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Abstract

A A-graph system is a labeled Bratteli diagram with certain additional structure,
which presents a subshift. The class of the C*-algebras Og¢ associated with the A-
graph systems is a generalized class of the class of Cuntz—Krieger algebras. In this
paper, we will compute the strong extension groups Exts(Og) for the C*-algebras
associated with A-graph systems £ and study their relation with the weak extension
group Exty, (Og).
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1 Introduction

Throughout the paper, B(H) denotes the C*-algebra of bounded linear operators on a
separable infinite-dimensional Hilbert space H. Let us denote by K (H) the C*-subalgebra
of B(H) of compact operators on H, which is a closed two-sided ideal of B(H). The
quotient C*-algebra B(H)/K(H) is called the Calkin algebra, denoted by Q(H). The
quotient map B(H) — Q(H) is denoted by 7. Let A be a separable unital nuclear C*-
algebra. The extension group Ext,(A) is defined by equivalence classes of short exact
sequences

0—KH)—E—A—0 (exact) (1.1)

of C*-algebras for which K(H) is an essential ideal of £. There are two kinds of ex-
tension groups Exts(A) and Exty(A), called the strong extension group and the weak
extension group, respectively. They are defined by two different equivalence relations of
the short exact sequences (1), respectively. The groups have been playing important role
as one of K-theoretic invatriant in studying structure theory of C*-algebras, classification
of essentially normal operators, non commutative geometry, and so on. In [7], Cuntz—-
Krieger have computed the weak extension group Exty (O4) of Cuntz—Krieger algebra Oy4
as Exty (04) = ZV /(I — A)ZY for an N x N irreducible matrix with entries in {0,1}, so
that they found a lot of examples of unital simple purely infinite C*-algebras which are
mutually non-isomorphic. On the other hand, Paschke-Salinas [24] and Pimsner—Popa
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[25] independently computed the groups Exty(On) and Exts(Opn) for Cuntz algebras as
Exty(On) = Z/(1 — N)Z and Exts(Oy) = Z. It is a remarkable fact that the group
ZN /(I — A)ZYN appears as Exty(O4) from the view point of classification theory of sym-
bolic dynamical systems, because the group Z~ /(I — A)Z" is an ’almost’ complete invari-
ant of flow equivalence of the associated two-sided topological Markov shift (A4,04) ([9],
[31)-

In [20] (cf. [19]), the author recently computed the strong extension group Exts(O4)
of Cuntz—Krieger algebras as Exts(O4) = Z/(I — A)ZN, where A = A+ R; — ARy and
R; is the N x N matrix whose first row is [1,1,...,1] and the other rows are zero vectors.
In [20], the author also clarified exact relationship between the two groups Exty (O4) and
Exts(O4) by presented the following cyclic six term exact sequence of abelian groups:

Ker(I — A:ZN — ZN)/u(Z) —— Ker(I—A:ZN — 7ZN) —— z
0 — ZN /(I — A)zZN —— ZN /(I — AzN

(1.2)
by translating an associated K-homology long exact sequence (cf. [LI]), where ¢ : Z —
Ker(I — A : ZV — Z") is given by «(m) = [m,0....,0], m € Z. The importance of
the two groups Exts(O4) and Exty(O4) in the classification theory of C*-algebras was
shown in a recent joint paper [2I]. It says that the two groups Exts(O4) and Exty(O4)
are a complete set of invariants of the isomorphism class of the Cuntz—Krieger algebra
O4. That is, the position [1]g in Ko(O4) of the unit of the O4 is determined by only the
group structure of the two extension groups Exts(O4) and Exty(O4). The result will be
generalized to a wider class of Kirchberg algebras in [22]. Hence it seems to be interesting
and important to compute the two extension groups Extg(-) and Exty/(-) for more general
Kirchberg algebras.

In this paper we will generalize the above computations for Exts(O4) to more general
(C*-algebras related to symbolic dynamical systems. Cuntz—Krieger algebra O4 is con-
sidered as the C*-algebra associated to topological Markov shift defined by the matrix
A. The C*-algebras which we will consider in the present paper are the ones associated
to general subshifts defined in [I5] (cf. [I8]). They are defined by A-graph systems £
which are labeled Bratteli diagrams with some additional structure, and are regarded as
generalizations of finite directed graphs. Let ¥ be a finite set whose cardinality |3| > 2.
A A-graph sytems £ = (V, E, \, 1) over alphabet ¥ consists of the vertex set V = UV,
edge set E' = U2 E) 41, labeling map A : E — ¥ and a sequence 1 = {t1141} of surjective
maps t41 ¢ Vig1 — V) for each [ € Z; = {0,1,2,...}. Each edge e € Ej;1; has its
source vertex s(e) € V; and its terminal vertex t(e) € V41, with its label A(e) € £, so A is
a map from F to X. The first three (V, E, \) expresses a labeled Bratteli diagram. More-
over the extra structure ¢y ;41 : Vi1 — Vi, [ € Z4 of surjective maps satisfies a property
called the local property of A-graph system such that for every two vertices v € V; and
v € Vi49, there exists a bijective correspondence preserving their labels between the two
sets of edges

{e € Eppq1 ] s(e) =u,t(e) =u(v)}, {ee€ Epi42]i(s(e)) =u,t(e) =0}

Put m(l) = |V,| the cardinality |V}| of the finite set V}, so that m(l) < m(l+1). A A-graph



system £ is said to be left-resolving if e, f € Ej 41 satisfy A(e) = A(f),t(e) = t(f), then
e = f. We henceforth assume that a A-graph system is left-resolving.

Any A-graph system defines a subshift by gathering label sequences appearing on the
concatenated labeled edges of the A-graph system. Conversely any subshift can be pre-
sented by a A-graph system ([13]). Hence a A-graph system is regarded as a graph presen-
tation of a subshift.

We fix a left-resolving A-graph system £ = (V, E,\,¢) over X. Let us denote by the
vertex set V; = {vll, ... ,vin(l)}. Let (Aj 41, Il,l+1)l€Z+ be the structure matrices of a given
A-graph system £ defined by for o € X

1
0

1
0

A1t o, ) :{

if de € Eyq1;5(e) = ol t(e) = vl A(e) = o

7

otherwise,
. I+1\ _ 1
if (v;™) = v,

otherwise,

Iy (i, ) :{

s0 Ap 41,1141 are m(l) x m(l + 1) matrices.

Proposition 1.1 ([15],[17]). The C*-algebra Og is realized as a universal C*-algebra
generated by partial isometries Sy, indexed by o € 3 and mutually commuting projections
Ef indexed by Uﬁ € V) subject to the following operator relations called (£):

m(l) m(l+1)
1= "SS5=> El, Ei= )Y ILin(ij)E"™,
pex i=1 j=1
m(l+1)
SiENSa= > Aun(ia, HEMTV, aex i=1... m)l€Z,.
j=1

The C*-algebra O¢ was primarily constructed as the C*-algebra C*(Gg¢) of an étale
amenable groupoid G¢ associated to the A-graph system £. The class of the C*-algebras
Og¢ generalize the class of Cuntz—Krieger algebras Q4. If £ satisfies condition (I), it is
a unique C*-algebra subject to the above operator relations (£). It becomes a simple
C*-algebra if £ satisfies condition () and is irreducible ([15],[I7]). As in [I7], lots of the
C*-algebras Og are unital Kirchberg algebras.

Let (Azi11,L1141)iez, be the structure matrices of a A-graph system £ = (V, E, A, ¢).
Let

Zr = () ez, € T] 270 | Lyl 20 = l20 1 € 24}
€z

the projective limit ].‘&n{[l’l_i_l - 77Dy 7D Y of the projective system I; 41 : Z™UHD —
7m0 | € 7. of abelian groups. The subgroup Z 1,0 of Zp is defined by

m(l)

Zio = {(nm DYz, €21 nk=0,1 € 24},
=1

The family I; ;11— A 11,1 € Zy of m(l) xm(l+1) matrices I; 41 — A; 41 naturally give rise
to an endomorphism on Z; denoted by I — Ag. It satisfies (I — Ag)(Zr0) C Z;j. Following



Higson—Roe [11], the reduced K-homology groups K i(A),i = 0,1 and the unreduced K-
homology groups K*(A),i = 0,1 for a separable C*-algebra A are defined by using the
dual C*-algebra ©(A) (cf. [23]) for A such that

K'(A) = K1 p(D(A)) and  KP(A) = Ki_,(D(A))

for p = 0,1, where A is the unitization of A. They satisfy
~1

K (A) = Exts(4) and K'(A) = Exty(A).

We write RZ(A) =: BExtl(A) and K'(A) =: Extl (A) for i = 0,1. There exists a cyclic

six-term exact sequence:

Ext)(A) —— Extl(A) —— Z

T l (1.3)

0 +—— ExtlA «——— Extl(A)

for a separable unital nuclear C*-algebra A ([11, 5.2.10 Proposition]).
In the first half of the paper, we will prove the following theorem.

Theorem 1.2 (Theorem 2.15)). Let £ be a left-resolving \-graph system over X. There
exist isomorphisms

Ind} : Extl (0¢) — Z;/(I — Ag)Zy,

Ind! : Ext!(Og) — 27 /(I — AQ)ZIO,

Ind® : Ext® (O¢) — Ker(I — Ag : Z; — Zg),

Ind? : Ext?(Og) — Ker(I — A2 Zro— Zp)

of abelian groups such that the K-homology long exact sequence (L3)) for A = Og is given
by the cyclic siz term exact sequence

Ker(I — Ag:Zjg — Z;) —— Ker(I —Ag: Z; — Z;) —— Z
0 — Z[/(I— AQ)Z[ — Z[/(I—AE)Z[’O.

(1.4)

In the second half of the paper, we will compute the extension groups Extl(Og) and the
cyclic six term exact sequence (L4)) for two examples of the A-graph systems associated
to subshifts. There are lots of examples of subshifts which are not topological Markov
shifts. The first example of subshifts is the Markov coded systems S¢g studied in [16].
The Markov coded system Sg is defined by a finite directed graph G = (V, E) admitting
multiple directed edges from a vertex to another vertex. Let {vi,...,ux} be the vertex
set V. Let us denote by A = [A(q, j)]” 1(= Ag) the N x N transition matrix of the
directed graph such that A(i, j) denotes the number of the directed from the vertex v; to
the vertex v;. In [I6], it was proved that the C*-algebra Og, for the canonical A-graph
system £g. of the subshift S is a unital purely infinite simple nuclear C*-algebra, and



its K-groups and the weak extension groups were computed. Since the torsion free part of
Ko(Os,,) is not isomorphic to K;(Og,,), the C*-algebras Og,, are never stably isomorphic
to any of Cuntz—Krieger algebras.

The second example of subshifts are the class of Dyck shifts Dy,2 < N € N. They are
interesting family of subshifts coming from automata theory and formal language theory
which are located in the subshifts far from topological Markov shifts. They have minimal
presentations of A-graph systems which yield unital simple purely infinite C*-algebras
having infinite generators of its K-theory groups, so that they do not belong to the class
of Cuntz—Krieger algebras. We will compute the strong extension groups for the two
examples Og, and O pmin of C*-algebras in the following way.

Theorem 1.3 (Proposition B.2] Corollary B.I3]).

(i) Assume that the transition matriz A of a finite directed graph G is aperiodic. Let
Os,, be the simple purely infinite C*-algebra associated with the canonical \-graph
system of the Markov coded system Sq. Then we have

Ethv(OSG)
EXtS(OSG)

[12

(Ker(A) inZN)a zV,  BExtl(0s,) =2V /AZY,
(Ker(A) in ZV) @ ZN7!, Ext}(Os,) = 2N JAZN.

[12

(ii) Let (’)Drﬁm be the simple purely infinite C*-algebra associated with the minimal pre-
sentation SD}{}in of the Dyck shift Dy. Then we have

Extg((’)D}Gin) ~Hom(C(C,Z),Z), Ext;(ODR}in) ~ 7.

where C(C,Z) denotes the abelian group of integer valued continuous functions on a
Cantor discontinuum C.

We note that the computations Ext0(Os,) = (Ker(A) in ZV) @ ZV, Extl Os,) =
ZN JAZN and Extgv(ODIIGm) = Hom(C’(C,Z),Z),Ext},v(ODrﬁm) = Z/NZ are already ob-
tained in [16] and [12], respectively. In this paper, we will compute the strong extension
groups Ext0(Og,. ), Ext!(Og,) and Extg(ODrﬁm) and Extg(ODIIGm).

2  Ext,(Og¢) and Fredholm indices

In what follows, H denotes a separable infinite dimensional Hilbert space. Let A be
a separable unital nuclear C*-algebra. An extension means a unital *-monomorphism
o: A — Q(H) from A to the Calkin algebra Q(H). Two extensions o; : A —
Q(H),i = 1,2 are said to be weakly equivalent if there exists a unitary u € Q(H) such that
o2(a) = uoy(a)u*,a € A. If in particular the above unitary u in Q(H) is taken as u = w(U)
for some unitary U € B(H), then the extensions 7; : A — Q(H),i = 1,2 are said to
be strongly equivalent. Let us denote by Exty(A) and Extg(A) the weak equivalence
classes and the strong equivalence classes of extensions of A, respectively. The class of
a unital *-monomorphism 7 : A — Q(H) in Exts(A) is denoted by [7]s, and similarly
[T]w in Exty(A). Fix an identification between H & H and H. Through an embedding



Q(H) ® Q(H) — Q(H) defined by the identification, the sum of extensions 7 @ 7o are
defined by a direct sum 71 @ 7. It is well-known that both Exts(A) and Exty(.A) become
abelian semigroups, and also they are abelian groups for nuclear C*-algebra A (cf. [1], [5],
[6], [8], etc.). They are called the strong extension group for A and the weak extension
group for A, respectively. Let us denote by g4 : Exts(A) — Exty(A) the natural quotient
map. As in [I1] and [25], there exists a homomorphism ¢4 : Z — Exts(A) such that the
sequence

7 4 Exty(A) 22 Exty (A) (2.1)

is exact at the middle, so the quotient group Exts(A)/t4(Z) is isomorphic to Exty (A).

For projections e € Q(H) = B(H)/K(H) and E € B(H) with n(E) =e, let t € Q(H)
be an element such that ete is invertible in eQ(H )e. Let T € B(H) be a lift of ¢, which
satisfies w(T') = ¢. The Fredholm index of ET'E in EH is denoted by ind.t. The integer
ind.t does not depend on the choice of £ and T.

Let £ = (V,E,\, 1) be a left-resolving A-graph system over . Let S,,a € ¥ and
Eﬁ,vf € V; be the generating partial isometries and mutually commuting projections
satisfying the relations (£) in Proposition [LI Let us denote by A; the commutative
C*-subalgebra of Og generated by the projections Ef ,i=1,...,m(l). The commutative

C*-subalgebra Ag is defined by the one generated by A;,l € Zy. Since A; C Ajy1,l € Z,

The algebra Ag is a commutative AF-algebra. Hence the projections E{, .. ,Efﬂ (1) are the
minimal projections in .4; satisfying E! = Z;-n:(l;rl) Il7l+1(i,j)E§+1 fori=1,...,m(l).

Lemma 2.1. For an extension o : Og — Q(H), there exists a trivial extension T :
O¢ — B(H) such that 0|4, =T oT|4,.

Proof. Let us denote by & the restriction o|4, of o to the subalgebra Ag. As Ag is a
commutative AF-algebra, the extension ¢ is trivial by [5, 1.15 Theorem|. Take a unital
s-monomorphism p: O¢ — B(H) and put p=7mop: O¢ — Q(H) and

p=mopla,: Ag — Q(H).

As the extensions 4, p are both trivial, by Voiculescu’s theorem [26], there exists a unitary
U € B(H) such that
o(z) =m(U)p(x)n(U)*, x € Ag

so that o(z) = n(U)7n(p(x))n(U)*,z € Ag. By putting 7 = Ad(U) o p: Og — B(H), we
have o = mo7 on Ag. O

A Fredholm module over a C*-algebra A means a pair (u,p) of a unitary v € Q(H)
and a x-homomorphism p : A — B(H) such that m(p(a))u = unr(p(a)) for all a € A.
It is well-known that the K-homology group KY(A) for A is realized as the homotopy
equivalence classes of Fredholm modules over A (cf. [5], [§], [10], [L1], etc.). The addition
[(u1,p1)] + [(ug, p2)] is defined by [(u1 ® uz, p1 ® p2)], in particular, we have [(uy,p)] +
[(U’?ap)] = [(u1u27p)]7 and hence [(U*ap)]+[(uap)] = [(u*uvp)] = [(1710)]7 so that _[(uvp)] =
[(u*, p)]. Take a faithful representation 7y : A — B(H) and a unitary Vp € B(H) such
that 7o(a)Vp = Voro(a) for a € A. Since (7(Vp),70) is a neutral element of K°(A), (u @
w(Vb), p® 10) is equivalent to (u, p) for any Fredholm module (u, p) over A. Hence we can



take a representative of [(u, p)] as p being faithful. As Ag = llim A; is an AF-algebra, the
—00

formula

K%(Ag¢) = Hom(Ko(Ag),Z) = @KO(AI)

holds (cf. [2], [IT]). For [(u,p)] € K°(A)), the identity E! = Zm(lH) Il7l+1(i,j)E§+l implies

j=1
m(l+1)
j=1

so that the correspondence for each [ € Z

1=

Ind; : [(u, p)] € KO(Ar) — (ind, o ryu) "y € 20 (2.2)
yields the isomorphism
KO(Ag) = lim{Zy 1y : Z270FD — 20} (2.3)

of abelian groups. The latter group is denoted by Z;. We denote by Ind : K°(Ag) — Z;
the isomorphism induced by (2.:2]). We note the following lemma.

Lemma 2.2. Let p; : Ae — B(H),i = 1,2 be representations and u € Q(H) a unitary
satisfying un(p;(a)) = w(pi(a))u,a € Ag,i = 1,2. Suppose that w o py = wo p;. Then
[(w, p1)] = [(u, p2)] as elements of K°(Ag).

Proof. Since 7o po(E!) = 7o pi(E),i =1,...,m(l), we have ind,o,,(gyu = ind,, (gyu
fori=1,...,m(l), so that [(u, p1)] = [(u, p2)]. O

For an extension o : Og — Q(H), take a trivial extension 7 : O¢ — B(H) such that
ola, =moT|a,. Wewrite 7 =mor1:0¢ — Q(H) and define U,z € Q(H) by setting

Us =Y 0(Sa)7(S%).

aEX

Lemma 2.3. U, ; is a unitary in Q(H) such that U, :7(a) = T(a)Uysz for all a € Ag.
Hence the pair (Uy7,7|4,) gives rise to an element of K°(Ag).

Proof. We have

UsiUsz = > 0(Sa)7(S)7(Sp)0(Sh) = > 0(Sa)a(S5) = 1
a,BET acex

and similarly U ;";Ugf =1 so that U, 7 is a unitary in Q(H). We also have for a € Ag

Usi7(a) =) 0(Sa)T(S5)T(a) = Y 0(Sa)F(S4aSa)7(Ss)

a€Y aEX
= 0(SaSiaSa)7(85) = Y 0(aSa)7(Sk) = 7(a)Us .
a€Y aEX



Lemma 2.4. For an extension o : Og — Q(H), take trivial extensions 1; : Og — B(H)
such that |4, = TilA.,% = 1,2. Then there exists a unitary V € B(H) such that

7(V)o(a) =c(a)n(V), acAg and Usz = Usz¢7 (n(V))m(V)* (2.4)

where ¢z (m(V)) is a unitary in Q(H) defined by

7 (w(V)) = D 71(Sa)m(V)71(Sa)".

aeX

Proof. By Voiculescu’s theorem [26], one may find a unitary V' € B(H) such that 7o(X) =
(V)7 (X)m(V)* for X € Og. For a € Ag, we have

so that 7(V') commutes with o(a) for all a € Ag. It then follows that

Usiy = Y o(Sa)m(V)F1(Se)m(V)*

aey
= 0 (Sa)F1(S5Sa) (V)7 (Sh)m(V)*
acX
=Y 0(Sa)T1(S2) Y Fa(Sp)m (V)7 (Shm(V)*
acx pex
= 07‘?1(25‘?1 (W(V))?T(V)*
It is routine to check that ¢z (w(V)) is a unitary in Q(H) by using the commutativity
between (V') and 71(S%S,). O

Lemma 2.5. For a Fredholm module (u,p) over Ag, take a trivial extension 7, : Og —
B(H) such that p = Tplae. Then ¢z,(u) = > cx Tp(Sa)ut,(Sy) is a unitary in Q(H)
commuting with w(p(Ag)). Hence the pair (¢z,(u), p) gives rise to an element of K°(Ag)
and its class [(¢z,(u), p)] in K°(Ag) is independent of the choice of the extension 7, :
Og¢ — B(H) as long as T)la, = plA.-

Proof. We will show that ¢z (u) commutes with 7(p(a)) for a € Ag. We have

@fp (u)m(p(a)) = Z ?p(Sa)u%p(SZa) = Z 7~'/)(Staz)m:p(S;kzasa)7~'p(SZ)

acy €l

= Fo(Sa)um(p(S5a8a))7p(Sa) = D Tp(Sa)m(p(SaaSa))utp(Sy)
aey el

= Z To(SaSaa8a))utp(Ss) = Z 7o(a)7p(Sa)uTp(55)
aey el

(o)), (w)

Take two trivial extensions 7,,7, : Og — B(H) such that p = 7,|4, = 7|4, By 22), it
suffices to show that
indﬂop(Ef)(pr (u) = indwop(Ell.)(ﬁT,; (u) (25)



It is straightforward to see that 7,(S,)uf,(S) commutes with 7(p(E!)), and the equality
ind,o . Y br, (u Z lndwop(El)Tp(SOc)U%p(S;)
acd
holds. One then has
indwop(Ej)%p(Soc)U%p(S ) =ind ., ELS,S%) 7~'p( )U%p(SZEf)
=ind ., (51 s, To(Sa B Sa)uTp (S5 ELSa)
_lndﬂop S*EZS p(S E S ) (S;Ezlsa)
_lndﬂop(Eé) p(SOl) p(SZ)a
proving the equality (2.5]). O

Corollary 2.6. For an extension o : Og — Q(H), take trivial extensions 7,7 : Og —>
B(H) satisfying o4, = 7|4 = 7'|4.- Then one may find a unitary V'€ B(H) such that
(7(V),7]4.) € K'(Ag) and the equality

ind[(Us 7, 7] 4.)] — nd[(Up 7/, 7’| 4, )] = ind[(7(V), 7| 4, )] — ind[(¢7(7(V)), 7] 4.)]  (2:6)
holds.

Proof. Take a unitary V' € B(H) satisfying (Z4]). We then have U, # = Uy 7¢z(m(V))n(V)*
so that

ind[(Us, 7, 7|ag)] = ind[(Us7, 7|4, )] + ind[(¢7(7(V)), 7]ag )] 4+ ind[(w(V)", T[4, )]-
As ind[(Uy 7, 7|4, )] = ind[(Us 7, 7| 4, )], we get the equality (2.0]). O
Define the subgroup Zg”(l) of ZzmW) by

m(l)
23V = {(nh)D e 27D | 3"l = 0}.

=1

As Iz ¢ zr®,

Zgn(l) l € Zy} of abelian groups. Define the subgroup Zr g of Z; by the abelian group
L{Il 141 ° m(lH) — Zgn(l)} of the projective limit, so that

l € Zy, we have a projective system {Ij;4; : Zg"(H'l) —

[o¢]
z
Zro={(n")iez, € HZSn() | Lyan' Tt =n'}.
1=0

The matrices Ij ;41,0 € Z4 act on Zrg by (n )l€Z+ € Zro — (I jpnttt )iez, as the
identity denoted by I. Define the subgroup K°(Ag)g of KO(AE) by

K(Ag)o = {[(m(V),p)] € K°(Ae) | V € U(B(H))},

where U(B(H)) denotes the group of unitaries in B(H).



Lemma 2.7. The correspondence

Ind; : [(u,p)] € K°(Ag) — (ind (Eg)u)zi({) ez™) forleZ,

Top
yields an isomorphism Ind : K°(Ag)y — Zp .
Proof. For V € U(B(H)), we have

m(l)
Z mdmp El ) indZZl(? wop(Eﬁ)ﬂ—(v) = indﬂop(l)ﬂ'(V) =0
r(V)MD ¢ 2" Hence Ind([(u, p)]) € Z1o for [(u,p)] € K°(Ag)o.

)
Conversely, for any (n')iez, € Zro with n' = (nl)zn({) € Zm(l) l € Z4, one may find a
Fredholm module (u, p) over Ag such that Ind[(u, p)] = (n )lez+ As

so that (ind_, YT

m(l)
0= Z ind, o ,pyu = indg (u),
i=1

there exists a unitary V' € B(H) such that (V) = u. Hence we have Ind[(7w(V), p)]
(nl)lez+ € Zr,, proving Ind(K°(Ag)o) = Zr .

Ol

Let (Aj 141, 11041)1ez, be the structure matrices for the A-graph system £. Put Ale(z', j) =
Y oaes Air1(i, o, f) for i =1,...,m(l), j = 1,...,m(l + 1), which satisfies the relation

LiviAfye = Al liave, €24 (2.7)
Let Ag : Z; — Zj be the endomorphism on the group Z; defined by
As((xl)lez+) = (A2%1+1$l+1)lez+-

By the identity (2.7)), we know that (Afl+1il7l+1)lez+ belongs to Zj for (z;)ez. € Zj, so
that Ag : Z1 — Zj yields an endomorphism on Zj.

Lemma 2.8. The map ¢ : [(n(V),p)] € K°(Ag)o — [(¢7,(7(V)), p)] € K°(Asg) gives rise
to the commutative diagram

K'(Ag)o —2— K(As)
Indl Jlnd (2.8)
Ag

ZI,O — Z[.

10



Proof. We have

ind.o, p1y@7, (7(V)) = > ind.o, g1y T(Sa)T(V)7(55)

aeX

= Z indwop(Eé)ﬂ'(T(Sa)VT(SZ))

aEeX

=D ind oy s T(T(S i Sa)VT(SLEiSa))
aEY
m(l+1)

= Z Z A4 (4, a,j)indmp(Ez_H)w(T(E;_H)VT(E;ﬂ))
ey j=1 !
m(l+1)

— Z A£l+1 (27 j)indﬂop(E;+1)7T(V)
7j=1

so that we have Ag¢ oInd =Indo ¢ : K°(Ag)g — Z;. O

For an extension o : Og — Q(H), take a trivial extension 7 : Og — B(H) satisfying
olag = ™o 7|4, and consider the unitary Usz = > o5 0(S4)7(55) € Q(H). By Lemma
2.3 the pair (Uy7,7|4,) defines an element of K°(Ag). Put the Fredholm module

d(0-7 T) = (Ucrﬁ'v T|Ag)

over Ag so that the class [d(o,7)] defines an element of K°(Ag). Corollary together
with Lemma 2.8 says that for trivial extensions 7,7' : O¢g — B(H) such that |4, =
7|lae = 7'| 4¢, we have

Ind[d(c,7)] — Ind[d(o, 7")] =(I — Ag)ind[(7(V), 7| 4,)]-
As ind[(7(V'), 7| 4.)] € Z1 0, the class
[Ind[d(o, 7)]] € Z1/(I — Ag)Z1,
is independent of the choice of 7 as long as 7o 7|4, = 0| 4,-

Lemma 2.9. For an extension o1 : Og — Q(H), take a trivial extension 11 : Og —>
B(H) such that o1|4, = 7o Ti|a.. Let 02 : Og — Q(H) be an extension strongly
equivalent to o1. Then there exists a trivial extension 7o : Og — B(H) such that |4, =
o Tol4, and

[Ind[d(al,ﬁ)]] = [Ind[d(dg, Tg)]] m Z[/([ — AQ)ZLO.

Proof. Since oy is strongly equivalent to o1, one may take a unitary V € B(H) such that
oy = Ad(w(V)) o 01. Define a trivial extension 7 : O¢g — B(H) by 72 = Ad(V) oy
satisfying 2|4, = m 0 T2 4,. We then have
. m(l
Ind[d(02, 72)] =[(ind,, (1) Uos. 7. )iy ez, ]
. ~ sy vm(l
=[(ind,, 1) Y 02(Sa)72(SENT Niez, |

aEX

11



Now we have

ind,, g1 > 02(Sa)2(S5) =ind (v)o, (Bl)r (V) > 7(V)or(Sa) 7 (S3)m (V)"

a€cy aey

:indm(E’f-) Z 01(Sa)7T1(S2) = indal(Ef)UUlfl

a€EY
so that Ind[d(o1, )] = Ind[d(o2, T2)]. O
Therefore we have

Proposition 2.10. For the strong euivalence class [o]s € Exts(Og) of an extension o :
O¢ — Q(H), the class [Ind[d(o,T)]] in the group Z;/(I — Ag)Z1yp is independent of the
choice of a trivial extension 7 : Og — B(H) as long as 0|4, = T|4,-

We thus have a homomorphism
Inds : EX‘ES(OQ) — Z[/(I — AQ)ZLO

defined by Inds([o]s) = [Ind[d(o, T)]].

Take a trivial extension 7 : O¢ — B(H) and a unitary u,, € Q(H) of Fredholm index
m € Z such that n(7(a))uy, = upm(r(a)) for a € Ag. Define an extension o, : Og —
B(H) by o, = Ad(uy,) o (7o 7) so that the class [oy,]s in Exts(Og) is defined for each
m € Z. We then have a homomorphism e : m € Z — [o]s € Exts(Og) such that the

sequence
7 55 Bxty(Og) —5 Exty (Og) (2.9)
is exact at the middle, where ¢ : Exts(O¢) — Exty(Opg) is the natural quotient map (cf.
[25]).
We will introduce a homomorphism ig : Z — Z 1 J(I—Ag)Zr in the following way. For
m € Z, take an element (n'),cz, € Z; such that n! = (nl)!" () e ™Y and m = Zm(l

for each | € Z,. One may take such a sequence as n! = (m,O, ...,0) € 7m0 We then
define

be(m) = [(I — Ae)[(n")ez, )] € Z1/(I — Ag)Zryp.

Let (n’ )l€Z+ € Zr be another sequence such that m = ZT({) n’. As ZZ (1) (nt —nl) =

)

m —m = 0, we have (n')iez, — (W")iez, € Zi so that [(I — Ag)[(nh)ez,]] = [(I —
Ag)[(n )€Z+]] € Zi/(I — Ag)Z;o. This shows that i¢(m) is independent of the choice of

(n')iez, € Zr as long as m = sl

Lemma 2.11. The diagram
/N Exts(Oe)
I lInds (2.10)
7 —2 s 7 /(I - Ae)Zryg

commutes.

12



Proof. Take a trivial extension 7 : Og — B(H) and a unitary u,, € Q(H) of Fredholm
index m € Z such that 7(7(a))uy, = u,m(7(a)) for a € Ag. The extension o, : Og —
B(H) is defined by o,, = Ad(up) o (7o 7). Put ki = ind, (gyum = ind;((gy)um. As

ind(u,,) = m, we have Z?;({) k! = m for each | € Z,. Now we have
nds(|om]s) = [((in om(EYYom,7)i=1 JI€Zy] = m m(r(EL)) O'm 7707' I€Z 4
Ind, ([om]s) = [((nd,,, (51 U)oy iz ] = [((ind CHNER)
aEX

Since we have

lndﬂ(T(Ei)) Z O-m(SOc)Tr(T(S:;))

a€l]
—ind, oy (3 77 (S (7 (55))
a€Y]
=ind,, (g tm + Y iz 0y F(Sa ), 7(S5)
1 aez 1
=kj + Z indz s+ pls,) Um
a€l]
m(l)
_k,l + Z ZAl l+1 Z (&% ])1Hd~(El+1)
ac)l j=1
m(l)
m(l
=kl - Z Af (DR = (1= AS)[(REH ),

we get
Ind, (o) = (I = AS) (k)5
As ig(m) = [(I — Ag)[(k')1ez, |, we conclude Inds([o,]s) = ig(m), proving Inds(te(m)) =
te(m). O
Define a homomorphism sg : Ker(I — Ag : Z; — Zj) — Z by setting se((n!)iez, ) =
Zm(l) n; which is independent of [ € Z .

Lemma 2.12. We have a exact sequence

Ker([ — Ag : ZLO — Z]) — Ker(I - A,Q, 1Ly — ZI) L) Z

I i

0 — Z]/([—AQ)Z] — Z[/(I—AQ)ZLQ
Proof. 1t suffices to show that Ker(ig) = s¢(Ker(I — Ag : Z; —> Zy)). For m € Ker(ig) in
Z, we have ig(m) = (I — Ag)[(k")iez, ] where k! = (k:l)zn(f ,m Zm( kL. Since L,g(m)
(I—AQ)ZL(], one may ﬁnd (nl)lez+ S Z[ ,0 SUCh that (I Ag)[(k‘ )IEZ+] (I Ag)[( )IEZ+]
We then have (I —Ag)[(k')iez, | — (I—Ag)[(n')iez, ] = 0 so that (k' —n')ez, € Ker(I—Ag)

and m = Zm(l K = Z:’i({)(kﬁ —nl). This shows that

m = 82((k’l — nl)lez+) € SQ(KGI"(I —Ap : Zp —> ZI)).

13



Conversely, for (nl)lez+ € Ker(I — Ag : Z; — Zy)), we have

m(l)
Pe(se((n)iez, ) = ZE(Z ng) = (I —Ag)((n')iez,) = 0. [
i=1
Following Higson[I0] and Higson-Roe [I1], for a separable unital nuclear C*-algebra
A the reduced K-homology groups IN{O(.A), I?Zl(.A) and the unreduced K-homology groups
K°(A),K!(A) are identified with their extension groups such as

K (A) = ExtO(A), K (A) = Exts(A), K°(A)=Ext®(A), K'(A)=Exty(A),

respectively. The groups Exts(A) and Exty, (A) are written as Extl(A) and Extl (A), re-
spectively. The isomorphisms Indy : Exts(A) — Z;/(I—Ag)Zr and Indy, : Exty(A) —
Z1/(I — Ag)Z; are written as Ind! and Indl, respectively. A general theory of K-homology
groups for a separable unital nuclear C*-algebr A says that the following K-homology long
exact sequence holds:

0 —s R'(A) — KO(A) "5 KO(C) = Z —5 K'(A) — K'(A) —» 0. (2.11)
By [14], we have already known that
Extl(Og) = Z1/(I — Ae)Zr,  Ext®(0g) = Ker(I — Ag : Z1 — Zy). (2.12)

The homomorphism ¢ : K%(Og) — K%(C) in the middle of @II) for A = Og is
defined by the natural unital inclusion map t(c : C — Og¢. As the number Z?i({ﬂ) ni
for n! = (nﬁ)?l(f) € Ker(I — Ag : Z; — Zj) does not depend on the choice of | € Z,

the homomorphism ¢ : KY(Og) — K%(C) = Z satisfies ¢f((n!)ez, ) = E;i({ﬂ) n! which
does not depend on [ € Z,.. Since KO(OE) = Ker(: : K%(Og) — K%(C)), we know that

K (Og) = Ker(I — Ag : Zrg — Z1). (2.13)

The cyclic six term exact sequence (2.11]) says the following lemma.

14



Lemma 2.13. The following diagram is commutative:

0 0 0
IN{O(OQ) — Extg((’)g) E— Ker(I — Ag: ZLO — ZI)
K%(Og) =—— Ext0(0g) —— Ker(I — Ag : Z; — Zy)
(& S¢ S¢
L* ¥ ig
~1 Ind}!
K (Og) =——— Extl(Og) : Zi/(I— Ag)Zr
ndl
KL(Og) ——— Extl(0g) 3, Z1 /(I — Ag)Z;
0 0 0

where ig : Z — Zr/)I — Ag)Zryp is defined by ig(m) = [(I — Ag)[(n')iez,]] for m =
Z?i({) nk, 1 € Zy, and sg : Ker(I — Ag : Zy — Z;) — Z is defined by se((n')ez,) =
Z:-i({) nk for (n')iez, € Ker(I — Ag : Zy — Zy).

Corollary 2.14. Ind! : Exts(Og) — Z;/(I — Ag)Zrp is an isomorphism of abelian
groups.

Proof. By the commutative diagram (2.14]), we have a commutative diagram of short exact
sequences:

0 —— Z/SQ(EthV(Og)) ;> EXt;(OQ) —_— EX‘E}N(OQ) — 0

l Ind} l Ind}, l

0 —— Z/SQ(KGI‘(I—AQ)) E— Z[/(I—AQ)ZLQ E— Z]/([—AQ)Z[ — 0.

Since the two vertical arrows Indl : Ext} (Og) — Z;/(I—Ag¢)Z; and Z/s¢(Ext? (Og)) —
Z/sg(Ker(I — Ag)) are isomorphisms, the five lemma says that the middle homomorphism
Ind! : Ext!(Og) — Z;/(I — Ag)Z; ¢ is isomorphic. O

We therefore obtain the following theorem.

Theorem 2.15 (Theorem [[L2]). Let £ be a left-resolving A-graph system over .. There
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exist isomorphisms

Ind1 Ext! w(Og) — Z1 /(I — Ag)Zy,

Ind! : Ext!(Og) — Z;/(I — AE)ZI 05

Ind? : Ext® (0O¢) — Ker(I — : Ly — ZLr),
Ind? : Ext?(Og) — Ker(I — Ag Zro— Zr)

of abelian groups such that the K-homology long exact sequence [2I1)) is computed to be
the cyclic six term exact sequence

Ker(I — Ag:Zjog— Z;) — Ker(I —Ag: Z; — Z;) —— Z
0 — Z[/([ — AQ)Z] — Z]/(I — AQ)ZL().
3 Examples

3.1 Markov coded systems

Let G = (V,E) be a finite directed graph with vertex set V' = {vq,...,vn} and edge
set E = {ej,...,en, }. We assume that the graph G is essential, which means that every
vertex has at least one incoming edges and at least one outgoing edges. Let b, c be two
letters. Consider the set

m

P
Cg:={b---bec---Cex | k=1,...,Ni, n <m, n,m e N} (3.1)

which is called a code for G. Define the map r : C¢ — E by r(b---bc---cer) = ex. Put
Y ={b,c,en|n=1,...,N1}. Let Q) be a shift invariant set defined by setting

Qg ={(wi)iez € »Z | there exists --- < k_1 < kg < ky < --- in Z;
Wlkiskin) € CG’t(r(w[ki’kiH))) = S(T(w[ki,ki+l)))7i € Z}

where Wi, &, ) = Wk, *** Wk, —1 and t(e), s(e) for an edge e € £ denote the target vertex
and the source vertex, respectively. The set ¢, ;) is shift invariant but not necessarily
closed in ¥%. The closure Q(cg,r) is a shift space of a subshift. The subshift is called
the Markov coded system and written Sg ([16]). It is a normal subshift in the sense of
[18] and not any of topological Markov shifts for every finite directed graph G. There
is a A-graph system written £5¢ canonically constructed from the Markov coded system
Sq. It presents the subshift S¢ and is minimal in the sense of [18]. The C*-algebra Qs
associated with the A-graph system £5¢ is written as Og, in [16]. It is shown in [I6] that
the algebra Og,, is simple purely infinite if the transition matrix A of the directed graph
G is aperiodic, and the K-theory groups and the weak extension groups are such as

Ko(Os,) 2 ZN/AZN @ 2V, K1(Os,) = Ker(A) in ZV,
Ext? (0g.) = (Ker(A) in ZV) @ ZV,  Extl (0s,) =2V /AZY.
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We note that in [I6] the weak extension groups Extl(Og,), Ext) (Os.) are written as
ExtO(OSG), Ext! (Og,, ), respectively. In what follows, we will compute the strong extension
groups Ext}(Og,.), Ext?(Os,,).
Let us denote by 1x and Oy the identity matrix of size NV and 0 matrix of size N.
. . . . . S S .
The canonical A-graph system £°¢ and its transition matrices (Aflfl, 1 fl fl), written as
(M 141,11 541) in [16] for £5¢ was concretely computed such as

Iy Oy v =or e eee oo Oy Oy 1y
Oy 1y . 0y 1y On

M _{Ony -+ Oy 1y Oy Oy 1y Oy --- On
BAL= At ... ... At AY Oy Oy --- On Oy
Oy -+ -~ Oy On 1y . .

Oy On Opn

Oy -+ -+ Oy Oy -+ Oy Iy Iy 1n]

1y Iy Oy -+ o+ o o oo Oy Opn]

Oy Oy 1n

I =

Oy 1y Oy Opn

for 3 <1 €N, where both M; ;41,1141 are 2(1 4+ 1) x 2(l 4+ 2)-block matrices whose entries
are N x N-matrices, so they are m(l) x m(l + 1) matrix with m(l) = 2(I 4+ 1)N. Hence we
have

Oy 1n On In On

On Oy 1y -1y On 1n On -+ On

M1 — Iy = At . .. At At 1y Oy -~ Oy Oy
Oy -+ - Oy On 1y

—1xy Oy Opn

_ON < On On On 1y On ON_

Lemma 3.1. The homomorphism sgsg : Ker(I — Agsg : Zr — Zg) — Z in the upper right
horizontal arrow in Lemma for £ = £5¢ is surjective.
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Proof. Since the map sgsg; : Ker(I — Agsg : Z — Z1) — Z is defined by sgs¢ (n')iez, ) =
Z?;({) that is independent of [ € Z., we choose [ = 3 and consider the kernel Ker(Ms 4 —
I3 4). The matrix Mz 4 — I3 4 is of the form:

Oy -1y Ony Onv Onv Onv Onv Oy Oy 1n]

On Iy -1y Onv Oy Oy Oxy Ox 1x On

On Oy Iy -1y On Oy Onv 1Ixy Oy On

Mar—Tos— |08 Onv  Ov Iy =1y Oy 1y Oy Oy Oy
3.4 3,4 At At At At At —1y On On Oy Opn
On O Onv Onv Oy Iy -1y Ox On On

On Oy Oy Oy Onv Oy In -1y Oy On

Oy O Ov Oy Oy Oy Ony Iy On Opnd

It is easy to see that [z;]}2, with z; € ZN.i=1,...,10 belongs to Ker(Ms 4 — I3 4) if and
only if

At(xl + x9 + 3x3) =0,
xe=w7 =28 =0, x4=w5=2x3, T9g=1T3— T2, T10 = T2.

Hence the map sgsg ((n!)iez, ) = Z;i({) is surjective. O

Since the cyclic six term exact sequence (L3]) is rephrased by (L4]), the upper right
horizontal arrow Ext® (Os.) — Z in (3] is surjective, so that we have the exact se-
quences:

0 — BExt?(Og,) — Ext)(Og,) — Z — 0,
0 — Ext!(Og,) — Extl(0g,) — 0

which show that
EX‘US(OSG) PZ = Exth(OSG), Ext;((’)gc) o~ Ext},\,((’)ga).

Since we know that Ext%(Os,) = ZY @ (Ker(A) in ZV) by [16], we have the strong
extension groups Extl(Og,),i = 0,1 in the following way.

Proposition 3.2. Let G be an essential finite directed graph. Suppose that its transition
matriz A of G is aperiodic. Let Og,, be the simple purely infinite C*-algebra of the Markov
coded system for G. Then we have

Ext(0s,) =2 ZV 1 @ (Ker(A) in ZN), Extl(0s,) = ZN JAZN .

3.2 Dyck shifts

We will compute the extension groups for the C*-algebra O prin associated to the minimal
presentation £D}{}in of the Dyck shift Dy for N > 2. Let ¥~ = {ay,...,ay} and T =
{B1,...,Bn} be two kinds of finite sets. Put ¥ = X+t UX~. The Dyck shift Dy is defined
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to be the subshift over ¥ in the following way. Equip the set of finite words of ¥ with a

monoid structure by

Ot 32)

0 ifiF#j.

Let §n be the set of finite words (71, ...,7,) of ¥ such that the poduct 1 - - - v, is zero in
the monoid. The Dyck shift Dy is defined by the subshift over ¥ whose fobiddern words
are §n. This means that Dy is the set of bi-infinite sequences (v, )nez of X such that
(Yny« -+ s Vnt1y- - - s Yntk) does not belong to §n for all n € Z and k € N. The subshift
has a unique minimal presentation of A-graph system called the Cantor horizon A-graph
system written Q%};\r ([12]). In this paper, we call it the minimal presentation and write it
as £ pyin = (Vmin pmin \min | yminy “ Tt g constructed as in the following way. The vertex

set V™M is
Wmin _ {(/Bula'”a/@w) c (E+)l ‘ (1/1,...,1/[) S {L...,N}l}.

A labeled edge labeled 3; is defined as a directed edge from the vertex (8;, By, ..., 0y,_,) €
V™0 to the vertex (Bu,, ..., Bu,Bu,.) € Vl‘i“ln A labeled edge labeled «; is defined as a

directed edge from the vertex (8,,,...,8,,) € V™ to the vertex (Buy, Buys---+By) € for“f‘

if and only if j = 1. The set of such edges are denotd by Eln}lfl The map ¢ : Vl]j_‘lln —

Vmin s defined by ¢(By,, . . . Bus Buiy) = (Buys - -+, Buy). We then have a A-graph system
L£hu. It is irreducible and locally contracting in the sense of [I7] so that the C*-algebra
(’),gDmm is a unital separable nuclear simple purely infinite C*-algebra. It is written as

O pin- The K-groups were computed as
KO(ODNmin) - Z/NZ D C(C, Z), Kl(ODNmin) = O

in [12], where C(C,Z) denotes the abelian group of integer valued continuous functions on
a Cantor set C. By the universal coefficient theorem

0 — Exty(Ko(A), Z) — Exty,(A) — Homgz (K1 (A),Z) — 0,

0 — Ext}(Ki(A),Z) — Ext® (A) — Homgz(Ko(A),Z) — 0

for a separable unital nuclear C*-algebra A proved by L. Brown [4], we know the following
proposition.

Proposition 3.3. EXt%V(ODﬁin) =Z/NZ, EthV(ODR}in) = Homy(C(C,Z),Z).
In this section, we will compute the other extension groups Exts(O Dﬁin) and Ext (O Dﬁin).

We will consider the cases for N = 2, so that the alphabet of Dy is ¥ = {aq, g, 81, 82}.
Let (Ajp41.11041)1ez, be the structre matrix for the minimal presentation £ Dprin- The

cardinality m(l) of the vertex set V™" is 2!. As in [12], define m(l) x m(l + 1) matrices
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Jii+1, Kipv1s Lig+a, 1€ Zy such as

10001000
1010 01000100
Joa = [1.1]; ‘]172_[0 10 1]’ 223=10 010001 0l
00010001
o o 1 ifj=i, m()+i
Jiip = [J i, 4T here J, i,7) = ' ’
i1 = i ])]221’2"“””([) v L1 9) 0 otherwise,
1 1110000
1111 0000T1T1T1°1
Ko =[1,1], K1’2_[1 11 1}’ Kas=11 11100 0 0
000011711

. 7=1,2,...m(l+1
K1 = (K i, )24y

1 ifj=4i—3, 4i—2 4i—1, difor 1<i<m(l—1),
1 ifj=4i—3—m(—1), 4—2—m(—1),
4i—1-—m(l—-1), 4—m(l—1) for m(l —1)+1<i<m(l)

0 otherwise,

where Kj11(4,j) =

Lys =

)

0
0
1

o O O

1 1 0 0
Loy =11,1], Lio= [ } ;

0011

o O O =
o O O
O O = O
O O = O
o= O O
o O O

0
1 ifj=2i—-1, 2,

0 otherwise,

=12, m(+1 .
Lyt = [Ll,H-l(Za])]?:1727,”72&;— ) where Ly (i, j) = {

We directly see the following lemma.

Lemma 3.4. Ij; 1 = Ljj41 and A1 = Jyi41 + K gqq forl € Z so that we have
g1 — Ayie1 = Liggr — i — K, l€Zy.

For example

Ioa—=Aoi=1[-2-2, hLp—Aip=|_| 5 o _i|
-1 0 -1 -1 -1 0 0 O

0o -1 1 1 -1 -2 -1 -1

-1 -1 -2 -1 1 1 -1 0|
0 O o -1 -1 -1 0 -1

Ing — Agz =

The following lemmas are straightforward.

Lemma 3.5. Let £ : Z; — 7Z be the homomorphism defined by f(([né]ﬁ({))lezg =
sl ez,
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(i) The value Z?;({) n for each | € Z does not depend on 'l € Z.
(ii) Ker(§) =Zr,, so that Z1/Zr, is isomorphic to Z.
Lemma 3.6. (i) ; l+1ZO m(i+1) C Zm(l), Ay ZO m(i+1) - Zm(l) so that

(D1 — Ay Zg Y €z ®.

(ii) The diagram
7m(l+1) §l+1; 7

Il,l+1l Il

Zm(l) & s 7
commutes.

Lemma 3.7. For any [nﬁ]:i({) € qu’(l) and [m ]T’({) € qu’(l), there exists [ml*l]m(lﬂ) €

Jj =1
Zg"(lﬂ) such that

(1) [l = L [,

l l
2) [P = (L — ) [m v M.
Proof. The condition (1) is rephrazed as
ml —ml;{ll—l—ml;{l, i=1,...,m(l),

where m(l) = 2!, m(l + 1) = 2*+1. Since

Kijp1[m Hl] )

7j=1
l 1 +1 +1 +1 +1 +1 +1
=[mi™ + mg™ mg™ Emi =m¢:(z+1) +m +(z+1) R +(l+1) + m,:(m)]
=[m{ +mb, ... 7mm(l)—1 + mm(l)]
and
I+1ym(I+1
Ly [m; 7 i
I+1 I+1 I+1 I+1 — [yl l
[ —|—m2 ,...,mm(l+1)_1 +mm(l+l)] = [mly"'vmm(l)]
it suffices to show that for given [né];i({), [mé]ﬁ({) € Zg”(”, one may find [m §+1];n(l1+1) €
Z™(+1) guch that
I +1 +1 ! 1l '
m; = mzf 1t m;l-L , n; = —miJr zim(l) i=1,...,m(l).

Since Ij 141 —Aj 141 = Lyj4+1—J1141— K141, this is possible because of the form of J; ;11 [
Therefore we have

Lemma 3.8. The equality (I;;4+1 — A l+1)Zm( D _ Zg"b(l) holds for each l € Z., so that
we have (I — Ag)Zio = Zryp.

21



We reach the following theorem.

Theorem 3.9. Extg(ODémn) =Z.

Proof. We have Ext{ (O pgin) = Z1/(I — Ag)Z10. By LemmalB.8 together with Lemma 3.3
(ii), we obtain Exti(ODgﬂn) > 7. O

Although the weak extension group ExtW(ODgﬂn) for Opmin had been computed to
be Z/27 in [12] through K-group computation K*(ODénin) and the universal coefficient
theorem, we may give another proof without using the K-group formulas in the following
way.

Proposition 3.10. The diagram

I JIndé

7 —2 s 7)1 - Ag)Zyy =17

commutes, where ig(m) = —2m for m € Z.
Proof. Recall that for m = Zm(lH ?Fl with n!*! = [n é“];n(llﬂ) and (n')iez, € Z1, we
have

be(m) =6((I — Ag)[[ntH1 4]

= Z (I1141(4,5) — A1 (4, 9))([[n §+1]]_(l+1)])_

Since ZZ({)(IUH(Z'J) — Aj1+1(2,7)) = =2 for each j =1,...,m(l), we have

m(l+1) m(l+1)
ie(m) = Y (-2t = -2 Z nltl = —om. O
j=1

Corollary 3.11. The diagram

0 > Z > EXt;(ODénin) — EXt%V(ODénin) E— 0
H Indél Ind&vl
x(—2)
0 Z Z — Z)2Z  —— 0

is commutative such that the vertical arrows Ind} and Indl are both isomorphic so that
we have Ext}N(ODEmn) =~ 7/27.

As in the proof of [12] Section 5], one may easily generalize the above discussion of Do
to general Dyck shifts Dy,2 < N € N to get the following theorem. Since the proof of
the generalization is direct and tedious, so we omit the proof.
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Theorem 3.12. There is a commutative diagram

I Indgl Ind},,l
0 , 7z 2N, Z s Z/NZL ——0

such that the vertical arrows Ind} and Indy, are both isomorphic so that we have Ext}(O D%in)

Corollary 3.13. Ext?(Opmin) = EXt?}v(ODﬁi“) = Homy(C(C,Z),Z), where C(C,Z) is the
abelian group of integer valued continuous functions on a Cantor set C.

Proof. There exists a cyclic six term exact sequence

0

0 ) 0 .
| 2 (3.3)
0 — EXt\l,V(ODR}in) — EXt;(ODWm)

for the C*-algebra ODﬁin. Since the map EXt;(ODR}in) 7 s injective, the connecting
map 0 : Ext‘l,v((’)Dﬁm) — Z is zero map, so that we have Ext%V(ODR}m) = EXt;(ODR}in).
As in [12] Section 5], EXt;(OD%in) = Homy(C(C,Z),Z), we get the assertioon. O
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