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Abstract

The notion of qausi-product actions of a compact group on a C∗-algebra

was introduced by Bratteli et al. in their attempt to seek an equivariant ana-

logue of Glimm’s characterization of non-type I C∗-algebras. We show that

a faithful minimal action of a second countable compact group on a sepa-

rable C∗-algebra is quasi-product whenever its fixed point algebra is simple.

This was previously known only for compact abelian groups and for profinite

groups. Our proof relies on a subfactor technique applied to finite index in-

clusions of simple C∗-algebras in the purely infinite case, and also uses ergodic

actions of compact groups in the general case. As an application, we show

that if moreover the fixed point algebra is a Kirchberg algebra, such an ac-

tion is always isometrically shift-absorbing, and hence is classifiable by the

equivariant KK-theory due to a recent result of Gabe-Szabó.

1 Introduction

Compact group actions on C∗-algebras have been extensively studied, especially
in relation to mathematical physics in the early history of operator algebras, as
internal symmetries in models in physics are often described by compact group
actions (see, for example, [13], [14]). Araki-Haag-Kastler-Takesaki’s work [1] on
chemical potential is one of the highlights in this subject in the 70’s, which inspired
a lot of subsequent work both in mathematics and physics.

In the pure mathematics side, the most notable class of compact group actions
on C∗-algebras is probably quasi-product actions introduced by Bratteli et al. [5],
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[2], [3]. Roughly speaking, while the classical Glimm theorem characterizes non-
type I C∗-algebras as those having sub-quotients isomorphic to the CAR algebra
(see [40, Theorem 6.7.3] for the precise statement), quasi-product actions are, by
definition, those having invariant-quotients equivariantly isomorphic to the UHF
algebras with product type actions. [3, Theorem 1] shows that ten conditions on a
compact group action are mutually equivalent, which can be taken as the definition
(and characterization) of a quasi-product action. The existence of an invariant pure
state is one of them, which is very useful for practical applications because it assures
that every invariant state can be approximated by invariant pure states (see [6]).

A Galois correspondence for minimal actions of compact groups on factors was
established by Izumi-Longo-Popa [25]. Its C∗-counterpart was recently obtained by
Mukohara [37] for quasi-product actions with simple fixed point algebras. She also
showed that the fixed point inclusions for such actions are C∗-irreducible in the sense
of Rørdam [47]. This also proves the importance of quasi-product actions.

One of the purposes of this paper is to prove the following result, which shows
that the class of quasi-product actions is broad and relatively easy to recognize:

Theorem 1.1. Let α be a faithful action of a second countable compact group G
on a separable C∗-algebra A. We assume that α is minimal in the sense that the
relative commutant Aα′ ∩M(A) is trivial, where Aα is the fixed point algebra of α
and M(A) is the multiplier algebra of A. Assume further that Aα is simple. Then
α is quasi-product. (Note that A is necessarily simple thanks to [50, Lemma 24], [3,
Theorem 1,(3)].)

When G is abelian, the statement of the theorem is reduced to the proper outer-
ness of the dual action (see [2, Theorem 1]), which in turn follows from Kishimoto’s
result [33, Lemma 1.1] for automorphisms. In the general case, the dual action con-
sists of endomorphisms whose proper outerness is technically much subtler as was
observed in [3] and [23]. In fact, the author challenged the problem of generalizing
Kisimoto’s result to irreducible endomorphisms of finite index, and ended up with
a result under the assumption of finite depth condition [23, Theorem 7.5], which
implies the statement of Theorem 1.1 for profinite G. This work is to challenge the
problem again after more than 20 years.

Classification of group actions on Kirchberg algebras is a growing subject and a
recent ground breaking result of Gabe-Szabó [17] established an equivariant version
of the Kirchberg-Phillips classification theorem [42] (see also [16], [24], [27], [28],
[36], [39], [49] for related results). They showed that amenable isometrically shift-
absorbing actions of second countable locally compact groups on Kirchberg algebras
are completely classified by equivariant KK-equivalence. An action of a locally
compact group G on a C∗-algebra A is said to be isometrically shift-absorbing if the
quasi-free action on the Cuntz algebra O∞ arising from the infinite direct sum of
the regular representation of G equivariantly embeds in the central sequence algebra
of A. For a countable discrete group, this condition is equivalent to the outerness
of the action (see [26]). However, for other classes of groups, it is a non-trivial task
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to characterize when this property holds. In fact, for the real numbers G = R, it is
equivalent to the Rokhlin property (see [17, Corollary 6.15], [49]).

When G is compact, every isometrically shift-absorbing action is quasi-product
by [3, Theorem 1,(8)], and Mukohara [37] showed that it is a minimal action having
the fixed point algebra purely infinite and simple. We show the converse when the
fixed point algebra is a Kirchberg algebra, as an application of Theorem 1.1.

Theorem 1.2. Let G be a second countable compact group, and let α be a faithful
minimal action of G on a separable C∗-algebra A whose fixed point algebra is a Kirch-
berg algebra. Then α is isometrically shift-absorbing. (Note that A is necessarily a
Kirchbeg algebra thanks to [10, Proposition 3].)

This paper is organized as follows. In Section 2, we summarize the basics of
properly outer endomorphisms, inclusions of simple C∗-algebras of finite indices,
and quasi-product actions of compact groups. A common key notion in the above
three subjects is, what we call, the property (BEK) for an inclusion of prime C∗-
algebras introduced in Bratteli-Elliott-Kishimoto [3].

In Section 3, we show that every irreducible inclusion of purely infinite simple
C∗-algebras of finite index has the property (BEK). For the proof we crucially use
an ultraproduct technique and the fact that every irreducible inclusion of simple C∗-
algebras of finite index is C∗-irreducible in the sense of Rørdam. As a consequence,
we prove the proper outerness of every irreducible proper endomorphism of finite
index in the case of purely infinite simple C∗-algebras. This immediately implies
Theorem 1.1 in the case of purely infinite Aα. The general case is reduced to
this case by a tensor product trick in Section 4, but the reduction argument is
rather complicated. In fact, we use ergodic actions of G, which appear for a tensor
categorical reason (see Remark 4.6).

In Section 5 we show an equivariant version of the completely positive approxi-
mation property (CPAP) of a nuclear C∗-algebra with a compact group action, as
preparation for the proof of Theorem 1.2. Theorem 5.4 is of interest in its own right
as a Fejér type approximation of a general compact group. We prove Theorem 1.2
in Section 6 by showing an equivariant version of Kirchberg’s dilation theorem for
unital completely positive (ucp) maps of Kirchberg algebras.

In Section 7, we treat quasi-free actions of compact groups on the Cuntz algebras
as applications of our main results.

2 Preliminaries

2.1 Notation

We use the following notation throughout the paper. For a C∗-algebra A, we denote
by U(A) the unitary group of A. For u ∈ U(A), we denote by Ad u the automorphism
of A defined by Ad u(x) = uxu∗ for x ∈ A. An automorphism of A is called inner
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if it is of the form Ad u, and otherwise it is called outer. We denote by A1 the
unit ball of A, and by A+ the set of positive elements in A. We denote by M(A)
the multiplier algebra of A. For two C∗-algebras A, B, we denote by A ⊗ B the
minimal tensor product. An action α of a topological group G on a C∗-algebra A
is a continuous homomorphism from G into the automorphism group Aut(A) of A
equipped with the point norm topology. We denote the fixed point algebra of α by
Aα, or AG when there is no possibility of confusion.

An inclusion of C∗-algebras A ⊃ B is called irreducible if the relative commutant
M(A)∩B′ is trivial. We denote by End(A) the set of endomorphisms of A, and call
ρ ∈ End(A) irreducible if the inclusion A ⊃ ρ(A) is irreducible.

For a C∗-algebra A and a free ultra-filter ω ∈ βN \ N, we define

A∞ = ℓ∞(N, A)/c0(N, A),

Aω = ℓ∞(N, A)/cω(N, A),

cω(A) = {(xn) ∈ ℓ∞(N, A); lim
n→ω

‖xn‖ = 0}.

We treat A as a subalgebra of A∞ and Aω as usual.
We denote by Mn(C) the n by n matrix algebra. We denote by K(H) the

set of compact operators on a Hilbert space H , and denote K = K(ℓ2). We denote
T = {z ∈ C; |z| = 1}. We use the capital Greek letters Π, Σ, etc. for representations
of C∗-algebras, and reserve π, σ, etc. for representations of compact groups.

2.2 Properly outer endomorphisms

Definition 2.1. Let A be a C∗-algebra. We say that ρ ∈ End(A) is properly outer
if the following holds: for any a ∈ A and non-zero hereditary C∗-subalgebra C of A,

inf{‖caρ(c)‖; c ∈ C+, ‖c‖ = 1} = 0.

Kishimoto [33, Lemma 1.1] showed that if A is simple, any outer automorphism
of A is properly outer. It was observed in [3, p.322] that the same argument shows

Lemma 2.2. Let A be a separable simple C∗-algebra, and assume that ρ ∈ End(A) is
not properly outer. Then for any irreducible representation Π of A, the composition
Π ◦ ρ contains Π as a subrepresentation.

The following theorem of Bratteli-Elliott-Kishimoto is one of the main technical
results in their analysis of quasi-product actions of compact groups.

Theorem 2.3 ([3, Theorem 3.1]). Let A ⊃ B be an inclusion of separable C∗-
algebras. Then the following conditions are equivalent.

(1) For any x, y ∈ A,
sup
b∈B1

‖xby‖ = ‖x‖‖y‖.
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(2) There exists δ > 0 such that for any x, y ∈ A,

sup
b∈B1

‖xby‖ ≥ δ‖x‖‖y‖.

(3) There exists an faithful irreducible representation Π of A whose restriction to
B is irreducible.

Definition 2.4. We call the condition of A ⊃ B in Theorem 2.3 the property
(BEK).

Remark 2.5. The property (BEK) forces the inclusion A ⊃ B to be irreducible.

The following lemma is shown in [3, p.322] when there exists n ≥ 2 such that ρn

is reducible. For the sake of completeness, we give a proof in full generality.

Lemma 2.6. Let A be a separable simple C∗-algebra and let ρ ∈ End(A). We
assume that the image of ρ is a proper irreducible subalgebra of A and the inclusion
A ⊃ ρ(A) has the property (BEK). Then ρ is properly outer.

Proof. Assume on the contrary that ρ is not properly outer. Since A ⊃ ρ(A) has
the property (BEK), there exists an irreducible representation (Π, H) of A whose
restriction to ρ(A) is irreducible, which means that Π ◦ ρ is irreducible. Since ρ
is not properly outer, the composition Π ◦ ρ contains Π, and so Π ◦ ρ is unitarily
equivalent to Π, and there exits a unitary u ∈ B(H), unique up to scalar multiple,
satisfying Π ◦ ρ = Ad u ◦ Π. If there exists n ≥ 2 such that ρn is reducible, on one
hand Π ◦ ρn is unitarily equivalent to Π and on the other hand it is reducible, which
is a contradiction. Thus ρn is irreducible for all n ∈ N.

Proof of [33, Lemma 1.1] shows that there exist a ∈ A \ {0}, δ > 0, and a
non-zero hereditary C∗-subalgebra C ⊂ A such that for any c ∈ C,

Π(c∗)(Π(a)u+ u∗Π(a∗))Π(c) ≥ δΠ(c∗c). (2.1)

For non-negative integers n, we set An = u∗nΠ(A)un. Then {An}∞n=0 is a strictly
increasing sequence of simple C∗-algebras. Let B be the norm closure of its union,
which is simple. We introduce θ ∈ Aut(B) by the restriction of Ad u to B. By
construction, we have θ(An) = An−1 and θ(Π(x)) = Π(ρ(x)) for all x ∈ A.

We claim that θn is outer for all n ∈ N. Assume on the contrary that there
exists n ∈ N with θn inner. Then there exists v ∈ U(B) satisfying θn = Ad v. Since
θn(Π(x)) = Ad un(Π(x)), we see that v∗un ∈ Π(A)′ = C, and there exists c ∈ T
satisfying v = cun. For any ε > 0, there exist m ∈ N and w ∈ U(Am) satisfying
‖v − w‖ < ε. Then Ad um(w) ∈ Π(A) and

‖cun − Ad um(w)‖ = ‖Adum(cun − w)‖ < ε.

Since ε > 0 is arbitrary, this means un ∈ Π(A), and ρn is an inner automorphism of
A, which contradicts A % ρ(A). Thus the claim is shown.

By the claim, the crossed product B ⋊θ Z is simple, and it is canonically iso-
morphic to the C∗-algebra C∗(B ∪ {u}) generated by B and u. Thus there exists a
conditional expectation E : C∗(B∪{u}) → B satisfying E(u) = 0. This contradicts
Eq.(2.1), and we get the statement.

5



2.3 Finite index inclusions of simple C∗-algebras

Our basic reference for inclusions of simple C∗-algebras is [23].
Let A ⊃ B be an inclusion of C∗-algebras with a conditional expectation E :

A → B. Pimsner-Popa [43] defined the index of E, denoted by IndE, by the best
constant λ ≥ 1 such that the map E − λ−1 id : A → A is positive (note that [23,
Definition 2.1] contains typographic errors). When there is no such a constant λ,
we set IndE = ∞. When B has no non-zero finite dimensional representation, we
can replace positivity by complete positivity in the definition (see [23, Lemma 2.2]).

Watatani [52] introduced an alternative definition of the index of E in terms of a
quasi-basis, a generalization of the Pimsner-Popa basis. His definition is particularly
well-behaved when we discuss the C∗-basic construction, which we will do now. The
two definitions coincide when A and B are infinite dimensional simple C∗-algebras
[23, Theorem 3.2, Corollary 3.7], which we always assume in what follows.

For a given conditional expectation E : A→ B of finite index, we can introduce a
Hilbert B-module EE as follows. We let EE = A as a right-B module, and introduce
B-valued inner product by 〈x, y〉E = E(x∗y). The Pimsner-Popa inequality assures
that EE is already complete. When x ∈ A is regarded as an element in EE, we often
denote ηE(x) to avoid possible confusion. We denote by LB(EE) the C∗-algebra
of adjointable B-module maps on EE. We regard A as a C∗-subalgebra of LB(EE)
through the left multiplication. The Jones projection eE ∈ LB(EE) is defined by
eEηE(x) = ηE(E(x)) for x ∈ A, which belongs to the commutant of B. Then we
have the relation eExeE = E(x)eE for all x ∈ A. The C∗-basic construction of
A ⊃ B is the norm closure of the linear span of AeEA, which coincides with the
set of “compact operators” KB(EE). Under the assumption of IndE < ∞ and
the simplicity of B, we always have KB(EE) ⊃ A and there exists a conditional
expectation E1 : KB(EE) → A given by E1(eE) = 1/ IndE, which is called the dual
conditional expectation of E (see[23, Corollary 3.4]). We have IndE1 = IndE.

When there exists a conditional expectation E : A → B of finite index, there
exists a unique conditional expectation E0 : A → B satisfying IndE0 ≤ IndE for
all faithful E (see [20], [52]). We call E0 the minimal conditional expectation of
A ⊃ B. We denote [A : B]0 = IndE0 and call it the minimum index of A ⊃ B. If
moreover A ⊃ B is irreducible, there is only one conditional expectation.

The following result is a consequence of the second dual approach developed in
[23], which will be used in one of our main technical results (see [23, Theorem 3.3]).

Lemma 2.7. Let A ⊃ B be an irreducible inclusion of simple C∗-algebras with a
conditional expectation E : A → B of finite index. Then every intermediate C∗-
subalgebra between A and B is simple, that is, the inclusion A ⊃ B is C∗-irreducible
in the sense of Rørdam [47, Definition 3.1].

Next we give a brief account of sector theory for C∗-algebras developed in [23,
Section 4]. For two simple C∗-algebras A and B, we denote by Mor(B,A)0 the set
of homomorphisms from B into A whose image has a finite index. When A and
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B are non-unital, every ρ ∈ Mor(B,A)0 uniquely extends to a strictly continuous
homomorphism from M(B) to M(A), which we denote by the same symbol ρ. For
ρ ∈ Mor(B,A)0, we denote by Eρ the minimal conditional expectation Eρ : A →
ρ(B), and denote d(ρ) = [A : ρ(B)]

1/2
0 , which is called the statistical dimension of

ρ. We say that two homomorphisms ρ, σ ∈ Mor(B,A) are equivalent if there exists
a unitary u ∈M(A) satisfying ρ = Ad u ◦ σ.

For ρ, σ ∈ Mor(B,A)0, we denote by (ρ, σ) the intertwiner space

(ρ, σ) = {v ∈M(A); ∀x ∈ B, vρ(x) = σ(x)v},

which is always finite dimensional. When ρ is irreducible, it is a Hilbert space with
〈v, w〉 = w∗v.

We mainly work on the following two classes of C∗-algebras:

• C1: the class of simple stable σ-unital C∗-algebras.

• C2: the class of unital purely infinite simple C∗-algebras in the Cuntz standard
form, that is [1A]0 = 0 in K0(A).

Assume that A and B are C∗-algebras belonging to either C1 or C2. Then ev-
ery ρ ∈ Mor(B,A)0 has its conjugate ρ ∈ Mor(A,B)0, uniquely determined up
to equivalence and characterized by the following property: there exist isometries
Rρ ∈ (idB, ρρ) and Rρ ∈ (idA, ρρ) satisfying

Rρ
∗
ρ(Rρ) =

1

d(ρ)
, Rρ

∗ρ(Rρ) =
1

d(ρ)
.

The inclusion B ⊃ ρ(A) is isomorphic to the dual inclusion Kρ(B)(EEρ
) ⊃ A of

A ⊃ ρ(B) (see [23, Lemma 4.4]).
For ρ, σ ∈ Mor(B,A)0, their direct sum ρ ⊕ σ ∈ Mor(B,A)0, which is uniquely

determined up to unitary equivalence, is defined as follows: we choose two isometries
s1, s2 ∈M(A) satisfying the Cuntz algebra O2 relation s1s

∗
1 + s2s

∗
2 = 1 and let

(ρ⊕ σ)(x) = s1ρ(x)s
∗
1 + s2σ(x)s

∗
2.

With these operations together with composition as monoidal product, the two sets
End(A)0 and End(B)0 are rigid C∗-tensor categories and Mor(A,B)0 and Mor(B,A)0
are their module categories. In particular, the Frobenius-reciprocity holds (see [22]).

One of advantages to work in the classes Ci, i = 1, 2, is that we have the following
crossed product type decomposition. Let A ⊃ B be an irreducible inclusion of simple
C∗-algebras belonging to either C1 or C2 with a conditional expectation E : A → B
of finite index. Let ι : B →֒ A be the inclusion map and let

[ιι] =
⊕

ξ∈Ξ

nξ[ρξ]
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be the irreducible decomposition, where nξ is the multiplicity of ρξ ∈ End(B)0. We
may and do assume 0 ∈ Ξ and ρ0 = idB. Since ι is irreducible, we have n0 = 1. By
the Frobenius reciprocity,

dim(ι, ιρξ) = dim(ιι, ρξ) = nξ.

Let {V (ξ)}nξ

i=1 be an orthonormal basis of (ι, ιρξ). Then every x ∈ A is uniquely
decomposed as

x =
∑

ξ∈Ξ

nξ∑

i=1

x(ξ)iV (ξ)i,

x(ξ)i = d(ρξ)E(xV (ξ)∗i ) ∈ B,

(see [23, p.124]). Note that x(0)1 = E(x), and

b(x− E(x))b =
∑

ξ∈Ξ\{0}

nξ∑

i=1

bx(ξ)iρξ(b)V (ξ)i, b ∈ B.

For two representations (Π1, H1), (Π2, H2) of a C∗-algebra A, we denote by
HomA(Π1,Π2) the set of intertwiners

{T ∈ B(H1, H2); ∀x ∈ A, TΠ1(x) = Π2(x)T}.

Lemma 2.8. (1) Let A ⊃ B be an inclusions of simple C∗-algebras of finite index,
and let Π be an irreducible representation of A. Then the restriction of Π to
B is a finite direct sum of irreducible representations.

(2) Let A and B be C∗-algebras belonging to C1 or C2, and let ρ ∈ Mor(B,A)0. Let
Φ and Ψ be irreducible representations of A and B respectively. Then

dimHomA(Φ ◦ ρ,Ψ) = dimHomA(Φ,Ψ ◦ ρ).

Proof. The statements follow from [23, Lemma 5.1, Lemma 5.2].

2.4 Quasi-product actions

For a compact groupG, we denote by U(G) the category of finite dimensional unitary

representations of G. We choose and fix a transversal Ĝ of the set of equivalence
classes of irreducible unitary representations of G. For π ∈ Ĝ, we denote χπ(g) =

Tr π(g) and d(π) = dim π. We choose and fix an orthonormal basis {ξ(π)}d(π)i=1 of
the representation space Hπ of π, and identify π(g) with its matrix representation

(πij(g))ij. For π, σ, µ ∈ Ĝ, we let Nµ
π,σ = dimHomG(µ, π ⊗ σ).

Let α be an action of G on a C∗-algebra A. For π ∈ Ĝ, we define Pπ : A→ A by

Pπ(x) = d(π)

∫

G

χπ(g)αg(x)dg,
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where dg is the normalized Haar measure. Then we have Pπ ◦ Pσ = δπ,σPπ for

π, σ ∈ Ĝ. The image of Pπ is called the spectral subspace corresponding to π ∈ Ĝ,
and we denote it by Aα(π). The Peter-Weyl theorem together with the Hahn-Banach
theorem implies that the linear span of ∪π∈ĜA

α(π) is dense in A. Or alternatively,
we can see it more directly from a Fejér type approximation (see Theorem 5.4). Let

Aα
1 (π) = {x = (x1, x2, . . . , xd(π)) ∈ Ad(π); αg(x) = xπ(g)}.

Then Aα(π) 6= {0} if and only if Aα
1 (π) 6= {0}.

Let Eα = P1, which is a conditional expectation from A to the fixed point algebra
Aα. From the compactness of G, we get the following well-known lemma:

Lemma 2.9. If {uλ}λ∈Λ is an approximate units of A, so is {Eα(uλ)}λ∈Λ.

The lemma implies AαA
‖·‖

= A, and we have the inclusion relation M(Aα) ⊂
M(A). We denote the extension of αg to M(A) by the same symbol αg. Then the
map g 7→ αg(T ) is is continuous in the strict topology for all T ∈ M(A). We have
M(Aα) =M(A)α (see, for example, [41, Lemma 2]).

Bratteli-Elliott-Kishimoto [3, Theorem 1] showed that 10 conditions on a com-
pact group action are mutually equivalent, which are the defining conditions of a
quasi-product action. We name some of them under the assumption of Theorem
1.1 now. Recall that α is said to be minimal if the inclusion A ⊃ Aα is irreducible,
which is a necessary condition for α to be quasi-product because of the condition
(1) below. Note that the crossed product A⋊αG is automatically simple under the
assumption of Theorem 1.1 (see [37, Proposition A]).

Theorem 2.10 (Quasi-product action). Let G be a second countable compact group,
and let α be a faithful minimal action of G on a separable C∗-algebra A whose fixed
point algebra Aα is simple. Then the following conditions are equivalent:

(1) The inclusion A ⊃ Aα has the property (BEK).

(2) There exists an α-invariant pure state of A.

(3) For each π ∈ Ĝ, there exists a sequence {yn}∞n=1 in Aα
1 (π) such that

(i) ‖yn1‖ = 1 for all n ∈ N,

(ii) {yn1}∞n=1 is a central sequence in A,

(iii) lim supn ‖ayn1‖ ≥ ‖a‖/d(π) for all a ∈ A.

(4) The dual endomorphisms α̂π, π ∈ Ĝ \ {1}, of the stabilized crossed product
(A⋊α G)⊗K are properly outer.

Remark 2.11. When the above equivalent conditions hold, the C∗-algebra A is
simple too, which follows from Landstad’s observation [50, Lemma 24] because (1)
implies that A is prime. We can also use (4) to show that A⊗K is simple as in the
case of a crossed product by a discrete group (see [33, Theorem 3.1]).
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The condition (4) is the most tractable for our purpose. On the other hand, the
definition of α̂π in [3] is rather tedious, and we reformulate it, following the original
formulation by Roberts [45], in the special case where Aα belongs to either C1 or C2.

By a Hilbert space H in M(A), we mean a finite dimensional subspace of M(A)
such that it is a Hilbert space with respect to the inner product given by 〈V,W 〉 =
W ∗V for V,W ∈ H. For a Hilbert space H in M(A), we choose an orthonormal
basis {ψ(H)i}i of H and define the support s(H) of H by

∑

i

ψ(H)iψ(H)∗i ,

which does not depend on the choice of {ψ(H)i}i. For two Hilbert spaces H1,H2 in
M(A), we denote by H1H2 and H1H∗

2 the linear spans of {VW ; V ∈ H1, W ∈ H2}
and {VW ∗; V ∈ H1, W ∈ H2} respectively. ThenH1H2 is identified with the tensor
product H1⊗H2, and H1H∗

2 is identified with B(H2,H1) through left multiplication.
Occasionally, we consider infinite dimensional Hilbert spaces in M(A), and in that
case we take the norm closure to define H1H2 and H1H∗

2. Then H1H2 is a Hilbert
space again and H1H∗

2 is isometric to the space of compact operators K(H2,H1).
If a Hilbert space H in M(A) is globally invariant under α, it carries a unitary

representation of G, and hence H is considered as an object in the category U(G).
We denote by U(G,α) the set of globally α-invariant Hilbert spaces in M(A) with
support 1. For H1,H2 ∈ U(G,α), we define the space of morphisms (H1,H2)G from
H1 to H2 in the category U(G,α) by

(H1,H2)G := H2H∗
1 ∩M(Aα).

In this way, we get a tensor subcategory U(G,α) of U(G).
For H ∈ U(G,α), we define ρH ∈ End(A)0 by

ρH(x) =
∑

i

ψ(H)ixψ(H)∗i ,

which does not depend on the choice of the orthonormal basis, and hence ρH com-
mutes with αg. By construction, we have [ρH] = dimH[idA], and d(ρH) = dimH.
We define α̌H ∈ End(Aα)0 to be the restriction of ρH to Aα. Note that V x =
α̌H(x)V holds for all x ∈ Aα and V ∈ H. Since (ρH1

, ρH2
) = H2H∗

1, we have
(H1,H2)G ⊂ (α̌H1

, α̌H2
), and the irreducibility of A ⊃ Aα implies the equality of the

two sets. Since ρH1
◦ ρH2

= ρH1H2
, we have α̌H1H2

= α̌H1
◦ α̌H2

. Setting α̌T = T for
T ∈ (H1,H2)G, we get a tensor functor α̌ : U(G,α) → End(Aα)0, which is in fact
an embedding of U(G,α) into End(Aα)0.

Using the assumption that Aα belongs to either C1 or C2, we can show that
U(G,α) has a direct sum, up to equivalence, and that every object in U(G,α) is a
direct sum of simple objects. Indeed, for H1,H2 ∈ U(G,α), we choose isometries
s1, s2 ∈ M(Aα) satisfying the O2 relation s1s

∗
1 + s2s

∗
2 = 1, and set H1 ⊕ H2 =

s1H1 + s2H2 ∈ U(G,α). Then we have

α̌H1⊕H2
(x) = s1α̌H1

(x)s∗1 + s2α̌H2
(x)s∗2,

10



which is compatible with the definition of a direct sum in End(Aα)0. Let H ∈
U(G,α) and let {pi}ni=1 be a set of minimal projections in (H,H)G = (α̌H, α̌H) whose
summation is 1. Then [23, Lemma 4.1] shows that pi is equivalent to 1 inM(Aα), and
there exist isometries Vi ∈M(Aα) satisfying ViV

∗
i = pi. Now Hi := V ∗

i H ∈ U(G,α),
and H is equivalent to the direct sum of Hi, i = 1, 2, . . . , n.

Lemma 2.12. Under the assumption of Theorem 1.1, assume that Aα belongs to
either C1 or C2. Then for every representation σ ∈ U(G), there exists Hσ ∈ U(G,α)
equivalent to σ.

Proof. This essentially follows from [1, Lemma III 3.4].

Remark 2.13. If we only assume that Aα is unital simple purely infinite in the
above lemma, we can still have a globally α-invariant Hilbert space equivalent to
σ, not necessarily with support 1. Indeed, choosing a non-zero projection e ∈ Aα

with [e]0 = 0 in K0(A
α) and applying the lemma to eAe, we get Hσ ∈ U(G,α|eAe)

equivalent to σ. We choose an isometry V ∈ Aα with V V ∗ ≤ e. Then HσV is the
desired Hilbert space.

We call the functor α̌ the pre-dual action of α. For each π ∈ Ĝ, we fix Hπ ∈
U(G,α) equivalent to π, and denote α̌π = α̌Hπ

for simplicity. We arrange the
orthonormal basis {ψ(Hπ)i}i so that it is consistent with the orthonormal basis
{ξ(π)i}i of Hπ we have already chosen, and denote ψ(π)i = ψ(Hπ)i for simplicity.

Let π be the complex conjugate representation of π ∈ Ĝ. We choose an orthonor-
mal basis {ξ(π)i}i of the representation space of π so that πij(g) = πij(g) holds.

When π and π are inequivalent, we can arrange π to be a member of Ĝ. When π
and π are equivalent, we have two specially chosen orthonormal bases {ψ(π)i}i and
{ψ(π)i}i of Hπ corresponding to {ξ(π)i}i and {ξ(π)i}i respectively .

For π ∈ Ĝ, we set

Rπ =
1√
d(π)

d(π)∑

i=1

ψ(π)iψ(π)i ∈ (id, α̌πα̌π),

Rπ =
1√
d(π)

d(π)∑

i=1

ψ(π)iψ(π)i ∈ (id, α̌πα̌π),

which are isometries satisfying

R
∗

πα̌π(Rπ) = R∗
πα̌π(Rπ) =

1

d(π)
.

This in particular shows that d(α̌π) = d(π) as α̌π is irreducible, and more generally
shows d(α̌H) = dimH by the additivity of the statistical dimension.

11



The standard left inverse φπ : Aα → Aα of α̌π is given by

φπ(x) =
1

d(π)

d(π)∑

i=1

ψ(π)∗ixψ(π)i, x ∈ Aα,

which is also expressed as φπ(x) = R∗
πα̌π(x)Rπ. Then the minimal conditional

expectation for the inclusion Aα ⊃ α̌π(A
α) can be expressed as α̌π ◦ φπ.

Now we can reformulate the (4) part of Theorem 2.10 as follows:

Lemma 2.14. Under the assumption of Theorem 1.1, assume that Aα belongs to
either C1 or C2. Then α is quasi-product if and only if the endomorphisms α̌π,
π ∈ Ĝ \ {1}, are properly outer.

We denote by A0 the linear span of ∪π∈ĜA
α(π), which is a G-invariant dense

∗-subalgebra of A. A direct computation shows the following:

Lemma 2.15. Under the assumption of Theorem 1.1, assume that Aα belongs to
either C1 or C2. Then

(1) For any x ∈ Aα and π ∈ Ĝ, we have

Pπ(x) = d(π)

d(π)∑

i=1

Eα(xψ(π)
∗
i )ψ(π)i = d(π)

d(π)∑

i=1

ψ(π)∗iEα(ψ(π)ix).

In particular, the linear span of ∪π∈ĜA
αHπ is a dense ∗-subalgebra of A.

(2) Every x ∈ A0 is uniquely expanded as

x =
∑

π∈Ĝ

d(π)∑

i=1

x(π)iψ(π)i,

where x(π)i = d(π)Eα(xψ(π)
∗
i ) ∈ Aα.

Since we need the Doplicher-Roberts reconstruction theorem [12], we recall the
permutation symmetry θ of the category U(G,α), which is an assignment of a unitary
θ(H1,H2) ∈ (H1H2,H2H1)G to each H1.H2 ∈ U(G,α) given by

θ(H1,H2) =
∑

ij

ψ(H2)iψ(H1)iψ(H2)
∗
jψ(H1)

∗
i .

Then we have
θ(H1,H2)

∗ = θ(H2,H1), (2.2)

θ(H1 ⊗H2,H3) = θ(H1,H3)ρH1
(θ(H2,H3)), (2.3)

ρH1
(T ) = θ(H3,H1)Tθ(H2,H1)

∗, ∀T ∈ (H2,H3)G. (2.4)
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Before ending this section, we recall quasi-free actions on the Cuntz algebras.
The Cuntz algebra O∞ is the universal C∗-algebra generated by a separable infi-
nite dimensional Hilbert space H in a C∗-algebra. By universality, every unitary
representation of a group G in B(H) induces its action on O∞, which is called the
quasi-free action arising from the unitary representation. We define the Cunzt alge-
bra On, n = 2, 3, . . ., and quasi-free actions on them in a similar way with dimH = n
and an extra condition that H has support 1.

3 Finite index inclusions with the property (BEK)

The following is our first main technical result.

Theorem 3.1. Let A ⊃ B be an irreducible inclusion of separable unital purely
infinite simple C∗-algebras with a conditional expectation E : A→ B of finite index.
Then the inclusion A ⊃ B has the property (BEK).

We need to prepare a few lemmata before proving the theorem. For two operators
S, T acting on the same Hilbert space, we denote [S, T ] = ST − TS.

Lemma 3.2. Let B be a C∗-algebra, let (Φ, K) be an irreducible representation of
B, and let δ > 0. Then if T ∈ B(K)1 satisfies

sup
b∈B1

‖[Φ(b), T ]‖ ≤ δ,

there exists λ ∈ C satisfying ‖T − λ1K‖ ≤ 3δ.

Proof. By the Kaplansky density theorem, we have ‖[S, T ]‖ ≤ δ for all S ∈ B(K)1.
We assume dimK = ∞ as the finite dimensional case can be easily handled.

We first claim that ‖Tξ − 〈Tξ, ξ〉ξ‖ ≤ δ holds for every unit vector ξ ∈ K. The
claim holds for an eigenvector of T . Assume that ξ and Tξ are linearly independent,
and let λ = 〈Tξ, ξ〉 and η = ‖Tξ − λξ‖−1 (Tξ − λξ). Then we can choose a unitary
u± ∈ B(K) satisfying u±ξ = η and u±η = ±ξ. We have

[u±, T ]ξ = u±Tξ − Tη = u±(λξ + ‖Tξ − λξ‖η)− Tη = λη − Tη ± ‖Tξ − λξ‖ξ.
Since ‖[u±, T ]‖ ≤ δ, we get ‖Tξ − λξ‖ ≤ δ, and the claim is shown.

Next we claim that if ξ and η are mutually orthogonal unit vectors in K, we
have |〈Tξ, ξ〉 − 〈Tη, η〉| ≤ δ. We choose a unitary u ∈ B(K) satisfying uξ = η and
uη = ξ. Note that we have u∗η = ξ. Then the claim follows from

〈[u, T ]ξ, η〉 = 〈Tξ, u∗η〉 − 〈Tuξ, η〉 = 〈Tξ, ξ〉 − 〈Tη, η〉.
Finally, we fix a unit vector ξ ∈ K, and set λ = 〈Tξ, ξ〉. Let η be an arbitrary

unit vector in K. Choosing a unit vector ζ ∈ {ξ, η}⊥ and applying the second claim,
we get |〈Tξ, ξ〉 − 〈Tη, η〉| ≤ 2δ, which together with the first claim implies

‖Tη − λη‖ ≤ ‖Tη − 〈Tη, η〉η‖+ ‖〈Tη, η〉η − λη‖ ≤ 3δ.

Thus the statement is shown.
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Lemma 3.3. Let A ⊃ B be an inclusion of C∗-algebras with finite index, and let
(Π, H) be an irreducible representation of A. Then there exists a constant C > 0
depending only on Π satisfying the following property: whenever T ∈ B(H)1 satisfies

sup
b∈B1

‖[Π(b), T ]‖ ≤ δ,

there exists T1 ∈ Π(B)′ satisfying ‖T1 − T‖ ≤ Cδ.

Proof. Thanks to Lemma 2.8, the restriction Π|B of Π to B is a finite direct sum of
irreducible representations. Let (Πk, Hk), k = 1, 2, . . . , m, be the mutually disjoint
irreducible components of the restriction Π|B. Then we may assume

H =

m⊕

k=1

Hk ⊗ Cnk , Π(b) =

m⊕

k=1

Πk(b)⊗ 1Cnk , b ∈ B,

where nk is the multiplicity of Πi. Note that we have

Π(B)′′ =
m⊕

k=1

B(Hk)⊗ 1Cnk .

Let zk = 1Hk
⊗ 1Cnk . By the Kaplansky density theorem, we have ‖[zk, T ]‖ ≤ δ. Let

∆(T ) =
m∑

k=1

zkTzk.

Then ‖T −∆(T )‖ ≤ mδ.

We take a system of matrix units {e(k)ij }1≤i,j≤nk
in B(Cnk) and express ∆(T ) as

∆(T ) =
m⊕

k=1

∑

1≤i,j≤nk

T
(k)
ij ⊗ e

(k)
ij ,

where T
(k)
ij ∈ B(Hk). For b ∈ B1, we have

‖[T (k)
ij ,Πk(b)]‖ ≤ ‖[∆(T ),Π(b)]‖ ≤ (2m+ 1)δ.

By Lemma 3.2, there exist λ
(k)
ij ∈ C satisfying ‖T (k)

ij − λ
(k)
ij 1Hk

‖ ≤ 3(2m+ 1)δ. Let

T1 =
m⊕

k=1

(
1Hk

⊗
∑

1≤i,j≤nk

λ
(k)
ij e

(k)
ij

)
.

Then T1 ∈ Π(B)′, and

‖T1 − T‖ ≤ ‖T1 −∆(T )‖+ ‖∆(T )− T‖ ≤ 3(2m+ 1)δ max
1≤k≤m

n2
k +mδ,

which shows the statement.
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Proof of Theorem 3.1. When B is not unital, it is stable because it is purely infinite
and simple. In this case, we can choose a projection p ∈ B satisfying

(A,B,E) ∼= (pAp⊗K, pBp⊗K, E|pAp ⊗ idK).

Thus we may and do assume that A and B are unital to prove the statement.
Assume on the contrary that the inclusion A ⊃ B does not have the property

(BEK). Then for each natural number n ∈ N, there exist xn, yn ∈ A with ‖xn‖ =
‖yn‖ = 1 satisfying

sup
b∈B1

‖xnbyn‖ ≤ 1

n
.

We choose a free ultra-filter ω ∈ βN \N. Note that Aω is purely infinite and simple
(see [46, Proposition 6.2.6]). Then Aω ⊃ Bω is an inclusion of purely infinite simple
C∗-algebras with a conditional expectation Eω : Aω → Bω given by

Eω([(xn)]) = [(E(xn))].

Note that we have IndEω = IndE. We define x, y ∈ Aω by x = [(xn)] and y = [(yn)].
Then ‖x‖ = ‖y‖ = 1 and xBωy = {0} by construction.

As was observed in [3, Section 3], the C∗-algebra generated by BωxBω, BωyBω,
and Bω is not prime. Thus Lemma 2.7 implies that Aω ⊃ Bω is not irreducible. Let
r = [(rn)] ∈ Aω ∩ Bω ′ with ‖r‖ = 1. Then we have

lim
n→ω

sup
b∈B1

‖brn − rnb‖ = 0.

We choose an irreducible representation (Π, H) of A. Then Lemma 3.3 shows that
there exist Qn ∈ Π(B)′ satisfying

lim
n→ω

‖Π(rn)−Qn‖ = 0.

We may assume that {Qn} is bounded. Since Π(B)′ is finite dimensional, the norm
limit limn→ωQn exists. Since B is simple, the restriction of Π to B is faithful, and
the norm limit limn→ω rn exists too. This means that r ∈ A∩B′ = C and Aω ⊃ Bω

is irreducible, which is a contradiction.

Corollary 3.4. Let A be a separable purely infinite simple C∗-algebra, and assume
that ρ ∈ End(A)0 is irreducible and d(ρ) > 1. Then ρ is properly outer.

Although the following result is not used later, it is of interest in its own right.

Theorem 3.5. Let A ⊃ B be an irreducible inclusion of separable simple C∗-algebras
with a conditional expectation E : A → B of finite index. Let KB(EE) ⊃ A be its
basic construction, and let E1 : KB(EE) → A be the dual conditional expectation.
Let ι : B →֒ A be the inclusion map. Then the following conditions are equivalent:
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(1) The inclusion A ⊃ B has the property (BEK).

(2) The inclusion KB(EE) ⊃ A has the property (BEK).

(3) For any x ∈ A and any non-zero hereditary C∗-subalgebra C of B,

inf{‖c(x− E(x))c‖; c ∈ C+, ‖c‖ = 1} = 0.

(4) For any y ∈ KB(EE) and any non-zero hereditary C∗-subalgebra D of A,

inf{‖d(y − E1(y))d‖; d ∈ D+, ‖d‖ = 1} = 0.

If moreover B belongs to either the class C1 or C2, the above conditions are further
equivalent to the following two conditions:

(5) Every irreducible component of ιι not equivalent to idA is properly outer.

(6) Every irreducible component of ιι not equivalent to idB is properly outer.

Proof. Since the conditions (1)-(4) persist after taking tensor product with K and
passing to the corners by a non-zero projection in M(B), we may and do assume
that A,B ∈ C1 to prove the theorem.

(1)⇒(5). We choose an irreducible representation Π of A whose restriction to B
is irreducible. Then

1 = dimHomB(Π ◦ ι,Π ◦ ι) = dimHomA(Π,Π ◦ ιι).

Thus if ρ ∈ End(A)0 is an irreducible component not equivalent to idA, we have
dimHomA(Π,Π ◦ ρ) = 0, which shows that ρ is properly outer by Lemma 2.2.

(5)⇒(4). Note that the dual inclusion KB(EE) ⊃ A is isomorphic to B ⊃ ι(A).
Thus the statement follows from the crossed product type decomposition of the
inclusion KB(EE) ⊃ A (see Section 2.3).

(4)⇒(2). We denote λ = (IndE)−1. Let x1, x2 ∈ KB(EE) with ‖x1‖ = ‖x2‖ = 1.
Our task is to show supa∈A1

‖x1ax2‖ ≥ λ2. Since ‖x1ax2‖ = ‖|x1|a|x2|‖, we may
and do assume that x1, x2 are positive. By the Pimsner-Popa inequality, we have
‖E1(xi)‖ ≥ λ for i = 1, 2. Let 0 < ε be a sufficiently small constant. Then by
assumption we can choose a1, a2 ∈ A+ of norm 1 satisfying

‖ai(xi − E1(xi))ai‖ < ε,

‖aiE1(xi)ai‖ > ‖E1(xi)‖ − ε ≥ λ− ε,

for i = 1, 2. Since A is simple, there exists a ∈ A1 satisfying

‖a1E1(x1)a1aa2E1(x2)a2‖ ≥ (λ− ε)2,
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and so

‖x1a1aa2x2‖ ≥ ‖a1x1a1aa2x2a2‖
≥ ‖a1E1(x1)a1aa2E1(x2)a2‖ − 2ε

≥ (λ− ε)2 − 2ε.

Since ε > 0 is arbitrary, we obtain (2).
The implications (2)⇒(6)⇒(3)⇒(1) follow from the same arguments.

Remark 3.6. It was shown in [23, Theorem 7.5, Corollary 7.6] that the above
condition holds for every finite depth inclusion. The condition (3) is adapted as the
definition of the outerness of E in [38], which is essentially the same as the pinching
property in [47, Definition 3.13].

4 Proof of Theorem 1.1

As a corollary of Corollary of 3.4, we get the following.

Corollary 4.1. Theorem 1.1 is true if Aα is purely infinite.

Proof. We choose a non-zero projection e ∈ Aα with [e]0 = 0 in K0(A
α). Then the

inclusion A ⊃ Aα is isomorphic to eAe⊗ K ⊃ eAαe⊗ K if Aα is not unital, and to
a corner inclusion of it if Aα is unital. Thus A ⊃ Aα has the property (BEK) if and
only if eAe ⊃ eAαe has the same property, and we may and do assume that Aα ∈ C2
to prove the statement.

Theorem 3.4 implies that the endomorphisms α̌π, π ∈ Ĝ \ {1}, d(π) > 1, are

properly outer. Assume that π ∈ Ĝ \ {1} has d(π) = 1. Note that α̌π is an
automorphism and it is outer thanks to the irreducibility of A ⊃ Aα. Thus it is
properly outer by Kishimoto’s theorem [33, Lemma 1.1].

Remark 4.2. When Aα belongs to C2, we can apply Doplicher-Roberts’ construction
[12, Theorem 5.1] to A = Aα, ∆ = {α̌H}H∈U(G,α), and ε(α̌H1

, α̌H2
) = θ(H1,H2), and

we obtain the universal C∗-algebra B containing A with a G-action α̃ satisfying the
following properties (1)-(4):

(1) A = Bα̃.

(2) For each H ∈ U(G,α), there exists a copy H̃ ∈ U(G, α̃), as a G-space, of H
such that B is generated by A and ∪H∈U(G,α)H̃.

(3) The Hilbert space H̃ implements α̌H in the sense that V x = α̌H(x)V holds for

all V ∈ H̃ and x ∈ A.

(4) ε(α̌H1
, α̌H2

) = θ(H̃1, H̃2).
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Moreover the inclusion B ⊃ A is irreducible.
By the universality of B, there exists a G-equivariant surjection from B onto A

that is the identity on Aα. On the other hand, we can apply Corollary 4.1 to B
and see that B is simple. Therefore the map from B to A is an isomorphism. This
means that A has universality with respect to (1)-(4), which we will use in the proof
of Theorem 1.1 in the general case.

As a consequence of Corollary 4.1, we get the following lemma. Recall that if
β is an ergodic action of G on a C∗-algebra B, i.e. Bβ = C, the C∗-algebra B is
necessarily nuclear (see [50, Lemma 22], [10, Proposition 3]).

Lemma 4.3. Let the notation be as in the assumption of Theorem 1.1. Let β be an
ergodic action of G on a C∗-algebra B, and let γ be the diagonal action γg = αg⊗βg
of G on A ⊗ B. Then the fixed point algebra (A ⊗ B)γ is simple. More over there
exists a conditional expectation F : (A⊗ B)γ → Aα ⊗ C.

Proof. Note that the restriction F of Eα ⊗ Eβ to (A⊗ B)γ is a faithful conditional
expectation from (A⊗ B)γ onto Aα ⊗ C.

Replacing A and α with A⊗O∞ and α⊗ idO∞
respectively, we may assume that

Aα is purely infinite. Moreover, passing to the corner by a projection in Aα, we may
and do assume that Aα ∈ C2.

We first recall basic facts about ergodic actions (see [19, Proposition 2.1,Theorem
4.1], [51, Theorem 1]). The conditional expectation Eβ : B → Bβ = C is a trace, and
we denote it by τ for simplicity. There exist non-negative integers mπ ≤ d(π) with

dimBβ(π) = mπd(π) for π ∈ Ĝ. We can choose X(π)a ∈ Bβ
1 (π), a = 1, 2, · · · , mπ

such that {X(π)ai}a,i form an orthonormal basis of Bβ(π) with respect to the inner
product given by τ . Then we have

d(π)∑

i=1

X(π)aiX(π)∗bi = δa,bd(π).

Let

W (π)a =
1√
d(π)

d(π)∑

i=1

ψ(π)i ⊗X(π)∗ai.

Then W (π)a, a = 1, 2, . . . , mπ, are isometries in (A⊗B)γ with mutually orthogonal
ranges. Since the linear span of ∪π1,π2

Aα(π1)⊗Bβ(π2) is dense in A⊗B, the linear
span of ∪π1,π2

Eγ(A
α(π1)⊗Bβ(π2)) is dense in (A⊗B)γ . On the other hand, we have

Aα(π) = AαHπ, and Eγ(A
α(π1)⊗Bβ(π2)) survives only when π2 is equivalent to π1.

Thus we can see that the linear span of ∪π,a(A
α ⊗ 1)W (π)a is dense in (A ⊗ B)γ.

Note that
W (π)a(x⊗ 1) = (α̌π(x)⊗ 1)W (π)a,

holds for all x ∈ Aα. Since F is faithful and α̌π, π ∈ Ĝ \ {1}, are all properly outer,
we can conclude that (A ⊗ B)γ is simple as in the case of a crossed product by a
discrete group.
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We proceed to the proof of Theorem 1.1 in the general case, which requires
several reduction steps. Since the inclusion A ⊃ Aα has the property (BEK) if and
only if A ⊗ K ⊃ Aα ⊗ K has the same property, we may assume Aα ∈ C1 to prove
Theorem 1.1. Our task is to show that α̌π is properly outer for π ∈ Ĝ with d(π) > 1.

We fix π0 ∈ Ĝ with d(π0) > 1 and assume on the contrary that α̌π0
is not

properly outer. Then the proof of [23, Theorem 7.5], which is an adaptation of
Kishimoto’s argument in [33] to the endomorphism case, shows that there would
exist b ∈M(Aα), a non-zero hereditary C∗-subalgebra C of Aα, and δ > 0 such that
for any irreducible representation (Π, H) of Aα, there exists a finite rank self-adjoint
operator T on H and isometry V ∈ HomA(Π,Π ◦ α̌π0

) satisfying

Π(c)∗(Π(b)V + V ∗Π(b)∗ + T )Π(c) ≥ δΠ(c∗c),

for all c ∈ C. Let Lπ = HomAα(Π,Π◦α̌π), which is a finite dimensional Hilbert space
in B(H). Let D be the C∗-algebra generated by ∪π∈ĜΠ(A

α)Lπ. As was observed
in the proof of [23, Theorem 7.5], if D is simple and there exists a conditional
expectation F from D onto Π(Aα), we can get a contradiction. Therefore Theorem
1.1 is reduced to the following lemma:

Lemma 4.4. Under the assumption in Theorem 1.1, we assume Aα ∈ C1. Let (Π, H)

be an irreducible representation of Aα, let Lπ = HomAα(Π,Π ◦ α̌π) for π ∈ Ĝ, and
let D be the C∗-algebra generated by ∪π∈ĜΠ(A

α)Lπ. Then D is simple and there
exists a conditional expectation from D onto Π(Aα).

For simplicity, we suppress the symbol Π in Π(Aα), and treat Aα as a subalgebra

of B(H) irreducibly acting on H . For each π ∈ Ĝ, we choose an orthonormal basis
{V (π)p}mπ

p=1 of Lπ. Note that we have m1 = 1, and we can choose V (1)1 = 1. Then

as in [23, Lemma 7.1], we can show that there exist C
(µ,r)
(π,p),(σ,q) ∈ (α̌µ, α̌πα̌σ) and

c(π,p),(π,q) ∈ C satisfying

V (π)pV (σ)q =
∑

µ,r

C
(µ,r)
(π,p),(σ,q)V (µ)r, (4.1)

V (π)∗p =
∑

q

c(π,p),(π,q)R
∗
πV (π)q. (4.2)

Let D0 be the linear span of ∪π∈ĜA
αLπ. Then the above relations show that D0 is a

dense ∗-subalgebra of D, and every approximate unit of Aα is an approximate unit

of D. In particular, we have AαD
‖·‖

= D.
We prove Lemma 4.4 by using Doplicher-Roberts’ endomorphism crossed product

in [12]. As it is formulated only for unital C∗-algebras, we show that Lemma 4.4 is
reduced to the same statement with Aα ∈ C2.

We first show that Lemma 4.4 is reduced to the case where Aα is purely infinite.
To see it, we fix an irreducible representation (Π1, H1) of O∞, and replace A and
(Π, H) with A ⊗ O∞ and (Π ⊗ Π1, H ⊗ H1) respectively. If Lemma 4.4 holds for
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purely infinite Aα ∈ C1, we see that D⊗O∞ is simple and there exists a conditional
expectation from D ⊗O∞ onto Aα ⊗ O∞. This implies that D is simple and there
exists a conditional expectation from D onto Aα.

Next we show that Lemma 4.4 for purely infinite Aα ∈ C1 is reduced to the
same statement for Aα ∈ C2. We choose a system of matrix units {ei,j}i,j≥1 in Aα

such that [e11]0 = 0 in K0(A
α) and {

∑n
i=1 eii}∞n=1 is an approximate unit of Aα,

and hence converges to 1 in the strict topology. We denote e = e11 and pn =∑n
i=1 eii for simplicity. Note that e is a full projection of D because {pn}∞n=1 is an

approximate unit of D too. Note that {α̌π(pn)}∞n=1 is an approximate unit of Aα as
α̌π ∈ End(Aα)0.

For each π ∈ Ĝ, we choose a partial isometry vπ ∈ Aα satisfying vπv
∗
π = e and

v∗πvπ = α̌π(e). Then

Uπ =
∞∑

i=1

ei1vπα̌π(e1i)

converges to a unitary in M(Aα) in the strict topology, and AdUπ · α̌π(eij) = eij.
Replacing Hπ with UπHπ implies replacing Lπ with UπLπ, which does not change
D. Thus we may do assume α̌π(eij) = eij , and

(D ⊃ Aα, α̌π) ∼= (eDe⊗K ⊃ eAαe⊗K, α̌π|eAαe ⊗ idK).

Therefore if the same statement as in Lemma 4.4 for Aα ∈ C2 holds, we can see that
eDe is simple and there exists a conditional expectation from eDe onto eAαe, which
shows that Lemma 4.4 holds.

Now Theorem 1.1 is reduced to the following lemma:

Lemma 4.5. Under the assumption in 1.1, we assume Aα ∈ C2. Let (Π, H) be an

irreducible representation of Aα, let Lπ = HomAα(Π,Π◦ α̌π) for π ∈ Ĝ, and let D be
the C∗-algebra generated by Π(Aα) and ∪π∈ĜLπ. Then D is simple and there exists
a conditional expectation from D onto Π(Aα).

Remark 4.6. Let Rep(Aα)0 be the category representations of Aα unitarily equiv-
alent to finite direct sums of irreducible representations of Aα. Then Lemma 2.8
shows that Rep(Aα)0 is a module category of U(G,α) via Π ⊗ H := Π ◦ α̌H. It
is known that there is a correspondence between module categories of U(G) and
ergodic G-actions (see [9, Theorem 6.4]). In fact, we prove Lemma 4.5 by describing
the structure of D in terms of an ergodic G-action.

From now on, we assume Aα ∈ C2. We choose an orthonormal basis {V (π)p}p
of Lπ for each π ∈ Ĝ. Then there exists C

(µ,r)
(π,p),(σ,q) ∈ (α̌µ, α̌πα̌σ) and c(π,p),(π,q) ∈ C

satisfying Eq.(4.1) and (4.2).
Instead of working on D directly, we first consider its universal counterpart.

Let D be the universal C∗-algebra generated by Aα and isometries V ′(π)p, π ∈ Ĝ,
p = 1, 2, · · · , mπ, satisfying the following relations:

V ′(π)∗pV
′(π)q = δp,q, (4.3)
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V ′(π)px = α̌π(x)V
′(π)p, x ∈ Aα, (4.4)

V ′(π)pV
′(σ)q =

∑

µ,r

C
(µ,r)
(π,p),(σ,q)V

′(µ)r, (4.5)

V ′(π)∗p =
∑

q

c(π,p),(π,q)R
∗
πV

′(π)q. (4.6)

Lemma 4.7. Let the notation be as above.

(1) For each H ∈ U(G,α), there exists α̌′
H ∈ End(D) satisfying α̌′

H|Aα = α̌H, and
α̌′
H(V

′(π)p) = θ(π,H)V ′(π)p.

(2) We set α̌′
T = T for T ∈ (H1,H2)G. Then α̌′ is a tensor functor from U(G,α)

to End(D).

Proof. (1) By the universality of D, it suffices to show that α̌′
H preserves the relations

(4.3)-(4.6). Since θ(π,H) is unitary, the relation (4.3) is preserved. We can see that
(4.4) is preserved from

θ(π,H)V ′(π)pα̌π(x) = θ(π,H)α̌πα̌H(x)V
′(π)p = α̌Hα̌π(x)θ(π,H)V ′(π)p.

To see that (4.5) is preserved, it suffices to show

θ(π,H)V ′(π)pθ(σ,H)V ′(σ)q =
∑

µ,r

α̌H(C
(µ,r)
(π,p),(σ,q))θ(µ,H)V ′(µ)r.

The left-hand side is equal to

θ(π,H)α̌π(θ(σ,H))V ′(π)pV
′(σ)q = θ(π ⊗ σ,H)

∑

µ,r

C
(µ,r)
(π,p),(σ,q)V

′(µ)r

=
∑

µ,r

(
θ(π ⊗ σ,H)C

(µ,r)
(π,p),(σ,q)θ(H, µ)

)
θ(µ,H)V ′(µ)r,

which coincides with the right-hand side thanks to Eq.(2.4). Finally to see that the
relation (4.6) is preserved, it suffices to show

V ′(π)∗pθ(H, π) =
∑

q

c(π,p),(π,q)α̌H(R
∗
π)θ(π,H)V ′(π)q.

The left-hand side is
∑

q

c(π,p),(π,q)R
∗
πV

′(π)qθ(H, π) =
∑

q

c(π,p),(π,q)R
∗
πα̌π(θ(H, π))V ′(π)q

=
∑

q

c(π,p),(π,q) (R
∗
πα̌π(θ(H, π))θ(H, π)) θ(π,H)V ′(π)q.

21



Since Eq.(2.3) and(2.4) imply

θ(π,H)α̌π(θ(π,H))Rπ = θ(π ⊗ π,H)Rπ = α̌H(Rπ),

the relation (4.6) is preserved, and α̌′
H is well-defined.

(2) It suffices to show that T ∈ (H1,H2)G satisfies

Tθ(π,H1)V
′(π)p = θ(π,H2)V

′(π)pT.

The right-hand side is

θ(π,H2)α̌π(T )V
′(π)p = Tθ(π,H1)V

′(π)p,

by Eq.(2.4), and the equality holds.

Proof of Lemma 4.5. We apply [12, Theorem 5.1] toA = D, ∆ = {α̌′
H}H∈U(G,α), and

ε(α̌′
H1
, α̌′

cH2
) = θ(H1,H2). Although [12, Theorem 5.1] is stated under the condition

that A has trivial center, their construction itself works without this condition.
Thanks to Remark 4.2, the resulting algebra B satisfies the following properties:

(1) The C∗-algebra B is generated by D and A with a common C∗-subalgebra Aα.

(2) For every H ∈ U(G,α), the Hilbert space H implements α̌′
H.

(3) There exists a G-action α′ on B extending α such that Bα′

= D.

For π ∈ Ĝ, let Y (π)pi = V ′(π)∗pψ(π)i. Then Y (π)a ∈ Bα′

(π). Since D is generated
by Aα and ∪π∈ĜLπ, and A is generated by Aα and ∪π∈ĜHπ, the C∗-algebra B
is generated by A and {Y (π)pi}p,i. We claim that Y (π)pi commutes with A. It
commutes with Aα by construction. Since the linear span of ∪σ∈ĜA

αHσ is dense in
A, it suffices to show that Y (π)pi commutes with ψ(σ)j . Indeed,

ψ(σ)jY (π)pi = α̌′
σ(V

′(π)∗p)ψ(σ)jψ(π)i

= V ′(π)∗pθ(σ, π)ψ(σ)jψ(π)i = V ′(π)∗pψ(π)iψ(σ)j = Y (π)piψ(σ)j,

which shows the claim.
We next claim that the linear span B0 of {Y (π)ai}π,a,i.is a ∗-algebra. Indeed,

Y (π)∗pi = ψ(π)∗iV
′(π)p =

√
d(π)R∗

πψ(π)iV
′(π)p =

√
d(π)R∗

πα̌
′
π(V

′(π)p)ψ(π)i

=
√
d(π)R∗

πθ(π, π)V
′(π)pψ(π)i =

√
d(π)R

∗

πV
′(π)pψ(π)i

=
√
d(π)R

∗

π

∑

q

c((π, p), (π, q))V ′(π)∗qRπψ(π)i

=
√
d(π)

∑

q

c((π, p), (π, q))V ′(π)∗qα̌π(R
∗

π)Rπψ(π)i

=
1√
d(π)

∑

q

c((π, p), (π, q))Y (π)qi,
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shows that B0 is closed under ∗. For the product, we have

Y (σ)qjY (π)pi = V ′(σ)∗qψ(σ)jV
′(π)∗pψ(π)i = V ′(σ)∗qα̌

′
σ(V

′(π)∗p)ψ(σ)jψ(π)i

= V ′(σ)∗qV
′(π)∗pθ(σ, π)ψ(σ)jψ(π)i =

∑

µ,r

V ′(µ)∗rC
(µ,r)
(π,p),(σ,q)

∗
ψ(π)iψ(σ)j

=
∑

µ,r

∑

ν,k

d(ν)V ′(µ)∗rC
(µ,r)
(π,p),(σ,q)

∗
Eα(ψ(π)iψ(σ)jψ(ν)

∗
k)ψ(ν)k.

Since C
(µ,r)
(π,p),(σ,q) ∈ (α̌µ, α̌πα̌σ) and Eα(ψ(π)iψ(σ)jψ(ν)

∗
k) ∈ (α̌ν , α̌πα̌σ), the product

C
(µ,r)
(π,p),(σ,q)

∗
Eα(ψ(π)iψ(σ)jψ(ν)

∗
k) survives only if µ = ν, and

Y (σ)qjY (π)pi =
∑

µ,r,s

d(µ)〈Eα(ψ(π)iψ(σ)jψ(µ)
∗
k), C

(µ,r)
(π,p),(σ,q)〉V ′(µ)∗rψ(µ)k

=
∑

µ,r,s

d(µ)〈Eα(ψ(π)iψ(σ)jψ(µ)
∗
k), C

(µ,r)
(π,p),(σ,q)〉Y (µ)rk.

Therefore the claim is shown.
Let B be the closure of B0 and let β be the restriction of α′ to B. Then Bβ(π)

is the linear span of {Y (π)ai}a,i, and in particular we have Bβ = C, that is, the
action β is ergodic. Thus B is nuclear. Since A is simple and B is generated by two
mutually commuting C∗-subalgebras A and B, we can identify B with A⊗B. Thus
Lemma 4.3 implies that D = Bα′

is simple and there exists a conditional expectation
from D onto Aα. By the universality of D, there exists an isomorphism from D onto
D that is the identity on Aα. Thus Lemma 4.5 is shown.

5 Fejér type approximation for compact groups

In this section, we assume that G is a second countable compact group, and we
use the notation in Section 2.4. We always use the normalized Haar measure of
G. We equip C(G) with a G-action by the left translation Lg(f)(h) = f(g−1h) for
f ∈ C(G). We denote by λ the left regular representation of G. For f ∈ C(G), we
denote by Mf ∈ B(L2(G)) the multiplication operator by f .

We first establish a G-equivariant CPAP of C(G), which may be interpreted
as a Fejér type approximation. The orthogonality relation shows that we have a
completely orthonormal system {

√
d(π)πij}π∈Ĝ, 1≤i,j≤d(π) of L

2(G). We denote by

{E√
d(π)πij ,

√
d(σ)σkl

}π,σ∈Ĝ, 1≤i,j≤d(π), 1≤k,l≤d(σ)

the corresponding system of matrix units in B(L2(G)). For a finite subset F ⊂ Ĝ,
we define a finite rank projection PF ∈ B(L2(G)) commuting with λg by

PF =
∑

π∈F

∑

1≤i,j≤d(π)

E√
d(π)πij ,

√
d(π)πij

.
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Mimicking the construction in the proof of [7, Theorem 2.6.8] for the reduced
group C∗-algebra of a discrete group, we define ucp maps ϕF : C(G) → B(PFL

2(G))
and ϕ′

F : B(PFL
2(G)) → C(G) by ϕF (f) = PFMfPF , and

ϕ′
F (E

√
d(π)πij ,

√
d(σ)σkl

) =
1

w(F )

√
d(π)d(σ)πijσkl,

w(F ) =
∑

π∈F

d(π)2.

Then ϕF and ϕ′
F are G-equivariant in the sense that ϕF ◦ Lg = Ad(PFλg) ◦ ϕF and

ϕ′
F ◦ Ad(PFλg) = Lg ◦ ϕ′

F hold.
We define a kernel function KF ∈ C(G) associated with F by

KF (g) =
1

w(F )

∣∣∣∣∣
∑

π∈F

d(π)χπ(g)

∣∣∣∣∣

2

.

Recall that the convolution f1 ∗ f2 of f1, f2 ∈ C(G) is defined by

f1 ∗ f2(g) =
∫

G

f1(h)f2(h
−1g)dh =

∫

G

f1(gh
−1)f2(h)dh.

Lemma 5.1. For f ∈ C(G), we have

ϕ′
F ◦ ϕF (f) = f ∗KF .

Proof. We have

ϕF (f) =
∑

π,σ∈F

∑

i,j,k,l

〈Mf

√
d(σ)σkj ,

√
d(π)πij〉E√d(π)πij ,

√
d(σ)σkl

=
∑

π,σ∈F

∑

i,j,k,l

√
d(π)d(σ)

∫

G

f(h)σkl(h)πij(h)dhE√d(π)πij ,
√

d(σ)σkl
,

ϕ′
F ◦ ϕF (f)(g) =

1

w(F )

∑

π,σ∈F

∑

i,j,k,l

d(π)d(σ)

∫

G

f(h)σkl(h)σkl(g)πij(h)πij(g)dh

=
1

w(F )

∑

π,σ∈F

d(π)d(σ)

∫

G

f(h)χσ(h−1g)χπ(h
−1g)dh =

∫

G

f(h)KF (h
−1g)dh,

which shows the statement.

Popa [44] introduced the notion of amenability for rigid C∗-tensor categories in
the context of subfactors. As in the case of discrete groups, he formulated a Følner
sequence and showed that amenability is equivalent to the existence of a Følner
sequence. It was observed in [21] that the amenability is a property depending only
on the fusion algebra structure of the category. The following version of the definition
of a Følner sequence was formulated in [21, Definition 4.5], and it is equivalent to
Popa’s original definition.
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Definition 5.2. A sequence {Fn}∞n=1 of finite subsets of Ĝ is said to be a Følner

sequence if for every π ∈ Ĝ, the following holds:

lim
n→∞

1

w(Fn)


∑

σ∈Fn

∑

µ∈F c
n

d(σ)d(µ)

d(π)
Nσ

π,µ +
∑

σ∈F c
n

∑

µ∈Fn

d(σ)d(µ)

d(π)
Nσ

π,µ


 = 0,

where F c
n is the complement of Fn.

It is well-known that the representation category of G is amenable, and Ĝ always
has a Følner sequence (see, for example, [48, Theorem 4.5], [35, subsection 2.3]).
One easy way to see it is as follows. Since every finitely generated subcategory of
U(G) is equivalent to the representation category of a closed subgroup of SU(n), it
has polynomial growth, and hence has a Følner sequence (see [21, Example 7.6]).
Therefore the whole category has a Følner sequence too.

Example 5.3. When G = T, we have T̂ = Z, and Fn = {0, 1, . . . , n}, n ∈ N, give a
Følner sequence. The function KFn

in this case is

KFn
(eit) =

1

n+ 1

∣∣∣∣∣

n∑

k=0

eikt

∣∣∣∣∣

2

=
1

n+ 1

sin2 (n+1)t
2

sin2 t
2

,

which is nothing but the Fejér kernel.

Theorem 5.4. Let {Fn}∞n=1 be a Følner sequence for Ĝ. Then for all f ∈ C(G),

lim
n→∞

‖ϕ′
Fn

◦ ϕFn
(f)− f‖∞ = 0.

Proof. Since the linear span of the matrix coefficients of the irreducible representa-
tions is uniformly dense in C(G), it suffice to show the statement for f = πij with

π ∈ Ĝ. For a finite set F ⊂ Ĝ, we have

πij ∗KF (g) =
1

w(F )

d(σ)∑

k=1

πik(g)
∑

σ,µ∈F

d(σ)d(µ)

∫

G

πjk(h)χσ(h)χµ(h)dh

=
1

w(F )

d(σ)∑

k=1

πik(g)
∑

σ,µ∈F

d(σ)d(µ)
∑

ν∈Ĝ

Nν
σ,µ

∫

G

πjk(h)χν(h)dh

=
πij(g)

w(F )

∑

σ,µ∈F

d(σ)d(µ)

d(π)
Nπ

σ,µ.
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Since Nπ
σ,µ = Nσ

π,µ, and
∑

σ∈Ĝ d(σ)N
σ
π,µ = d(π)d(µ), we get

1

w(F )

∑

σ,µ∈F

d(σ)d(µ)

d(π)
Nπ

σ,µ =
1

w(F )

∑

σ,µ∈F

d(σ)d(µ)

d(π)
Nσ

π,µ

=
1

w(F )

∑

µ∈F


∑

σ∈Ĝ

d(σ)d(µ)

d(π)
Nσ

π,µ −
∑

σ∈F c

d(σ)d(µ)

d(π)
Nσ

π,µ




= 1− 1

w(F )

∑

µ∈F

∑

σ∈F c

d(σ)d(µ)

d(π)
Nσ

π,µ.

This shows

‖πij − ϕ′
Fn

◦ ϕFn
(πij)‖∞ ≤ ‖πij‖∞

w(Fn)

∑

µ∈Fn

∑

σ∈F c
n

d(σ)d(µ)

d(π)
Nσ

π,µ → 0, (n→ ∞).

As an application, we show that every nuclear C∗-algebra with a compact group
action has the following equivariant CPAP.

Lemma 5.5. Let B be a unital nuclear C∗-algebra with a G-action β. Then for
any finite subset F ⊂ B and ε > 0, there exists n ∈ N, ucp maps ϕ : A → Mn(C),
ϕ′ : Mn(C) → B, and a unitary representation u of G in Mn(C) such that ϕ ◦ βg =
Ad u(g) ◦ ϕ, ϕ′ ◦ Ad u(g) = βg ◦ ϕ′, and ‖ϕ′ ◦ ϕ(x)− x‖ < ε for all x ∈ F .

Proof. Since B is nuclear and βG(F ) is a compact set, there exists n0 and ucp maps
ϕ0 : B → Mn0

(C) and ϕ′
0 : Mn0

(C) → B satisfying

‖ϕ′
0 ◦ ϕ0(βg(x))− βg(x)‖ < ε/2, ∀g ∈ G, ∀x ∈ F.

We define ucp maps Φ : B → C(G) ⊗ Mn0
(C) and Φ′ : C(G) ⊗ Mn0

(C) → B
by Φ(x)(g) = ϕ0(βg−1(x)) and Φ′(f) =

∫
G
βg(ϕ

′
0(f(g)))dg. Then Φ and Φ′ are

equivariant in the sense that Φ ◦βg = (Lg ⊗ id) ◦Φ and Φ′ ◦ (Lg ⊗ id) = βg ◦Φ′ hold.
For x ∈ F , we have

‖Φ′ ◦ Φ(x)− x‖ = ‖
∫

G

βg(ϕ
′
0 ◦ ϕ0(βg−1(x)))dg − x‖ < ε/2.

Now the statement follows from Theorem 5.4.

6 Proof of Theorem 1.2

We first establish an equivariant version of Kirchberg’s dilation theorem [30], [31,
Proposition 1.7], as an application of Theorem 1.1 and Lemma 5.5.
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Theorem 6.1. Under the assumption of Theorem 1.2, we assume that A is unital.
Let ν : A → A be a G-equivariant ucp map. Then for every finite set F ⊂ A and
ε > 0, there exists V in Aα such that ‖ν(x)− V ∗xV ‖ < ε for all x ∈ F .

Proof. Since A is nuclear, Lemma 5.5 shows that there exist n ∈ N, a unitary
representation u of G in Mn(C), and G-equivariant ucp maps ϕ : A → Mn(C) and
ϕ′ : Mn(C) → A satisfying ‖ϕ′ ◦ ϕ(x) − ν(x)‖ < ε/2 for all x ∈ F , where Mn(C) is
equipped with a G-action given by Ad ug.

Thanks to Remark 2.13, there exist globally α-invariant Hilbert spaces H and
H with orthonormal bases {ψi}ni=1 and {ψi}ni=1 respectively satisfying αg(ψi) =∑

j uji(g)ψj , and αg(ψi) =
∑

j uji(g)ψj. We let F1 = ∪i,jψiFψ
∗

j .
Let {ξi}ni=1 be the standard basis of Cn and let {eij}i,j be the corresponding

system of matrix units. We define a state ω of A by

ω(x) =
1

n

∑

1≤i,j≤n

〈ϕ(ψ∗

ixψj)ξj, ξi〉.

Then a direct computation shows that ω is α-invariant. We have

ϕ′ ◦ ϕ(x) = n
∑

i,j

ω(ψixψ
∗

j)ϕ
′(eij).

We claim that there exists an isometry v ∈ Aα satisfying

‖ω(x)− v∗yv‖ < δ, ∀y ∈ F1,

where δ = ε/(2n3) for our purpose. Thanks to Theorem 1.1, the action α is quasi-
product, and ω can be approximated by α-invariant pure states in the weak∗ topol-
ogy (see [6, Theorem 3.1]). Thus there exists an α-invariant pure state ω0 of A
satisfying |ω0(y)− ω(y)| < δ/2 for all y ∈ F1. Let L = {y ∈ A; ω0(y

∗y) = 0}. Then
L ∩ L∗ is a globally α-invariant hereditary C∗-subalgebra of A, and there exists an
approximate units {un}n of L ∩ L∗ in Aα by Lemma 2.9. Let an = 1 − un. Then
{an}n is a decreasing sequence in Aα

+ of norm 1 such that {‖an(x − ω0(x))an‖}n
converges to 0 for all x ∈ A because x − ω0(x) ∈ kerω0 = L + L∗. Since Aα is
purely infinite, we can see from this that there exist isometries {vn}n in Aα such
that {v∗nxvn − ω0(x)}n converges to 0 for all x ∈ A. Thus the claim is shown.

Next we claim that there exists an isometry w ∈ Aα satisfying

ϕ′(eij) = w∗ψiψ
∗
jw, 1 ≤ i, j ≤ n.

Since ϕ′ is completely positive, we have a := (ϕ′(eij)) ∈ M(A)n is positive, and a
direct computation shows that it is fixed by αg ⊗ Ad ug. Since b = a1/2 is fixed by
αg ⊗ Ad ug, we get

w :=
∑

j,k

ψjψkbkj ∈ Aα.
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Now we have
w∗ψiψ

∗
jw =

∑

k

b∗kibkj = ϕ(eij),

and the claim is shown.
Let

V =
√
n

n∑

j=1

ψ
∗

jvψ
∗
jw,

which is an element in Aα. Then for x ∈ F ,

‖ϕ′ ◦ ϕ(x)− V ∗xV ‖ = ‖n
∑

i,j

w∗ψi(ω(ψixψ
∗

j)− v∗ψixψ
∗

jv)ψ
∗
jw‖ < ε/2,

and the statement is shown.

Proof of Theorem 1.2. Let e ∈ Aα be a non-zero projection with [e]0 = 0 in K0(A).
To show that α is isometrically shift-absorbing, it suffices to show that the restriction
of α to eAe has the same property. Thus we may and do assume Aα ∈ C2.

We denote by α∞
g the automorphism of A∞ induce by αg. Since the infinite

direct sum of the regular representation is equivalent to
⊕

π∈Ĝ π
⊕∞, it suffices to

show that there exists a Hilbert space Kπ in A∞ ∩ A′ globally α∞-invariant and
equivalent to π for each π ∈ Ĝ (not necessarily with support 1), and there exists a
unital embedding of O∞ into (Aα)∞ ∩ A′. Indeed, we choose an orthonormal basis

{η(π)}d(π)i=1 of Kπ for each π ∈ Ĝ, and isometries {Sπ,n}(π,n)∈Ĝ×N in (Aα)∞ ∩ A′ with
mutually orthogonal ranges. Then

{Sπ,nη(π)i; π ∈ Ĝ, 1 ≤ i ≤ d(π), n ∈ N}

give a desired set of generators of O∞ in A∞ ∩A′.
For each H ∈ U(G,α), we apply Theorem 6.1 to ρH, and obtain an isometry

VH ∈ (Aα)∞ satisfying ρH(x) = V ∗
HxVH for all x ∈ A. We set KH = VHH, which

is a Hilbert space in A∞, and the restriction of α∞ to KH is equivalent to H. For
x ∈ A, we have

ψ(H)∗iV
∗
HxVHψ(H)i = ψ(H)∗i ρH(x)ψ(H)i = x,

and

[x, VHψ(H)i]
∗[x, VHψ(H)i]

= ψ(H)∗iV
∗
Hx

∗xVHψ(H)i − ψ(H)∗iV
∗
Hx

∗VHψ(H)ix− x∗ψ(H)∗iV
∗
HxVHψ(H)i + x∗x

= 0.

Thus the C∗-condition implies KH ⊂ A∞ ∩A′. We let Kπ = KHπ
.

When H is equivalent to 1 ⊕ 1, we have KH ⊂ (Aα)∞ ∩ A′. This shows that
there exist two isometries with mutually orthogonal ranges in (Aα)∞∩A′, and there
exists a unital embedding of O∞ in (Aα)∞ ∩A′.
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7 Quasi-free actions on the Cuntz algebras

Before ending this paper, we discuss quasi-free actions of a compact group G on
the Cuntz algebras On and O∞ as applications of our main results. We follow the
convention in [15] for graph C∗-algebras.

Example 7.1. Let ρ be a faithful unitary representation of a compact group G in
Mn(C), and let α be the quasi-free action of G arising from ρ on On. It is known
that On ∩ (On

U(n))′ is trivial (see [4, Theorem 3.2], [11, Corollary 3.3]), and hence
α is minimal. Thus if On

α is simple, Theorem 1.1 implies that α is quasi-product.
In fact, [11, Theorem 3.1] shows that On

α is simple if ρ(G) ⊂ SU(n). We can relax
this assumption to the following:

(∗) For every π ∈ Ĝ, there exists n ≥ 0 such that π is contained in ρ⊗n.

[34, Theorem 7.1] shows that On
α is isomorphic to a corner of the graph algebra

C∗(Gρ) of the following graph Gρ: the vertex set G0
ρ is Ĝ, and the number of edges

from σ ∈ Ĝ to π ∈ Ĝ is dimHomG(π, ρ ⊗ σ). Now [15, Theorem 3, 4] imply that
On

α is purely infinite and simple under the condition (∗), and our main results show
that α is isometrically shift-absorbing. It is very likely that (∗) is also necessary for
On

α to be purely infinite and simple, but it does not seem to be known yet.

For the Cuntz algebra O∞, we have the following statement, previously known
only for abelian G (see [29, Proposition 7.4], [32, Theorem 5.1], [37, Corollary 4.17],
and also [8] for a related result).

Proposition 7.2. Let (ρ,H) be a faithful unitary representation of a compact group
G on a separable infinite dimensional Hilbert space H, and let α be the corresponding
quasi-free action of G on O∞. Then the following conditions are equivalent:

(1) α is isometrically shift-absorbing.

(2) O∞
α is purely infinite and simple.

(3) O∞
α is simple.

(4) The Condition (∗) holds.

Proof. Let

(F(H),F(ρ)) = (

∞⊕

n=0

H⊗n,

∞⊕

n=0

ρ⊗n).

By convention H⊗0 = CΩ where Ω is the vacuum vector. We regard O∞ as a
concrete C∗-algebra acting on the full Fock space F(H) generated by the left creation
operators l(ξ), ξ ∈ H . Then the quasi-free action α is the restriction of AdF(ρ)
to O∞. Since the vacuum state is α-invariant and pure on O∞, if O∞

α simple, the
action α is quasi-product, and in particular it is is minimal.
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(1) ⇒ (2). This is shown in [37, Example 4.5].
(2) ⇒ (1). This follows from Theorem 1.2.
(2) ⇒ (3). This is trivial.
(3) ⇒ (4). Since O∞

α is simple and α is minimal, the crossed product O∞ ⋊αG
is simple (see [37, Proposition A]). Thus the defining representation of O∞ and F(ρ)
give a faithful representation of O∞ ⋊α G on F(H), and hence F(ρ) gives rise to a
faithful representation of the group C∗-algebra of G, which implies (4).

(4) ⇒ (2). We show the implication by identifying O∞
α with a corner of C∗(Gρ)

as in the case of On. Since the argument in [34] does not work in this case, we
give a more direct argument here. We let K =

⊕
π∈ĜHπ, and equip K(K) with the

G-action given by Ad(
⊕

π∈Ĝ π). We first embed C∗(Gρ) into (O∞ ⊗K(K))G.

For each π, σ ∈ Ĝ, we fix an orthonormal basis {e} of HomG(Hπ, H⊗Hσ), where
the inner product of e and f is given by 〈e, f〉 = f ∗e ∈ EndG(Hπ) = C1π. We
identify {e} with the set of edges from σ to π, and ∪π,σ∈Ĝ{e} with the edge set G1

ρ .
For e, we define Se to be the corresponding element in

(l(H)⊗ (Hσ ⊗H∗
π))

G ⊂ (O∞ ⊗K(K))G,

where Hσ ⊗ H∗
π is identified with a subspace of K(K) in a natural way. Then

we have S∗
eSe = 1 ⊗ pπ and SeS

∗
e ≤ 1 ⊗ pσ, where pπ is the projection from K

onto Hπ. If e1, e2, . . . , en ∈ G1
ρ are distinct edges with a common source σ, we

have S∗
ei
Sej = δi,j1 ⊗ pr(ei), which shows that {SeiS

∗
ei
}ni=1 are mutually orthogonal

subprojections of 1⊗pσ. Thus {Se, 1⊗pπ} form a Cuntz-Krieger Gρ-family, and there
exists a surjection from the graph algebra C∗(Gρ) onto the C

∗-algebra B generated by
{Se}e∈G1

ρ
. [15, Theorem 3, 4] show that C∗(Gρ) is purely infinite and simple thanks to

the condition (∗), and so is B. Now our task is to show (1⊗p1)B(1⊗p1) = O∞
α⊗p1,

which implies (2).
Let Gρ(1, π;n) be the set of paths ξ in Gρ of length n satisfying s(ξ) = 1 and

r(ξ) = π. Then the linear span of {Sξ}ξ∈Gρ(1,π;n) is dense in (l(H)n ⊗ (H1 ⊗H∗
π))

G

by construction, and so the linear span of

{SξS
∗
η ; ξ ∈ Gρ(1, π;n), η ∈ Gρ(1, π;m), π ∈ Ĝ}

is dense in (l(H)nl(H)m∗)G ⊗ p1. Thus (1⊗ p1)B(1⊗ p1) = O∞
α ⊗ p1.

The following is a consequence of our main results and [17, Corollary 6.4], and
it is a generalization of [18, Theorem 5.1] in the finite group case.

Corollary 7.3. For a compact group G, any two faithful quasi-free actions of G
on the Cuntz algebras O∞ satisfying the condition (∗) are mutually conjugate. Such
actions are absorbed through tensor product by every faithful minimal action of G
on a Kirchberg algebra whose fixed point algebra is a Kirchberg algebra. (Note that
when G is finite or SU(n), the condition (∗) is automatically satisfied.)
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