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Abstract

In this paper, we study the higher-order Beverton-Holt equation. We derive non
trivial symmetries, and thereafter, solutions are obtained. For constant rate and
carrying capacity, we study the periodic nature of the solution and analyze the
stability of the equilibrium points have been analyzed.
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1 Introduction

Population studies is a scientific study of animal and human populations. More often,
this study involves parameters that are highly connected to the age, gender, geographic
distribution as well as the evolution of the population understudy. Many models have
been developed: logistic model, the Ricker model, the Beverton-Holt model, etc. The
latter was first introduced in the topic of fisheries by Berverton and Holt in the twentieth
century and is known to be [1]

zn+1 =
µKzn

K + (1− µ)zn
,

where K > 0, µ > 1 are respectively, the carrying capacity and the inherent growth rate.
Later, many authors were attracted by the periodically forced nonautonomous delay
higher-order Beverton-Holt model [2]

zn+k =
µnKnzn

Kn + (µn − 1)zn
, n ∈ N0, (1.1)

where µn > 1, Kn > 0 are non-negative p-periodic sequences and the initial conditions
zi, i = 0, . . . , k − 1, are all positive and interesting results were obtained.
In this work, we study the invariance properties of (1.1) and we construct its solutions
via the invariant of their group of transformations. As one would expect, the study of
existence of periodic solutions and the stability character of the solutions becomes easier
once the form of the solutions are known. Higher-order difference equations have been
studied from different angles by many researchers [3–6, 9, 10, 12].
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1.1 Preliminaries

For a deeper knowledge of symmetry analysis of recurrence equations, one can refer to [8]
from which most of our notation and theorems are picked. To start, let x = (x1, . . . , xq)
be some continuous variables in a given differential equation and

T : x → x̄(x)

be a (local) point transformations.

Definition 1.1. A parameterized set of transformations

Tε(x) ≡ x̂(x; ε) (1.2)

is a one-parameter local Lie group of transformations if the set of conditions below is
satisfied:

1. T0 is the identity map, so that x̂ = x when ε = 0.

2. TγTε = Tγ+ε for every γ, ε sufficiently close to 0.

3. Every x̂α can be represented as a Taylor series in ε, that is,

x̂α(x; ε) = xα + εηα(x) +O(ε2), α = 0, 1, . . . , q.

Definition 1.2. The infinitesimal generator of the one-parameter Lie group of point
transformations (1.2) is the operator

X = X(x) = η(x) ·∆ =

q∑
α=1

ηα(x)
∂

∂xα

, (1.3)

and ∆ is the gradient operator.

Theorem 1.1. F (x) is invariant under the Lie group of transformations (1.2) if and
only if

XF (x) = 0. (1.4)

Consider a forward difference equation

zn+k = A(n, zn, zn+1, . . . , zn+k−1), n ∈ D (1.5)

of order k where D is a regular domain. We strive to find a Lie group of point transfor-
mations

Φ(n, zn) = (n, zn + εζ(n, zn)). (1.6)

Observe that ε is the group parameter and ζ is the characteristic of the group of trans-
formations. Let

G = Q(n, zn)
∂

∂zn
+Q(n+ 1, zn+1)

∂

∂zn+1

+ · · ·+Q(n+ k − 1, zn+k−1)
∂

∂zn+k−1

(1.7)
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be the prolonged generator admitted by the group of point transformations (1.6). Then
the invariance condition reads

ζ(n+ k, zn+k)−
∂A

∂zn+k−1

ζ(n+ k − 1, zn+k−1)− · · · − ∂A
∂zn

ζ(n, zn) = 0 (1.8)

subject to (1.5). Symmetries are powerful tools for reduction of order of differential
and difference equations. In this paper, the reduction of order will be achieved using
symmetries and the well-known canonical coordinate [11].

Sn =

∫
dzn

ζ(n, zn)
. (1.9)

Definition 1.3. The equilibrium point z of (1.5) is stable (locally) if

∀ϵ > 0,∃ δ > 0 :
k−1∑
i=0

|zi − z| < δ =⇒ |zn − z| < ϵ (1.10)

for all solutions {zn}∞n=0 of (1.5).

Definition 1.4. The equilibrium point z of (1.5) is a global attractor if zn → z, as
n → ∞, for any solution {zn}∞n=0 of (1.5).

Definition 1.5. The equilibrium point z of (1.5) is globally asymptotically stable if z is
locally stable and it is a global attractor of (1.5).

The polynomial

λk − pk−1λ
k−1 − pk−2λ

k−2 − · · · − p1λ
1 − p0 = 0 (1.11)

where

pi =
∂A
∂zn+i

(z, z, . . . , z, z) (1.12)

is referred to as the characteristic equation of (1.5) near z.

Theorem 1.2. Suppose A is a smooth function defined on some neighborhood of z. Then,

(i) If all the roots, λi, of (1.11) are such that |λi| < 1, then the equilibrium point x̄ is
locally asymptotically stable.

(ii) If at least one root of (1.11) has absolute value greater than one, then the equilibrium
point x̄ of (1.11) is unstable.

Definition 1.6. The equilibrium point z of (1.5) is called non-hyperbolic if there exists
a root of (1.11) with absolute value equal to one.

Theorem 1.3. Suppose the pi’s are real numbers satisfying

|p0|+ |p1|+ · · ·+ |pk−1| < 1.

Then, the roots of (1.11) lie inside the open unit disk |λ| < 1.

The above definitions and theorems can be found in [7, 8].
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2 Main results

2.1 Symmetries

For the sake of aesthetics, we rewrite the Beverton-holt equation as

zn+k =
zn

An +Bnzn
, (2.1)

with

An =
1

µn

and Bn =
µn − 1

Knµn

. (2.2)

In the Beverton-Holt model, µn is set to be greater than one. This implies that An should
be less that one. In this paper, we investigate solutions that are mathematically correct,
so without loss of generality, we will will assume that An is simply a real number. Seeking
for Lie symmetries, we force the criterion of invariance (1.8) on (1.1). This yields

ζ(n+ k,A)− An

(An +Bnzn)
2 ζ (n, un) = 0. (2.3)

Solving the functional equation above, we obtain (after a set of lengthy computations)
the infinitesimals:

(i)

ζ1(n, zn) =αn +
Bn

An

αnzn (2.4)

where Anαn+k − αn = 0, that is to say,

αkn+j = αj

(
n−1∏
k1=0

1

Akk1+j

)
, j = 0, . . . , k − 1; (2.5)

(ii)

ζ2(n, zn) =βnz
2
n (2.6)

where βn+k − Anβn = 0, that is to say,

βkn+j = βj

(
n−1∏
k1=0

Akk1+j

)
, j = 0, . . . , k − 1; (2.7)

(iii)

ζ3(n, zn) =λnzn + γnz
2
n, (2.8)

where λn+k − λn = 0 and γn+k − Anγn +Bnλn = 0, that is to say,

λn = ei
2pnπ

k (2.9)
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and

γkn+j = γj

(
n−1∏
k1=0

Akk1+j

)
+

n−1∑
l=0

Bkn+jλkn+j

n−1∏
k2=l+1

Akk1+j (2.10)

with p = 0, . . . , k − 1 and j = 0, . . . , k − 1.

Using these infinitesimals, we obtain the following symmetries:

X1 =

(
αn +

Bn

An

αnzn

)
∂

∂zn
(2.11)

X2 =βnz
2
n

∂

∂zn
(2.12)

X3 =
(
λnzn + γnz

2
n

) ∂

∂zn
(2.13)

where αn, βn, γ and λn are given in equations (2.5), (2.7), (2.9) and (2.10), respectively.

2.2 Canonical coordinate closed form solution

We select the infinitesimal ζ2 to lower the order (1.1). Thus, the canonical coordinate
takes the form

Sn =

∫
dzn

ζ2(n, zn)
(2.14)

=− 1

βnzn
(2.15)

and therefore

Sn+kβn+k − AnSnβn =− 1

zn+k

+
An

zn
(2.16)

=−Bn. (2.17)

Setting S̃n = −βnSn, we find that

S̃n+k = AnS̃n +Bn (2.18)

and we take notice of

S̃n =
1

zn
. (2.19)

By iterating (2.18), we get

S̃kn+j =S̃j

(
n−1∏
k1=0

Akk1+j

)
+

n−1∑
l=0

(
Bkl+j

n−1∏
k2=l+1

Akk2+j

)
, (2.20)

for j = 0, . . . , k − 1. We reverse the order created by the change of variables to derive
the solution of (1.1). We observe from (2.19) that

zn =
1

S̃n
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from which we obtain

zkn+j =
1

S̃kn+j

=
zj(

n−1∏
k1=0

Akk1+j

)
+ zj

n−1∑
l=0

(
Bkl+j

n−1∏
k2=l+1

Akk2+j

) , j = 0, . . . , k − 1. (2.21)

Recall that An = 1
µn

and Bn = µn−1
Knµn

. So, the closed form solution to the Beverton-Bolt

(1.1) is given by

zkn+j =
zj(

n−1∏
k1=0

1

µkk1+j

)
+ zj

n−1∑
l=0

(
µkl+j − 1

Kkl+jµkl+j

n−1∏
k2=l+1

1

µkk2+j

) , j = 0, . . . , k − 1. (2.22)

provided the denominators are non-zero.

2.3 Periodicity in the growth rate and the carrying capacity

The goal of the next section is to investigate the form of the solution when the growth
rate and the carrying capacity are 1 or k- periodic sequences.

2.3.1 The case when µn and Kn are k-periodic

In this case, invoking (2.2), we have that Ak+j = Aj and Bk+j = Bj for all j. This
reduces (2.21) into (after using the formula for a geometric progression)

zkn+j =
zj

Aj
n + zjBj

(
1−An

j

1−Aj

)
=

(1− Aj)zj
(1− Aj)Aj

n +Bj (1− Aj
n) zj

, j = 0, . . . , k − 1 (2.23)

when Aj ̸= 1 and Bj ̸= 1.

2.3.2 The case when µn and Kn are 1-periodic (constant)

Here, thanks to (2.2), we may assume that (An) = (A,A, . . . ) and Bn = (B,B, . . . ).

(i) When A = 1, the solution given in equation (2.21) becomes

zkn+j =
zj

1 + nBzj
, j = 0, . . . , k − 1. (2.24)

(ii) When A ̸= 1, the formula solution (2.22) reduces to

zkn+j =
zj

An + zjB
(
1−An

1−A

) , j = 0, . . . , k − 1. (2.25)
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2.4 Periodicity in the solution and analysis of the stability of
the equilibrium points

In this section, we investigate the existence of periodic solutions and the nature of the
equilibrium points of the model under study. We demonstrate that periodic solutions do
exist under certain restrictions.

Theorem 2.1. The solution zn of

zn+k =
zn

An +Bnzn
, (2.26)

where An ̸= 1, is k-periodic if and only the following conditions are met:

(i) The sequence An and Bn periodic with period k.

(ii) The initial conditions, xj, j = 0, . . . , k − 1, satisfy zj =
1−Aj

Bj
.

Proof. Suppose the initial conditions satisfy the conditions zj =
1−Aj

Bj
. Using the latter

in (2.23), we have that:

zkn+j =
zj

Aj
n +

1−Aj

Bj
Bj

(
1−An

j

1−Aj

)
=zj, j = 0, . . . , k − 1. (2.27)

It follows zn is periodic with period divisible by k. With the choice of the restriction on
the initial conditions, the period can not be less that k. Therefore, zn is periodic with
period k.

Figure 1: Graph of zn+16 =
zn

(3 + sin(nπ/8) + (2 + cos(nπ/8))zn
.

Figure 2: Graph of zn+8 =
zn

(3 + sin(nπ/4)) + (2 + cos(nπ/4))zn
.
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In Figure 1, we used the initial conditions

zj =
−2− sin( jπ

8
)

2 + cos( jπ
8
)
,

j = 0, . . . , 15. These initial conditions satisfy the conditions in Theorem 2.1. As pre-
dicted, we have 16-periodic solutions.
In Figure 2, we used the initial conditions

zj =
−2− sin( jπ

4
)

2 + cos( jπ
4
)
,

j = 0, . . . , 7. These initial conditions satisfy the conditions in Theorem 2.1. As predicted,
we have 8-periodic solutions.

Theorem 2.2. The solution zn of

zn+k =
zn

A+Bzn
, (2.28)

where A ̸= 1, is 1-periodic if and only the initial conditions, xj, j = 0, . . . , k − 1, satisfy
zj =

1−A
B

.

Proof. The proof is identical to the proof of Theorem 2.1 and is omitted.

Theorem 2.3. The solution zn of

zn+k =
zn

−1 +Bzn
, (2.29)

is 2k periodic and contains two cycles of length k.

Proof. We recall that the solution of the model for constant coefficients An and Bn is
given in (2.25). Setting A = −1 in (2.25), we get:

zkn+j =
zj

(−1)n + zjB
(

1−(−1)n

1+1

) , j = 0, . . . , k − 1. (2.30)

It follows that

z2kn+j =
zj

(−1)2n + zjB
(

1−(−1)2n

1+1

) , j = 0, . . . , k − 1 (2.31)

= zj. (2.32)

In other words,{
. . . , z0, z1, . . . , zk−1,

z0
−1 + z0B

,
z1

−1 + z1B
, . . . ,

zk−1

−1 + zk−1B
, z0, z1, . . .

}
are the 2k periodic solutions with the two cycles of length k.
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Figure 3: Graph of zn+8 =
zn

−1 + 12zn
. Figure 4: Graph of zn+14 =

zn

−1 + 15zn
.

In Figure 3, we used the initial conditions z0 = 1; z1 = 2; z2 = 1; z3 = −1/2; z4 = 1; z5 =
1/2; z6 = −1/4; z7 = 1/2. As predicted, we have 16-periodic solutions.
In Figure 4, we used the initial conditions z0 = 1; z1 = 2; z2 = 1; z3 = −1/2; z4 = 1; z5 =
1/2; z6 = −4; z7 = 1/2; z8 = 11; z9 = 5z10 = 8; z11 = −4; z12 = −1/2; z13 = 1. As
predicted, we have 28-periodic solutions.

Theorem 2.4. If A ̸= 1, then the equilibrium point z̄ = 0 of (1.1) is asymptotically
stable when |A| > 1 and unstable when |A| < 1. Moreover, the non zero equilibrium point
z = (1−A)/B of (1.1) is asymptotically stable when |A| < 1 and unstable when |A| > 1.

Proof. The equilibrium points of (1.1) are the solutions of the equation z̄(A+Bz̄−1) = 0.
If we let

zn+k = f(zn) =
zn

A+Bzn
, (2.33)

then:

- For z̄ = 0, it is easy to see that f,zn(0) = 1/A and so, the characteristic equation of
(1.1) around this equilibrium point is given by λk − 1

A
= 0. It follows that |λi| < 1

when |A| > 1, in order words, z̄ = 0 is locally asymptotically stable. On the other
hand, |λi| > 1 when |A| < 1 or in order words, z̄ = 0 unstable.

- For z̄ = (1 − A)/B, f,zn(0) = A and the characteristic equation of (1.1) around
this equilibrium point is λk −A = 0. Consequently, when |A| < 1, the roots λi’s of
this characteristic equation are such that λi| < 1 and therefore the equilibrium is
asymptotically stable in this case. Similarly, when |A| > 1, the moduli of the roots
are greater than one and therefore the equilibrium is unstable in this case.
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Figure 5: Graph of zn+14 =
zn

14− 2zn
. Figure 6: Graph of zn+14 =

zn

0.25 + 2zn
.

In Figures 3 and 4, we used the initial conditions z0 = 1; z1 = 2; z2 = 1; z3 = −1/2; z4 =
1; z5 = 1/2; z6 = −4; z7 = 1/2; z8 = 1; z9 = 15, z10 = 8; z11 = 4; z12 = −1/2; z13 = 1.

Theorem 2.5. If A = 1, then the equilibrium point z̄ = 0 of (1.1) is non-hyperbolic.

Proof. Here, the only equilibrium point of (1.1) is z̄ = 0. One can readily check that
the characteristic equation of (1.1) around this equilibrium point is given by λk − 1 = 0.
There exists a root of λk − 1 = 0 with modulus one. This completes the proof.

3 Conclusion

We performed the invariance analysis of the higher-order Beverton-Holt difference equa-
tion. Symmetries and the formula solutions are presented. We utilized the canonical
coordinate to derive invariants that have been used reduce linearize the equation and
eventually obtained the solutions in closed form. We have also presented periodic solu-
tions that satisfy certain ansatz. Lastly, we studied the stability of the equilibrium points
of the model.
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