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Inertial Relaxed Proximal Linearized ADMM for Nonconvex Optimization
under Minimal Continuity Assumption

Ganzhao Yuan'

Abstract

This paper proposes an Inertial Relaxed Prox-
imal Linearized Alternating Direction Method
of Multipliers (IRPL-ADMM) for solving gen-
eral multi-block nonconvex composite optimiza-
tion problems. Distinguishing itself from existing
ADMM-style algorithms, our approach imposes
a less stringent condition, specifically requiring
continuity in only one block of the objective func-
tion. It incorporates an inertial strategy for primal
variable updates, and a relaxed strategy for dual
variable updates. The fundamental concept un-
derlying our algorithm is based on novel regular
penalty update rules, ensuring that the penalty in-
creases but not excessively fast. We devise a novel
potential function to facilitate our convergence
analysis and extend our methods from determinis-
tic optimization problems to finite-sum stochastic
settings. We establish the iteration complexity for
both scenarios for achieving an approximate sta-
tionary solution. Under the Kurdyka-Lojasiewicz
(KL) inequality, we establish strong limit-point
convergence results for the IRPL-ADMM algo-
rithm. Finally, some experiments have been con-
ducted on two machine learning tasks to show the
effectiveness of our approaches.

1. Introduction

We consider the following multi-block nonconvex nons-
mooth composite optimization problem:

n

<, Anin D Ifilxi) + hi(xi)], s[> Aix] =D, (1)
B i=1

where b € R™*1 A, € R™*di x. ¢ R4ix1 and g ¢
[n] £ {1,2,...,n}. We do not assume convexity of f;(-)
and h;(-) for all ¢ € [n]. Furthermore, we require that
the function f;() : R4:*! s (—o0, 00) is differentiable,
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while h;(+) : R4:X1 s (—o0, oc] is potentially nonsmooth.
However, its associated nonconvex operator miny, 4 |x; —
x}||3 + hi(x;) is well-defined and simple to compute for all
i € [n], any g > 0, and x;, € Rd:*1,

Problem (1) has a wide range of applications in machine
learning. The function f;(-) plays a crucial role in han-
dling empirical loss, including neural network activation
functions. Incorporating multiple nonsmooth regularization
terms h;(-) enables diverse prior information integration,
including structured sparsity, low-rank, orthogonality, and
non-negativity constraints, enhancing regularization model
accuracy. These capabilities extend to various applications
such as sparse PCA, overlapping group Lasso, graph-guided
fused Lasso, and phase retrieval.

» ADMM Literature. The Alternating Direction Method
of Multipliers (ADMM) is a versatile optimization tool
suitable for solving composite constrained problems as
in Problem (1), which pose challenges for other standard
optimization methods, such as the accelerated proximal
gradient method (Nesterov, 2013) and the augmented La-
grangian method (Zhu et al., 2023; Lin et al., 2022). The
standard ADMM was initially introduced in (Gabay &
Mercier, 1976), and its complexity analysis for the convex
settings was first conducted in (He & Yuan, 2012; Mon-
teiro & Svaiter, 2013). Since then, numerous papers have
explored the iteration complexity of ADMM in diverse set-
tings. These settings include acceleration through multi-step
updates (Pock & Sabach, 2016; Li et al., 2016; Ouyang et al.,
2015; Shen et al., 2017; Tran Dinh, 2018), asynchronous
updates (Zhang & Kwok, 2014), Jacobi updates (Deng et al.,
2017), non-Euclidean proximal updates (Gongalves et al.,
2017b), and extensions to handle more specific or general
functions such as strongly convex functions (Nishihara et al.,
2015; Lin et al., 2015b; Ouyang et al., 2015), nonlinear
constrained functions (Lin et al., 2022), and multi-block
composite functions (Lin et al., 2015a;a; Xu et al., 2017).

» Nonconvex ADMM. The convergence analysis of the
nonconvex ADMM is challenging due to the absence of
Fejér monotonicity in iterations. In the past decade, signifi-
cant research has focused on exploring various nonconvex
ADMM variants (Li & Pong, 2015; Hong et al., 2016; Yang
etal., 2017). (Li & Pong, 2015) establishes the convergence
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Table 1. Comparison of existing nonconvex ADMM approaches. CVX: convex. NC: nonconvex. LCONT: Lipschitz continuous. WC:
weakly convex. RWC: restricted weakly convex. Id: A,, is identity. Sj: A, is surjective with )\min(AnAI) > 0. Bj: A, is bijective

(both surjective and injective). Ij: A, is injective. Im: Im([A1, Ao, ...

IN: inertial strategy.

,An_1]) C Im(A,) with Im being the image of the matrix.

Reference Optimization Problems and Main Assumptions Iteration Complexity Accelerated?
Blocks | Functions f;(-) and h;(-)* Matrices A; | Deterministic | Stochastic® :

(He & Yuan, 2012) n=2 CVX: fi, hi, Vi € 2] feasible O(1/e) © unknown o=1

(Li & Pong, 2015) n=2 NC: hy, fo; f1 = ha =0 S3 O(1/e) unknown o=

(Yang et al., 2017) ¢ n=23 CVX: hy, f3;NC: ho; f1 = fo=h3 =0 | Id O(1/e) unknown o€[l,2)

(Yashtini, 2022) n=2 NC: f;, h;, Vi € [2]; ho =0 Bj O(1/e) unknown o€ (0,1)

(Yashtini, 2021) n>2 WC: f;,Vi€ [n—1]; h; =0,Vi € [n] Bj, Im O(1/e) unknown o€ (0,1)

(Wang et al., 2019a) n>2 RWC: h;,Vi € [n — 1], h,, =0 Ij,Im O(1/e) unknown o=1

(Bot et al., 2019) n=2 NC: h, fi,Vi€ [n]; fi =ha =0 Id O(1/e) unknown o€ll,2)

(Bot & Nguyen, 2020) | n =2 NC: hy, fi,Vi € [n]; fi =ha =0 S3 O(1/e) unknown o€ (0,1)

(Huang et al., 2019) n>2 CVX: hi, Vi € [n]; hy, =0 Bj°¢ O(1/e) ON++VNje) |o=1

This paper n>2 NC: h;, f;, Vi € [n]; LCONT: hy,, fn Id O(1/e) ! O(N+VN/Je)! | 0 €1,2), IN

This paper n>2 NC: h, f;, Vi € [n]; LCONT: hy,, fn S O(1/e) ! O(N++vN/e)! | 0 €(0,1), IN

Note a: The notation h,, = 0 indicates that, for the n-th block, the non-smooth part is absent and the objective function is smooth.
Note b: N is the number of data points for the finite-sum structure (See Equation (102)).

Note c: The iteration complexity relies on the variational inequality of the convex problem.

Note d: We adapt their application model into our optimization framework in Equation (1) with (L, S, Z) = (x1, X2, X3), as their model
additionally requires the linear operator for the other two blocks to be injective.

Note e: Assumption 4 in (Wang et al., 2019a) claims that the matrix can exhibit either full row rank or full column rank. However,
Equation (20) in their analysis relies on the matrix’s surjectiveness, while Lemma 7 depends on its injectiveness.

Note f: The iteration complexity is contingent on the newly introduced approximate inertial nonconvex proximal point (see Section 4).

of a class of nonconvex problems when a specific potential
function associated with the augmented Lagrangian satis-
fies the Kurdyka-Lojasiewicz (KL) inequality. (Yang et al.,
2017) analyzes ADMM variants for solving low-rank and
sparse optimization problems. (Hong et al., 2016) investi-
gates ADMM variants for nonconvex consensus and shar-
ing problems. Some researchers have examined ADMM
variants under weaker conditions, such as restricted weak
convexity (Wang et al., 2019a), restricted strong convex-
ity (Barber & Sidky, 2020), and the Hoffman error bound
(Zhang & Luo, 2020). However, existing methods all as-
sume the smoothness of at least one block. In contrast,
our approach imposes the fewest conditions on the objec-
tive function by employing an increasing penalty update
strategy. The convergence of our proposed method is es-
tablished through the use of KL inequalities (Attouch et al.,
2010; Bolte et al., 2014; Li & Lin, 2015).

» Accelerating Nonconvex ADMM. There has been signif-
icant research interest in accelerating ADMM for nonconvex
problems. Prior studies (Gongalves et al., 2017a; Yang et al.,
2017; Yashtini, 2022; 2021; Bot & Nguyen, 2020) have ana-
lyzed ADMM, using under-relaxation stepsize o € (0, 1) or
over-relaxation stepsize o € (1, 2) to update the dual vari-
able, in contrast to previous fixed values of 1 or the golden
ratio (v/5 + 1)/2. The work by (Hien et al., 2022) explores
an inertial strategy to accelerate nonconvex ADMM. This
method omits inertial updates for specific blocks to ensure
convergence. Studies by (Huang et al., 2019; Bian et al.,
2021; Liu et al., 2020) employ stochastic gradient descent
to reduce the Incremental First-order Oracle (IFO) complex-

ity when addressing composite problems with finite-sum
structures. Inspired by these works, we apply an inertial
strategy (Pock & Sabach, 2016; Le et al., 2020; Bot et al.,
2023; Phan & Gillis, 2023) for primal variable updates and
employ a relaxed strategy for dual variable updates. Ad-
ditionally, we extend our techniques to handle finite-sum
stochastic settings and analyze the IFO complexity of our
method.

We make a comparison of existing nonconvex ADMM ap-
proaches in Table 1.

» Contributions. Our main contributions are summarized
as follows. (i) We propose IRPL-ADMM for solving the
nonconvex optimization problem as in Problem (1). IRPL-
ADMM imposes the least stringent condition, specifically
requiring continuity in just one block of the objective func-
tion, while employing an increasing penalty update rule to
ensure convergence. (i) IRPL-ADMM exhibits both con-
vergence and speed. In primal variable updates, it leverages
inertial acceleration for fast convergence. In dual variable
updates, it utilizes over-relaxation stepsize for faster con-
vergence when the linear operator is an identity matrix, and
under-relaxation stepsize for global convergence when the
linear operator is surjective. (iii) We establish the conver-
gence rate of IRPL-ADMM by introducing a novel concept
of e-INP point (Inertial Nonconvex Proximal Point). We
prove that any e-INP point is a critical point when € = 0,
and show its convergence to an e-INP point with a time
complexity of O(1/¢). Additionally, we establish strong
limit-point convergence results for IRPL-ADMM under the
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Kurdyka-Lojasiewicz (KL) inequality. (iv) We extend our
method to stochastic settings and demonstrate its optimality
in terms of IFO.

» Assumptions. Through this paper, we impose the follow-
ing assumptions on Problem (1).

Assumption 1.1. Each function f;(+) is L;-smooth for all
holds for all x; € R9:*! and x; € R4 * !, This implies that
[fi(xi) = fi(i) = (V fi(%i), xi = Xi)| < Bl — %[5 (cf.
Lemma 1.2.3 in (Nesterov, 2003)).

Assumption 1.2. The functions f,,(-) and h,,(-) are Lips-
chitz continuous with some constants C¢ and C},, satisfying
IV fr(xn)|l < Cy and ||Ohy, (x5)]] < C}, for all x,,.

Assumption 1.3. Either of these two conditions holds for
matrix A,,:

a) Condition @: A,, is an identity matrix with A,, =14 _.
b) Condition : A, is surjective (i.e., Amin (A, AT) > 0).

Assumption 1.4. Given any constant B_Z 0, welet © £

Ny s, i [fi(xi) + hi(xi)] + S0, Aaxi] -
b||3. We assert that © > —oo.

Remarks. (i) Assumption 1.1 is commonly used in the con-
vergence analysis of nonconvex algorithms. (if) Assumption
1.2 imposes a continuity assumption only for the last block,
allowing other blocks of the function h;(x;)"~}" to be non-
smooth and non-Lipschitz, such as indicator functions of
constraint sets. It ensures bounded (sub-)gradients for f, (")
and h,,(-), a relatively mild requirement that has found use
in stochastic optimization (Huang et al., 2019). (@ii) As-
sumption 1.3 demands a condition on the linear matrix A ;
for the last block (¢ = n), while leaving A ; unrestricted for
i € [n — 1]. (iv) Assumption 1.4 ensures the well-defined
nature of the penalty function associated with the problem,
as has also been used in (Gongalves et al., 2017a).

» Notations. We define [n] £ {1,2,...,n} and x =
X([n] 2 {x1,%3,...,%,}. Forany j > i, we denote X(ij] =
{Xi,Xi41,----,X;}. We define A and X as the smallest and
largest eigenvalue of the matrix A, AT € R™*™, respec-
tively. We denote ||A;|| as the spectral norm of the matrix
A;. We denote Ax £ >j—1 A;x;. Further notations and
technical preliminaries are provided in Appendix A.

2. The Proposed ADMM Algorithm

This section describes an Inertial Relaxed Proximal Lin-
earized ADMM (IRPL-ADMM) algorithm for solving the
nonconvex and nonsmooth optimization problem in Problem

(1).

2.1. Regular Penalty Update Rule

We consider an increasing penalty update strategy, which
plays a significant role in our algorithm. Natural choice for
the penalty update rule is the £,, family.

We introduce a novel concept of (3°, £, p)-regular penalty
update rule, as follows:

Definition 2.1. Given constants p € (0,2], 3° > 0, and £ >
0. A penalty update rule {3°}9° is considered (5, &, p)-
regular when the sequence {3'}°, is increasing, and the
following condition holds for all ¢ > 0 with some ¢ > 0:

O+ (t+1)P < < (146" ©)

We provide four examples of (3, &, p)-regular penalty up-
date rules that align with Definition 2.1.

Lemma 2.2. (Proof in Appendix B.1, Sublinear Rule) Let
p € (0,1). The penalty update rule 3¢ = B° + 9tP, is
(8°,€&, p)-regular if 9 < €.

Lemma 2.3. (Proof in Appendix B.2, Superlinear Rule) Let
p € (1,2). The penalty update rule 3¢ = B° + 9tP, is
(8°,€, p)-regular if ¥ < 062 /(1 + ).

Lemma 2.4. (Proof in Appendix B.3, Adaptive Sublinear
Rule). Let p € (0,1). The penalty update rule Bi* =
Bt +min(||Ax! Tt —b||+9(t+1)P —9tP, BE), is (82, &, p)-
regular if ¥ < B°¢.

Lemma 2.5. (Proof in Appendix B.4, Adaptive Superlinear
Rule) Let p € (1,2]. The penalty update rule 3+ =
Bt +min(||Ax! Tt —b||+9(t+1)P —9tP, BE), is (82, &, p)-
regular if ¥ < B°€2 /(1 + ¢€).

Remarks (i) Increasing penalty updates are commonly used
in subgradient methods (Davis & Drusvyatskiy, 2019; Li
etal., 2021), smoothing gradient methods (Sun & Sun, 2023;
Lei Yang, 2021; Bohm & Wright, 2021), and penalty decom-
position methods (Lu & Zhang, 2013), but are less prevalent
in ADMM. We examine this approach within ADMM but
limit our discussion to specific conditions as in Inequal-
ity (2). (ii) Adaptive sublinear and superlinear rules can
integrate the penalty error ||Ax!™! — b| into the penalty
update process. As ||Ax!*! — b|| diminishes, the increase
in B also becomes less pronounced, giving rise to the term
“adaptive” in these rules. (iii) The parameter £ serves a dual
purpose: it ensures theoretical convergence (see Theorem
4.5) and enhances practical performance. The increase in
penalty might hinder the efficiency of ADMM. However,
¢ offers control to prevent it from growing too rapidly. As
demonstrated later in Algorithm 2 (Step 5), we set an up-
per bound for &, ensuring it remains at a sufficiently small
positive constant to prevent excessive growth.

For p € (1, 2], the penalty update rule possesses a favor-
able property that streamlines our analysis. We have the
following lemma.
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Algorithm 1 IRPL-ADMM: The Proposed Inertial Re-
laxed Proximal Linearized ADMM for Solving Problem
.
I: Initialize {x°,z°}. Let x~! = x% and y" = x".
2: Use Algorithm 2 to choose suitable {3°, 0, «, &, o}
3: fort =0to T do

4 XL € ming hy(x) + "%ﬁ 2 — y413 + (x1 —
Xivva(Xa n]vzt'ﬂt»

50 x5t € miny, hz(X2) yhII3 + (x2 —
X27VX2G( it X[Q n]az ﬁ )>

6: t+1 € miny, hn (Xn) + O L" % — YZH% + (xp —
X, Vo, G(X[ s 7ﬂt)>
yith=xt a.;( ;H x5), Vj € [n]

=gl op (), At~ b)
Use a (8%, &, p)-regular penalty update rule to update
B+ based on BY.
10: end for

Lemma 2.6. (Proof in Appendix B.5) Let p € (1,2]. We
define Cy, & % + ﬁ. The (B°, €, p)-regular penalty
update rule satisfies:

Yitoar < ©)

2.2. The Proposed IRPL-ADMM in Algorithm 1

This section provides the proposed IRPL-ADMM algo-
rithm. We begin with providing the augmented Lagrangian
function of Problem (1) as follows:

£(X7Z76) = G(X7Zaﬁ) +Z?:1 hi(xi)a (4)

where G(x, z; ) represents the differential component of
L(x,z; 3) and is defined as:

G(x,2:8) £ 30, filxi) + ([0, Aixi]
+5 12 A - b3

Here, z € R™*! and 3 > 0 are respectively the dual
variable and penalty parameter. We employ an increasing
penalty scheme throughout all iterations ¢t = {0, 1,...,00}.

Notably, the function G(x*, z*; 8*) is Li-smooth w.r.t. x;
for all i € [m], where Lt = L; + 8| A;]|3.

In each iteration, we use the proximal linearized method to
cyclically update the variables {x1,x3,...,X,}. Specif-
ically, we update each variable x; by solving the
following subproblem for all z € [n] xit ~
arg min,  cpa; <1 L(x} X[y 1) X6, X z+1 n]s 2 zt; 3Y). To tackle
the x;-subproblem, we employ an inertial proximal lin-
earized minimization strategy (Pock & Sabach, 2016):

—b,z) (5

eq,Lt.
x € argminy, hi(x;) + 252 |xi — yi||3
+<Xi — X, vxlc;( E:lﬁ»l] X“X[H-l n| 7Bt)>

and yj is updated via: yt'H H'1+o¢]( L -), Vj €
[r]. Importantly, we 1ntr0duce distinct 1nert1a1 parameters
«; and proximal parameters 0; with ¢ € [n] for different
blocks. Our algorithm updates the dual variable z* using ei-
ther under-relaxed stepsize (o € (0, 1)) or over-relaxed step-
size (o € (1,2)). As the parameters (X1,Xs, ..., Xn,y, %)
are updated sequentially, the penalty 3¢ is increased using
a (38, ¢, p)-regular penalty update rule, with p set to the
default value of 2.

We present IRPL-ADMM in Algorithm 1, a generalization
of cyclic coordinate descent. It guarantees convergence

when employing the parameter selection procedure outlined
in Algorithm 2 for {8°, 0, o, ¢, 0}

Algorithm 2 A Procedure for Finding Suitable Param-
eters £ € (0,61), @ € (0,1)", 0 € (1,00)", o € (0,2),
B9 € (0, 00) for Algorithm 1 (Deterministic Settings).

1: Choose suitable (€7, €2, €3). Default parameters:

Cond.[I] : (e1, €2, €3) = (0.01,0.01,0.001) (6)
Cond.[A]: (e1, €2, €3) = (0.01,1,0.001) (7

2: Foralli € [n], we definey; £ 1[0, —1— (24¢€)a;0;],
vi & [l — es). (®)

3: For the first (n — 1) blocks, find suitable parameters
{cvi, 0,}7-} such thaty/ > 0 foralli € [n — 1].

4: For the last block, find suitable parameters (o, 0,,, )
such that (9) or (10) holds.
e Condition [I]: Over-Relaxation Stepsize o € [1,2).

o€ll,2),y, >0,

8016 - (1 + 63)[()( —
=4C,

1 +7x] < 7 ©)

e Condition [A ]: Under-Relaxation Stepsize o € (0, 1).

€ (0,1), v, >0,

M-85 -(x* 4+ xT) <AL (10)
=2XC,
Here, {4, x, o, } in (9) and (10) are defined as:
§214e,x20,(1+e),72a’(14¢). (A1)

5: Choose 3° and & satisfying Assumption 2.7 that: { <
min(eq, e20), 8% > L;/(e3\) for all i € [n].

2.3. Choosing Suitable Parameters in Algorithm 2

This subsection discusses how to choose suitable parameters
{8°,6,, & 0} in Algorithm 2.
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To simplify our discussions and derive more practical pa-
rameters, we make the following assumption concerning the
parameters (3°, ).

Assumption 2.7. Let (€1, €2, €3) be some small positive
constants with max(eq, €2, €3) < 1. We assume:

¢ <min(ey,oey), and B° > L;/(e3N), Vi € [n].  (12)
We use default parameters in Inequalities (6) and (7).

The following points are notable in Algorithm 2. (i)
We impose a lower bound on $3°, which always holds
as t becomes sufficiently large due to the increasing
penalty update rule. (ii)) When 68; < 1 and a; > O
for some i € [n], we can never find a strictly positive
~; > 0 to guarantee convergence. (iii) For Cond.@,
consider the default parameter setting: (0[1.(n—1)], 0n) =
(1.05,1.001), (api:(n-1);@n) = (0.023,0.0002), and
(0,€) = (1.5,0.01) ' (iv) For Cond.[A], consider the
default parameter setting: (6[1.(n—1)],0,) = (1.05,1.5),
(a[l:(n_l)], an) = (002370099), and 0 = f = 5/1000 :
AA2

3. Global Convergence

This section provides global convergence for Algorithm 1.
Initially, we provide the following useful lemma.
Lemma 3.1. (Proof in Appendix C.1, Decrease for the Pri-
mal) We define § = 1 + e5. We have:

gl L ol — 0!
< szt =23 (e — DLIATE.  (13)

where {E1T O vt ~, AL Lt} are respectively defined as:

27 T

EVFL L S I3 ey SO LY ATTYZ, (14
0L £ L(x" 2" 8" 4+ 5 X1, Gy Ll AL3 (15)
rt & > Axi—b £ Axt—b (16)
vi £3[60; —1— (2+e1)a;0;], Vi € [n] (17)
Af £ x) =7 L= L+ B A5 (18)

Lemma 3.2. (Proof in Appendix C.2, First-Order Opti-
mality Condition) Assume o € (0,2). We let i € [n],
witl € oh;(xITh) + Vfi(xh), and u!t = 9;LL(x! T —
Xt —ay(x} —x;7 1) = BATYCT_ A (x5 —xb)). For
all i € [n), it holds that: 0 = cA]z' + Al (z!*! — z!) +

'The auxiliary variable values are (., x, 7,9, Cy) = (2.521 -
107%,1.002,6.119 - 107%,1.01,12.132).

>The auxiliary variable values are (7, X,7,d,Cu)) =
(0.203,1.502, 0.01, 2, 0.0014).

Uwf+1 + muf"'l. We have the following two different iden-
tities:

al™l = (1 - o)al + oct,

Cond.[I]: { at*t 2 AT(z!! — 2t), (19)
2 u - ul - i
at*l = (1 - g)al + oc,
T
Cond.[A]:{ attt £ ATz — 2" 4+ oult, (20)

ta ot t t+1
c=ou, +w, —w, .

t A Trt—1(t t—1 t—1(t—1 _ S t—2
Here,u!, = H' 1 (xl, —x!7 1) — 0, L5 (x5 — x72),

where H' 2 0, L!T— B*ATA,,.

The following lemma bounds the terms ||wt! — w! ||3 and
g s I3
Bt n 2
Lemma 3.3. (Proof in Appendix C.3) We define . £8C% +
SCJ%, X2 60,(14+e), 7=0a2(1+¢e), p=2\xa?, and
0! £ pLt||At||2. We have:

(@ [yt — w3 <.

®) Fellui3 <23 {(x=A/2)? +x7}-LL A3+

e! — et

We provide convergence analysis of Algorithm 1 under two

conditions: Condition @ using Formulation (19), and Con-
dition using Formulation (20).
We first the following parameters for different Conditions
@ and :
C, £ dos, Cy £ 2(50’1(1 + 63),
m:9 . . 1)
Cyx £2C,p,Cy = o1 (1 + ;)

C, £ 2505/, Cy 2 460/ ),

: { (22)

Cy 2 4pda /N, Cy £ 145/ (0 )).

Here, o € (0,2), and {01, 02} are defined as:

(1>

[1—0|

___ o s [l=0o]
1= Gi-oN2> 92 = Gi-li-al)"

Using the parameters {C,, C,,, Cy }, we construct a sequence
associated with the potential (or Lyapunov) function as fol-
lows:

0! = Of + Stllal(l3 + Sl |3 + CLLIALIZ.  (23)

3.1. Analysis for Condition @

We provide a convergence analysis of Algorithm 1 under
Condition , where A, is an identity matrix. We assume
over-relaxation stepsize is used with o € [1, 2).

The subsequent lemma utilizes Equation (19) to establish
an upper bound for the term U%,, |ztH — zt|)3.
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Lemma 3.4. (Proof in Appendix C.6, Bounding Dual Using
Primal) We define § £ 1 + ey, x £ 0,.(1+¢€3),andt £
a?(1+ €1). We have:

AR
<O, — O/ + G + L AT - 4Cu[(x — 1)* + 7],

2

A
G 5, and

where ©F £ Gi|af|3 + Gellup[l3 + CiLL AL
{Cs,, Cy, Cy, Cy} are defined in Equation (21).

Theorem 3.5. (Proof in Appendix C.7, Decrease on a Po-
tential Function) For all t > 0, we have:

grt<el et + G

3.2. Analysis for Condition

We provide the convergence analysis under Condition [A],
where A is a full-row rank matrix with A > 0. We assume
under-relaxation stepsize is used with o € (0, 1).

The following lemma utilizes Equation (20) to establish an
upper bound for the term %,Bf ||zttt — zt|2.

Lemma 3.6. (Proof in Appendix C.8, Bounding Dual Using
Primal) We define § = 1+ €5, x = 0,,(1 + ¢€3), and 7 =
a?(1+ €1). We have:
Bl — 2

<O, — O + G LL A3 - 20Cu(x + xT),
where O £ %Hatﬂg + % ut |13 + CyLL||AL
{Cs,, Cy, Cy, Cy} are defined in Equation (22).
Theorem 3.7. (Proof in Appendix C.9, Decrease on a Po-
tential Function). For all t > 0, we have:

%, and

gt <ol —ot + &

3.3. Continuing Analysis for Conditions [I] and

We first obtain the following lemma.

Lemma 3.8. (Proof in Appendix C.4) We have ©¢ > ©,
where O is defined in Assumption 1.4.

Finally, we have the following corollary from Theorems 3.5
and 3.7.

Corollary 3.9. (Proofin Appendix C.5, a Square-Summable
Property) Assume p € (1,2]. We have: > 1o EF1 < Cp &
0° — © + CCh, where C,, is defined in (21) or (22), and
Cy, is defined in (3).

Remarks. (i) In view of Corollary 3.9 and the definition
of £*! in Equation (14), as ¢ — oo, we observe that:
Bt|Ax**1 — b2 — 0 and Bt||x! Tt —xt||3 — O foralli €
[n]. This observation implies the convergence of Algorithm

t
1. (ii) Consider the penalty error term 2-[| Ax"+! — b||3 in
the argument Lagrangian function. Despite increasing (3¢,
the term 3 | Ax'! —b||3 decreases faster than 1/3¢, leading

to the gradual disappearance of the term %t |[Ax!t! —b|)3.

4. Iteration Complexity
This section provides iteration complexity of Algorithm 1.

» Surrogate Stationarity Measure. Due to the use of the
increasing penalty and inertial update strategy, the standard
critical point may not be an appropriate stationarity measure.
Inspired by recent research (Davis & Drusvyatskiy, 2019;
Liet al., 2021), we use a surrogate stationarity measure that
can monitor the progress of Algorithm 1.

Given parameters {f3, 0, a, o}, Steps 4-9 in Algorithm 1
form a fixed-point procedure, from which we introduce the
following definition of e-Inertial Nonconvex Proximal Point.

Definition 4.1. (e-Inertial Nonconvex Proximal Point, or
e-INP Point for short) Given 5 € (0,00), 0 > 1, @ > 0,
o € (0,2), and a point (X, ¥,%). For all i € [n], we define
Li = Li + B”AZH%, and let Xj_ S argminxi hi(xi) +
30LElIx; = Fill3 + (xi = %, Vi, Gy 1y Xpin) 2 5))s
Vi =% + a;(%] — %;). The point (X, ¥, Z) is an e-INP
point if it holds that: 8[| A%+ —b||2+8 31, (1% —% |12+
Iy — yill3] <e.

To illustrate the connection with the existing definition of
optimality conditions, we define approximated critical, and
directional points.

Definition 4.2. (¢-Critical Point) A solution (X,%) is
an e-critical point if it holds that for all ¢ € [n]|:
b||? < e, where dist*(Q, Q) £ infyeco weo |[W— w|3
denotes the squared distance between two sets.
Definition 4.3. (e-Directional Point) A solution (X, z) i
an e-directional point if, for some 5 > 0, for all ¢
[n] with x; € dom(L;), we have: |A;x — b|3 <
and Li(x; — X;;%,2) > —e. Here, J/(A;%,2)
lim; ¢ %[5(5([1,1‘—1]75% + A, X[ig1,0), 2 B) — L(X,2; 6],
an(; dom(ﬁl) é {XZ‘ |5(5([171'_1],)(1‘7)\([2'4_1’"],Z;ﬂ)l <
0o}

||‘>f" Mm @«

~—

Remarks. Note that we apply the standard definition of
direction point (Pang et al., 2017; Rockafellar & Wets.,
2009) to each block of the augmented Lagrangian function.

The following theorem establishes their hierarchy at e = 0.

Theorem 4.4. (Proof in Appendix D. 1, Optimality Hierar-
chy) The following results hold if ¢ = 0: (i) Any INP-point
is a critical-point and a directional-point, while the reverse is
not necessarily true. (if) Any optimal point is an INP-point.

Remarks. (i) Our method identifies stationary points that



Inertial Proximal Linearized ADMM

are stronger than critical points and directional points. This
contrasts with commonly used approaches, such as multi-
stage convex relaxation (Zhang, 2010) and DC program-
ming methods, which only find critical points of Problem
(1). Such results are based on the assumption that the sub-
problem for the nonconvex operator can be solved globally.
(ii) When ¢ # 0, establishing relations among different
optimality conditions becomes challenging.

We now demonstrate that Algorithm 1 converges to INP-
points of Problem (1) at a rate of O(1/¢). We have the
following theorem.

Theorem 4.5. (Proof in Appendix C.10) Let the sequence
{x',y', 2"}, be generated by Algorithm 1. There ex-
ists an index t with 0 < t < T such that B|r'™1|% +
B Sl 3+ [y -y 3] < Cemertfente,
where co £ e3minj_; ;|| Ai, c1 £ £2, c2 & %, and Cy is
defined in Corollary (3.9). It implies that Algorithm 1 finds
an ¢-INP point of Problem (1) in at most 7" iterations, where

T < ’—C’pmax(le/cl,l/CQ)] _ 0(6_1).

Remarks. The sequence B*([rt™|2 + Y0 [|IxiT —
x![2 + ly£*! — y? 2] converging to  for any B € (0,00)

implies that Algorithm 1 converges to an INP point of Prob-
lem (1), which is also a critical point.

5. Strong Limit-Point Convergence

This section provides strong limit-point convergence of
IRPL-ADMM. Our analyses are based on a non-convex
analysis tool called Kurdyka-t.ojasiewicz (KL) inequality
(Attouch et al., 2010; Bolte et al., 2014; Li et al., 2023).

We denote X = {x,z,x’,x"}. For different Conditions
and , we define the Lyapunov function as:

GlloBAT]3 + v, [T}
GlloBALr +oul3 +v, [Al

vz ) + Gellull3 + 5 320, millxi — x{[3 +
CuLy,||lxn — %, ||3, and r = Ax — b. Furthermore, u =
H(x, —x;,) — na(x;, — x3), H £ 0,L,1 - 5/A;I;A'rt’
ni = 0icuLl, Ly = Ly + Bl A3, L] = Li + 8[| Ai]]3, Vi,
Clearly, we have ©! = O(x!, z*, x!~1 x!~2; gt pi~1).
We define Xt £ {x! z* x*~! x'72}, and let F(X!) £
O(Xt; Bt pt*1). We denote X* as a limiting point of
{Xt}22,. We let F(X*) £ O(X*; 8, 3'), where 8 and 3/
are the associated penalties for X*.

o(X;8,8) £ {

Here, v = L(x

We make the following additional assumption.

Assumption 5.1. (Kurdyka-t.ojasiewicz Inequality). Con-
sider a semi-algebraic function F'(X*) w.r.t. X! with X! €
dom(F). There exist & € [0, 1), 77 € (0, +00], a neighbor-
hood T of X*, and a continuous and concave desingulariza-
tion function ¢(t) = ct'=7 with ¢ > 0 and ¢ € [0,7) such

that, for all X! € T satisfying F'(X!) € (F(X*), F(X*) +
7), it holds that: dist(0, 0F (X"))-¢'(F(X")— F(X*)) > 1.

Semi-algebraic functions, including real polynomial func-
tions, finite combinations, products, and indicator functions
of semi-algebraic sets, commonly exhibit the KL property
and find extensive use in various applications.

We have the following useful lemma.

Lemma 5.2. (Proof in Section E.I, Subgradient Bounds
for Conditions @ and ) There exists a constant
K > 0 such that: |||0©(x!,zt, x!=1 x!=2; gt gt=1)||| <
BUR{SST (i =72 [k = i+ (e

Finally, we have the following convergence results.
Theorem 5.3. (Proof in Section E.2, A Finite Length Prop-

A

erty) We define €' = ||rt||+ 37, || AL|l. Then the sequence
{X'}2,, has the following finite length property:

2o et] < Ce < +o0,

A K-p(FX%)-F(X")) CuC 3.0, 1,1
where Co & 22 TCRES +2(n+1)1b/60+§e +3e .

Furthermore, V. = min(%, esmin]"_; v;||A;]3), K is de-
fined in Lemma 5.2, and () is the desingularization func-
tion defined in Assumption 5.1.

Remarks. (i) Lemma 5.2 significantly differs from prior
work that used a constant penalty due to the crucial role
played by the increasing penalty. (ii) The finite-length prop-
erty in Theorem 5.3 are much stronger convergence results
compared to those in Theorem 4.5. (iii) While the work
of (Li et al., 2023) establishes convergence rate for the it-
erates with diminishing step sizes by further exploring the
KL exponent & in Assumption 5.1, we plan to extend their
analysis to establish stronger convergence results for our
problem, which we leave for future research.

6. Experiments

In this section, we compare the proposed algorithm IRPL-
ADMM with existing non-convex optimization algorithms
on two applications, namely the sparse PCA problem and
noise sparse recovery problem.

All methods are implemented in MATLAB on an Intel 2.6
GHz CPU with 64 GB RAM. Appendix Section H.3 de-
scribes how to generate the data used in the experiments.
We provide our code in the supplemental material.

We compare IRPL-ADMM with (i) the Subgradient method
(SubGrad), (ii) the Penalty Decomposition Method (PDM),
and (Zii) the standard ADMM that does not use the inertial
strategy with o = 0. All algorithms start with the common
initial solution x° drawn from a standard normal distribution.
We use the theoretical default parameters for {0, &, &, o}
discussed in Section 2.3, and set 5% = 10. We use the
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adaptive (8%, &, p) regular penalty update rule with p = 2
to update 3* for all methods.

6.1. Sparse PCA

Sparse Principal Component Analysis (Sparse PCA) extends
traditional PCA by emphasizing a subset of informative
variables with sparse loadings, reducing model complexity
and enhancing interpretability. It is formulated as follows:

Miny cgarxr 57 |D = DVVT| + ph(V), 5.6.V € M,

where M 2 {V|VTV = I}, D € R™*? is the data
matrix, and h(V) = h(vec(V)) is the sparse-inducing func-
tion such as DC ¢;-largest-k function (Gotoh et al., 2018):
h(y) = [y llv = [y llx-

Introducing extra parameter Y, this problem can be formu-
lated as: miny,y 5 ||D — DVVT|[2 + ph(V), s.t.V =
Y, Y € M. It coincides with Problem (1) with f5(x;) =
57D = DVVT|2, ho(xs) = ph(V), fi(x1) = 0,
hi(x1) = Zpm(Y), and A; = Ay = I with Condition

The experimental results in Figure 1 show the following: (i)
Both ADMM and IRPL-ADMM exhibit convergence when
using the regular penalty update rule. (ii) IRPL-ADMM
demonstrates faster convergence compared to other meth-
ods.

6.2. Noisy Sparse Recovery

Noisy sparse recovery, a signal processing technique, ac-
quires and reconstructs signals effectively by solving an
underdetermined linear system. Given a design matrix
D € R™*? and an observation vector y € Rm/“, it
is formulated as follows (Lei Yang, 2021):

ming cpa’x1 ||X||Z, st | Dv—y| <, (24)

with ¢ € (0,1). Here, we set ¢ = % Introducing additional

parameter y, we have: miny y [|x|[b, s.t. [[y[l2 < 7, Ax—
y = b. This formulation coincides with Problem (1) with
fa(x2) = 0, ha(x2) = [Ix2[f, fi(x1) = 0, ha(x1) =
Ta(x1), Q = {x|||x|| £ 7},and A; =1, Ay = D with
Condition .

As Problem (24) lacks Lipschitz continuity, we use an alter-
native Lipschitz function denoted as F'(v) £ |[v||2 + 107 x
max(0, |Gv —ul|| —7), to assess the quality of the solution.

The experimental results in Figure 2 reveals the following
findings: (ii) All three methods exhibit global convergence.
(i1) The three methods yield similar results, with IRPL-
ADMM and ADMM not demonstrating faster convergence
than PDM. We attribute this to the possibility of the stepsize
o strictly satisfying Inequality (10) being too small and
conservative.

. === |IRPL-ADMM e, === |IRPL-ADMM
2 N e == ADMM 102 T == ADMM
10 = SubGrad = SubGrad
© \ ——PDM © ——PDM
£ 0| ¥ 250
£10°F Ty £10
= - = -,
S “ne s T
107 s 10 g ‘
Sala, "".::.'--u.._
e ma,
o 10 20 30 40 o 20 40 60 80

Time (seconds) Time (seconds)

(@) TDT2-1500-500 (' = 30) (b) TDT2-2500-500 (r’ = 30)

. - «- IRPL-ADMM . === IRPL—ADMM
> “eiein, | == ADMM 102 N e == ADMM
10 - SubGrad - SubGrad
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B E o "'
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Figure 1. The convergence curve of the compared methods for
solving the Sparse PCA problem with p = 10.
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Figure 2. The convergence curve of the compared methods for the

noise sparse recovery problem.

7. Conclusions

In this paper, we introduce Inertial Proximal Linearized
ADMM (IRPL-ADMM) for solving general multi-block
nonconvex composite optimization problems. IRPL-
ADMM operates under a relatively relaxed condition, re-
quiring continuity in just one block of the objective function.
It incorporates inertial strategies for primal variable updates
and relaxed strategies for dual variable updates. We use a
novel regular penalty update rule to control its growth rate
and introduce a Lyapunov function for convergence analysis.
We also derive the iteration complexity of IRPL-ADMM
and extend it from deterministic to stochastic optimization.
Finally, we conduct experiments to demonstrate the effec-
tiveness of our approaches.
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Appendix

The organization of the appendix is as follows:

Appendix A covers notations, technical preliminaries, and relevant lemmas.
Appendix B contains proofs related to Section 2.

Appendix C contains proofs related to Section 3.

Appendix D contains proofs related to Section 4.

Appendix E contains proofs related to Section 5.

Appendix F offers our extension to Stochastic IRPL-ADMM.

Appendix G provides proofs for Stochastic IRPL-ADMM.

Appendix H includes additional experiments for the proposed algorithms.

A. Notations, Technical Preliminaries, and Relevant Lemmas
A.1. Notations

We use the following notations in this paper.

e [n]: {1,2,...,n}.

e x: X 2 {xXy,Xg,...,X,} = X[n]-

* X[ X[i.j) £ {X, Xit1,Xit2,- - - X; }, Where j > i.

o Al Al £ x! — xf_l.

o L& L = L; + BY||A;||3. Note that the function G(x!, z*; 5¢) is L¢-smooth.
s 0101 2 m € R, where o € (0, 2). Refer to Lemma A.5.

o 09 0p 2 110l 7 € R, where o € (0,2). Refer to Lemma A.5.

o(I-Ti-o
* ||x[|: Euclidean norm: ||x|| = [|x|l2 = 1/(x, x).

* (a,b) : Euclidean inner product, i.e., (a,b) = ). a;b;.

* x;: the i-th block of the vector x € R(d1tdzt.+dn)x1 with x, € RAix1,
* ): the smallest eigenvalue of the matrix AnAI.

* \: the largest eigenvalue of the matrix A, A.

* ||A]|: the spectral norm of the matrix A: the largest singular value of A.
« AT : the transpose of the matrix A.

e I,.: I, € R™", Identity matrix; the subscript is omitted sometimes.

* JF(x) : classical (limiting) Euclidean subdifferential of F'(x) at x.

 ([1000x, 7%, X" B, 8|[)% 0%, 2, %, x5 5, 8|3+ 004 (x, 2, %, % 5, 5|3+ 000 (x,2, X', X 5, 5|3 +
005 (x,2,x',x"; 8, 8|12

* Z=(x) : the indicator function of a set = with Zz(x) = 0 if x € = and otherwise +oo.

« vee(V) : vee(V) € R¥*" the vector formed by stacking the column vectors of V.

* mat(x) : mat(x) € RY*", Convert x € R "")*1 into a matrix with mat(vec(V)) = V.

+ M: Orthogonality constraint set: M = {V | VTV =1}.

* ||y |ljx): the £; norm of the k largest (in magnitude) elements of the vector y.

+ dist?(€2, Q') : the squared distance between two sets with dist*(Q, ') £ infweowea |[W—w|3
* b: denotes the mini-batch size of stochastic gradient for IRPL-ADMM-SPIDER.

12
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A.2. Technical Preliminaries

We present some tools in non-smooth analysis including Fréchet subdifferential, limiting (Fréchet) subdifferential, and
directional derivative (Mordukhovich, 2006; Rockafellar & Wets., 2009; Bertsekas, 2015). For any extended real-
valued (not necessarily convex) function F' : R" — (—o00,+00], its domain is defined by dom(F) £ {x € R" :
|F(x)| < +o0o}. The Fréchet subdifferential of F at x € dom(F), denoted as DF(x), is defined as OF (x) £ {v €
R™ : limy_y infy_py DE=EI—V:229) > 01 The limiting subdifferential of F(x) at x € dom(F) is defined as:

=3
OF(x) & {v e R" : 3xF = x, F(xF) = F(x),vF € 0F(x*) — v,Vk}. Note that IF(x) C 9F(x). If F(-) is
differentiable at x, then dF(x) = OF (x) = {VF(x)} with VF(x) being the gradient of F'(-) at x. When F(-) is convex,
JF (x) and OF (x) reduce to the classical subdifferential for convex functions, i.e., IF(x) = F(x) = {v € R" :
F(z) — F(x) — (v,z — x) > 0,Vz € R"}. The directional derivative of F'(-) at x in the direction v is defined (if it exists)
by F'(x;v) £ limy o+ 1(F(x + tv) — F(x)).

A.3. Relevant Lemmas
We introduce several useful lemmas that will be utilized in this paper.
Lemma A.1. (Pythagoras Relation) For any vectors a € R”, b € R"”, ¢ € R", we have:
sla=bl3—3lc=bl3 = illa—cl5+(b-c,c—a). (25)
3Ibl3 = 3llc=bl3 = 3lcl3+(b—c,c). (26)

Lemma A.2. For any constants & > 0 and a > 0, it holds that: —% —a€ < —2y/a.

Proof. We have: 4a < 4a + (% —a&)? = 4a + 5% —2a+ &%a® = (% + a&)?. Taking the square root of both sides, we
conclude this lemma. O
Lemma A.3. Assume p € (0,1]. Let a > 0 and b > 0. It holds that: (a + b)? < aP + bP.

Proof. We define h(t) = (1 +t)? — tP. We have: Vh(t) = p(1 —t)P~1 — ptP~1 < Oforall p € (0,1) and ¢ € (0, ).
Therefore, h(t) is decreasing on ¢t € (0,00). Letting ¢ = a/b, we have: (14 £)? — ()P < h(0) = 1, leading to:
(a+b)P < aP + bP. O

Lemma A.4. Assume p € (0,2]. Forallt > 0, it holds that (t + 1)? —t? <1+ 2tP/2,

® ®
Proof. We have: ((t + 1)2)P/2 = (t2 + 1 + 26)P/2 < (t2)P/2 4 (1)P/2 4 (20)P/2 = 1P + 1 + (20)P/2 < P + 1 + 2(¢)P/2,
where step @ uses Lemma A.3 since p/2 € (0, 1]; step @ uses p/2 < 1. O

Lemma A.5. For any vectors a € R", b € R", and any constant 0 > 0, we have: (a,b) < 4l|a||3 + Z|/b||3, and

la+bl3 < (1+0)lall3 + (1 + 5)lIbl3.

Proof. (a) For any > 0, we have: 0 < 1||v/fa — %b”% = 2|al3 — (a,b) + 2||b||3. (b) For any § > 0, we have:
a+ b3 =[lall3 + ||bll3 + 2(a,b) < (1 +6)[lal|3 + (1 + §)|/bl3, where the inequality uses Part (a) of this lemma.

O
Lemma A.6. Assume o € (0,2). Letc = ca+ (1 — o)b, where c € R, b € R", and a € R". We have:
slell3 < aullall3 + o2(Ib]13 — [lell3),

A el A [1—0o]
where 01 = TTicon? and oy = SO—Ti—aD"

Proof. (a) When o = 1, we have 01 = 1, 03 = 0, and ¢ = a. The conclusion of this lemma clearly holds.

13
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(b) We now focus on the case when o # 1. Noticing |1 — | # 0and 1 — |1 — o # 0, we rewrite ¢ = (1 — o)b + cainto
the following equivalent equality

1—0)b
C:(l_|1_0|)'1|1 a'|+|1 ol (\170)\‘
Using the fact that the function || - |3 is convex and |1 — o| € (0, 1), we derive the following results:

led 1-0)b
lel3 < (=1 =0l l=fmllf + 11— ol - [ 52213

IN

2
=5 - lall3 + 11— o] - [BII3.

Subtracting (|1 — | - ||c||3) from both sides of the above inequality, we have:

(1= 1= allel3 < =f= - lall3 + [1 = ol (IblI3 - llcll3).
Dividing both sides by (1 — |1 — o), we have:

1—
Lel3 < rerapelal + saindsy (1b13 - lel).

Using the definition of ¢y and o4, we finish the proof of this lemma.

O
Lemma A.7. For any positive constants ci and cz, and nonnegative sequences {4, 04 }1_ |, we have:
T 1. T
min,_y (19, c2904) > < -min;_y (5, ¢5),
h 1 1 d 2 inl i t oot
where co £ max(g-, ), and min_, (¢}, p4) £ min{_, [min(pf, ¢4)).
Proof. We have the following inequalities:
I oy )b €2t
min;_; {¢], 05} < mmt 1{max( o <P1a 2 <P1) max(i—fgoQ, %2902)}
.. T T
= minf_ {coc1}, cocaph} = coming_, (16}, cah),
where step @ uses the nonnegativity of both the constants {cg, ¢, c2} and the sequences {}, p5}7 ;.
O
Lemma A.8. For any three nonnegative sequences {e', w', p'}5° satisfying et*1 < \/wt(et —et~1) + pt, we have:
ZT et < §€O + le—l + lzT (wt T t) (27)
t=0¢ =3 2 2 24t=0 )

Proof. For any oy > 0 and ap > 0, we derive the following inequalities:

t+1

e \/wt et — et— 1 —|—p

2 4 %(wt)Q + a2(6t71)2 + %(wt)2 +pt

Qa2

IN® IA
Q

2

mﬁ

IN®

t —
Vo‘let+2wﬁ+vo‘26t et 2\/E+p’

where step @ uses the fact that ab < £a® + 7 L b2 for all £ > 0; step @ uses the fact that v/a + b < v/a + v/b. We further
obtain:

et Vage' < (Var + Var)e' +vage !+ (g + ae) w0
Telescoping the inequality above over ¢ from 0 to 7', we obtain:

{4+ aze} = {(vai + vaz)e® + vaze ™} + Yo {(Vai + v/ — e’ + /e !}
< Tieollae +aym) ' +0'h

14
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Letting \/a1 + /as — 1 =1, a7 = 1, and as = 1, we have:
Zthl et + et—1 < —eTHl _ oT 4900 4 =1 4 Z?:O(wt +pt)
Adding €° + €7 to both sides yields:

22?:0 et O+ eT — T+l _ 0T 4 900 4 =1 4 Ztho(wt +p')

< 30 4el+ Y (w! +p).

NN

‘We further obtain:

ZtT:O el < %eo + %6_1 + % Ztho(wt +p').

B. Proofs for Section 2

B.1. Proof of Lemma 2.2

Proof. Let p € (0, 1]. Consider the update rule 3t = 3° 4+ 9t for all t > 0, where ¥ < B9€.
(a) The lower bound for 3**! in Inequality (2), is clearly satisfied with ¢/ = .

(b) We now focus on establishing the upper bound for 371, We have:

B gt Bt L (¢ + 1) — 7) — 80 £ 9 — B¢ 20,

where step @ uses the update rule 3t = 3° +9tP; step @ uses the fact that the function h(t) £ (¢ + 1) — ¢ is monotonically
decreasing w.r:t. t that: h(t) < h(0) = 1; step ® uses 9 < BO¢.

Therefore, this update rule aligns with Definition 2.1.

B.2. Proof of Lemma 2.3
Proof. We let p € (1,2]. Consider the update rule 371 = 3% + (¢ + 1)P for all ¢t > 0, where ¥ < %
(a) The lower bound for 3t*! in Inequality (2), is clearly satisfied with ¢/ = .

(b) We now focus on establishing the upper bound for 5¢*!. We derive:

LB =Bt —gB) E (1) — 12— (5 80+ 5 - orr)
(t+1)P —tP —1— ¢ —&t?

(t+1)P — 1P — 1 — 2tP/?
0,

IN INe IA®

where step @ uses the update rule 3171 = 3% + 9(¢ + 1)?; step @ uses %E > 1%5, ¥ > 0, and £ > 0; step @ uses the fact
—% —af < —2y/aforall £ > 0and a > 0, which is due to Lemma A.2; step @ uses Lemma A .4 since p € (1,2] € (0, 2].

Therefore, this update rule aligns with Definition 2.1.
O

B.3. Proof of Lemma 2.4
Proof. Letp € (0,1). We define & 2 | "0 | A;x!*! 4+ bl Welet h(t) £ (t +1)P — 7.

15
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Consider the update rule 3171 = B¢ + min(e! + 9h(t), B1€) for all t > 0, where 9 < BO¢.
(a) The upper bound of 3'*! in Inequality (2), is evidently met, given that 3'T1 = B! + min(B¢, h(t) + ') < Bt + BIE.

(b) We now focus on the lower bound for 31, Using the penalty parameter update rule, we have:

B > B4 min{¢Bt, Oh(t) + &'}
2 8t + min{eBt, oh(t)}
> B+ min{e8°h(t), h(1))
S 8+ min{oh(t), 0h(t)},

where step @ uses the fact that min(a, b + €*) > min(a,b) for all a € R and b € R since €' > 0; step @ uses the fact
that the sequence {3'}$2,, is monotonically increasing, and the function h(¢) is monotonically decreasing w.r.. ¢ that
1 = h(0) > h(t). Therefore, for all t > 0, we have:

BT > B+ 9(t 4+ 1)P — 9P
Telescoping this inequality over ¢ from O to T', we have:
BT — B0 > (T 4+ 1)P — Y0P = (T +1)P
Hence, we establish the lower bound for 31+ that: 3/ — 30 > (¢t + 1)P.

Therefore, this update rule aligns with Definition 2.1.

B.4. Proof of Lemma 2.5
Proof. Letp € (1,2]. We define & & || 7| A;x!T +b||. Welet h(t) £ (¢ + 1)P — 2.
Consider the update rule 3171 = B¢ + min(e! + 9h(t), B1€) for all t > 0, where ¥ < 3°¢2 /(1 + €).

Initially, we have the following results:

)] @
(E+ 1P =P =P — L8 <14 2P/2 —gtP — 1 — § =277 — P — L <272 —2V/1P = 0,

1
3

where step @ uses Lemma A.4 given p € (1,2] € (0, 2]; step @ uses the inequality —% —a€ < —2y/aforall a > 0 and
& > 0, which is due to Lemma A.2. Therefore, for all ¢ > 0, we have:

h(t) — &P < L (28)

(a) The upper bound of 5¢*! in Inequality (2), is evidently met, given that 8+! = B¢ + min (B¢, 9h(t) + &) < Bt + BUE.

(b) We now focus on establishing the lower bound for 31, Using the penalty parameter update rule, we have:

Bt > B+ min{¢B, Ih(t) + &'}
S B+ min{¢s", IR},
S B4 o), (29)

where step @ uses the fact that min(a, b + &) > min(a, b) for all a € R and b € R since &' > 0; and step @ uses the
following inequality:

Ih(t) — B < 0. (30)

Bo¢?

In what follows, we prove that Inequality (30) always holds if ¢ < 5= e -

This can be achieved by iteratively lower bounding
the parameter 311,
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Case (i). Consider ¢ = 0. We derive: 9h(t) — B¢ 2y. h(0) — B < Bo¢ - ?& . 1+5 605 = 0, where step @
uses t = 0; step @ uses uses 9 < ?fg , and the fact that h(0) — 07 < %5 which is 1mp11ed by Inequality (28). Hence,
Inequality (30) holds for ¢ = 0. Additionally, we obtain from Inequality (29):

Bt > B° +9n(0) = B° + 91P. (31)

Case (ii). Consider ¢ — 1. We derive: 9h(t) — 816 £ 9h(1) — B1E < 9 {h( ) - 1¢} — B¢ < gt poe =y,

where step @ uses ¢ = 1; step @ uses Inequality (31); step @ uses ¥/ <5
holds for ¢ = 1. Additionally, we obtain from Inequality (29):

B2 > B+ 9n(1) > B+ 9n(0) + 9h(1) = B0 + ¥2P. (32)

T f * and Inequality (28). Hence, Inequahty 30)

Case (iii). Consider t = 2, we derive: Vh(t) — B¢ 2 9h(2) — 26 < 0 - {h( ) — &tP} — BO¢ g fifg gf —p% =0,

5 * and Inequality (28). Hence, Inequality (30)

where step @ uses ¢ = 2; step @ uses Inequality (32); and step @ uses ¢ <8
holds for ¢ = 2. Additionally, we obtain from Inequality (29):

B2 > B2+ 0h(2) > B° + 02° + 9h(2) = B0 + ¥3P.

1+

Using similar strategies, we can recursively conclude that Inequality (30) and Inequality (29) hold for ¢ > 0.
Telescoping Inequality (29) over ¢ from O to ', we have:

BT+ — B0 > (T + 1)P — 90P = (T + 1)P.
Hence, we establish the lower bound for 3t+1 that: B/ — 80 > (¢t + 1)P.

Therefore, this update rule aligns with Definition 2.1.

B.5. Proof of Lemma 2.6

Proof. We use a direct approach involving integral comparison. By comparing the series » , tip with the integral
f 100 tipdt, where the function f(t) = tip is decreasing and positive for ¢ > 1 and p > 1, we have the following inequality:
St & < [T L dt, leading to the following results:

©)
Ztup*HZm%S + -4 = ok (33)

where step @ uses the fact that f > :Ldt — . Notably, Inequality (33) is a well-established result for convergent p-series
with p > 1. Finally, we obtain:

IR R Y PSR A S
t=0 t150+19t2—ﬁ0 t=1 gtp = — 1)197

where step @ uses 3¢ > B° + 9t2; step @ uses Inequality (33) for all ¢ > 1

C. Proofs for Section 3
C.1. Proof of Lemma 3.1

Proof. (a) We now establish the decrease in the objective function value for the subproblem of the i-th block with ¢ € [n].

First, noticing the function G (x! [1 1) X, X +1 a2 z'; B') is Li-smooth w.r.1. x; for the ¢-th iteration, we have:
t+1 t+1 t
G X Xig1m) z'; ")
t+1 t t t+1 t+1 <t t. ot L || t+1 )2
< G( [1,i—1]° szx[z+1n 75) < X X » Vx G( [1,n— 1]a [i+1,n]’z’5)>+7 i 7Xi||2' (34)
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Second, we notice that xf'H is the minimizer of the following optimization problem:

t+1 t+1 0;L!

x; " € argming hi(x;) + (xi — ¥}, Vi, G(x)yp X5 X[ 025 89) + 25t Ix — viI3- (35)

Using the optimality of X§+1 in (35), we have:
hi(X§+1) - hi(xz> + < - X v G( tlJri 1]7X§7Xf‘ Zt;ﬁt»

i+1,n]’
o;L! [
< 2 Xﬁf)’f‘”zf Yz||2
@ 0;L!
= - |3 —01L5<x§“ —xt,xt —yh), (36)

where step @ uses the Pythagoras relation as presented in Lemma A.1. Combining equations (34) and (36), we derive the
following expressions:

h( t+1)+G( 7[5?—1:1_1]’)(2-"-1 tz+1 n]a aﬂ) ( )_G( 1[5;'_1 1]7Xfax[z+1 n]v 7ﬂt)

6,—1)L¢
< DI )2 0L — xtxt — )
L O a2 L — e (! — xI)
@ 9;,—1)L!
< (O DL et 2 4 gLt (Bt — X3+ Lt — xY2)
[6) L Lt . Lttt
= 7(02'*1*01‘0‘1')'7 2+9¢ai'(4 i||gflT||A§+l||2)+91‘ai'7'7||At'+1||g
9 L} L! LI+t
< —(0i—1—0,0;) - SIAY2 4+ 0,0 - (S ALE — S | AT2) + B, - LEREL A2

L+
I3 — == AT3) (37)

Lt
2 4 aiai . (71

—(0; —1—-06,a;(2+9)) - %

where step @ uses the Cauchy-Schwarz 1nequahty and the update rule for y'™ that y! ™ = x!™! 4 (x!T! — xt) for

all i € [n]; step @ uses the inequality that ab < “7 + 77 Va, b; step ® uses the definition Al £ x! — x!71: step ® uses

LI+t < (1 + €)LL, which is implied by ! < g%(1 + €) and Lt £ L; + 3| A4]3.
(b) We now establish the decrease for £(x'T1, z%; 31) — L(x?, z%; 3!). In view of Inequality (37), we define

t t t+1
AL2 (0, — 1 0;0i(2+€)) - SIATFYE + 0 - (S AYZ — S |AL3) — hy(xtFY) + hy(x?). (38)

We have the following inequalities:
i = 1a G(xﬁi_ll 1} Xt1+17xi[51+17n]a 56 ) G( tf% 1]5X17 1[51_5_17”]’ zt; ﬂt) S Ai
t «t

=2 GO X Xy 25 8Y) = GX ooy X Xy 25 87) < AS

- t+1 t+1 t t t+1 t
1="n, G(X[l’n_1]7xn,+ X[n+1 n 7B ) ( 1 n— 1 Xnvx[n_i_l n]az ﬂ ) < A .

Summing up all these inequalities together, we have:
G(Xfii_l] ) X$1+17 X7[§n+17n] ’ Zt; Bt) - G(xfii_l] ) X§7 Xf1+17n]a Zt; Bt) S E?:l AE
We further obtain the following inequality:
G(x!*1 2zt BY) — G(x!, 2t Bt) < 2?21 AL (39)
Uses the definition of £(x,z; 8) £ G(x,2; 8) + Y_;—, hi(x;), we derive the following results:
E( t+1 Zt' ﬁt> _ (Xt Zt; Bt)
(GG 2 Y + X b)) = {G(x!, 2% 8Y) + 300 ha(xh)}

ST AL+ () = ha(x)}
S {05 = 1= 8i0(2+ €)) - SIAT 3 + L0,0(LHALIE — LI AL 3)} (40)

® IN©
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where step @ uses Inequality (39); and step @ uses the definition of A! in Equation (38).

(¢) For notation convenience, we define:

rth 2 L AxiT - b
O 2 L(x!,z%BY) + 1 Bl A2 “D

We have the following inequalities:

ET’BtHI‘HlH% + L:(x”l t+1.5t+1) _ ,C(XtJrl,Zt;ﬁt)

) <Zt+lizt7rt+1>+(55t +ﬂ+ )||rt+1||§

l <Zt+1_Zt7(zt+1_Zt),#>+(%W+W)”%&(Zt+l_ztwg

=l - g A (14 S

T R e =

glw“—ﬂéﬁru+wh (42)

where step @ uses the definition of £(x!*1,z!T1; g+1) and L(x!T1, z%; BY); step @ uses the update rule of z'*! that:

%ﬂt(ztﬂ —zt) = (31, AixiT) — b = r'*1; step ® uses 8¢ > 50 > 2 and Bﬂt g < €5 as
shown in Assumption 2.7.
In view of Inequalities (40), (41), and (42), we have the following inequalities:
t
S lIE I3 + 0gt — 0f
Lt
< Rl =23 - (0 - 1 - i (2 +€)) - 5 AT
@
< SRl =23 - 200, 5(0i — 1= Gie (2 + ea)) LEATTS, (43)
é’Y’i
where step @ uses & < €7 as shown in Assumption 2.7. We further obtain:
t
SIS + e[S, vLEIATT 3] + ©4t — O
@ ¢ .
< Sl 4 SIS LA+ eavall [ALFY3 + O5 — O}
®
1 1
< B2 =23 - S LA 4 [0S wLIAT 3]+ eavalh [ALT3
= S5l = 23+ yles — DL IALTS,
where step @ uses €3 < 1 as shown in Assumption 2.7; and step @ uses Inequality (43).
O

C.2. Proof of Lemma 3.2

Proof. For any i € [n], we define u;
with € Oh;(xI™h) + V£ (xb).

We notice that X26+1 is the minimizer of the following problem:

RO LT — X! — au(xh —x[T] = BPATICT A (T — )], and let

oLE
xi € argmin, Tl|xi — v + ha(xi) + (xi = yE Vi, GGy X025 8Y).

zn]’

+1

Using the necessary first-order optimality condition of the solution xt , we have:

Vi G X2 8Y) € —0hi(xITh) —OLi(x[T! — i)

zn]7

S
L Ohi(xtY) — OLE (I — xt — (! — xI 1Y), (44)

19



Inertial Proximal Linearized ADMM

where step @ uses the update rule of ' = x!*! 4+ a; (xiT! — x!) for all i € [n].
Using the definition of the function G (x,z; ) = ([37_; Ajx;] — b, z) + 8 D201 Ayxs] = b5+ 3070, fi(x;), we

have:

leG( f1+11 1]7X[zn 7ﬂ)

Vii(xh) + ATz + BAT{C ) AxiH] + (27, Ajxt] — b}
= V/ilxh) + ATz + BAT{[E 0] A+ 0 A = [0 AT + [, Ayxt] — b}
= Vfilx)+ Alz' + B AT At = b +T [ A (G - X
L Vfi(xt) + ATzt + LAT (21 — ') + BAT{T_, A, (xj —xiTh, (45)

where step @ uses the update rule of z!*! that z+! — z! = o84 (3" | A;x;™" — b). Combining the Equalities (44) and
(45), we obtain the following result:

0 € Oh(xh +o,LixT —x! — ay(x! —x!H)] + Vi(xh)
+ATZ + AT A (xE = xT)] + AT (2 - 2)

Using the definition of w/™' and u}*" forall i € [n], we have: 0 = w/™! +u/"' + ATz* + LAT(z!+1 — 2!). Multiplying
both sides by o € (0, 2), we have:

0=owt +oATz! + A (2"t — 2') + oul™. (46)
Given that ¢ can take on any integer value, we derive the following:
0=ow!+0oAlz"t + Al (z' — 27 !) + oul. 47)
Combining Equality (46) and Equality (47), we have:
Al —2') = (1 -0)A](z' —2') — o(w!T —w!) — o(ul™ —uf) (48)

In view of (48), we let ©+ = n and arrive at the following three distinct identities:

Condition[T]:  AT(z*! —2') = (1 —0) (A](z" — 2™1)) 40 (uf, —uf! + w!, — witl). (49)
Lqt+1 Aot ct
Condition[A] : ATz —2) foultt = (1 —o)(A](Z" —2'7Y) + oul) + o(onl, + w!, — wiFh).  (50)
Latt+l éat L¢t
ATz — 2 fowl™ = (1 —0)(A] (2" —2"71) + ow!) + o(ow!, + ul, — ult!).

Notably, our attention is specifically directed towards Formulations (49) and (50).

C.3. Proof of Lemma 3.3
Proof. We define x = 0,,(1+¢3), 7= a2(1+¢), p = 2 xa?, and ©F £ pLt || AL |12 = 2X0,,(1 + e3)a2LE || AL |I3.

We define H" £ 6, LT — 8'ATA,, and uft! £ 6,L1(x["" —x! — cu(xt —x[71)) + BPAT[0, Ay(x — xiT).

(a) we bound the term ||w ! L3
[wit' = w3 = [0ha(x") + Vfa(x),) = Ohy(x]) — V fu(x )3
< AR (I + AV Fu(x)113 + 4110 (x3) 13 + 411V fu (57113
®

4C} 4 4C3 4+ 4C} + 4C7
8C} +8C% £,

IN
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where step @ uses Assumption 1.2.

(b) We now bound the term % [u’r1||2. First, using the definition of u}™" and H?, we have:

W = BL (K — X, — g, — X)) + FATIS, A el %)
(0L FATALGE — xh) — Bl (x, — Xt
HIAN — 0, L AL

Second, we bound the term L! using the following inequalities:

_® @ _ _ _
L= Li+ BA< A5 + A < Bt + A = A1 + &), 5D

where step @ uses 3¢ > 3%; step @ uses 3° > L;/(e3)) as shown in Assumption 2.7.

Third, we bound the term ||H’||. We assume that AT A,, € R9:*9 has the singular value decomposition that AT A,, =
UTdiag(A)U with U € R4ixdi | X ¢ R4i¥1 and UTU = UUT = 1,,, where diag()) denotes a diagonal matrix with X
as the main diagonal entries. Using the definition of IH?, we have:

eyl 16,L5,T — ' AL A, ||
HGHLZ - Bt}‘Hoo

0,L! — min(B'\)

e

[l®

IN®e

0,8 (1 + e3)\ — BN

ABH (0, (1 + €3) —A/N), (52)
A
=x

where step @ uses ||0,,LLT—BAT A, || = ||[UTdiag(0,,Lt, — BA)U||; step @ uses the fact that || p — x||oc = max(p—x) =
p — min(x) whenever p > max(x) for all p and x; step @ uses Inequality (51).

Fourth, we bound the term 2 [|6,,cx, L}, Al [|3. We have:

2|00l LR = b -202a2LL)|AY |3
< Nl+e) 20,0215 |AL]2 2 O
20l — O+ N(1+e3) - 20,2 LEFL | ALFL|2
% O — O 12X (1 +€3)0,, - a?(1 +¢ep) LL || ALFL)2, (53)
2y L,

where step @ uses Inequality (51); step @ uses the definition of ©; step @ uses the fact that LET < (1+ &)L < (1+€1)LE.

Finally, we bound the term % [ut+1(|2 using the following inequalities.

el 3 = AL Ouanll AL
< FlBnaLl AL I + AL 3
S 0L — O 4 {2hyr 4280 Ny — AV - &} LL AL
< 6L U+ (2T + 2A(x — MR- LA 3 54
where step @ uses the definition of 11/** as shown in (51); step @ uses the inequality ||a + b||3 < 2||a||2 + 2||b||%; step ®
uses Inequality (53); step @ uses 5!\ < L, + B¢||A,||2 £ L.
O
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C.4. Proof of Lemma 3.8
Proof. Let © be defined in Assumption 1.4.
Initially, using the definition of ©¢ as presented in Equation (114), we have the following inequalities:
O = L(x'2z%8") + 5 X0, Gl ALJ3 + G2 lla(l3 + Gelluk |3 + CuBP AL
> L(x', 258" > L(x',2"0). (55)

We now conclude the proof of this lemma through contradiction. Suppose that there exists tg > 1 such that ©% < ©. We
derive the following inequalities:

S0 -0) = [Zrle -0+ 2, e -9)
< [P0 —©)]+ (T +1—to) - max, (6F — ©)
< DO - )]+ (T+1— 1) (6% —B), (56)

where step @ uses ©! < ©%° for all ¢ > ty. We closely examine Inequality (56). As tq is finite, the sum Zi":_ll(@t - 0)is
upper bounded. Considering the negativity of the term (©% — ©), we deduce from Inequality (56):

By e 3, (0 — 0) = —c0. (57)

Meanwhile, for all ¢ > 0, the following inequalities hold:

et-0 g L(xt,z%0) -6
LS i)+ b ()] + ([0, Axt] = bzt) + L[S0, Axt] b3 - ©
> (X, Axt] — b2
® #@t — gt gt
L e
S LA a - sl 3 + 0, 58)

where step @ uses Inequality (55); step @ uses the definition of £(x?, z%; 8) with 8 = 0; step @ uses Assumption 1.4; step
@ uses z't =z + o8 [(D01, Aix;) — b]; step ® uses the Pythagoras relation presented in (26); step ® uses % < ﬁ

Telescoping Inequality (58) over ¢t from 1 to 7', we have:
T
ST (O -0) > & {273 - B3 > — 5k 1203,

which contradicts with (57). Therefore, we conclude that ©* > © for all t > 0.

C.5. Proof of Corollary 3.9
For both conditions |I | and , we have from Theorem (3.5) and Theorem (3.7):

gt—i—l +6t+1 S @t + %

Telescoping this inequality over ¢ from O to T', we have:

0
ETH1 <@ — 0T+ 4+ Y7 S <00 — 0+ CuCh,

where step @ uses Lemma 3.8 that ©' > © for all ¢; step @ uses Inequality (3) that >, ) 5 < Cp < +00.

1
Bt
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C.6. Proof of Lemma 3.4

[1—0]

and o & _ L9l
27 o(i-Ji=a)"

Proof. Forany o € [1,2), we define o; = m,
We define a‘t! & AT(z!*! — zt), and ¢! £ u!, — v’ + w! — wit!, where wit! € Oh, (x4 + V£, (xE).
We define C, = d02, Cy = 2601 (1 + €3), G = 2Cup, and Cy, = 1001 (1 + 1/e3), where « = 8CF + 8C}.

We define ©F £ S3|a’|3, and O £ %Hutng

We derive the following inequalities:

oT%t”thrl . Zt”g
 Lllatt3
S oad(Hlal3 - Elatt2) + 823
< 2ol (' - sellatt3) + B et

£,
£ 6L - ol + g (uh — uf) + (wh — w3
£ 0L — O 4 Gy { S o, — w2} 4 b { Sl — w2
< OL— O 410y (1+ 1 /eg) s + 60 (1 + e3) { L[l — w3}
2 01— O 4 G + 2001 (1 + eg){ & 3 + [}

2c,

Of — O + G + 0f — O + Cu{(F + za0) Il 13}
2 el -oit 4 G el - ettt 420, { &llubt3), (59)

where step @ uses the fact that A, is an identity matrix; step @ uses Lemma A.6 with ¢ = a’*!, b = a’ and a = ¢! that:

serlla™ I3 < F (a3 — la™H3) + FHle13;

step @ uses — % < — Bt—lﬂ; step @ uses the definitions of ©f and ¢?; step ® uses Part (b) of Lemma A.5 with a = uf —u?*?,

b = w! — w!t!, and 6 = e3; step ® uses ||[wit! — w! |2 < ¢+ as shown in Lemma C.3; step @ uses the definition of C,,,
and the inequality [|a + b||3 < 2||a| + 2||bl|3 for all a and b; step ® uses the definition of ©; step @ uses gt < 3.

Using Part (b) of Lemma 3.3, we have:
20, g3 < 2C0-2X - {(x = A/X)% + X7} LLllAGFHS + 2Cup Ly | AL 113 — 2CupL P HIATFHS. - (60)

20,

We define ©F £ i G lat|13 + 2+ CLL||AL||3. Combining Inequalities (59) and (60), we have:

sl =23+ e — 6
{LLIATEY - 20 - 23 - {(x = A/2)? + x7}
{LLIATHIEY - 4Cu - {(x = 1)* + x7},

IN® IN

where step @ uses A = A = 1 and ¢ < €; as shown in Assumption 2.7.
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C.7. Proof of Theorem 3.5

Proof. We define v/ £ ~;[1 — ¢
2 [ Ax|]

First, based on Lemma 3.1, we have:

We let ©f £ 0! + ©F, 1!

5t+1 + @g+1 — 93 — TB,“HZ

Second, using Lemma 3.4, we obtain:

— ZtH% <(e3—1)vn

sl,andy; £ 1[0, — 1 — (24 €1)oy;6;] for all i € [n].

L IAZEHE = =

t
—b,and &1 & SIS 4 e 3 LA,

Lo A3

sz =23 + orft — L < LLATF3 - 4C, - {(x — 1) + x7}.
Adding Inequalities (61) and (62) together, we have:
grtrertt —eof LLIARHIS - {4C - {(x = 1)* + x7} — v}

<
@
< 0

where step @ uses Inequality (9).

C.8. Proof of Lemma 3.6

Proof. Forany o € (0, 1), we define o £ m and oy £

We define a‘t! & AT(z!! —

We define C,

zt) + out,

We define O £ 2, and ©}, A

% a3

We derive the following mequahtles:

2 2009 /A, Cy £ 450 /A, Cy & 4,050/3, and C,, £

[1—0|
o(l—|1—0c])"

and ¢! £ ou!, + w!, — witl, where wit € Oh, (xiF1) + Vfn(x

146/ (o)), where « = 8C} + 8C7.

g 3

ng”ztﬂ — 2|3
¢ s T t+l _ )2
< Uﬁt.AHAn(z -z )”2
)
= %'gT;tHatH*UUZHHg
®
< B {GEla™E + S lu g
®
< R AR - Fla™HE + G5} + B g3
®
< Rl - g lat 5 + 2 b et 13 + 35 ult 13
————
Lot
®
< 0L — 0L + 2 {rllow’ + (wh — wir)[3) + 255 ful |3
@
< OL-Or 4+ Z . 2 oul 342 - 2w — wh 3+ 2%
| ——

Lot
= 0L - el 4ol —ef ¢ A+ B ()l 3
)
< OL- OO O 4 A Ly s Lt

~~ ~~
Lc., £,

24
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where step @ uses the fact that \||x||3 < ||A[x]|2 for all x; step @ uses the definition of a'™; step ® uses the inequality
la+b||3 < 2||al|3 + 2|/b]|3 for all a and b; step @® uses Lemma A.6 with ¢ = a’*1, b = a’, and a = ¢! that

sella™E < FHlletll3 + 2 (la’ll3 — la™]3);

step ® uses f% < fﬁt—lﬂ and o1 = % when o € (0, 1); step ® uses the definition of ©% and «; step @ uses the inequality

la+ b3 < 2|al|3 + 2||b||3 for all a and b; step ® uses ||w’, — wLF1||3 < . which is presented in Lemma 3.3; step @ uses
ﬁ < %, and the definition of {C,,, C,,}.

Using Part (b) of Lemma 3.3, we have:
Cugr ™13 < Cu- {0 = A/ + x7} - 20, AL 3 + Cuds — Lo (64)
We define ©! £ ©! + O + C,0!. Combining Inequalities (63) and (64), we have:

Sl - ol + 0L - 6L - &

LEAE3 - Cy - 23 - {(x — A/N)? + x7}

IN© INA

LllALE - Cu- 23 - {x* + x7},

where step @ uses —A/A < 0.

O
C.9. Proof of Theorem 3.7
Proof. We define v £ ~;[1 — €3], and v; £ £[0; — 1 — (2 + €1);0;] for all i € [n].
Welet ©f 2 ©F 4 Of,r' £ [T Axt] — b, and 1 2 & [r1 2 4 ey 7 7 LU 3.
First, based on Lemma 3.1, we have:
EM L O —0f — Sr |zttt — 2|3 < (e3 — Dyn - LLIIALTYS = =, - Ll AL 13 (65)
Second, using Part (b) of Lemma 3.6, we obtain:
S|zttt — 23 + O — OL < LL[JALFYZ - 3 - 800 - (3 + x7). (66)
Adding Inequalities (65) and (66) together, we have:
gt+1 + ®t+1 _ et
< LLJALFYS - {3 - 800 - (X* + xT) — 7}
@
< 0,
where step @ step @ use Inequality (10).
O

C.10. Proof of Theorem 4.5
To finish the proof of this theorem, we first prove the following lemma.

Lemma C.1. We define X'*1 2 ¢S [|x!T1 — x|, and ! 2 gt Iyt — vt We have: S, Xt+1 >
LZT yt+1
16 2at=1 .
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Proof. Initially, we have the following results:

201+ o) [lx = x|I3 + 2057 (1 + €)lIxt — %713

@ —_
Brllyi™ —willE = Bl +oulx™ —xh)] - [Xt+ai(xt x; DIl

= A0+ i) (%] ori —x}) = eu(xf - x7 )3

@

<

® t+1

< 8- (Bl = xlI3 + B It —

where step @ uses the update rule for y!™ that y'™! = x4 ay(xi* —

x{3), (67)

xt), Vi € [n]; step @ uses the inequality

lla —blj3 < 2||al|3 + 2||b]|3, and the fact that 3t < B1=1(1 + £); step @ uses ¢; < 1 and € < 1.

Telescoping Inequality (67) over ¢ from 1 to n, we have:

8. {Xt+1 + Xt} > yt+1' (68)
We derive the following inequalities:
T T T+1
Yo X = 5 o X AT
T T
= % ’ {thl X4 Zt:l Xt}
o T
2 % ’ % 'Zt=1ytJrl
T
= % Y Y
where step @ uses Inequality (68).
O

Now, we proceed to prove the theorem.

Proof. We define X'*1 £ gt 5" (|x!th — xt|Z, YL £ 0 [yt -
We define ¢} = X*+1 4 Yi+l and 805 = Bl 3.

yi3

T t
S il 5 I3 + es o0 vLEI AT 3}

T t
Yol I3 4 o i, BHIAT 3}
co XtJrl + 1660 Xt+1}

co Xt+1 + Co yt—i—l}

We define ¢ £ e3 min]"; v;[|A;l, c1 £ 2, and c; £ g
We derive the following inequalities:
4 Q0 S T  ot41
Co20"-—0+CCy > Y, &
2
®
>
T t
= Y A5 I +
@ T t
> Y £S5 e +
® T
= Yi{adh +cagb}
= min_ {e1] + co0h} - T
®
>

min/_, {¢} + ¢4} - W T

where step @ uses Theorem 3.5 and Theorem 3.7; step @ uses the definition of £/! as shown in Equation (14); step ® uses
the definition of cy; step @ uses Lemma C.1; step ® uses the definitions of {c1, ¢z, ¢}, ¢4 }; step ® uses Lemma A.7.

As a result, there exists an index t with 1 < ¢ < T such that

it i 7 Cp-max(1l/ci,1/c
D S e e
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We conclude that Algorithm 1 finds an ¢-INP point of Problem 1 in at most 7 iterations, where T' < [M] =

O(e™ 1.

D. Proofs for Section 4
D.1. Proof of Theorem 4.4

Initially, we prove the following important lemma, which establishes the quadratic growth condition for any INP-point.
Lemma D.1. Let LY = L; + B||A;|3 for all i € [n]. If (X,¥,%) is an e-INP point with ¢ = 0, it holds that for all
A; € RYX: L(%,5; B) — L(&1 + A, K + A f) < Y1, B2

Proof. Weleti € [n]. For any x, we define Ax = Y"1 | A;x;. Welet A; € R4,
Given f;(x;) is L;-smooth, we have the following inequality (cf. Lemma 1.2.3 in (Nesterov, 2003)):
N N N s L,
Vi, Xi, | = fi(xi) + fi(Xi) +(Vfi(%i), % — %) < 5
Applying the inequality above with x; = X; + A; and x; = X, we have:
Ji(%e) = filke +Aq) < (X +Ay) — %4, =V fi(%:)) + F
= —(A,V/fi(%:) + &

X; *)\(z”%

(% + A¢) — %3

(69)

— %ql13 < hi(xi) +

Using the optimality of the x-subproblem, we have: h;(%;) + (%, Vfi(%k;) + ATz) + %=
<Xi7 sz(xz) + ATZ> + % X; — x1||§,Vx1 Letting X; = XZ + Ai, we have:

ha(%:) — ha(%i + A)

S (6t A~ VA + ATH + 2+ A) — %3
= (A, Vfi(k) +ATz) + 2 (70)
Adding (69) and (70) together, we have:
Fil) + ha(%) — fili + D) = Rl + Ag) < BEEE A3 + (AA,, 2). (71)
Telescoping Inequality (71) over ¢ from 1 to n, we have:
Dia i) + ha(%:)] = 307 [fi G + D) + ha (i + A)] = 2001, (AAL 2)
< S e (72)

We derive the following inequalities:

T 1[ (%) + fz<xz>1 + (A%~ b,z) + 5| A% - b||3

(T [P (e + A0) + fil + A0)] + (Ax + [T, AA] —b,z) + 5]|A% + [37_) A;A)] - bl3)
£ hi) + fil%)] — (D0 i + Ad) + fil% + A))] + ()1 AiA] 2) + 51117, AsAl3)
S T B AR - SIS, A3
< Y L%GL*

where step @ uses the definition of £(x,z;8) £ Y i, [hi(x:) + fi(x;)] + (Ax — b,z) + §||Ax — b||%; step @ uses

Ax = b; step @ uses Inequality (72).

O
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Now, we proceed to prove the theorem.
For any x, we denote Ax £ > i1 Ajx;. Welet Lf £ L; + B||A;||3 for all i € [n]. We only consider ¢ = 0.

Firstly, using the definition of INP-point, we have for all ¢ € [n] that:

X5 =%;, 5 =¥, and AX+ = b. (73)

Secondly, we have the following equalities:

4+ @

. .. .\ O
X+7y17x fyl :fai(xj'fxi):

0, (74)

where step @ uses the second equality in (73); step @ uses the update rule ;" = % + a; (%] — %;) for all i € [n]; step ®
uses the first equality in (73).

Thirdly, we notice that xj‘ is the gloabl optimal solution of the following nonconvex problem:

X[ € argmin hi(x;) + 50iLi[xi — ¥ill3 + (xi — %, Vae, GG iy X(ion) 25 B)), (75)

where V., G(x;" X[ i1 X[i,n], Z; ) represents the gradient of the function G ( ) Xi, X[j1,n]» Z) W.IL. X; at the point X;
which can be computed as:

Vi G,y Kol 5 8) = Vi, fil%) + AT+ BAT (20, A%+ [ Asky) - b). (76)

Fourth, using the following first-order optimality condition for xj‘, we have:

0 € Oh;(%;7) + O;LE(X — §i) + Vi, G(X[;_yp Xpin], 25 ). (77)

(a) We first show that any INP-point must be a C-point, while the reverse is not necessarily true. We derive the following
results:

[+ Vi, fi(%:) + A, Vh € 9hy (%)

< [BA] (AXT — b)H+||5+Vx7fl(>"<z)+AT2+5AT(A>"<+* b)||
IBAT(AK® — )| + [+ Vi, GG Ko 58) + BIAT X (A% — As%)))
£ |IBAT(AR = b)|| + ([ + Vi GOy X 25 B)I| + BIAT 7 (A% — A%,
2 [|BAT(AXT —b)| + |1:LE (S —Voll + BI{AT YT (A% — Aj%;)}|
£ o, (78)

where step @ and step @ use the triangle inequality; step @ uses the optimality condition in (77); step @ uses the third
equality in (73), Inequality (74), the first equality in (73), and the fact that both L! and 0; are finite.

In view of Equation (78), we conclude that any INP-point must be a C-point. Note that the reverse is not true since the
condition in (77) is necessary but not sufficient for the global optimal solution in (75).

(b) We now show that any INP-point must be a D-point, while the reverse is not necessarily true. Since (X,¥,Z) is an
INP-point, we have from Lemma D.1:

L(5%,%58) — LG+ Ary o R + Ay f) < Y0 LtOiLl

(79)
For any x; € dom(L;), we let A; = ¢(x; — X;). We obtain:

limy o[£y + (%1 —X1), ., X + H(Xn — K0 ), 2 B) — L, 2 B)] - L

Ve

. n  Li+6;,L}
limy 0 — D1 5| All3 - %

Li+6;L}
2

lim¢ 0 — E?:l llx; — | 0,
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where step @ uses (79). Combining with the fact that AX = b, we conclude that any INP-point must be a D-point. The
reverse is not true since a D-point is necessary but not sufficient for the global optimal solution in (75).

(c) We now show that any optimal point must be an INP-point. Since (X, ¥, Z) is the optimal solution, for all x and z with
Ax = b, we have:

>< |

>licy hi(%i

)
Doy hi(xa) + 300 [filx) — fi(%)], ¥x
)
)

><

x; — %3]

S hi(xi) + [k — %, V(%)) + 2
S ha(xs) + 0 [(%s — %i, Vi(R;) + BAT(AR — b)) 4 2L

where step @ uses the Lipschitz continuity of f;(x;) for all ¢ € [n]; step @ uses the fact that AXx = b for any optimal
solution (X, z). From Problem (80), we have for all ¢ € [n]:

IN® NS IA

xi — Xil13], (80)

X; € arg rninxi hz(Xl) + <Xi, Vfi(f(i) + BAI(A?( — b)> + 01-2L: HXi - )21||§ (81)

Problem (81) essentially coincides with Problem (75) with X = %; = X;” = §; = ¥;". Therefore, any optimal point (X, ¥, Z)
must be an INP-point.

E. Proofs for Section 5
E.1. Proof of Lemma 5.2

We begin by presenting the following six useful lemmas: Lemma E.1, Lemma E.2, Lemma E.3, Lemma E.4, Lemma E.S5,

and Lemma E.6.
a

Lemma E.1. For Condition @ we define the Lyapunov function as: O(x, z,x’,x"; 3, 5') G oBAT(Ax — b)|3 +
L(x,2;8) + GH(, — x},) = ma(x), = x5 + {3 20y millxi = %[5} + Culnllxn — %] ||§, where £(x,z; 8) £
(Ax —b,z) + 5[|Ax — b + 31 [fi(x:) + hi(xi)], Li £ Li + B AGl3, L) & Li+ B/ Aill3, H2 6,1, 1 - B’ATA,,
;i 2 0;c;L, Vi € [n]. We have:

(dx17' M 7dxn7d27dx’17' . ~adx’n7dx’1'7 T 7dx;{) € 8@(XtaZt7xt717xt72;/gt7ﬁt71)a (82)
where
t : .
INB RS 1 # n;
dxi{ t + . ) dzéAxtfba
q; +Vv,, t=n
t—1 At . .
a )Ny Az’ G # > 0, 7 # n;
dx(L_ = { t—1 At t . , and dx;’ = { : - .
-n; Aityy, i=n. zt, i=n.
Here, o} £ V f;(x )+Vh (x!) + Alz +5tATrt + 20,8102 AT A, ATyt + nl 1AL
\v;é []Ht 1] +20 LtAt t £ _ [IHt 1+17£L II}T ¢ 20 LtAt
zgl é nfL ! fL’ and UfL éH—It 1( YL Xt 1) nn ( fl ! Xt 2) £ HtilAt nﬂ 1At 1

Furthermore, Lt 2 L+ BY A3, HE 2 9,L5 T — B TAT A, and p! ! £ 0,01 forall i € [n).

Proof. These results are based on very basic deductions. O

Lemma E.2. For Condition [A], we define the Lyapunov function as: ©(x, z,x’,x"; ) £ S 7 0BA (Ax—b)+o(H(x,

X3,) = M (X0 — %)) I[3 4+ L£(x, 25 8) + G| H(x —x7,) = 0 (x), = x5+ {3 X7, i |Xz —x;[13} + Clnlxn — n||2’
where £(x,5:6) £ (Ax — by7) + 2[[Ax — bl3 + X0, [fiCxe) 1 ()], Lt & Li + AAR U 2 L + & Ad3,
H=20,L.I-3ATA,, n; 2 0la;L;, Vi € [n]. We have:

(dx,s -5 Ay, gy Ayt s -y Ay Ay dyr) € 0O(X!, 28, X1 X! 72 87, 8171, (83)
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where
t i £ n;
dy, 2% AN g, 8 Ax b,
q; +v,, t=n.
d., 2 —n; LA LFE N nd don 2 0, i#mn;
Xi T ) _ptIAL ¢t a S T
n; i tTYn t=n zt, i =n.

Here, qt = 2C,AT A, 02{B'Alrt +ul} + Vfi(xt) + Vhi(xt) + Alz! + B AT et + i tAL
t A 2030 [Ht 1]T{ﬁtATI‘t—|—1un}+ 2C []Ht 1] —i-QC Lt At

VvV, =
i & =% (el +onl )T (o ﬂtATrtwu )JC [HH 4 Ty, - 2G,L, AL,
ZZ é 2,676’:30”’7’” (O'ﬁtAnI‘ +O-UIL)+ 8t lrllrsz ! i;L

t L ]Ht—l( xt— 1) 1,’ ( t—1 _ ) ]Ht—lvt _nt—lvt—l.

Furthermore Lt L + BY|A; |3, H Y A 0 LT — B 1AT A, and p! ™! £ 0,01 forall i € [n).

Proof. These results are based on very basic deductions. O
Lemma E.3. We denote \, = max?_, ||A;||3 and 0, = max(0). Forall t > 0, it holds that:

grli <A mli<2h, FlH( <20, gz <200

Proof. For all i € [n], we have:

1 @ _ @
J o Li < Xes < A
1 @ _ @
BT LE < A(1+e€3) < 2),.
® _
Fr - [H < (1+ €3)8,2 < 2,
% -y = ;— “0;0; < (1+e3)X- 0,5 < 20,0,

Here, step @ uses L; < ﬁ0€3§ < Bles); step @ uses Inequality (51); step ® uses Inequality (52); step @, step ®, and step
®useez <1,0, <0,,and \ < \,.

Lemma E.4. Foranyi € [n], we define ut 2 ;L' (x! —x!™1 — a;(x

and we let ©f € V f;(x!) + Oh;(xt) + A]z' + LAl r!. We have:
Al < e S A e S A
SN ot < e I AT e S AL+ en - x|
S nTAY < e A (84)

X)) - ATTATITT A (g - ),

Here, c1 2 20,0, + nh, + A, ¢2 2 2/ 0n, and c3 £ 20, )\, where M, £ max?_; ||A;||3 and 0, £ max(6).

Proof. Wedenote 'y £ "7 [[AI Y|, and Ty £ 37 | ||AY.

Using the optimality of x’”rl as presented in Lemma 3.2, we have:

—0hi(x;"1) = Vfi(x}) - ATz’ — JAT (2" —2")

7

> OLi(xIT - xt— ay(xt —x!T ) - BtAT[E lAj(xt-Jrl —x?)] :mf+1. (85)

(3 7
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(a) We bound the term % Sy fuf:

v i U]
@ n — — _
= g oL T (- xT — e - X)) - B 1AT[Z] P A (b — x|
@ " _ _ _ _
< ge i oL T (k= XY+ 0L e (3T = x| 4 18T AT A (k= X))
@ t—1 -1 t—1
< 0;t Fl +max(a)0*;§ F2+677L)\*F1
@ t— t— t—
S LBLD ()BT, 4 Bl T,
®
< 20,01 + 20,0, T2 +nA I (86)
< Cl(rl —|—F2),

where step @ uses the definition of mf“; step @ uses the norm inequality; step @ uses the definition of I'; and I's; step @
uses Lemma E.3; step ® uses Bt*I < At

(b) We bound the term z; >, [|of|:

% > it llog]]

LT IV + Ohi(xh) + ATz + AT
® n _ _
= F i IVAED + (1= DAl — 271 + g AT —ul = V(x|
® n _ _
S L IVAG) + (o = DETI AT 4 BAATY —uf = V(x|
@ n n — t—1
< g i Il + g 0 IV i) = VAT + S5 lo = 1] - ny/ A e 72+ ny/Ad et
®
< g i ladll + ge 300y Lallxd — x| + 20/ |et |
®
< g i luf 4+ AT+ 20/ e
@
< 20.M\T1+20M\T9+n\T1+ ANT1+ 2ny )\*Hl‘t—HH
< ol + ey + el et
where step @ uses the definition of o} ™; step @ uses
Y
Oh;(xt) 3 —ul — Vfi(xf ) —Alzt7t — %Az(zt —zt7l), (87)

which is due to Equation (85); step ® uses z! ! — z* = gB'r!*t!; step @ uses the norm inequality; step ® uses the fact that
[V £i(xiT) = VAEED| < Li|xit - xt (0,2); step ® uses Lemma E.3; step @ uses Inequality
(86); step ® uses ¢; 2 20, \, + nA, + \,.

(c¢) We now bound the term ﬁt ™ ImiTtAY| (as per Lemma E.1):

g i i A < 200 S0, A < 2.2, Sy AL = 20,001 Z ¢5y, (88)

where step @ uses Lemma E.3; step @ uses gt < g step @ uses the definition of c3.

Lemma E.5. For Condition [T}, we define {d,, d, dy;,dy} asin Lemma E.1. It holds that:

S5 sl € S IALTY ] sy 0 IAL] A+ wafe],

Lldall < pe X0 AT 4 s 0 AL + et
L lldell < ps Ty AT 4 ss 0 AL + usixt]),
S5 Nl < pa S AT 4 s S0 AL+ uallr?].
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Here, we define: P1 £ c1 +c¢s, 81 £ c1+c3+cs5 + cg, Uy £ Co + ¢y4;
p2é0952é09u2 é 1//60’
P3 £ 2c5 + c7 + c3, S3 £ 2cs5, U3 £ 0;
A A A
P4 = C5, 54 = C5, Uug = 0
AlSO, Cs £ 4619*/\*011, Cg £ 4CX)\*, and Cr £ 4Cu/\*.
Additionally, X, £ max”_ ||A; 2. 6, £ max(8), and ¢4 £ 8nCu\>/2.
Lastly, note that {c1, o, c3} are defined in Lemma E.4, and {C,, Cy, C.,} are defined in Equation (21).

t

%

Proof. Forany i € [n], we define u! £ 0;L1 7! (x! —x
leto! € Vfi(x!) + 0hi(x!) + Alz' + BtA]r!.

We define Iy = Y, [|AY" [ and Ty = Y7, | A

ol —xt72) = ATATIET, Ay —x! )], and we

We bound the terms % Sor ., llat]l (as per Lemma E.1):

5 Lz {llof + 2G5 o * AT AL AT + i 'V}

g i ol + {8Ca 3oL, AT A ATE [} + 57 350 [0~ Vi

ar Ll

IN® |IA®

C1 (Fl + FQ) + CQHI‘H_1 || + C4||I‘t+1|| + c3Ig, (89)

where step @ uses the norm inequality, and the condition o < 2; step @ uses Lemma E.4, and the definition of {c3, c4}.

We now bound the term % ||wt || (as per Lemma E.1):

FlIvill = FIZ2E 7 ul + 2CLLAL|
¢ [REk] LY s At
< afly +F2}'2CU'T+2CX'ﬁ'Z¢:1 1A
@ t—
< efTy + 1o} -20, - 2002 420,20, T
®
< (4019*)\*011) Ty + (4619*>\*Cu + 4CX)\*>F2
@
< esl'y+ (e5 +c6)le, (90)

where step @ uses the norm inequality and Lemma E.4; step @ uses Lemma E.3; step ® uses 31~! < 37; step @ uses the
definition of {cs, cg}.

We now bound the term # || (as per Lemma E.1):

Lyl = R IZE 4w + 26U AL

t—1

t—1 t n
Cl{Fl —+ FQ} . 2Cu . % + QCu ‘ ;73 : Zi:l HA§”

t—1

cr{T1 + T2} - 8Cub. A - T + 4G, - T

(80119*)\*01 + 4Cu)\*)F1 -+ (8Cu9*>\*61)]:‘2,
2C5F1 + C7F1 + 265F2, (91)

® INe IN® |ANe

where step @ uses the norm inequality and Lemma E.4; step @ uses Lemma E.3; step ® uses 3'~! < 3?; step @ uses the
definition of {cs, c7}.
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We now bound the term % ||zL || (as per Lemma E.1):

grllznl 2 el - mtunl
@ t—1 n
< 20C,- ngt . % 21':1 ”Uf”
@
< 204200 - e (T +T)
&)
< os(l + 1), ©2)

where step @ uses the norm inequality; step @ uses Lemma E.4, Lemma E.3, and gt—1 < gt step @ uses the definition of
Cs.

(a) We bound the term % ol |I:

LY s,

Flvhll+ 27 2y llad]

{esT1 + (e5 4+ co)T2} + {e1(T1 + T'2) + ealr’|| + eallr’|| + c3T2}

IN® INe [N

pil1 + 5102 + uqrt),

where step @ uses Inequality (90); step @ uses the definitions: p; Lci+ces 5120 +e3+ s+ cg andug £ o+ ca.

(b) We bound the term |, ||:

@ ®
Ald, ]| = LlIAX" — b < & - [rt] £ ug e,

where step @ uses 3° < /3%; step @ uses the definitions us = 1/3°.

(¢) We bound the term & >_i' ([ [I:

Bt
L dy

Felyhll+ 3 iy mi Al
{2¢5T'1 + 7'y + 2¢5T2} + 3Ty,
p3l'1 + 5302,

e IN® IN

where step @ uses Inequalities (91) and (88); step @ uses the definitions: p3 £ 2¢5 + ¢7 + ¢3, and s3 £ 2¢s.

(d) We bound the term % iy |l dxerl:
1 n 1 t @ &)
77 2aim1 Ay [l < grllzn | < esTy 4 csl'a = pal's + sal',

where step @ uses Inequality (92); step @ uses the definitions: py £ 5, and s4 £ cs.

Lemma E.6. For Condition[A], we define {d,, d,, dy;, dy } as in Lemma E.2. It holds that:

2500 [lds, P AL sy S AL+ ua et

Fldall < pa Xy AT 4 s S0 (IAY] + uallr],
230 [ldy Py ST A+ s 00 1AL + uget]],
LTl < pa S AT sa X0 AL .

IN

A

IN

IN

Here, we define: p; Lol festcestes 8120+ 05+ co+cr,ul 2 cq + cs;
A A A 0.

p2_0982_09u2_1/ﬁ’
A A A

P3 = 2¢p + c3, 53 = 2¢6 + €7, U3 = 2cs;
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p1Eco+ o7, 80 = o+ or, ug 2 cs.

Also, ¢5 2 8C,3 A\ cc1, cg 2 (16C, + 4C,) 0 Aect, 7 2 400, N, and cs 2 16C,0, A2,

Additionally, X, £ max™ , ||A;[2, 0, £ max(8), and ¢; £ 8nCu\,>/2.

Lastly, note that {c;, ca, c3} are defined in Lemma E.4, and {C,, Cy, C,} are defined in Equation (22).

Proof. Forany i € [n], we define u!f £ 6,11 (x] —x{ ™" —au(x]™' —x[ %)) = B TAT Y0, Aj(xt —x! 1)), and we
leto! € Vf;(x!) + 0hi(xt) + Azt + BA "
We define I'y = 377, [A7™" || and Ty = 357 [|A].

We bound the terms % S, llat]l (as per Lemma E.2):

F i lladll = 5 X0 lof +2C. AT Ao {BP A" +ul} + n T Al
@ n 3/2 n n —
< g i llof]l + 8nC, A% [[x]| + 8Ca, - 30 ldl + 5 iy mi Al
@
< Aea(Ty +To) + calet||} + {eallr?|[} + {8CaAs - c1(T1 + T2)} + caly
= (Cl + 803/\*01 + 03)F1 + (Cl + 8Ca>\*61)F2 + C4||I‘t||,

e

(Cl +c5 + c3)F1 + (61 + 05)F2 + C4||I‘t||7 (93)

where step @ uses the norm inequality and the fact that o < 2; step @ uses Lemma E.4; step @ uses the definition of c¢s.

We now bound the term ﬁ | vt || (as per Lemma E.2):

LlIvill = 2G4+ 2C02 [H T AT + 2L, AL |
< (3G, +200) It 48, - B R [nt) 4 20, S T
S (8Cy +2Cy) - 20\ - 1(Ty + o) + 8C - 20,7, - v/Ap - |1t + 2C, - 20, A, - T
= (16C, 4+ 4C,)0\c1 - Ty + {(16Cs + 4C)0, Act + ACO, N, } - Ty + 16C.0, A2 2||rt |,
LI (ce + c7)Ta + cslrt]], (94)

where step @ uses the norm inequality, and the fact that o < 2; step @ uses Lemma E.4 and Lemma E.3; step @ uses the
definition of {cg, c7, cg}.

We now bound the term % |l || (as per Lemma E.2):

iyl Fl12Co02(ET 4 0, )T ATr! 4 260 20 E 4 gl Tul, 4 20 LL AL

— — _ _ Lt
8Ca - gr(IH 7+ - VA e + (8Ca +2C0) - g (IH |+ my7Y) - llulll +2C - 5 - o

IN® |A®

8C, - ANibs - Vs - ||t 4+ (8C5 4 2C,) - 4N 04 - (c1T1 + c1T2) + 205 - 2\, - Ty
320,020, ||rt|| + (320, + 8Cy) - Aubyct - Ty + {(32C, + 8C)Abuc1 + A0 A} - Ta
= 2Cg||rt|| + 2¢61'1 + (266 + C7)F2, 95)

where step @ uses the norm inequality, and the fact that o € (0, 2); step @ uses Lemma E.3 and Lemma E.4; step ® uses
the definition of {cg, c7, cs}.
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We now bound the term - 1|zt || (as per Lemma E.2):

nll

5l l

|| =5 2omt (oA 4 oul) + 2 5 Somt— 1l ||

ﬁHQOaUanL AT +% t—1 t||

-1

8Ca - T - [An|lllr*]| + (8Cs +2Cu) - T - 57 o1y [t

803 . 20*/\* 1\ )\*”I‘t” + (8Ca + QCU) . 2)\*9* . (01F1 + Clrg)
cs|rt|| + (c6 + e7)(Ty +T'g), (96)

l® IN® IAN®

where step @ uses the norm inequality and the condition that o € (0, 2); step @ uses Lemma E.3 and Lemma E.4; step ®
uses the definition of {cg, c7, cg}.

(a) We bound the term ﬁt o ldx |
LY

Flvhll+ 27 2y llad]

{e6T1 + (c6 4 c7)T2 + csr’||} + {(e1 4 ¢5 + e3)T1 + (c1 + ¢5)T2 + callr’|},

e IN® |IAN®

p1l1 4 5102 + wy |t

where step @ uses the norm inequality; step @ uses Inequalities (93) and (94); step ® uses the definition p; £ ¢; +c3-4c5+cg,
S1 écl +c5+c6+(:7,andu1 é(244’68.

(b) We bound the term 7 [|d,||:
®
Zllda ]| = FlIAX" = b]| < & - [[r']] = wsjr']],

where step @ uses 3° < /3%; step @ uses the definitions us = 1/3°.
(¢) We bound the term g7 >, [|dx |I:

57 i 1 | gyl + g i lmi AL

268||I‘t|| + 266F1 + (266 + C7)F2 + CgFl

e IN® |IANe

p3l1 + s3la + ug||rt]],

where step @ uses the norm inequality; step @ uses Inequality (95) and Lemma E.4; step ® uses the definition p3 £ 2c¢g + c3,
s3 2 2¢6 + ¢7, and us = 2cs.

(d) We bound the term 77 >, [[dyy |I:
LS el = Zllabl < esletl + (e + er)(Ts +Ta) = pals + 54T + g

where step @ uses Inequality (96); step @ uses the definition p, £ o+ 7, 542 cg+ c7, and ug 2 cs.

Now, we proceed to prove the main result of this lemma.

Lemma E.7. (Subgradient Bounds for Conditions [I] and We let K = max{[zjZ 1 Dils [Z?zl si, [Z?:l u;|}, where
{pi, si,u; }i_, are defined in Lemma E.5 or Lemma E.6. We have:

Fellloe(xt, 2 x! 1 x" 2 5% BN < KT ™ =72+ 0l =3+ e

Here, we define X = {x,2,x',x"}, and [[||[06(X; B)|[[]* = [10,0(X; B)|3 + 3211 [[10x, O(X: )3 + 10x, O(X; B)]13 +
105y ©(X; B)]13].
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Proof. Wedefine 'y £ 37 | [[xi™! —x!7?||and Ty 2 37| [|x! — x!7!||. We have:

lloe(x!, 2!, x" =1 x! =% 8¢, g7 H]|
{3 lllds, 13 + lldx; 13 + lldx[13] + llda][3}/2

0 s 13+ {320 s 11+ {320 1daey [} 4 [l de |l
iy Pl + [y 8502 + [ uglllrt |

KI‘1 +KF2 +K||I‘t+1||,

INe IN® INe

where step @ uses va + b < y/a+ v/bforall ¢ > 0 and b > 0; step @ uses Lemmas E.5 and E.6; step ® uses the definition
of K.

O

E.2. Proof of Theorem 5.3

Proof. We define X! = {x* z*, x!~1 x!~2}, F(X!) £ O(X*; 8¢, 8*+1). We denote X* as a limiting point of {X*}2°,. We
let F(X*) £ ©(X*; 3, 3"), where 3 and /3 are the associated penalties for X*.

For simplicity, we denote F* £ F(X*) and F* £ F(X*).
Firstly, using Assumption 5.1, we have:
Secondly, given the desingularization function ¢(-) is concave, for any ¢ € R and b € R, we have:
p(b) + (a = b)¢'(a) < p(a).
Applying the inequality above with a = F' — F* and b = F'*! — F*, we have:
(F' =P (F' = F*) < o(F' = F*) — o(F'"™ — F*) & Af. (98)
We derive the following inequalities:

VBE {3 + 30 AT 3}

@ ¢ n

< SGITIB 4 e L vLAT 3 = €

g @t7®t+1+%:Ft7Ft+l+%

® At c

S ey TB

@

< A% - dist(0,00(X" 8%, B171)) + G

®

< ALK{B | + B0, A+ 8 i AT + G,

where step @ uses the definition of V' 2 min(§, e3 min!"_; v;[|A;[|3); step @ uses £ < O — 1L 4 % which is due

to Theorems 3.5 and 3.7; step @ uses Inequality (98); step @ uses Inequality (97); step ® uses Lemma E.7. Dividing both
sides by V3¢, we have:

e 3+ S0, A2
KAt + 0 AL S A ) + S - e

IN

IN©e

B ARt ST IAL e+ ST AT+ g -

A N
At BAot—1

99)

)
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where step @ uses |[r*~!|| > 0 and 8 > °.

Additionally, we notice that:

)
2 It £ L AT < i IR+ S AT, (100)

where step @ uses the norm inequality that ||a||; < /n||al|2 for any a € R™.

Combining Inequalities (99) and (100) together, we have:

e+l < an\/A%%(et +et=1) + VCBWO ) # (101)

Applying Lemma A.8 with w! £ ﬁ - Al and pt £ ( Cu

[CESyE % we have from Inequality (101):

Z?:o et < Fe0+ge 43 Zfzo(wt +p')
— K T * * C4w T
< 3%+ e+ iy LicolP(F — F*) — o(FH — F*)} + g S0 - e 5
o .
< 30+ e+ iy {e(F0 = FY) = o(FT = F)} + aifsrg - o
@
3,0 1 — K 0 * CuCh &
< gttt gy e(FY = F) 4 st = Ce
where step @ uses Inequality (3); step @ uses the fact the desingularization function () is positive. O

F. Extension: Stochastic IRPL-ADMM

This section extends the proposed IRPL-ADMM algorithm to stochastic settings.

Stochastic optimization methods are potent tools for addressing large-scale problems in machine learning. Stochastic
Gradient Descent (SGD) efficiently tackles finite-sum optimization problems by computing gradients for individual samples
in each iteration. Various accelerated versions of SGD have been successfully introduced to reduce variance in convex
composite minimization (Defazio et al., 2014), non-convex smooth minimization (Johnson & Zhang, 2013; Nguyen et al.;
Fang et al., 2018a; Zhou et al., 2020), and nonconvex composite minimization (Johnson & Zhang, 2013; Ghadimi et al.,
2016; J Reddi et al., 2016; Li et al., 2017). Furthermore, stochastic gradient descent has been integrated into the ADMM
framework to address a broader range of convex and nonconvex composite optimization problems (Suzuki, 2014; Zhang &
Kwok, 2014; Huang et al., 2019).

Given that the Stochastic Path Integrated Differential Estimator (SPIDER) estimator has been demonstrated to possess nearly
optimal computational complexity bounds, we follow the approach outlined in (Huang et al., 2019) by integrating the methods
presented in (Fang et al., 2018b; Wang et al., 2019b) into our ADMM algorithm, resulting in IRPL-ADMM-SPIDER.

Building upon Problem (1), we introduce the following additional assumption.

Assumption F.1. The function f,(x,,) takes the following form which is of finite-sum structure:

N
fn(xn) - %Zj:l fn,j(xn)‘ (102)
Additionally, each f, ;(-) is L,,-smooth, meaning that ||V f,, ;(x,) — V fn;(Xn)|| < Ly||%xn — X, || for all j € [N]. This
property extends to f,,(x, ), which is also L,-smooth. Furthermore, f,,(x,) is Lipschitz continuous with a constant C' I

such that ||V f,,(x,)|| < Cy.

Remarks. We assume that the smooth function f,,(+) has a finite-sum structure, but our algorithm and convergence analysis
are also applicable to cases where another block of smooth function exhibits this structure.

F.1. The Proposed IRPL-ADMM-SPIDER Algorithm

We denote 7, be the unique integer such that (r; — 1)g < ¢ < r;q — 1.
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Algorithm 3 IRPL-ADMM-SPIDER: The Proposed Inertial Relaxed Proximal Linearized ADMM based on SPIDER.

1: Initialize {x°,z"}. Let x ! = x" and y° = x°.

2: Use Algorithm 2 to choose suitable {3°, 0, o, €, 0}
3: fort =0to T do
4:  Compute v using Formula (103).

. oL
50 ke ming hi(x1) + 2 x — y3 + (a1 - xt, Vs GUx) 2 8Y)
0,11
6: Hl € miny, ha(x2) + 52 ||x2 — y5 13 + (x2 — X, Vi, G(xTH, f&n]’z 6%)
9,L!
7: Xt+1 € miny,, hn(x,) + o [[%n — yleg + (xn — xn,V G( ET}L 1P )

yit = 3“ +ay(xiT —xb), V) € [n]
codt =2 aB (2=, Avx;) = b)
10:  Usea (89, &, p)-regular penalty update rule to update ¢! based on the current value 3.

11: end for

First, we introduce the SPIDER estimator as follows (Fang et al., 2018a):

t vf’n(XZ% mOd(ta Q) = 0;
v = { Vil 4 V(x4 T — V(x5 1)) else. (103)

Here, V f,,(x!; Z") denotes the average gradient of the examples Z?, and Z* is a mini-batch which is picked uniformly and
randomly (with replacement) from {1,2, ..., N} with |Z| = b for all £.
Second, we employ the following stochastic gradient for all j € [n]:

AJz' + BPAT{SIZ AT + [, Al = by + Vf;(xh), j #n.
va t+1 t\ A i=j &G FASE A 104
a5 5 {AthwAT{[z“A XS, Al b v, = OO

Notably, when j # n, we use the gradient which has the same form as for the deterministic settings. However, when j = n,
we replace the true gradient V f;(x}) with v*, the unbiased estimate of V f;(x t+1) using SPIDER.

Thirdly, we provide the proposed IRPL-ADMM-SPIDER in Algorithm F.4. We conduct a comprehensive analysis of the
convergence properties of the IRPL-ADMM-SPIDER algorithm and establish its optimality in terms of the Incremental
First-order Oracle (IFO). The expectation of a random variable is denoted as E[-].

F.2. Some Pre-convergence Results

Initially, we introduce a useful lemma from (Fang et al., 2018a).

Lemma F.2. (Fang et al., 2018a) The SPIDER estimator generates stochastic gradient v* satisfies for all (ry — 1)q + 1 <
t <ryq— 1 that:

E[Iv' = Vfa(x) 3] — E[Iv' ™! = V(e D13 < Lol B, — x4 3] (111)
We have the following useful lemma concerning the decrease in the primal.

Lemma F.3. (Proof in Appendix G.I, Decrease for the Primal under Stochastic Settings) We define ~; £ %[0z -1-(2+
€1)a;0;] for all i € [n]. We have:

5t+1 +eLt - el

< ol =23 = {1 = es) v — SILLIxT = X0+ s IV () = VI, (112)

where § = 1 + ey, and {O%, E1T1Y} are respectively defined in Equations (14) and (15).

We have the following lemma that provides an upper bound for the critical term 2@% |V fu(xt) — vt||3 in Lemma E.3.
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Algorithm 4 A Procedure for Finding Suitable Parameters £ € (0,¢1), « € (0,1)", 0 € (1,00)", ¢ € (0,2),
B9 € (0, 00) for Algorithm 3 (Stochastic Settings).

1: Choose suitable (1, €2, €3). Default parameters:

Condition[I] : (e1, €2, €3) = (0.01,0.01,0.001) (105)
Condition[A] : (e1, €2, €3) = (0.01,1,0.001) (106)

2: We define ; = %[01 —1—(2+4+¢)e;0;] and :

39
)

s a ) vl —es], i€ [n—1];
B 0y | 107
v {%’[1_63]_23_21» t="n. (1on

3: For the first (n — 1) blocks, find suitable parameters {c;, 6;}7~' such that v/ > 0 for all i € [n — 1].
4: For the last block, find suitable parameters (v, ,,, o) such that (9) or (10) holds.
e Condition @: Over-Relaxation Stepsize o € [1,2).

o €1,2),7, > 0,800 (1+e3)[(x —1)?+7x] <4l

(108)
=4C,
e Condition [A]: Under-Relaxation Stepsize o € (0,1).
/ N . . 2 < / .
o €(0,1), % > 0,4/A 809-(x" +x7) < 7 (109)
=2XC,
Here, {4, x, o, } in (9) and (10) are defined as:
§214+e,x20,(1+6),72a%(1+¢). (110)

5: Choose 3° and ¢ satisfying Assumption 2.7 that: ¢ < min(ey, e20), 80 > L;/(e3\) for all i € [n].

Lemma F4. (Proof in Section G.2) We let Lt & L; + B||A;||3 for all i € [n]. The SPIDER estimator generates stochastic
gradient v* satisfies for all (ry — 1)q <t < ryq — 1 that:

€3 -1 [
g IV fu(xh) = Vi3] < 55 32120 —1)q EILL AL 3], (113)

We present the following lemma on the first-order optimality condition.

Lemma F.5. (First-Order Optimality Condition under Stochastic Settings) Assume o € (0,2). We let wi,"! € 9h, (x5F1) +

vitl and uit! = 0, L (x5 — xt, — i, (xt, — xt71)) + BEATAL (xE, — xEF1)], where vt is a unbiased estimation of

Vfn(xtFh). We have: 0 = owit! + 0 ANz + AT (2! — 2z*) 4+ oult!. Furthermore, we obtain two different identities

as shown in Equations (19) and (20).

Remarks. Lemmas F.5 and 3.2 share a close resemblance, differing primarily in the choice of gradients. In Lemma 3.2, we
utilize a deterministic gradient for w't! € 0h,, (x5) + V f,,(x},), while in Lemma F.5, we opt for a stochastic gradient
for wi™! € Oh, (x5! + vi. We omit the proof for brevity.

The following lemma bounds the terms ||w/t! — w' || and % [lubt)|3.

Lemma F.6. (Proof in Appendix G.3) We define . = 8C2 +16qC?, x £ 0,,(1 + €3), 7 = a2(1 + €1), p = 2X\xa2, and
0L £ pLt||Al|13. We have:

@ [lwi —wi|3 <.
®) gl I3 < 23 {(x = A/A)? + x7} - LL A3 + ©f — et

Utilizing the parameters {C,, C,,, Cy}, we construct a sequence that is associated with the potential (or Lyapunov) function
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as follows:
O' = 0L + Gtl|a||3 + SHl[ub[I3 + CuLL[IALI3 (114)

Here, the parameters {C,, C,,, Cx} remain consistent with those defined in (21) for Condition @ and in (22) for Condition
. The sole difference is the utilization of an alternate ¢, as shown in Part (a) of Lemma F.6.

F.3. Analysis for Condition @ (Stochastic Settings)

We offer a convergence analysis under Condition @, where A, is an identity matrix. We assume that o € [1, 2).

The following lemma provides an upper bound for the term %ﬁt ||zttt — z!||2 using Equation (19).

Lemma F.7. (Bounding Dual Using Primal for Stochastic Settings) We define § = 1 + €3, ¥ = 6,(1 + ¢3), and
72 a?(1+ €1). We have:

Bella — 23
< 0= 07+ G+ LL[ATHE - 4C{(x — 1) + X7},

where ©% £ Ge|a’|[3 + S [|ul, |13 + CLL[|AL |13, and {Cs, Cy, Cx, Cy} are defined in Equation (21),

Remarks. Lemma F.7 closely parallels Lemma 3.4, with the sole difference being the use of a distinct coefficient C,, since
it depends on the coefficient ¢ as shown in Part (a) of Lemma F.6. The proof is omitted for brevity.

We have the following theorem.

Theorem E.8. (Proof in Appendix G.4, Decrease on a Potential Function and a Square-Summable Property under Stochastic
Settings) Let p € (1, 2]. For all ¢, we obtain:

E[} 207 <0~ 0+ CuCh £ Gy (115)

F.4. Analysis for Condition | A | (Stochastic Settings)

We provide the convergence analysis under Condition , where A, is a full-row rank matrix with A > 0. We assume
o€ (0,1).

The following lemma establishes an upper bound for the term %{ﬁ |zt+1 — z*||2 using Equation (20).

Lemma F.9. (Bounding Dual Using Primal for Stochastic Settings) We define § = 1 + €3, ¥ = 6,(1 + 3), and
72 a2(1+ €;). We have:

Sl — 23
< OL— O 4+ S LLALFY3 - 2XC, - (X2 + x7),

where ©F £ %HatH% + %Hum% + CyLt ||AL |3, and {C,, Cy, Cx, Cy} are defined in Equation (22).

Remarks. Lemma F.9 closely parallels Lemma 3.6, with the sole distinction being the utilization of a distinct coefficient C,,
since it depends on the coefficient ¢ as shown in Part (a) of Lemma F.6. The proof is omitted for brevity.

We obtain the following theorem.

Theorem F.10. (Proofin Appendix G.5, Decrease on a Potential Function and a Square-Summable Property under Stochastic
Settings) Let p € (1, 2]. For all ¢, we obtain:

E} €7 <0~ 0+ Culs = Gy (116)

F.5. Continuing Analysis for Conditions @ and | A | (Stochastic Settings)

Finally, we have the following theorem.
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Theorem F.11. (Proof in Appendix G.6) Let the sequence {x',y',z!}I_, be generated by Algorithm 3. Let p € (1,2]. We
have:

(b) There exists an index t with 0 < t < T such that E[ﬁt||rt+1||2 + AP IR = X2+ lyET = yEE) <
w, where ¢y = €3 min}_; ;|| A;ll, 1 = %’ co S 5, and C,, is defined in Inequality (115) or Inequality
(116). It implies that Algorithm 3 finds an e-INP point of Problem (1) in at most 7" iterations in the sense of expectation,

where 7' < [max(l/cl,le/c2,1/c3)cp] = O ).

(¢) Let N denote the number of data points for the finite-sum structure as in Equation (102). Let ¢ = v/N and b = /N for
Algorithm 3. The overall stochastic first-order oracl complexity is O(v/Ne~ ' + N ).

G. Proofs for Stochastic IRPL-ADMM
G.1. Proof of Lemma F.3

Proof. The proof of this lemma shares a similar structure with that of Lemma 3.1. To keep it concise, we will primarily
focus on highlighting the main difference.

For notation convenience, we define I'* = (x{*! — x! |V, G(x ffsl_l],xfn’n],zt;ﬁ ) — Vi, G(x tfr; 1 X 23 8Y))-

Initially, we bound the term I'* using the following inequalities:

F; = <Xfl+1—X;,van( Hr; 1]?X[nn 7ﬁ) van( t1+31 1]7X7En,n]ﬂzt;6t)>
= (x" = xp, Via(xy,) = V)
Q es Lt
< Sl = xl3 + o IV falx) = VYIS, (117)

where step @ uses Lemma A.5.

(a) We now establish the decrease in the objective function value for the subproblem of the n-th block. Noticing the function
G(xffrrlkl] ,xt 2t BY) is LI -smooth w.x.t. x,, for the ¢-th iteration, we have

G(xﬁ}z 1 xit gt gt

n

< GO, 2 B T = X, Ve GOtz B + ST - )

Second, we notice that x’! is the minimizer of the following optimization problem:

1€argmxin B (%) 4 (x5 — X', Vo, G(x tfrsl X ,z'; BY) + "Hxn yi 3. (119)
Here, Vxné(xff i 17> X[ 2 z';3') can be viewed as a unbiased estimation of the true value of

n

Vi, Gx{i 1) X 2 »5*)—an( L)+ ATzt + BAT(Anx, + [0 A — b).

Using the optimality of x5! as in (119), we have

ha (x5F1) — B (x5) + (xEH — xt Vo G(x ffrlb 1) X[n)+ Z z'; %))
G,LL 9nL
< S = yhl = Sl =y
Only, ||Xt+1 Xt |2 = 6,LL (x!, —y! xt —xt). (120)

Adding (118) and (120) together, we obtain the decrease in the objective function value for the subproblem of the n-th block:

h ( t+1) + G( t+1 t+1, 7Bt) ( ) o G(Xt+1 X;,Zt;ﬁt)

[1,n—1] [1,n—1]>
0, —
< =D st 2 — 0, L (kX T —x) + T,
@ t t+1
= _(en_l_anan@*‘f))'% ‘A?—l‘b""enan'(LTn”AfLH%_LHT||A$L+1||§)+Ft7 (12])
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where step @ uses the same strategy as in deriving Inequality (37).

(b) We now establish the decrease in the objective function value for the subproblem of the i-th block with i # s. Using the
same strategy as in deriving Inequality (37), we have the following inequality for all ¢ # n:

hi(ngrl) + G(Xfiilfuv X§+1’ Xj[tz#l,n]? Zt5 5t) - hi(xg) - G(Xfi;fl], Xﬁ, Xfi+1,n]7 Zt; 5t)

L! Lt Litt
< —(0i—1-6i0(2+€) - FATZ + Gicvi - (FIALZ — =5 [1ATH3)- (122)

(¢) We now establish the decrease for £(x!*1, zt; 8%) — L(x!,z!; ). In view of Inequality (121) and (122), for all i € [n],
we define

ALE —(0i—1-0i,(2+8))- 5 24 00 (SIALE — S AT ) — i)+ ha(x). (123

Using the same strategy as in deriving Inequality (39), we have the following inequality:

G(Xt'H,Zt;ﬁt) _ G(Xt,zt;ﬁt) S Ft + Z?:l Ag.

Uses the definition of £(x,z; 8) £ G(x,2; 8) + Y_;—, hi(x;), we derive the following results:

£(x1, 2% ) — Ll 2t )

{G(x" 25 8Y) + X0, ha(x )} = {G(x 2" 8%) + 00, ha(x)}

T S0 (AL + ha(xf ) — ha(x))}

D+ 30 {0 = 1= B2+ ) - H A3 + S0 (LIANE — LI A B} (124)

® INe

where step @ uses Inequality (124); and step @ uses the definition of A! in Equation (123).
Using the same strategy as in deriving Inequality (42), we have:
S + LM 2 B — LM 2 8Y) < |2 — 23 o - {1 + e} (125)

We define r'+1 £ -7 | A;x! ™' —band ©F £ L£(x!, 2! 8) + 3 30, 0;;L¢|Af||3. Combining Inequalities (124) and
(125), we have the following inequalities:

t
& et+1]3 + 041
AT =23 - {0 — 1 - 6,2+ €)) -
€ n Lt
Lzt — 23— {0 (0 — 1 - 6,02+ @1)) - 5
Stz =23 = {0 Ll AT IR + T (126)

Lt
SIATHZ} + T

e INe IA

where step @ uses £ < €; as shown in Assumption 2.7, and step @ uses the definition of v; £ 3 - (6; — 1 — 6;¢;(2 + €1))
forall i € [n].

Finally, we obtain:

t
L 1et 13 + e[ Ll A3 + 05+ — e}

) t
< Bt 4+ [0 LAY 3] + esvalh AGYS + ©5TT — 6
@
L
< L g3 4 (e5 — Dyalb|AST 3+ O4F — ©F + Sfa X411 + gk [V () — vV 3
® €
2 L - 23— {(1 - )y — SILLIAG 3+ ez“—@z+ﬁum<xz>—vtna,

where step @ uses €3 < 1 as shown in Assumption 2.7; and step @ uses Inequality (126).
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G.2. Proof of Lemma F.4

Proof. Initially, we derive the following inequalities:

~

» @ L,
LL = La+Bt A3

IN®

L L
n < n —
FTATE S TALTZ (o JesTARTE) — 3 (127)

where step @ uses the definition of LY £ L;+3¢||A;||3; step @ uses 3 > 3°; step ® uses the choice of 3° > L,,/(e3|| A, [|3).

Telescoping Inequality (111) over ¢ from (r; — 1)g + 1 to ¢, where ¢ < r;q — 1, we obtain

s - Bl VFa(xt) — v!|3]

Te— re—1 L, 2 t—1 i i

< g (Bl D7 = VA I + Sl ST, BlixE - x4 3])

@ Ly)? t—1 i i

S0+ g - S LI Bl — x13]

@ e -1 i i

= S (1) EILLIE — <3 13], (128)

where step @ uses v/ = V f,,(x7)) for all j = (r, — 1)g; step @ uses Inequality (127).

We notice that (128) holds true for t = (r; — 1)g, which can be checked by plugging ¢ = (r; — 1)g into the inequality.
Therefore, (128) holds true for all (r; — 1)g <t < riq— 1.

O

G.3. Proof of Lemma F.6
Proof. We denote r; > 1 be the unique integer such that (r; — 1)g <t <r;q— 1.

Using the update rule of SPIDER: v = { ftf:g(’f@f (ot 20 — 9 o= 70 modta) =0 for any ¢ with (r; — 1)g <t <

r.q — 1, we have:
vh = V() + iy (g IV I (X0 L) = V(x5 T} (129)

We bound the term ||v?||3. We derive the following inequalities for any #:

) Tt . —1. -
V5 = IV + i gt (Va6 T8 = V(xS )3
@
< {1+2x(¢-1)}C3,
< 2¢C%, (130)

where step @ uses Equality (129); step @ uses the fact that the term Zzz(nq) a1 (r* — ri=1) involves at most 2(q — 1)
evaluations of the gradient for the mini-batch of data, and the inequality that Y-, ||a;||3 < nmax!", ||a;||3 for any vectors
{ay,...,an}.

‘We have:

10Rn (x51) + v = O (x7,) = V'3
A[0hn (x5T3 + 410k (x,)113 + 41w 13 + 4] v*]13

[[wtt = w3

AC} + 407 4 8¢C7F + 8¢C3
8C? 4 16¢C3,

IN IA® A

where step @ uses W' € Oh, (x5TL) 4 viTL; step @ uses Inequality (130).

The second part of this lemma is identical to Part (b) in Lemma 3.3; hence, we omit its proof for brevity.
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G.4. Proof of Theorem F.8
Proof. We define~y,, £ (1 — e3)v, — $,and W 2 4C{(x - 1)* + x7} —{(1 —€&3)ym — &
We define £11 & %Hrt“H% + e3> wL|ATY3), g+t £ gt % and ©f £ O} + OL.

Using Lemma F.3 and Lemma F.7, we have:

g;‘;—i-l + @t+1 _ @t
{1 = es)yn = FILLIxT = x[P + LLIATHE - 4Cu{ (x = 1) + X7} + o IV fu(x0) = VP13

€: —1 i
(L= e — GILL It — 2 LA 3 -4 (x — 1 + 7} + 5 Uk, EILL AL 3

IN® |IN®©

—1 i
WLLIIxEE! — b |2 + 5 3002, 1y BILEI AL 3], (131)

where step @ uses the upper bound of 253% |V £ (xt) — v?|| as presented in Lemma F.4; step @ uses the definition of V.

Telescoping the inequality in (131) over ¢ from (r, — 1)q to t where ¢ < r;q — 1, we have:

E[Z§ (re—1)q 53+1 + Z (re— l)q(@)j—"_1 - @j)]

€ —1 i i t . .
2%)7 Zj:(’r‘f—l)q Z‘Z]':[ijl]q [L’ﬂ”X’nJrl - XTL”%] + Zj:(rt—l)q WL{IHA%,+1||3

@ i (i i t j j

= 2b Z] (re—1)q Zz_ [re—1]q [L%”XnJrl - XnH%] =+ Zj:('r't—l)q WL%”A%#I H%

® . . . .

< 27?& j=(rt—1)q Zi:[rtfl]q E[L%HX:LH - XnH ] + Z (re—1)gq WL?rLHAgn—i_l H%
. t . . . . . .

= 3% j:(rtfl)q(t —J+ DE[L [T = x4 18] + X519 WLAI AL

® . .

< 5 g CLAIATTHIE + X, —1y WLLIALTB

)]

< 0

where step @ uses ; = 7, for all (re — 1)g < 7 < rq — 1; step @ uses the extension the summation of the second term
fromj—1totsince j — 1 < j <t;step@usest—j+ 1< gq;step @ uses the inequality that:

S <W 24C,{(x — 1>+ x7} — {(1 — e3)vn — S}, (132)
which holds due to Inequality (108).
Using the fact that 3" (@711 —@7) = @'t — (=14, we have:

Jj=(re—1)q

E[O!! — Qri—1l)q ] <E[- Z (re—1)g 53+1] (133)

Telescoping the inequality above over ¢ from 0 to T', we have:

E07TH — 0% = E[©7-0°) + (0% —07) 4 ...+ (6! — Or—1a)]

< El(-S -€) + (- S ) 4 (- Tl 5]
= E[- Y&

£ E[Xo(G -t

g E[— Y i_o & + CuCh),

where step @ uses the definition of 1 £ £+1 %; step @ uses Inequality (3). Using the fact that ©7+! > © as shown
in Lemma 3.8, we conclude this lemma. O]
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G.5. Proof of Theorem F.10
Proof. We define ), £ (1 — e3)v, — 2,and W £ 2XC,, - (x* + x7) — {(1 —€&3)yn —

We define £11 & %Hrt“H% + e3> wL|ATY3), g+t £ gt F“! and ©! £ @f, + OL.

Leveraging Lemma F.3 and Lemma F.9, we have:

gl ot — o

IN® |IA®

WLLIE = b1 + 55 3252 (1) ELLAIAL 3],

b i=(rt—1)q

{0 = ) — GG — X2 + L ALY 3 - 23C, - (62 + x7) + g [V fult

—{(1— )y — FILLIRE = X2+ LLIALB - 23C, - (8 +X7) + 5 T4t

n) = VI3
E[Ly || AGFI3]

(134)

where step @ uses the upper bound of 253% |V £ (xt) — v?|| as presented in Lemma F.4; step @ uses the definition of V.

Telescoping the inequality in (134) over ¢ from (r, — 1)g to t where ¢ < r;q — 1, we have:

E[Z§ (re—1)q 53+1 + Z (re— l)q(@)j—"_1 - @j)]

€ —1 i i t . .
2%)7 Zj:(’r‘f—l)q Z‘Z]':[ijl]q [L’ﬂ”X’nJrl - XTL”%] + Zj:(rt—l)q WL{IHA%,+1||3

@ i (i i t j j

= 2b Z] (re—1)q Zz_ [re—1]q [L%”XnJrl - XnH%] =+ Zj:('r't—l)q WL%”A%#I H%

® . . . .

< 27?& j=(rt—1)q Zi:[rtfl]q E[L%HX:LH - XnH ] + Z (re—1)gq WL?rLHAgn—i_l H%
. t . . . . . .

= 3% j:(rtfl)q(t —J+ DE[L [T = x4 18] + X519 WLAI AL

® . .

< 5 g CLAIATTHIE + X, —1y WLLIALTB

)]

< 0

where step @ uses ; = 7, for all (re — 1)g < 7 < rq — 1; step @ uses the extension the summation of the second term

fromj—1totsince j — 1 < j <t;step@usest—j+ 1< gq;step @ uses the inequality that:

% W= 2XCu : (X2 +Xx7) — {(1 — €3)Yn — %3}7
which holds due to Inequality (109).
Using the fact that 3" (@711 —@7) = @'t — (=14, we have:

Jj=(re—1)q

E[O!! — Qri—1l)q ] <E[- Z (re—1)g 53+1]

Telescoping the inequality above over ¢ from 0 to T', we have:

E07TH — 0% = E[©7-0°) + (0% —07) 4 ...+ (6! — Or—1a)]

< Bl(-xiy-at) + (-2l e o (- Sl
= E[- YL, &M

L E[C(G — &)

S E[LY & 4 CuC),

(135)

(136)

git)]

where step @ uses the definition of 1 £ £+1 %; step @ uses Inequality (3). Using the fact that ©7+! > © as shown

in Lemma 3.8, we conclude this lemma.
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G.6. Proof of Theorem F.11
Proof. The proof of Part (a) of this theorem is similar to that of Theorem 3.7. We omit the proof for brevity.

(b) We have shown that it takes at most 1" = (9(6_1) iterations for Algorithm 3 to find an ¢-INP. Therefore, the total
stochastic first-order oracle complexity is given by [%} N + T - bin the sense of expectation, where b is the size of the
mini-batch. We further derive:

@
[LIN+T b<TUN 4 To=TE 4 N+ Tb < T2 + N+ TVN 2 O(VNe™! + N),

where step @ uses the choice that ¢ = b = v/N; step @ uses the fact that T = O(e~!).

H. Additional Experiments and Details
H.1. Additional Experiments for Deterministic Settings

We provide additional experiment results for the Sparse PCA and Noisy Sparse Recovery problems under deterministic
settings. As depicted in Figure ?? and Figure ??, our proposed method, IRPL-ADMM, exhibits convergence for both tasks,
generally outperforming other methods in terms of speed for the Sparse PCA problem. These results reinforce our earlier
findings.

H.2. Experiments for Stochastic Settings

We compare the proposed algorithm, IRPL-ADMM-SPIDER, with IRPL-ADMM and standard ADMM. Figure ??
demonstrates that IRPL-ADMM-SPIDER significantly outperforms IRPL-ADMM and ADMM, in line with our theoretical
analysis assigning a complexity of N + /N /e to our method, compared to the N/e complexity of IRPL-ADMM and
ADMM.

H.3. Datasets

We incorporate six datasets in our experiments, which include both randomly generated data and publicly available real-world
data. These datasets serve as our data matrices D € R™ %4’ The dataset names are as follows: ‘CnnCaltech-m’-d’ ’,
‘TDT2-m’-d"”, ‘sector-m’-d”’, ‘mnist-m’-d"’, ‘randn-m’-d"’, and ‘dct-m’-d’’. Here, randn(m, n) represents a function that
generates a standard Gaussian random matrix with dimensions m X n, while dct(m, n) refers to a function that produces a
random matrix sampled from the discrete cosine transform. The matrix D € R™ >4’ g constructed by randomly selecting m/
examples and d’ dimensions from the original real-world dataset (http://www.cad.zju.edu.cn/home/dengcai/
Data/TextData.html,https://www.csie.ntu.edu.tw/~cjlin/libsvm/). We normalize each column of
D to have a unit norm and center the data by subtracting the mean (represented as D <= D — 117D).

For the noisy sparse recovery problem, we create the original signal v with an s-sparse structure as follows: We randomly
select a support set S with a cardinality of 0.1 x n and set Vs = randn(|S|, 1), while V1 . ,}\s is set to 0. Additionally,
the observation vector is generated as y = Dv + 0.1||Dv|| x randn(d’, 1). Finally, we set 7 = ||y — Dv/||.

H.4. Nonconvex Proximal Operators

In this subsection, we demonstrate how to compute the nonconvex proximal operator for various functions A (x) involved in
this paper, given x’ € R?*! and . > 0. The proximal operator is defined as follows:

: ® Y12
in h(x) + §(lx — x'[|5. (137)

H.4.1. ¢, NORM FUNCTION WITH ¢ = 1/2
When h(x) = [|x||] with ¢ = 1/2, Problem (137) reduces to the following optimization problem:
X € argminy §[jx — x||3 + )\||X||1§§

We utilize a computationally efficient closed-form solver to calculate the £, norm proximal operator (Xu et al., 2012).
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H.4.2. ORTHOGONALITY CONSTRAINT

When h(x) = Zy(mat(x)), Problem (137) reduces to the following optimization problem:
% € argminy 4[|x — x'||3, s.t.mat(x) € M £ {V|VTV =1}.

This is the nearest orthogonality matrix problem, and the optimal solution can be computed as X = vec(ﬂVT), where
mat(x’) = UDiag(s)UT is the singular value decomposition of the matrix mat(x’). Refer to (Lai & Osher, 2014).

H.4.3. DC ¢{-LARGEST-k FUNCTION

When the function h(x) is defined as: h(x) = A(||x||1 — Zle x[3]) with A > 0 being a constant, Problem (137) reduces
to the following optimization problem:

_ . k
X € argminyegaxt §[x — x| + A(llx[l = 355, [xqa))-

Here, x|;) is the i-th largest component of x € R? in magnitude. Furthermore, we define X5} i8 the j-th smallest component
of x € R? in magnitude. We can rewrite this problem using the fact that ||x||; — Zle x| = Z;l;f |x (3, resulting in
the equivalent problem:

x € argminy % [x — bl|3 + A X027 x5y (138)
Notably, for any optimal solution X, the following relation holds for all ¢ and j:
(Ibil > [bj]) = ([x:] > [%;1).

We denote I as the index of the largest & elements of x” in magnitude, and J = {1,...,d} \ I as the index of the smallest
(d — k) elements of x’ in magnitude. We have |I| = k and |J| = d — k. The optimal solution to Problem (138) can be
decomposed into two dependent sub-problems:

X = argmin%HXI—X’IH%—l—O
X7

x5 = argmin b lx; — X33 + Allxs].
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