evidence that EIP-4844 has effectively encouraged
rollups to make greater use of Ethereum’s DA layer capabilities.
This is particularly evident in optimistic rollups, where the majority
of transactions serve DA functions, possibly deriving more benefit
from the protocol upgrade than zk rollups.

4.2.2 Total amount of fee paid. Exploring the economic impact,
we reviewed the total fees paid by rollups for utilizing Ethereum
as a DA layer. As indicated in the Table 1, the average fee paid
by rollups per block experienced a substantial decrease following
the implementation of EIP-4844. Prior to EIP-4844, rollups paid an
average of 0.075 ETH per block. This fee reduced to 0.021 ETH per
block after the policy change, marking a 72% decrease.

The fee reduction was particularly notable among optimistic
rollups. Before EIP-4844, these rollups paid approximately 0.047
ETH per block, constituting about 63% of the total fee. Post EIP-
4844, their contribution dropped dramatically to 0.007 ETH per
block, which represents a reduction to 33% of the total fees paid.

4.2.3 The price of posting 1MiB. In assessing the cost effective-
ness of EIP-4844, we analyzed the price per MiB of data posted on
Ethereum. As illustrated in Figure 12, the price per 1MiB before
the implementation of EIP-4844 was approximately 1.304 ETH per
block. Following the changes introduced by EIP-4844, this price
significantly decreased to 0.231 ETH per block, representing an 82%
reduction.
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Table 1: Changes of Ethereum usage by rollups before and after EIP-4844

Total Data Size (MiB) Total Fees Paid (ETH) Price For 1MiB (ETH) Total Gas Used (Gas units)

Rollup Type Before After Change Before After Change Before After Change Before After Change

All Rollups 0.084 0.183 +116.83% 0.075 0.021 -71.38% 1.304 0.231 -82.32% 1.725M 0.784M -54.53%
Optimistic Rollups 0.049 0. 111 +127.4% 0.047 0.007 -84.89% 0.905 0.239 -73.55% 0.878M 0.169M -80.74%
ZK Rollups 0.035 0.072 +102.22% 0.028 0.014 -48.75% 1.516 0.280 -81.53% 0.611M 0.461M -24.55%

(a) All rollups

(b) Optimistic rollups (c) ZK rollups

Figure 11: Total data size and calldata size posted by top 10
rollups on Ethereum as a DA layer

This substantial decrease underscores the effectiveness of EIP-
4844 in reducing the costs associated with DA on Ethereum, thereby
lessening the economic burden on rollups that rely on Ethereum
security for data posting[32]. This reduction in cost is pivotal for en-
hancing the scalability and economic feasibility of using Ethereum
as a DA layer.

Figure 12: 1MiB price of Ethereum as a DA layer

4.2.4 Gas used. To gauge the overall impact of EIP-4844 on gas
consumption, we looked into the total gas used by rollups, including

transactions not related to DA. Table 1 illustrates the changes in
gas usage. Specifically, the average gas used per block significantly
decreased by approximately 0.95 million, from 1.73 million to 0.78
million.

This reduction in gas usage was particularly pronounced in
optimistic rollups, where gas consumption dropped by 0.71 million,
from 0.88 million to 0.17 million. In contrast, ZK rollups exhibited
a smaller decrease, with gas usage reducing by 0.23 million, from
0.85 million to 0.62 million. This modest decrease suggests that
transactions involving zero-knowledge proofs, which cannot easily
be converted to blob transactions, still use nearly the same amount
of gas.

4.3 Rollup transactions
Understanding user interactions within the blockchain ecosystem
is crucial, especially in response to changes introduced by EIP-4844.
This section examines the impact of the upgrade on the number of
rollup transactions that are posted on Ethereum, which reflects the
level of rollup activity. Additionally, we consider user delay— the
time it takes for transactions to be securely settled in Ethereum—
as a crucial aspect of rollup security.

We analyzed six major rollups, comprising three optimistic
rollups (Arbitrum One, Optimism, Base) and three ZK rollups
(Starknet, zkSync Era, Linea), with a focus on transaction volume
and user delays. Our principal observations are:

(1) All six rollups showed a marked increase in transaction
volume, with Base experiencing a particularly significant
rise, more than tripling its previous count.

(2) User delay, the time lag between the creation of rollup
blocks and their posting on Ethereum, increased notably in
four rollups. Conversely, Arbitrum and zkSync Era achieved
significant improvements, witnessing reductions in their
delay times.

(3) The variability in user delay times also saw a notable in-
crease, except in Arbitrum, where it remained more stable.

4.3.1 Number of rollup transactions. To retrieve the number of
transactions posted on Ethereum, we decoded the batch transac-
tions on Ethereum sent by rollups. Table 13 indicates a substantial
increase across six rollups. Notably, Base experienced a significant
rise of 224%, while Arbitrum, Optimism, and Starknet each saw
increases exceeding 70%. This overall uptick suggests that the re-
duced fees resulting from EIP-4844 may have incentivized a greater
volume of transactions on rollups.

However, attributing this increase solely to EIP-4844 would be
premature without considering pre-existing growth trends. Rollups
were already experiencing rapid expansion prior to the protocol’s



Seongwan Park et al.

Table 2: Comparison of rollup transaction numbers and user
delay(standard deviation) before and after EIP-4844

# of transactions User Delay (s)

Rollup Before After Change Before After Change

Arbitrum 111.2 194.7 +75% 519.9 197.5 -62%
(197.5) (100.8)

Optimism 53.8 91.8 +71% 55.6 224.6 +304%
(23) (112.9)

Base 56.8 183.7 +224% 59.4 161.1 +171%
(25.6) (35.3)

Starknet 18 31 +72.5% 17,156 27,675 +61.3%
(4467) (9504)

zkSync 149.4 174.9 +17.1% 261.4 154.9 -40.8%
(115.5) (152.3)

Linea 127.5 187.5 +46.7% 21,354 30,404 +42.4%
(24489) (25901)

implementation, and the observed increases might partly reflect the
ongoing market growth rather than the effects of EIP-4844 alone.

To rigorously assess the specific impact of EIP-4844, we employed
a Regression Discontinuity Design (RDD) for each rollup.

Number of Transactions𝑖 = 𝛽0 + 𝛽1Block Number𝑖 + 𝛽2D𝑖 + 𝜖𝑖

where Number of Transactions𝑖 represents the number of trans-
actions for rollup 𝑖 , Block Number𝑖 is the block number, D𝑖 is a
dummy variable indicating whether the block number is after the
implementation of EIP-4844 (1 if after, 0 otherwise), and 𝜖𝑖 is the er-
ror term. The coefficient 𝛽2 on D𝑖 captures the discontinuous jump
at the threshold, providing an estimate of the impact of EIP-4844.

The results, presented in Table 3, show statistically significant
increases in transaction volumes for most rollups, affirming the
effect of EIP-4844. However, Linea exhibited a negative coefficient
for ‘D’, suggesting that increases in Linea’s transaction volumes
may not be directly attributable to the effects of EIP-4844.

Table 3: RDD Analysis Results for Number of Rollup Trans-
actions (Impact of ‘D’)

Rollup Coefficient Std. Error t-Value p-Value

Arbitrum One 43.91 6.74 6.51 <0.001
Optimism 24.87 3.47 7.17 <0.001
Base 100.34 5.94 16.89 <0.001
Starknet 36.28 1.08 33.69 <0.001
zkSync Era 41.38 5.5 7.45 <0.001
Linea -52.6 11.26 -4.67 <0.001

4.3.2 Delay of L2 transactions. To comprehensively assess the de-
lays experienced by users of rollup transactions, we define the user
delay metric as follows. This metric calculates the average timing
difference between when rollup transactions are created and when
they are committed on Ethereum.

(a) Arbitrum One (b) Optimism

(c) Base (d) Starknet

(e) zkSync Era (f) Linea

Figure 13: Total number of rollup transactions that are posted
on Ethereum

User Delay𝑏 =
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1

where 𝑏 represents a specific Ethereum block, 𝑡𝑥 denotes a rollup
transaction within block 𝑏, 𝑡𝑥𝑡𝑖𝑚𝑖𝑛𝑔

𝑒𝑡ℎ
is the timestamp when the

transaction is committed on Ethereum, and 𝑡𝑥𝑡𝑖𝑚𝑖𝑛𝑔

𝑟𝑜𝑙𝑙𝑢𝑝
is the times-

tamp when the transaction is included in a rollup block. 𝑁𝑏 is the
total number of rollup transactions in block 𝑏.

Figure 14 illustrates the distribution of user delays for each rollup
before and after the implementation of EIP-4844. Despite an in-
crease in the number of rollup transactions, four out of six rollups
showed an increase in user delay. Notably, Arbitrum One saw a
significant decrease in user delay by 62%, and zkSync by 40%, indi-
cating faster transaction settlement times. Conversely, other rollups
exhibited notable increases in delay.

Increased user delays indicate that users often experience longer
wait times before their transactions are settled on Ethereum, re-
quiring them to maintain trust in the rollup operators until their
transactions are committed. A potential cause for increased delay
could be rollups waiting to fill blobs to their capacity of 128KiB
before committing them.

The standard deviation of user delay is also a crucial indicator of
predictability in waiting time, essential for user assurance regarding
transaction security. Table 2 indicates that the standard deviation of
user delays increased in all rollups except Arbitrum, suggesting that
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(a) Arbitrum One (b) Optimism

(c) Base (d) Starknet

(e) zkSync Era (f) Linea

Figure 14: Distribution of user delay of rollup transactions
before posted on Ethereum

users frequently face longer waiting times for their transactions to
be settled on Ethereum.

While increasing transaction volumes that rapidly fill the 128KiB
capacity may help reduce these delays, rollups with smaller or
infrequent transactions might still face extended waiting times.
This issue highlights the need for blob sharing protocols among
different rollups to hasten transaction commit times and enhance
user experiences by shortening wait periods.

4.4 Blob gas fee market
Understanding the blob gas fee market dynamics is essential for
enhancing market predictability, enabling DApps and rollups to
optimize data posting and fees. This predictability reduces vari-
ability in Ethereum transaction settlement times and minimizes
costs. Previous research, such as [9, 10], has investigated optimal
strategies in multidimensional markets, providing practical insights
that complement theoretical models.

Additionally, insights from this analysis could contribute to im-
provements in the blob gas fee market. Extensive studies on gas
fee markets [5, 29, 39] have explored how fee update rules might
better capture user demands and reduce variability. Extending these
studies to multidimensional fee markets could deepen our under-
standing.

This section presents an analysis of the newly emerged blob gas
fee market and outlines the following key findings:

(1) The VAR model indicates that the gas base fee has a small,
yet statistically significant influence on the blob gas base
fee. Initially, this impact is positive but tends to diminish
over time.

(2) We introduced a metric for ‘blob gas priority fee’ to rep-
resent the priority demand for blob gas. The validity of

this proxy was established by demonstrating its utility in
enhancing the explainability of blob gas base fees.

(3) The blob gas fee market exhibits higher volatility compared
to the gas fee market, indicating potential challenges in
predictability and stability. Despite its volatility, the lower
ratio of priority fee to base fee in the blob gas market sug-
gests it captures market demands more effectively than the
gas market.

4.4.1 Inter relationships between gas and blob gas market. To in-
vestigate the dynamic interactions between the gas and blob gas
markets, we employed a VAR model analyzing the base fees for
both types of gas. The significant effects detected in the model are
outlined in Table 4. For the gas base fee, positive effects are noted
at lags 1 and 4, with a negative effect at lag 3, indicating oscillat-
ing impacts that diminish over time. In contrast, the equation for
the blob gas base fee showed no significant effects. The near-zero
correlation of residuals (-0.027446) suggests minimal unforeseen
shared variations between these markets.

Table 4: Significant Inter-Variable Effects in the VAR Model
for Gas and Blob Gas Markets

Variable Coefficient T-Statistic P-Value

L1.gas_base_fee 0.058937 3.733 0.000
L3.gas_base_fee -0.056381 -2.934 0.003
L4.gas_base_fee 0.053983 2.825 0.005

4.4.2 Blob gas priority fee. We analyzed the economic implications
of blob transactions by examining priority fees—calculated as the
difference between the effective gas fee and the base fee. Median
priority fees for blob and non-blob transactions were compared
across various blocks. As shown in Figure 15, blob transactions
have a higher average median priority fee of 1.43 Gwei, which is
45.2% greater than the 0.99 Gwei for non-blob transactions.

Figure 15: Comparison of median priority fees between blob
and non-blob transactions

This notable difference implies that blob transactions are typi-
cally assigned a higher priority due to the need to handle additional
blob data. Consequently, we have defined the priority fee for blobs,
termed ‘blob gas priority fee,’ using the following formula, as de-
tailed in Section 3.4:
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The median gas priority fee from other transactions within the
same block serves as the baseline. This baseline is subtracted from
the total priority fee to isolate the component attributable to blob
gas. This method underscores the additional costs imposed on blob
transactions.

Validating blob gas priority fee. The priority fee can act as a
leading indicator of the base fee when the latter does not promptly
reflect demand spikes. Conversely, a rising base fee, signaling in-
creased demand, typically causes the priority fee to decrease. We
validated the blob gas priority fee as a proxy for unmet demand us-
ing a Vector Autoregression (VAR) analysis, with findings detailed
in Table 5 showing statistically significant interactions.

Panel A of the table illustrates the persistence of the blob gas
priority fee across all time lags, indicating that these fees are applied
consistently and reflect strategic adjustments within the network.
Notably, a negative coefficient for the blob gas base fee at lag 1
suggests that a higher initial base fee might reduce subsequent
priority fees, better aligning with market demands.

Panel B demonstrates a positive influence of the blob gas priority
fee on the blob gas base fee, confirming that increases in the priority
fee are promptly followed by rises in the base fee.

These results confirm the interrelationship between the priority
and base fees, justifying the use of the blob gas priority fee metric.
This metric provides essential insights into fee dynamics within the
blob market, aiding developers and users in optimizing network
interactions.

Table 5: Significant Effects in VAR Model

Panel A: Results for Blob Gas Base Fee
Variable Coefficient T-Statistic P-Value

L1.blob_gas_priority_fee 0.545 9.927 0.000

Panel B: Results for Blob Gas Priority Fee
Variable Coefficient T-Statistic P-Value

L1.blob_gas_base_fee -0.0013 -3.812 0.000
L1.blob_gas_priority_fee 0.1151 26.271 0.000
L2.blob_gas_priority_fee 0.1505 34.115 0.000
L3.blob_gas_priority_fee 0.056 15.618 0.000
L4.blob_gas_priority_fee 0.0967 21.78 0.000
L5.blob_gas_priority_fee 0.0493 11.185 0.000

4.4.3 Disscussion of Blob Gas Fee Mechanisms. The blob gas base
fee update rule’s design is crucial for ensuring predictability for
users. Previous studies often evaluate the gas base fee update rule
based on two criteria: its volatility and how well it reflects actual
demand, inferred from indirect metrics such as the effective gas fee
[9, 14, 39].

In our analysis, the blob gas priority fee served as a proxy to
gauge the deviation from actual demand within the blob gas market.

We employed the ratio of the base fee to the priority fee as a critical
metric, reflecting the proportion of unmatched user demands. Fig-
ure 16 illustrates significant differences between the gas and blob
gas markets. The ratio in the gas market stands at 0.037, markedly
higher than the blob gas market’s 0.004. This disparity indicates
that the blob gas market aligns more closely with user demand,
despite its higher volatility, as detailed in Table 6.

These observations indicate that the blob gas base fee gener-
ally aligns well with user demands, suggesting that the underlying
mechanisms are effective. However, its heightened volatility poses
challenges for the predictability and stability of transaction costs,
which are critical for user strategies and overall market dynamics.
This variability requires careful consideration; protocol designers
must weigh trade-offs between market responsiveness and fee sta-
bility to improve the ecosystem’s operational efficiency.

Figure 16: Ratio of priority fee to base fee for gas and blob
gas

Table 6: Summary Statistics of Blob Gas Base Fees in our
analysis period

Statistic Block Gas Base Fee Blob Gas Base Fee
Count 51,778 51,778 51,778
Mean 19,552,890 28.25 ×109 39.60 ×109
Std 14,947 11.73 ×109 33.62 ×109

5 CONCLUSION
We have conducted a comprehensive analysis of EIP-4844 across
four key dimensions: consensus security, Ethereum usage, rollup
transactions, and user delays, and the blob gas fee market. Our anal-
ysis of the impact of EIP-4844 on the increase in fork rates and block
delays provides essential insights into the security implications
of the protocol update, addressing concerns within the Ethereum
community. Our empirical findings demonstrate the changes in
Ethereum and rollup ecosystem dynamics, highlighting the effec-
tiveness of the upgrade and introducing new considerations for
user security due to increased posting delays. Furthermore, our
exploration of the blob gas fee market unveils new possibilities for
evaluating fee structures and optimizing strategies for decentralized
applications.
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A CONSENSUS SECURITY DATA
This appendix presents a detailed evaluation of the consensus secu-
rity data after the implementation of EIP-4844.

A.1 Overall change of consensus metrics
Table 7 shows the comparative metrics before and after the imple-
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reflects an increase in the metrics post-4844, with fork rate witness-
ing a noticeable increase. The synchronization time (Sync time),
although showing a significant increase in average, only about
half of this increase can be confidently attributed to the impact
of EIP-4844. It was observed that CSP time and DA time did not
significantly affect sync time, whereas receive time had a major
impact.

Table 7: Comparative metrics before and after the implemen-
tation of EIP-4844

Metrics Pre-4844 Post-4844 Increase
Fork rate 3.097 6.707 3.61
Sync time (ms) 2267.436 2407.50 140.065 (77.967)
Receive time (ms) 1759.066 1840.032 80.966 (56.102)
CSP time (ms) 482.565 536.043 53.478 (0.699)
DA time (ms) - 13.417 13.417 (0.956)

A.2 Detailed analysis of consensus metrics
Figure 17 illustrates the distribution of sync time for slots before
and after the enactment of EIP-4844. The box plots provide a visual
comparison, while the histogram offers a distribution perspective,
highlighting the shift towards slow synchronization times post-
4844.

Table 8 presents the results of a logistic regression analysis,
which investigates the impact of synchronization time on the likeli-
hood of a slot forking. The positive coefficient of 1.5 indicates that
as synchronization time increases, the log odds of observing the
fork also increase, suggesting a proportional relationship.

Figure 18 analyzes the average CSP time by the number of blobs.
The bar chart contrasts the average time taken for consensus propos-
als with varying blob counts before and after the implementation of
EIP-4844. The comparison suggests that while there is an increase
in CSP time post-4844, it is difficult to conclusively attribute this
increase to the effects of EIP-4844.

Figure 17: Distribution of sync time for slots before and after
EIP-4844

Table 8: Summary of Logistic Regression Analysis

Parameter Coefficient Std. Error P-Value

Constant -10.9497 0.137 <0.001
Sync Time (×10−3) 1.5 0.0248 <0.001

Figure 18: Average CSP time by the number of blobs

B ROLLUP DATA COLLECTION
B.1 Rollup data sources
Table 9 represents data sources of decoded batch transactions and
blocks of rollups. Combining this data with 9, we completed a
detailed our dataset including transaction delay and L2 transaction
data.

Table 9: Data sources of rollup transactions

Rollup Decoded Batch Tx Rollup Block

Arbitrum One ethernow.xyz arbiscan.io
Optimism ethernow.xyz optimistic.etherscan.io
Base ethernow.xyz basescan.org
Starknet voyager.online voyager.online
zkSync Era explorer.zksync.io explorer.zksync.io
Linea Ethereum event logs lineascan.build

B.2 Rollup function classification
Table 10 represents the classification of rollup transactions based
on their functionality and sender addresses. We investigated 10
rollups and their functions frequently used, and classified them to
two parts: if they use Ethereum as DA layer or not.

C DETAILED VAR MODEL RESULTS FOR BLOB
GAS BASE FEE AND GAS BASE FEE

This section presents the detailed results from the VAR model anal-
ysis conducted on the blob gas base fee and the gas base fee. The
analysis includes various statistical tests and model estimations to
assess the dynamics and relation between these two key metrics
within the network’s pricing mechanism.
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Table 10: Classification of Rollup Transactions Based on Functionality and Sender Address

Rollup Sender Address Function Called Uses Ethereum as DA Layer
Arbitrum 0xC1b634853Cb333D3aD8663715b08f41A3Aec47cc all Yes
Optimism 0x6887246668a3b87F54DeB3b94Ba47a6f63F32985 all Yes
Blast 0x415c8893D514F9BC5211d36eEDA4183226b84AA7 all Yes
Base 0x5050F69a9786F081509234F1a7F4684b5E5b76C9 all Yes

Starknet
0x2C169DFe5fBbA12957Bdd0Ba47d9CEDbFE260CA7 updateStateKzgDA Yes

updateState Yes

0x22A82147A80747CFb1562e0f72F6be39F18B5F76 verifyFRI No
registerContinuousMemoryPage No

zkSync Era
0x0D3250c3D5FAcb74Ac15834096397a3Ef790ec99 commitBatches Yes

0x3527439923a63F8C13CF72b8Fe80a77f6e572092 proveBatches No
commitBatches Yes

dYdX V3 0x8129b737912e17212C8693B781928f5D0303390a
updateState Yes
verifyFRI No
verifyProofAndRegister No

Scroll 0xcF2898225ED05Be911D3709d9417e86E0b4Cfc8f commitBatches Yes
0x356483dC32B004f32Ea0Ce58F7F88879886e9074 finalizeBatches No

Mode 0x99199a22125034c808ff20f377d91187E8050F2E all Yes

Linea 0xa9268341831eFa4937537bc3e9EB36DbecE83C7e submitBlob Yes
0x9228624C3185FCBcf24c1c9dB76D8Bef5f5DAd64 finalizeCompressedBlocksWithProof No

C.1 ADF test results
Table 11 displays the results of the ADF test, used to check the
stationarity of the time series data for both the gas base fee and the
blob gas base fee. Result confirmed that the Base Fee and Blob Gas
Base Fee time series are stationary. The test statistics of -6.3719 and
-10.5237 respectively, along with very low p-values. This indicates
that the data are suitable for further econometric modeling, as they
do not depend on time.

Table 11: ADF test results

Metric Base Fee Blob Gas Base Fee

Test Statistic -6.3719 -10.5237
p-value 2.33 × 10−8 9.54 × 10−19
Number of Lags Used 62 62
Number of Observations 69,429 69,429

Critical Values
1% -3.4304 -3.4304
5% -2.8616 -2.8616
10% -2.5668 -2.5668

Conclusion Stationary Stationary

C.2 VAR model estimation output
Detailed results for the VAR model estimation are provided below,
showing the full regression output for both the gas base fee and
blob gas base fee equations.

Detailed results for the VAR model estimation are provided be-
low, showing the full regression output for both the gas base fee and
blob gas base fee equations. Table 12 summarizes the overall model

diagnostics including the number of equations, observations, log
likelihood, and several information criteria that help in assessing
the model fit. Table 16 presents the estimated coefficients and as-
sociated statistics for each variable within the equations, detailing
the individual impacts in the model.

Table 12 summarizes key metrics from the VAR model regres-
sion results. The table captures essential information such as the
number of equations modeled, total observations considered, and
various statistical measures including the Akaike Information Cri-
terion (AIC), Bayesian Information Criterion (BIC), Hannan-Quinn
Information Criterion (HQIC), and Final Prediction Error (FPE).
These metrics provide insights into the model’s performance and
its predictive accuracy.

Table 12: Summary of VAR Model Regression Results

Metric Value

Number of Equations 2
Number of Observations 51,773
Log Likelihood -2.40029 ×106
AIC 87.0488
BIC 87.0526
HQIC 87.0500
FPE 6.38013 ×1037

C.3 Correlation matrix of residuals
Table 13 presents the correlation matrix of residuals for the gas base
fee and blob gas base fee. The near-zero correlation coefficients be-
tween the residuals of different equations suggest that the residuals
are uncorrelated.
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Table 16 provides detailed VAR model estimates for the gas base
fee and blob gas base fee. For the gas base fee, all lagged values are
significant predictors, with particularly strong influence from L1,
evidenced by a high t-statistic of 155.252 and a p-value less than
0.001.

Table 13: Correlation Matrix of Residuals

Base Fee Blob Gas Base Fee

Base Fee 1.000 -0.027446
Blob Gas Base Fee -0.027446 1.000

Table 14: Summary of VAR Model Regression Results

Metric Value

Number of Equations 2
Number of Observations 51,772
Log Likelihood -2,335,520
AIC 84.5486
BIC 84.5530
HQIC 84.5500
FPE 5.23571 ×1036

D DETAILED VAR MODEL RESULTS FOR BLOB
GAS BASE FEE AND BLOB GAS PRIORITY
FEE

In this subsection, we present the results of the Vector Autoregres-
sion (VAR) model analysis that examines the interactions between
the blob gas base fee and the blob gas priority fee. Table 14 provides
a summary of the regression results, offering an overview of the
model’s fit and diagnostic statistics. Following this, Table 17 details
the estimated coefficients and statistics, allowing us to understand
the influence of past values on current values for each variable.

D.1 VAR model estimation output
Table 14 displays the VAR model’s key statistics. The log likelihood
value is notably large at -2,335,520, suggesting the model’s fit to the
data under analysis. The model’s complexity and goodness-of-fit
are further quantified by AIC, BIC, and HQIC, all closely valued
around 84.5. These criteria help in model selection, with lower
values generally indicating a better model relative to the number
of parameters used.

Table 17 outlines the VAR model results for datagas_base_fee
and datagas_priority_fee_per_datagas. The model shows strong
persistence in datagas_base_fee, as indicated by the significant
coefficient of 0.9588 for its first lag, and an effect of prior priority
fees on current base fees, though the impact diminishes over time,
as seen in the insignificant coefficient for the sixth lag. In contrast,
the datagas_priority_fee_per_datagas equation indicates a slight
decrease in priority fees with an increase in base fees at the previous
lag. This suggests an autocorrelation that indicates the complex,
dynamic interplay between these fees within the network’s pricing
mechanism.

Table 15: Correlation Matrix of Residuals

datagas_base_fee datagas_priority_fee

datagas_base_fee 1.000000 -0.017866
datagas_priority_fee -0.017866 1.000000

D.2 Correlation matrix of residuals
Table 15 presents the correlation matrix of residuals for the VAR
model involving datagas base fee and datagas priority fee per data-
gas. This matrix is critical for checking the assumption of no serial
correlation among residuals, which is a fundamental requirement
for the validity of model inferences in VAR analysis.

The values in the matrix show the correlation coefficients be-
tween the residuals of the two equations modeled. A coefficient
close to zero between different variables’ residuals, such as seen
here between datagas base fee and datagas priority fee per data-
gas, suggests that there is no significant linear relationship be-
tween the residuals. This indicates that the model does not suffer
from multicollinearity issues and that the residuals are behaving
as expected—randomly and independently from each other, which
supports the reliability of the model’s forecasts and conclusions.

E ROLLUP TRANSACTION DYNAMICS
E.1 Total fee paid by rollups
Figure 19 illustrates the total fee paid by the top 10 rollups on
Ethereum to use Ethereum as a Data Availability (DA) layer. The
vertical dashed line indicates the implementation of EIP-4844. The
figure shows a noticeable decrease in fees after EIP-4844, reflecting
the impact of protocol changes aimed at reducing transaction costs
for rollup operations.

Figure 19: Total fee paid by top 10 rollups on Ethereum as a
DA layer

E.2 Gas used by rollups
Figure ?? shows the total gas usage by rollups in all rollups, op-
timistic rollups, and ZK rollups. The figure shows a noticeable
decrease in fees after EIP-4844, especially for optimistic rollups.
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Table 16: Estimated coefficients and statistics for gas base fee and blob gas base fee

Equation for
gas_base_fee

Coefficient Standard Error T-Statistic P-Value

Constant 1.33977e+08 1.85917e+07 7.206 <0.001
L1.gas_base_fee 0.681658 0.004391 155.252 <0.001
L2.gas_base_fee 0.145536 0.005313 27.390 <0.001
L3.gas_base_fee 0.066853 0.005344 12.510 <0.001
L4.gas_base_fee 0.046873 0.005314 8.821 <0.001
L5.gas_base_fee 0.054052 0.004391 12.310 <0.001

Equation for
blob_gas_base_fee

Coefficient Standard Error T-Statistic P-Value

Constant 4.10045e+08 6.68550e+07 6.133 <0.001
L1.gas_base_fee 0.058937 0.015789 3.733 <0.001
L2.gas_base_fee -0.018849 0.019107 -0.986 0.324
L3.gas_base_fee -0.056381 0.019216 -2.934 0.003
L4.gas_base_fee 0.053983 0.019108 2.825 0.005
L5.gas_base_fee -0.035820 0.015790 -2.269 0.023

Table 17: Estimated coefficients and statistics for datagas_base_fee and datagas_priority_fee_per_datagas

Equation for datagas_base_fee Coefficient Standard Error T-Statistic P-Value

Constant 410690637.474525 38312702.654541 10.719 <0.001
L1.datagas_base_fee 0.958823 0.004394 218.233 <0.001
L1.datagas_priority_fee_per_datagas 0.545003 0.054900 9.927 <0.001
L6.datagas_priority_fee_per_datagas -0.068182 0.054934 -1.241 0.215

Equation for datagas_priority_fee_per_datagas Coefficient Standard Error T-Statistic P-Value

Constant 56044603.443251 3059021.581396 18.321 <0.001
L1.datagas_base_fee -0.001337 0.000351 -3.812 <0.001
L1.datagas_priority_fee_per_datagas 0.115156 0.004383 26.271 <0.001
L6.datagas_priority_fee_per_datagas 0.075670 0.004386 17.252 <0.001
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