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Abstract

In this work, we present a mathematical theory for Dirac points and interface modes in
honeycomb topological photonic structures consisting of impenetrable obstacles. Starting from
a honeycomb lattice of obstacles attaining 120◦-rotation symmetry and horizontal reflection
symmetry, we apply the boundary integral equation method to show the existence of Dirac
points for the first two bands at the vertices of the Brillouin zone. We then study interface
modes in a joint honeycomb photonic structure, which consists of two periodic lattices obtained
by perturbing the honeycomb one with Dirac points differently. The perturbations break the
reflection symmetry of the system, as a result, they annihilate the Dirac points and generate
two structures with different topological phases, which mimics the quantum valley Hall effect in
topological insulators. We investigate the interface modes that decay exponentially away from
the interface of the joint structure in several configurations with different interface geometries,
including the zigzag interface, the armchair interface, and the rational interfaces. Using the layer
potential technique and asymptotic analysis, we first characterize the band-gap opening for the
two perturbed periodic structures and derive the asymptotic expansions of the Bloch modes
near the band gap surfaces. By formulating the eigenvalue problem for each joint honeycomb
structure using boundary integral equations over the interface and analyzing the characteristic
values of the associated boundary integral operators, we prove the existence of interface modes
when the perturbation is small.

Keywords: Interface modes, Honeycomb structure, Helmholtz equations, Dirac points,
Topological photonics
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1 Introduction and outline

1.1 Background and motivation

Photonic and phononic materials with band gaps can be used to localize and confine waves, which
have wide applications in the transportation and manipulation of wave energy [45, 50]. In a gapped
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photonic or phononic crystal, a localized wave mode with frequency in the band gap can be created
by introducing a local perturbation in the periodic structure, such as a point or line defect [45].
Such a wave mode is called a defect mode and it is confined near the defect. Mathematically, a
defect mode and its frequency correspond to an eigenpair of a locally perturbed periodic operator
for the acoustic wave equation or Maxwell’s equations. The existence of point defect modes and
line defect modes was proved in [4, 5, 13, 14, 37, 36, 46, 69] for several different configurations of
periodic acoustic and electromagnetic media, including the periodic dielectric media, high contrast
media, and bubbly media, etc. Besides the deterministic approaches, random media also allows
for wave localization. One well-known strategy is the Anderson localization, wherein a periodic
medium is randomly perturbed in the whole spatial domain [31, 32, 35, 67].

The recent development in topological insulators (cf. [42, 12, 63]) opens up new avenues for
wave localization and confinement in photonic and phononic materials. The concept of topolog-
ical phases for classical waves was proposed in the seminal work [23], when it was realized that
topological band structures are a ubiquitous property of waves for periodic media, regardless of
the classical or quantum nature of the waves. Therefore, the concepts in topological insulators can
be parallelly extended to periodic wave media, and remarkably, extensive research work has been
sparked in pursuit of topological acoustic, electromagnetic, and mechanical insulators to manipu-
late the classical wave in the same way as solids modulating electrons [48, 57, 59, 61, 75]. Briefly
speaking, there are mainly two strategies to realize topological structures for classical waves. The
first strategy mimics the quantum Hall effect in topological insulators using active components to
break the time-reversal symmetry of the system [49, 73]. The second strategy relies on an analog
of the quantum spin Hall effect or quantum valley Hall effect, and it uses passive components to
break the spatial symmetry of the system [58, 74].

Wave localization in topological structures is achieved by gluing together two periodic media
with distinct topological invariants. The topological phase transition at the interface of two media
gives rise to the so-called interface modes, which propagate parallel to the interface but localize in
the direction transverse to the interface. Recently there has been intensive mathematical research
investigating the interface modes in topological insulators from different perspectives. In particular,
the existence of interface modes was proved in [20, 26, 27, 54] for the Schrödinger operator and
several other elliptic operators, wherein the interfaces are modeled by smooth domain walls. In
addition, the spectra of interface modes are closely related to the topological nature of the bulk
media. In general, the net number of interface modes is equal to the difference of the bulk topological
invariants across the interface, which is known as the bulk-edge correspondence [42, 61]. We refer
to [9, 10, 22, 21, 43] for the studies of the bulk-edge correspondence in discrete electron models and
[17, 19] for the bulk-edge correspondence in several elliptic PDE models.

In this work, we study the interface modes in a joint honeycomb photonic structure, where two
periodic lattices separated by an interface are obtained by perturbing a honeycomb lattice with
Dirac points differently. Such perturbations break the reflection symmetry of the system, as a result,
they annihilate the Dirac points and generate two structures with different topological phases. This
mimics the quantum valley Hall effect in topological insulators [58, 74]. A one-dimensional joint
structure with a similar setup was investigated [56, 70] using the transfer matrix method and the
oscillatory theory for Sturm-Liouville operators. In contrast to the studies of interface modes in
[20, 26, 27, 54], where two bulk media are “connected” adiabatically over a length scale that is
much larger than the period of the structure to form a joint photonic structure and the interface
is modeled by a smooth domain wall extending to the whole spatial domain, we consider more
realistic models where two periodic media are connected directly such that the medium coefficient
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attains a jump across the interface. Therefore, we have to address the new challenges in the spectral
analysis brought by the discontinuities of coefficients in the PDE model. Beyond that, we consider
the model with more general shapes of the interface that separates two bulk media. The goal of
this work is to develop a mathematical framework based on a combination of layer potential theory,
asymptotic analysis, and the generalized Rouché theorem to examine the existence of the interface
modes in such settings. The mathematical framework can be extended to study localized modes in
other contexts.

1.2 Outline

1.2.1 The honeycomb lattice and Dirac points

We start from a honeycomb lattice consisting of a two-dimensional array of impenetrable obstacles
and examine the existence of Dirac points in the band structure of the lattice. A schematic plot of
the periodic structure and its band structure is shown in Figure 1.1. The honeycomb lattice is a
natural choice for the photonic structure, as it attains the desired symmetry to create Dirac points
over the vertices of the Brillouin zone [11, 24].

Figure 1.1: An infinite array of impenetrable obstacles are arranged over the honeycomb lattice (left)
and its band structure (right). The obstacle in each periodic cell attains 120◦-rotation symmetry
and horizontal reflection symmetry.

Dirac points refer to conical intersections of two dispersion surfaces in the band structure. They
are the degenerate points in the spectrum where the topological phases of the material may change.
More specifically, at a Dirac point (p∗, λ∗), the eigenspace of the associated partial differential
operator spans a two-dimensional space. In addition, the two dispersion surfaces forming the Dirac
point attain the following expansion

λ±(p) = λ∗ ± α|p− p∗|+O(|p− p∗|2), (1.1)

wherein α ̸= 0 denotes the slope of the linear dispersion relation near the Dirac point. Due to
the surging interest in topological insulators, Dirac points were investigated for a broad class of
PDE operators recently, especially for the Schrödinger operator over the honeycomb lattice, the
Helmholtz operator with high-contrast medium and resonant bubbles, etc [3, 15, 24, 11, 29, 53, 54].
In general, Dirac points exist at the vertices of the Brillouin zone when the medium coefficients
in the honeycomb lattice attain suitable symmetry, such as inversion and 120◦-rotation symmetry,
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horizontal reflection and 120◦-rotation symmetry, etc. The degeneracy at a Dirac point can be
deduced from the representation of the relevant symmetry group, and the conical shape of the
dispersion relation is obtained from its invariance under the rotation symmetry [11].

In this work, we apply the boundary integral equation method to show the existence of Dirac
points for the first two bands at the vertices of the Brillouin zone, assuming that the shape of each
obstacle in the lattice attains 120◦-rotation symmetry and horizontal reflection symmetry as shown
in Figure 1.1. The existence of Dirac points for obstacles with other symmetries can be examined
similarly using this method.

1.2.2 The perturbed honeycomb lattices: spectral gap and topological phase

We then break the spatial reflection symmetry of the honeycomb lattice by rotating the obstacles in
opposite directions to obtain two photonic structures in Figure 1.2, which will create spectral gaps
at the Dirac point as shown in Figure 1.3 so that wave propagation is prohibited for frequencies
located in the gap interval. We carry out the asymptotic analysis for the spectrum of each perturbed
periodic operator using the layer potential technique and prove that a spectral gap is opened at the
Dirac point when the perturbation is small. Furthermore, we prove that the eigenspaces at the band
edges are swapped for the two perturbed periodic operators, which demonstrates the topological
phase transition of the medium at the Dirac point. The topological phase difference between the
two lattices can also be manifested through the Berry phase, which describes the phase evolution
of eigenfunctions in the momentum space [8]. As demonstrated in Figure 1.4, the Berry curvatures
associated with the first bands of the two perturbed lattices attain opposite values.

Figure 1.2: The two perturbed honeycomb lattices by rotating the obstacles counter-clockwisely
and clockwisely, respectively.

1.2.3 Interface modes in the joint honeycomb lattice

Finally, we investigate the interface modes for the joint photonic structure formed by gluing the
two perturbed honeycomb lattices together. The interface modes propagate parallel to the interface
of the two media but decay along the direction perpendicular to the interface (cf. Figure 1.5). We
consider the PDE operators for several configurations of joint photonic structures attaining different
interface geometries, including the zigzag interface, the armchair interface, and the rational inter-
faces. The configurations of the joint structure with the zigzag and armchair interface are shown in
Figure 1.6. We prove the existence of interface modes for the joint structures for each scenario, with
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Figure 1.3: The band structure of the two perturbed honeycomb lattices in Figure 1.2.

Figure 1.4: The Berry curvature in the momentum space for the two perturbed honeycomb lattices
in Figure 1.2.
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the corresponding eigenfrequencies located in the common band gap of the two perturbed media
enclosing the Dirac point. To address the sharp discontinuity of the medium coefficient across the
interface, we set up a matching condition for the wave field at the interface using integral equations
and investigate the characteristic values using the generalized Rouché Theorem in Gohberg-Sigal
theory [40, 2]. The method was applied to study the interface modes bifurcated from Dirac points
in the topological waveguide structure recently [64] and can be employed to study interface modes
in photonic structures with piecewise constant media in a general context.

Figure 1.5: Interface mode propagating along the interface of two perturbed honeycomb lattices.

Figure 1.6: Join photonic structures with a zigzag interface (left) and armchair interface (right).

1.3 Notations

Honeycomb lattice
Λ, Λ∗: the honeycomb lattice and its dual lattice.
K, K ′: high symmetry points in the Brillouin zone.
Λ̃∗ := K + Λ∗.
Cz: the fundamental cell of the honeycomb lattice for the zigzag interface.
e1, e2: generating vectors of the honeycomb lattice Λ with the fundamental cell Cz.
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Γl, Γr, Γt, Γb, the left, right, top and bottom sides of Cz. See Figure 2.1.
ν1, ν2: unit normal to Γl and Γb. See Figure 2.1.
β1, β2: generating vectors of the dual lattice Λ∗ with βi · ej = δij .
Ca: the fundamental cell of the honeycomb lattice for the armchair interface.
ea1, e

a
2: generating vectors of the honeycomb lattice with the fundamental cell Ca.

βa
1, β

a
2: generating vectors of the dual lattice with eai · eaj = δij .

D∗: the reference inclusion with required symmetries.
D(η) := ηD∗.
D := D(η0) with a sufficiently small η0.
Dε: the domain obtained by rotating D by an angle of ε counterclockwise.

Layer potentials defined over the inclusion boundary
S0[ϕ](x): single layer potential with Green function for free space Laplacian on ∂D∗, see (3.19).
S(η, λ,p): single layer potential with quasiperiodic Green function for Helmholtz equation on ∂D∗,
see (3.4).
T (ε, λ,p): single layer potential with quasiperiodic Green function for Helmholtz equation on ∂D,
where ε represents the orientation, see (4.1).

Infinite strips for joint honeycomb structures
ΩJ := ∪m∈Z (Cz +me1): the infinite strip for the joint honeycomb structure with a zigzag interface.
DJ,ε := (∪m≥0(D

ε +me1)) ∪ (∪m<0(D
−ε +me1)): the domain of inclusions located in ΩJ for the

joint honeycomb with the zigzag interface.
ΩJ,ε := ΩJ\DJ,ε.
Γ: the zigzag interface for the joint honeycomb structure.
Γ± := {±1

2e2 + ℓe1, ℓ ∈ R}: the top and bottom boundaries of the domain ΩJ .

ΩJ
a := ∪m∈Z (Ca +mea1): the infinite strip for the joint honeycomb structure with an armchair in-

terface.
DJ,ε

a := (∪m≥0(D
ε +mea1)) ∪ (∪m<0(D

−ε +mea1)): the domain of inclusions located in ΩJ
a for the

joint honeycomb with the armchair interface.

ΩJ,ε
a := ΩJ

a\DJ,ε
a .

Γa: the armchair interface restricted on ΩJ
a .

Γa
± := {±1

2e
a
2 + ℓea1, ℓ ∈ R}: the top and bottom boundaries of ΩJ

a .
k∗∥ = K · e2 = 4π

3 , k∗∥
′ = K ′ · e2 = −4π

3 , k∗,a∥ = K · ea2 = 2π.

Energies and modes
wi, i = 1, 2: Bloch modes with quasimomentum K at the Dirac point energy λ∗. See Theorem 2.1.
λn,ε(p(ℓ)): dispersion energies that are numbered from small to large.
un,ε(x;p): Bloch modes at energy λn,ε(p(ℓ)).
µn,ε(p(ℓ)): dispersion energies that are smooth along p(ℓ).
vn,ε(x;p(ℓ)): Bloch modes at energy µn,ε(p) that are smooth along p(ℓ).
λn, un, µn and vn: abbreviations of λn,0, un,0, µn,0 and vn,0. See Section 5.1.

v⃗i :=

(
vi|Γ
∂nvi|Γ

)
, i = 1, 2,, see (7.2)

u1 := v⃗1 + iv⃗2, u2 := v⃗1 − iv⃗2..

Green functions
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Gf (x,y;λ,p): quasi-periodic Green function for the Helmholtz equation in R2; see (3.1).
Gε(x,y;λ): Green function for the Helmholtz equation in R2\ ∪n1,n2∈Z (Dε + n1e1 + n2e2) that is
quasiperiodic in e2, see (5.25).

Layer potentials over the interface of the joint honeycomb lattice
Sε, Dε, K∗,ε, Kε, N ε: layer potentials over interface Γ, with the kernel Gε(x,y;λ).
Tε, Tε

s, Tε
t , Tε

n: matrix operators with layer potentials over Γ with the kernel Gε(x,y;λ).
Ω0, S̃0(λ∗), D̃0(λ∗), K̃0(λ∗), K̃∗,0(λ∗) and Ñ 0(λ∗): layer potentials over Γ, with kernel G̃0(x,y;λ).
T̃0(λ∗): matrix operator with layer potentials over Γ with kernel G̃0(x,y;λ).

Function spaces
(2.15)

HJ,ε :=
{
u ∈ H1(ΩJ,ε) : ∆u ∈ L2(ΩJ,ε), u = 0 on ∂DJ,ε,

u(x+ e2) = e
ik∗∥u(x) for x ∈ Γ−, ∂ν2u(x+ e2) = e

ik∗∥∂ν2u(x) for x ∈ Γ−
}
,

(2.19)

HJ,ε
a :=

{
u ∈ H1(ΩJ,ε

a ) : ∆u ∈ L2(ΩJ,ε
a ), u = 0 on ∂DJ,ε

a ,

u(x+ e2) = e
ik∗,a∥ u(x) for x ∈ Γa

−, ∂ν2u(x+ ea2) = e
ik∗,a∥ ∂ν2u(x) for x ∈ Γa

−
}
.

(3.8)
Hs

i (∂D) :=
{
ϕ ∈ Hs(∂D);Rϕ(x) := ϕ(R−1x) = τ iϕ(x)

}
, i = 0, 1, 2.

(5.1)

Hε
loc := {u ∈ H1

loc(Ω
ε) : ∆u ∈ L2

loc(Ω
ε), u = 0 on ∪m∈Z (∂Dε +me1),

u(x+ e2) = e
ik∗∥u(x) for x ∈ Γ−, ∂ν1u(x+ e2) = e

ik∗∥∂ν1u(x) for x ∈ Γ−}.

(5.3)

Hε(ℓ) := {u ∈ H1(Cz\D) : ∆u ∈ L2(Cz\Dε), u = 0 on ∂Dε,

u(x+ e2) = e
ik∗∥u(x) for x ∈ Γb, ∂ν2u(x+ e2) = e

ik∗∥∂ν2u(x) for x ∈ Γb

u(x+ e1) = ei(K+ℓβ1)·e1u(x) for x ∈ Γl, ∂ν1u(x+ e1) = ei(K+ℓβ1)·e1∂ν1u(x) for x ∈ Γl}.

(5.7)

H1(∆, Cz\Dε) := {u ∈ H1(Cz\Dε) : ∆u ∈ L2(Cz\Dε), u = 0 on ∂Dε,

u(x+ e2) = e
ik∗∥u(x) for x ∈ Γb, ∂ν2u(x+ e2) = e

ik∗∥∂ν2u(x) for x ∈ Γb}.

(5.17)

Hs(Γ) :=

{
u(x0 + te2) =

∑
n∈Z

ane
ik∗∥tei2πnt : ∥u∥2Hs(Γ) :=

∑
n∈Z

|an|2(1 + |n|2)s/2
}
.
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2 Main results

The first main result of this work is the existence and asymptotic analysis of Dirac points for a
family of honeycomb lattices of impenetrable obstacles with Dirichlet boundary conditions. We
assume that the shape of each obstacle in the honeycomb lattice attains 120◦-rotation symmetry
and horizontal reflection symmetry. The second main result is the existence and the number of
interface modes for a joint photonic structure formed by gluing two lattices perturbed from the
honeycomb lattice attaining Dirac points along an interface. Our results cover the case of a zigzag
interface, an armchair interface, and a rational interface. These interface modes are quasi-periodic
along the direction of the interface but decay in the direction transverse the interface direction.
We also derive the dispersion relation of the interface modes with respect to the quasi-momentum
along the interface.

2.1 The honeycomb lattice of impenetrable obstacles

As illustrated in Figure 1.1, an infinite array of impenetrable obstacles are arranged periodically
over the honeycomb lattice

Λ := Ze1 ⊕ Ze2 := {ℓ1e1 + ℓ2e2 : ℓ1, ℓ2 ∈ Z},

wherein the lattice vectors

e1 = a(

√
3

2
,−1

2
)T , e2 = a(

√
3

2
,
1

2
)T .

In what follows, without loss of generality, we assume that the lattice constant a = 1. Let

Cz := {ℓ1e1 + ℓ2e2 : ℓ1, ℓ2 ∈ [−1/2, 1/2)} (2.1)

be the fundamental cell of the lattice. LetD∗ ⊂⊂ Cz be a connected smooth domain that is invariant
under the 2π

3 -rotation transform R and the horizontal reflection transform F given by

Rx :=

(
−1

2

√
3
2

−
√
3
2 −1

2

)
x, F (x1, x2) = (−x1, x2). (2.2)

Denote the scaled inclusion D(η) := {x = ηx′,x′ ∈ ∂D∗} for η ∈ (0, 1).
Let

Λ∗ = {2πℓ1β1 + 2πℓ2β2 : ℓ1, ℓ2 ∈ Z},
be the reciprocal lattice, where the reciprocal lattice vectors

β1 = (
1√
3
,−1)T , β2 = (

1√
3
, 1)T (2.3)

satisfy ei · βj = δij , i, j = 1, 2. The hexagon-shaped fundamental cell in Λ∗, or the Brillouin zone,
is denoted by Bz as shown in Figure 2.1 (right). The high symmetry points located at the vertices
of the Brillouin zone are given by

K := 2π(
1√
3
,
1

3
) = 2π(

1

3
β1 +

2

3
β2), K

′ := −K, RK, R2K, RK ′ and R2K ′.
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ΓtΓl

ΓrΓb

Cz

e2

e1

ν1 = n

ν2

1

Figure 2.1: The fundamental cell Cz (left) and the Brillouin zone (right).

2.2 Dirac points for the honeycomb lattice

Following the Floquet-Bloch theory [51], for each p ∈ Bz, we consider the following eigenvalue
problem:

−∆u(x;p)− λu(x;p) = 0, x ∈ Cz\D(η) + Λ,

u(x;p) = 0, x ∈ ∂D(η) + Λ,

u(x+ e;p) = eip·eu(x;p), for e ∈ Λ.

(2.4)

For each p, the eigenvalues can be ordered by λ1(p) ≤ λ2(p) ≤ · · · ≤ λn(p) ≤ · · · . As p varies in
the Brillouin zone Bz, one obtains the band structure of the honeycomb lattice.

We define the η2-vicinity of |K|:

Uη :=

{
λ ∈ C :

(2π)2

3|Cz|
aη2 ≤

∣∣λ− |K|2
∣∣ ≤ (2π)2

|Cz|
aη2
}
. (2.5)

where a ̸= 0 is a complex number defined by (3.22). The main results regarding the Dirac points
at p = K and K ′ are stated below.

Theorem 2.1. If Assumption 3.2 holds, then for η sufficiently small but nonzero, there exists a
Dirac point at (K,λ∗) in the band structure of the honeycomb lattice D(η) + Λ with λ∗ ∈ Uη. The
dispersion surface near (K,λ∗) takes the form

(λ− λ∗)
2 = m2

∗ |p−K|2 +O(|p−K|3), m∗ ∈ R, m∗ ≥ 0, (2.6)

where the slope of the Dirac cone is

m∗ =
2

3
(1 +O(η)). (2.7)

In addition, the basis of the eigenspace at the Dirac point (K,λ∗) can be chosen as w1 and w2 that
satisfy

Rw1(x) := w1(R
−1x) = τw1(x), Rw2(x) := w2(R

−1x) = τw2(x), w2(x) = Fw1(x) := w1(Fx),
(2.8)

in which τ = ei
2π
3 .
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Remark 2.2. Recall that R and F defined in (2.2) denote the 2π
3 -rotation operation and the hori-

zontal reflection operation acting on vectors in R2. Here and henceforth, for convenience of nota-
tion, we also use R and F to denote the rotation and reflection operators acting on functions. The
meaning of the notations should be clear in the context, depending on whether they are applied to
vectors or functions.

Remark 2.3. In this work, we only prove the existence of Dirac points for the first two bands and
when η ≪ 1. It can be shown that Dirac points also exist for higher bands and for η not small.
This is not the focus of this work and will be reported separately elsewhere.

Corollary 2.4. For η ≪ 1, (K ′, λ∗) is also a Dirac point with the corresponding eigenspace spanned
by

w′
1(x) := w̄2(x), w′

2(x) := w̄1(x), (2.9)

which attain the following symmetry relations:

Rw′
1(x) := w′

1(R
−1x) = τw′

1(x), Rw′
2(x) := w′

2(R
−1x) = τw′

2(x), w′
2(x) = w′

1(Fx). (2.10)

2.3 Band-gap opening at Dirac points

The existence of Dirac points as established in the previous subsection is due to the 2π
3 -rotation

symmetry and the horizontal reflection symmetry of the lattice structure. Under suitable pertur-
bations that break one of these symmetries, the Dirac points will disappear and a bandgap can be
opened therein. We show that this is indeed the case when the obstacles in the honeycomb lattice
are rotated to their centers with an angle of ±ε (cf. Figure 1.2) so that the horizontal reflection
symmetry of the lattice structure is broken.

In subsequent analysis, we fix D = D(η0) by fixing a small enough η0 > 0 such that Theo-
rem 2.1 holds for D(η0). Denote by D±ε the domain obtained by rotating D by an angle of ±ε
counterclockwise. We consider the following eigenvalue problem for each p ∈ Bz:

.

−∆u±ε(x;p)− λu±ε(x;p) = 0, x ∈ Cz\D±ε + Λ,

u±ε(x;p) = 0, x ∈ ∂D±ε + Λ,

u±ε(x+ e;p) = eip·eu±ε(x;p), for e ∈ Λ.

(2.11)

Theorem 2.5. Let the constants t∗ and γ∗ be defined as in (4.8) and assume t∗ > 0. Then the
following dispersion relations hold for p near K and λ near λ∗:

λ1,±ε(p) = λ∗ −
1

|γ∗|
√
ε2t2∗ +m2

∗|γ∗|2|p−K|2
(
1 +O(ε, |p−K|)

)
,

λ2,±ε(p) = λ∗ +
1

|γ∗|
√
ε2t2∗ +m2

∗|γ∗|2|p−K|2
(
1 +O(ε, |p−K|)

)
.

(2.12)

In addition, the corresponding Bloch modes at p = K attain the following expansions:

u1,ε(x;K) = w1 +O(ε), u2,ε(x;K) = w2 +O(ε)

u1,−ε(x;K) = w2 +O(ε), u2,−ε(x;K) = w1 +O(ε),
(2.13)

in which w1 and w2 are defined in Theorem 2.1.
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Theorem (2.5) can be concluded from Proposition 4.3 with ℓ = 0. From the symmetry of the
lattice, similar expansions hold for p near K ′ and λ near λ∗. In view of (2.12), when ε ̸= 0,
there holds λ1,±ε(p) < λ2,±ε(p) for p near K, thus a spectral gap is opened. The expansion (2.13)
demonstrates the swap of the eigenspace at p = K when the obstacles are rotated with the opposite
rotation parameter ±ε.

Remark 2.6. The assumption that t∗ ̸= 0 can be verified numerically for the structure considered
in this work.

2.4 Interface modes for the joint photonic structure along a zigzag interface

We investigate interface modes for the joint photonic structure with the zigzag interface shown in
Figure 2.2. The obstacles are rotated with an angle of −ε and ε about the origin respectively for
the semi-infinite honeycomb lattice on the left and right side of the interface.

Note that the direction of the interface is parallel to e2. Employing the Floquet theory along
e2, we can restrict our studies to the infinite strip ΩJ := ∪m∈Z (Cz +me1), which is a fundamental
period of the joint photonic structure along the interface direction. Inside the strip ΩJ , the region
occupied by the inclusions is denoted by

DJ,ε := (∪m≥0(D
ε +me1)) ∪

(
∪m<0(D

−ε +me1)
)
,

and the region exterior to the inclusions is denoted by ΩJ,ε := ΩJ\DJ,ε. We also denote the lower
boundary of the infinite strip ΩJ by Γ− := {−1

2e2 + ℓe1, ℓ ∈ R}, then the upper boundary of the

strip is Γ+ = e2 + Γ−. The normal direction on Γ± is ν2 = (12 ,
√
3
2 ).

Figure 2.2: Joined photonic structure with a zigzag interface.

An interface mode u ∈ L2(ΩJ,ε) for the joint photonic structure solves the following spectral
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problem:
−∆u− λu = 0, in ΩJ,ε,

u = 0, on ∂DJ,ε,

u(x+ e2) = eik∥u(x), x ∈ Γ−

∂ν2u(x+ e2) = eik∥∂ν2u(x), x ∈ Γ−.

(2.14)

In the above, k∥ ∈ (0, 2π) is the quasi-momentum of the interface modes along the interface, and
∂ν2 is normal derivative to Γ−.

We first focus on interface modes with the quasi-momentum k∗∥ = K ·e2 = 4π
3 by projecting the

Bloch wave vector K onto the direction of the interface e2. Namely, we investigate the interface
modes bifurcated from the Dirac point (K,λ∗). The interface modes with other quasi-momenta
will be discussed in Section 2.6. To this end, we introduce the following function space

HJ,ε :=
{
u ∈ H1(ΩJ,ε) : ∆u ∈ L2(ΩJ,ε), u = 0 on ∂DJ,ε,

u(x+ e2) = e
ik∗∥u(x) for x ∈ Γ−, ∂ν2u(x+ e2) = e

ik∗∥∂ν2u(x) for x ∈ Γ−
}
.

(2.15)

Then an interface mode u ∈ L2(ΩJ,ε) satisfies

−∆u− λu = 0 in ΩJ,ε and u ∈ HJ,ε. (2.16)

Assumption 2.7 (The no-fold condition along the direction β). Let β ∈ R2 be a fixed Bloch
wave vector and λ∗ be the energy of the Dirac point at K and K ′ introduced in Theorem 2.1. For
p ∈ {K+ℓβ, ℓ ∈ R}, the band energy of (2.4) takes the value λ∗ only when p ∈ (K+Λ∗)∪(K ′+Λ∗).

-2 2
-2 2

Figure 2.3: The band structure of the spectral problem (2.4) for p ∈ {K+ ℓβ, ℓ ∈ [−2π, 2π]}. Left:
β = β1 := ( 1√

3
,−1)T ; Right: β = βa

1 := (0,−2)T .

Remark 2.8. The above no-fold condition holds for the configuration of the periodic structures
considered in this work. Indeed, the first two bands of the spectral problem (2.4) touch at the
Dirac point (K,λ∗). Moreover, the energy λ∗ is the maximum of the eigenvalues for the first band
and the minimum of the eigenvalues for the second band. This can be rigorously proved when the
inclusion size η is small by using the layer potential technique and asymptotic analysis. The general
case, when η is not necessarily small, is beyond the scope of this work. Instead, we demonstrate
numerically the no-fold conditions in Figure 2.3 that are used in Theorems 2.9 and 2.12, wherein
β = β1 and βa

1 respectively.
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Theorem 2.9. Let Assumption 2.7 hold along the reciprocal lattice vector β1. Let t∗ and γ∗ be
the two constants defined in (4.8) and assume that t∗ ̸= 0. Let d be an arbitrary constant in (0, 1).
For sufficiently small positive ε, there exists a unique interface mode u ∈ L2(ΩJ,ε) satisfying (2.16)
with the corresponding eigenvalue λ ∈ (λ∗ − d| t∗γ∗ |ε, λ∗ + d| t∗γ∗ |ε). In addition, the interface mode u
decays exponentially as |x · e1| → ∞.

Define the quasi-momentum k∗∥
′ = K ′ · e2 = −4π

3 . By the time-reversal symmetry of the
differential operator, the following corollary is a direct consequence of Theorem 2.9.

Corollary 2.10. Under the same assumptions as in Theorem 2.9, for sufficiently small positive
ε, there exists a unique interface mode u ∈ L2(ΩJ,ε) satisfying (2.14) with k∗∥

′ = −4π
3 and the

eigenvalue λ ∈ (λ∗ − d| t∗γ∗ |ε, λ∗ + d| t∗γ∗ |ε). Furthermore, u decays exponentially as |x · e1| → ∞.

Remark 2.11. Numerical experiment demonstrates that the interface mode persists for ε not small.
This will be analyzed rigorously in the future work.

2.5 Interface modes along an armchair interface

We consider interface modes for the joint photonic structure with an armchair interface as shown
in Figure 2.4. The inclusions above the interface are rotated to their centers with an angle of −ε,
while the ones below are roated with an angle of ε. Note that the direction of the interface is along
the x1 axis, we rewrite the honeycomb lattice equivalently as

Λ := Zea1 ⊕ Zea2 := {ℓ1ea1 + ℓ2e
a
2 : ℓ1, ℓ2 ∈ Z},

in which the lattice vectors are given by

ea1 = e1 = (

√
3

2
,−1

2
)T , ea2 := e1 + e2 = (

√
3, 0)T . (2.17)

Correspondingly, the fundamental periodic cell is

Ca := {ℓ1ea1 + ℓ2e
a
2 : ℓ1, ℓ2 ∈ [−1/2, 1/2)}, (2.18)

and the reciprocal lattice vectors are

βa
1 = (0,−2)T , βa

2 = (
1√
3
, 1)T .

We assume that the inclusions D and D±ε are strictly included in the cell Ca. Similar to the zigzag
interface, we introduce the infinite-strip domain ΩJ

a := ∪m∈Z (Ca +mea1) as the fundamental period
for the joint photonic structure, which consists of the inclusions DJ,ε

a := (∪m≥0(D
ε +mea1)) ∪

(∪m<0(D
−ε +mea1)) and their complement ΩJ,ε

a := ΩJ
a\DJ,ε

a .
We now investigate the interface modes bifurcated from the Dirac point (K,λ∗) that propagate

along the interface direction ea2 with the quasi-momentum k∗,a∥ = K ·ea2 = 2π. Correspondingly, we
define the function space

HJ,ε
a :=

{
u ∈ H1(ΩJ,ε

a ) : ∆u ∈ L2(ΩJ,ε
a ), u = 0 on ∂DJ,ε

a ,

u(x+ e2) = e
ik∗,a∥ u(x) for x ∈ Γa

−, ∂ν2u(x+ ea2) = e
ik∗,a∥ ∂ν2u(x) for x ∈ Γa

−
}
.

(2.19)
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Figure 2.4: Join photonic structure with an armchair interface.

Here Γa
− := {−1

2e
a
2 + ℓea1, ℓ ∈ R} is the lower boundary of the strip ΩJ

a . Then an interface mode
with the quasimomentum k∗,a∥ = 2π and energy λ solves

−∆u− λu = 0 in ΩJ,ε
a for u ∈ HJ,ε

a . (2.20)

Note that the quasi-momenta p satisfying p · ea2 = K · ea2 lies on the line p(ℓ) = K + ℓβa
1 for

ℓ ∈ R. We have the following results similar to Theorem 2.9 for the spectral problem (2.20).

Theorem 2.12. Let Assumption 2.7 hold along the reciprocal lattice vector βa
1. Let t∗ and γ∗ be

the two constants defined in (4.8) and assume that t∗ ̸= 0. Let d be an arbitrary constant in (0, 1).
For sufficiently small positive ε, there exist exactly two interface modes with k∗,a∥ = 2π, with the

corresponding eigenvalues λ± ∈ (λ∗ − d| t∗γ∗ |ε, λ∗ + d| t∗γ∗ |ε). In addition, both interface modes decay
exponentially as |x · ea1| → ∞.

2.6 Dispersion relations of the interface modes

We consider interface modes with quasi-momentum k∥ near k∗∥ or k∗,a∥ . In particular, we derive the

leading order of the dispersion relation λ(k∥) for the interface modes along a zigzag or armchair
interface for k∥ near k∗∥ or k∗,a∥ . The dispersion curve λ(k∥) over the whole Bloch interval [0, 2π] for
both configurations are shown in Figure 2.5.

Theorem 2.13. Let the assumptions in Theorem 2.9 hold and d be an arbitrary constant in (0, 1).
If ε > 0 is sufficiently small and |k∥ − k∗∥| < dε| γ∗

t∗m∗
|, the eigenvalue of the interface mode of the

spectral problem (2.14) is given by λ− λ∗ = sgn(t∗) ·m∗(k∥ − k∗∥) ·
(
1 + o(1))

)
.

Theorem 2.14. Let the assumptions in Theorem 2.12 hold and d be an arbitrary constant in (0, 1).
If ε > 0 is sufficiently small and |k∥−k∗,a∥ | <

√
3dε| γ∗

t∗m∗
|, the eigenvalues of the two interface modes

along the armchair interface are λ± − λ∗ = ± 1√
3
m∗(k∥ − k∗,a∥ ) ·

(
1 + o(1))

)
.

15



0 2 3

Figure 2.5: The dispersion relations for the interface modes along the zigzag (left) and armchair
interface (right).

2.7 Interface modes along rational interfaces

We extend the previous studies to interface modes along a rational interface separating two hon-
eycomb photonic structures. A rational interface is a line with a direction

ae1 + be2, (2.21)

where a and b are relatively prime integers. When a and b are relatively prime, there exist c, d ∈ Z,
such that bc− ad = 1 and (

c a
d b

)−1

=

(
b −a
−d c

)
.

Therefore, the vectors
er1 = ce1 + de2, er2 = ae1 + be2 (2.22)

generate the honeycomb lattice. Correspondingly, the reciprocal vectors

(βr
1 βr

2) = (β1 β2)

((
c a
b d

)−1
)T

= (β1 β2)

(
b −d
−a c

)
(2.23)

generate the dual lattice.
We call an interface direction er2 := ae1 + be2 of the zigzag type if the dual slice {p(ℓ) =

K+ℓβr
1, ℓ ∈ R} intersects with K+Λ∗ but not with K ′+Λ∗, and is of armchair if the slice intersects

with both K + Λ∗ and K ′ + Λ∗. A straightforward calculation shows that K + ℓβr
1 ∈ K ′ + Λ∗ if

and only if a− b = 3k for some k ∈ Z.

Definition 2.15. The direction er2 := ae1 + be2 is called a rational if a and b are relatively prime
integers. The rational interface is of zigzag type if a− b ̸= 3k for all k ∈ Z, and is of armchair type
if a− b = 3k for some k ∈ Z.
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Let the inclusionD and all of its rotations be compactly supported in the cell Cr := {ℓ1er1+ℓ2er2 :
ℓ1, ℓ2 ∈ [−1/2, 1/2)}. We prove that the analog of Theorem 2.9 - Theorem 2.14 holds in the case
of rational interfaces for the zigzag and armchair types. More specifically,

Denote

fr = B − A

|A|2Re(AB̄), (2.24)

wherein
A = b− aτ̄ , B = −d+ cτ̄ . (2.25)

Then if the rational interface er2 is of zigzag type, we have the following theorem.

Theorem 2.16. Let er2 be a rational edge of zigzag type and let Assumption 2.7 hold along the
reciprocal lattice vector βr

1. Let t∗ and γ∗ be the two constants defined in (4.8) and assume that
t∗ ̸= 0. Let d be an arbitrary constant in (0, 1). If ε > 0 is sufficiently small, then

(i) There exists a unique interface mode along the interface, with the quasi-momentum k∗∥ = K ·er2
and the eigenvalue λ ∈ (λ∗ − d| t∗γ∗ |ε, λ∗ + d| t∗γ∗ |ε)).

(ii) For |k∥ − k∗∥| < dε|γ∗t∗ |/(|f
r|

√
3
2 m∗), the dispersion relation for the interface mode adopts the

expansion λ− λ∗ = sgn(t∗) · |fr| ·
√
3
2 m∗ · (k∥ − k∗∥) ·

(
1 + o(1))

)
.

If the rational interface er2 is of armchair type, we have the following theorem.

Theorem 2.17. Let er2 be a rational edge of armchair type and let Assumption 2.7 hold along the
reciprocal lattice vector βr

1. Let t∗ and γ∗ be the two constants defined in (4.8) and assume that
t∗ ̸= 0. Let d be an arbitrary constant in (0, 1). If ε > 0 is sufficiently small, then

(i) There exist exactly two interface modes along the interface, with the quasi-momentum k∗,r∥ =

K · er2 and the eigenvalues λ± ∈ (λ∗ − d| t∗γ∗ |ε, λ∗ + d| t∗γ∗ |ε).

(ii) For |k∥− k∗,r∥ | < dε|γ∗t∗ |/(|f
r|

√
3
2 m∗), the dispersion relations for the interface modes adopt the

expansions λ− λ∗ = ±|fr| ·
√
3
2 m∗ · (k∥ − k∗,r∥ ) ·

(
1 + o(1))

)
.

2.8 Extension of results to other settings

We note that the method and framework developed in this paper can be extended to other settings:

(1) There are multiple inclusions in one periodic cell;

(2) The inclusions are penetrable such that the medium coefficient is piecewise constant;

(3) The topological phase transition is induced by perturbations that break either the inversion
symmetry or the time-reversal symmetry.

3 Dirac points for the honeycomb lattice

In this section, we prove Theorem 2.1 regarding the Dirac points by the layer potential technique.

17



3.1 Integral equation formulation

In this subsection, we formulate the spectral problem for the honeycomb structure by using bound-
ary integral equations. For each p ∈ Bz, let G

f (x,y;p, λ) be the quasi-periodic Green function
over the honeycomb lattice that solves

(−∆− λ)Gf (x,y;p, λ) =
∑
e∈Λ

eip·eδ(x− y − e) for x,y ∈ R2. (3.1)

Define the single-layer potential

u(x;p) :=

∫
∂D(η)

Gf (x,y;λ,p)ϕ̃(y) dsy,

wherein the density function ϕ̃ ∈ H−1/2(∂D(η)). Then it can be shown that u solves the eigenvalue
problem (2.4) if and only if ϕ̃ ∈ H−1/2(∂D(η)) solves the following boundary integral equation:∫

∂D(η)
Gf (x,y;λ,p)ϕ̃(y) dsy = 0, x ∈ ∂D(η). (3.2)

Define ϕ(x) := ϕ̃(ηx). Then a point (p, λ) belongs to the dispersion surface of the honeycomb
lattice if and only if the triple (λ,p, ϕ) ∈ R× Bz ×H−1/2(∂D∗) solves the integral equation

S(η, λ,p)[ϕ] = 0, (3.3)

where the single-layer integral operator

S(η, λ,p)[ϕ](x) :=
∫
∂D∗

Gf (ηx, ηy;λ,p)ϕ(y) dsy x ∈ ∂D∗. (3.4)

In the rest of this section, we investigate the characteristic values of the integral operator S(η, λ,p)
when p = K.

3.2 Symmetry of the integral operator

In this subsection, we establish symmetry properties of the integral operator S(η, λ,p). Note that
the Green function satisfying (3.1) can be represented by the lattice sum (cf. [2])

Gf (x,y;λ,p) =
i

4

∑
e∈Λ

eip·eH
(1)
0 (ω|x− y − e|), (3.5)

where H
(1)
0 is the zero-order Hankel function of the first kind. More precisely,

i

4
H

(1)
0 (ω;x) = − 1

2π

ln |x|+ lnω + γ0 + ln(ω|x|)
∑
p≥1

bp,1(ω|x|)2p +
∑
p≥1

bp,2(ω|x|)2p
 , (3.6)

where

bp,1 =
(−1)p

22p(p!)2
, bp,2 =

(
γ0 −

p∑
s=1

1

s

)
bp,1, γ0 = E0 − ln 2− iπ

2
,
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and E0 = lim
N→∞

 N∑
p=1

1

p
− lnN

 is the Euler constant. The Green function also attains the following

spectral decomposition (cf. [2]):

Gf (x,y;λ,p) = − 1

|Cz|
∑
q∈Λ∗

ei(p+q)·(x−y)

λ− |p+ q|2 , (3.7)

wherein |Cz| =
√
3
2 represents the area of the fundamental cell Cz.

Recall that Hs(∂D∗) is the Sobolev space of order s defined on ∂D∗. Note that the transfor-

mation Rϕ(x) := ϕ(R−1x) is unitary and it attains three eigenvalues 1, τ and τ2, where τ = ei
2π
3 .

Define
Hs

i (∂D∗) :=
{
ϕ ∈ Hs(∂D∗) : Rϕ(x) := ϕ(R−1x) = τ iϕ(x)

}
, i = 0, 1, 2. (3.8)

These subspaces are pairwise orthogonal under the L2(∂D∗) inner product and there holds

Hs(∂D∗) = Hs
0(∂D∗)

⊕
Hs

1(∂D∗)
⊕

Hs
2(∂D∗).

In addition, using the relation RF = FR2, we have FHs
1(∂D) = Hs

2(∂D).
Define

Λ̃∗ := K + Λ∗. (3.9)

A straightforward calculation shows that

RΛ̃∗ = Λ̃∗, F Λ̃∗ = Λ̃∗. (3.10)

Here we have used

Rβ1 = −β1 − β2 Rβ2 = β1, Fβ1 = −β2, Fβ2 = −β1, (3.11)

and

K = 2π(
2

3
β1 +

1

3
β2), RK = K − β2, FK = K − β1 − β2. (3.12)

Lemma 3.1. Let p = K, then the following holds for the integral operator S(η, λ,K):

(i) The operator S(η, λ,K) commutes with R and F . That is,

RS(η, λ,K) = S(η, λ,K)R and FS(η, λ,K) = S(η, λ,K)F.

(ii) The operator S(η, λ,K) is bounded from H
−1/2
i (∂D∗) to H

1/2
i (∂D∗) (i = 0, 1, 2) for all η and

λ.

(iii) The triple (p, λ, ϕ) ∈ H
−1/2
1 (∂D∗) solves (3.3) if and only if the triple point (p, λ, ϕ(F (·)) ∈

H
−1/2
2 (∂D∗) solves (3.3).

Proof. For Statement (i), in light of (3.7) and (3.10), we have

S(η, λ,K)[Rϕ](x) = − 1

|Cz|

∫
∂D∗

∑
m∈Λ̃∗

1

λ− |m|2 e
im·(x−y)ϕ(R−1y) dsy,
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and

RS(η, λ,K)[ϕ](x) = − 1

|Cz|

∫
∂D∗

∑
m∈Λ̃∗

1

λ− |m|2 e
im·(R−1x−y)ϕ(y) dsy

= − 1

|Cz|

∫
∂D∗

∑
m∈Λ̃∗

1

λ− |m|2 e
iRm·(x−y′)ϕ(R−1y′) dsy′ = S(η, λ,K)[Rϕ](x).

In the above, we have used R(∂D∗) = ∂D∗, |Rm| = |m| and RΛ̃∗ = Λ̃∗. The relation

S(η, λ,K)[Fϕ](x) = FS(η, λ,K)[ϕ](x)

can be shown similarly using the relation F Λ̃∗ = Λ̃∗.
Statement (ii) follows from the standard layer potential theory; see for instance [2].

Statement (iii) is a consequence of the relation RF = FR2, which implies ϕ(x) ∈ H
−1/2
1 (∂D∗)

if and only if ϕ(Fx) ∈ H
−1/2
2 (∂D∗).

3.3 Dirac points in the lowest two bands

In this subsection, we establish the existence of Dirac points in the lowest two bands. In view
of (3.5) and (3.7), when p = K, the Green function Gf (x,y;λ,K) attains singularities around
|x − y| = 0 and λ = |m|2 for each m ∈ Λ̃∗. The singularity for the former arises naturally when
the source point y and the target point x overlap, while the latter occurs at special frequencies
λ = |m|2 when the spectral decomposition (3.7) is not well-defined.

As to be shown below, the Dirac point at K with the lowest energy λ appears when λ ≈ |m1|2,
where m1 ∈ Λ̃∗ attains the smallest norm among all lattice points in Λ̃∗. A straightforward
calculation shows that

|m1| = |K|, {m ∈ Λ̃∗, |m| = |m1|} = K + {q1,q2,q3} ,
in which

q1 = (0, 0)T , q2 = 2π(− 2√
3
, 0)T , q3 = 2π(− 1√

3
,−1)T .

We now perform asymptotic expansion of the operator S(η, λ,K) for λ ≈ |m1|2 = |K|2. To this
end, we derive the expansion for Green’s function Gf (ηx, ηy;λ,K) when η is small. For simplicity
we consider Gf (ηx, 0;λ,K) instead, since Gf (ηx, ηy;λ,K) = Gf (η(x−y), 0;λ,K). From the above
discussions, the Green function Gf (ηx, 0;λ,K) attains singularities when x = 0 or λ = |m|2 for
some m ∈ Λ̃∗, and those terms contributing to the singularities are the leading-order terms in the
expansion of Gf (ηx, 0;λ,K).

From the lattice sum (3.5), the singularity at x = 0 arises from the term i
4H

(1)
0 (ηx;λ) with

e = (0, 0)T . Using the expansion

i

4
H

(1)
0 (ηx;λ) = − 1

2π

ln |x|+ ln η + ln
√
λ+ γ0 +

(
ln(

√
λ|x|) + ln η

)∑
p≥1

bp,1(
√
λη|x|)2p +

∑
p≥1

bp,2(
√
λη|x|)2p

 ,

we define the leading-order term by L1(ηx;λ) and the remainder by R1(ηx;λ) as follows:

L1(ηx;λ) := − 1

2π

(
ln |x|+ ln η + ln

√
λ+ γ0

)
,

R1(ηx;λ) := − 1

2π

(ln(
√
λ|x|) + ln η)

∑
p≥1

bp,1(
√
λη|x|)2p +

∑
p≥1

bp,2(
√
λη|x|)2p

 .
(3.13)
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From the spectral decompostion (3.7), the singularity at λ ≈ |m1|2 arises from the terms

− 1

|Cz|
∑

K+q∈[m1]

ei(p+q)·x

λ− |p+ q|2 = − 1

|Cz|
∑

K+q∈[m1]

ei(p+q)·x

λ− |p+ q|2

= − 1

|Cz|
1

λ− |m1|2

3− 1

3
(2π)2(η|x|)2 +

∑
j≥3,k=1,2,3

(i(K + qk) · ηx)j
j!

 .

We consider λ in the η2-neighborhood of |m1|2, namely, λ ∈ Uη where Uη is defined in (2.5).
Correspondingly, we define the leading-order term by L2(ηx;λ) and the remainder by R2(ηx;λ) as
follows:

L2(ηx;λ,K) := − 1

|Cz|
1

λ− |m1|2
(
3− 1

3
(2π)2(η|x|)2

)
,

R2(ηx;λ,K) := − 1

|Cz|
1

λ− |m1|2

 ∑
j≥3,k=1,2,3

(i(K + qk) · ηx)j
j!

 .

(3.14)

Finally, the smooth term in the Green’s function is denoted by

R0(ηx;λ) := Gf (ηx, 0;λ,K)− i

4
H

(1)
0 (ηx;λ) +

1

|Cz|
∑

K+q∈[m1]

ei(K+q)·x

λ− |K + q|2 . (3.15)

Using the above expansions for the Green’s function, we obtain the decomposition for the
integral operator S(η, λ,K):

S(η, λ,K) = L(η, λ,K) +R(η, λ,K), (3.16)

where the leading-order integral operator is

L(η, λ,K)ϕ(x) :=

∫
(L1(η(x− y);λ) + L2(η(x− y);λ,K))ϕ(y) dsy , (3.17)

and the remainder operator is

R(η, λ,K)ϕ(x) :=

∫
(R1(η(x− y);λ) +R2(η(x− y);λ,K) +R0(η(x− y);λ,K))ϕ(y) dsy . (3.18)

Let S0 : H−1/2(∂D∗) → H1/2(∂D∗) be the single layer potential associated with the Laplace
operator in free space defined by

S0[ϕ](x) :=

∫
∂D∗

− 1

2π
ln(|x− y|)ϕ(y) dsy. (3.19)

Assumption 3.2. The operator S0 : H
−1/2(∂D∗) → H1/2(∂D∗) is invertible.

Remark 3.3. According to [62, 71], the above assumption holds generically for a given geometry
of the inclusion D∗. Therefore, we assume that Assumption 3.2 holds throughout the paper.

Remark 3.4. The operator S0 defined in (3.19), and the operators L(η, λ0,K) and R(η, λ0,K)
commute with R and F .
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Lemma 3.5. When ϕ ∈ H
−1/2
1 (∂D∗),∫

∂D∗

ϕ(y) dsy = 0, (3.20a)∫
∂D∗

|y|2ϕ(y) dsy = 0, (3.20b)∫
∂D∗

yϕ(y) dsy ∈ span{(1, i)}, (3.20c)

and ∫
∂D∗

L2(η(x− y);λ,K)ϕ(y) dsy ∈ span{x1 + ix2}. (3.21)

Proof. Using Rϕ(y) = ϕ(R−1y) = τϕ(y), we have∫
∂D∗

ϕ(y) dsy =

∫
∂D∗

ϕ(R−1y′) dsy′ =

∫
∂D∗

τϕ(y′) dsy′ ,∫
∂D∗

|y|2ϕ(y) dsy =

∫
∂D∗

|R−1y′|2ϕ(R−1y′) dsy′ =

∫
∂D∗

|y′|2τϕ(y′) dsy′ .

Since τ ̸= 1, we obtain (3.20a) and (3.20b). Similarly,∫
∂D∗

yϕ(y) dsy =

∫
∂D∗

R−1y′ϕ(R−1y′) dsy′ =

∫
∂D∗

R−1y′τϕ(y′) dsy′ .

Denoting (a, b) :=
∫
∂D∗

yϕ(y) dsy, the above relation reads (a, b) = τR−1(a, b), which implies
(3.20c). Finally, (3.21) follows from (3.20a) - (3.20c).

Lemma 3.6. There exists a unique function ϕ∗ ∈ H−1/2(∂D∗) such that S0[ϕ∗](x) = x1 + ix2.

Moreover,

∫
∂D∗

yϕ∗(y) dsy = a (1, i) for some a ∈ C\{0}.

Proof. Noting that x1 + ix2 ∈ H
−1/2
1 (∂D∗), we deduce that ϕ∗ ∈ H

−1/2
1 (∂D∗) exists and is unique.

Combining with Lemma 3.5, we have

a :=

∫
∂D∗

x · yϕ∗(y) dsy
x1 + ix2

∈ C. (3.22)

To show a ̸= 0, we notice that

2a = (1,−i) ·
∫
∂D∗

yϕ∗(y) dsy = ⟨f,S−1
0 f⟩H1/2(∂D∗),H−1/2(∂D∗) ̸= 0, (3.23)

where f(x) = x1 + ix2. The inequality follows since ⟨·,S−1
0 ·⟩ is an equivalent inner product on

H1/2(∂D∗)×H1/2(∂D∗).

Lemma 3.7. When η is sufficiently small, the following statements hold for the operator L(η, λ,K) :

H
−1/2
1 (∂D∗) → H

1/2
1 (∂D∗):

(i) L(η, λ,K) is analytic in λ in a neighborhood of Uη.
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(ii) L(η, λ,K) is a Fredholm operator of index zero for λ ∈ Uη.

(iii) The only characteristic value of L(η, λ,K) located in Uη is given by

λ0 := |m1|2 +
1

|Cz|
2

3
(2π)2aη2.

Moreover,
Ker (L(η, λ0,K)) = span{ϕ∗},

wherein ϕ∗ is defined in (3.6).

(iv) The multiplicity of λ0 is 1.

(v) For λ ∈ ∂Uη, L−1(η, λ,K) exists and the norm ||L−1(η, λ,K)|| is bounded by a constant
indepent of η.

Proof. (i) is obvious from the definition of the operator in (3.13), (3.14) and (3.17).

(ii) From Lemma 3.5, L(η, λ,K) is the sum of S0 : H
−1/2
1 (∂D∗) → H

1/2
1 (∂D∗), which is Fredholm

of index zero [60], and a finite-rank operator whose range is in span{x1 + ix2}.
(iii). Using Lemma 3.5, we see that L(η, λ,K)[ϕ](x) = 0 implies S0ϕ = −L2(η, λ,K)[ϕ](x) ∈
span{x1 + ix2}, thus ϕ ∈ span{ϕ∗}. In addition, a straightforward calculation shows that

L(η, λ,p)[ϕ∗] = (x1 + ix2)

(
1− 1

|Cz|
1

λ− |m1|2
2

3
(2π)2η2a

)
.

Since a ̸= 0, L(η, λ,p)[ϕ∗] = 0 if and only if

λ = λ0 :=
1

|Cz|
2

3
(2π)2aη2 + |m1|2. (3.24)

(iv). Following the definitions in Appendix A, we assume that ϕ′ ∈ H
−1/2
1 (∂D∗) satisfies

d

dλ
L(η, λ0,K)[ϕ∗] + L(η, λ0,K)[ϕ′] = 0.

It can be shown that d
dλL(η, λ0,K)[ϕ∗] ∈ span{x1+ix2}. Using L2(η, λ,K)[ϕ′](x) ∈ span{x1+ix2},

we obtain S0ϕ
′ ∈ span{x1+ix2}, which implies that ϕ′ ∝ ϕ∗. On the other hand, it follows from (iii)

that L(η, λ0,K)[ϕ∗] = 0. Hence ϕ′ does not exist, ϕ∗ is of rank 1, and the multiplicity of λ0 is 1.

(v). For λ ∈ ∂Uη, L−1(η, λ,K) exists because L(η, λ,K) is Fredholm and has no characteristic
values on ∂Uη. When

∣∣λ− |K|2
∣∣ = 1

|Cz |
1
3(2π)

2aη2, there holds

L(η, λ,K)ϕ = S0ϕ+ eiθ
2

a
x ·
∫
∂D∗

yϕ(y) dsy, (3.25)

where θ ∈ R. When
∣∣λ− |K|2

∣∣ = 1
|Cz |(2π)

2aη2, there holds

L(η, λ,K)ϕ = S0ϕe
iθ 2

3a
x ·
∫
∂D∗

yϕ(y) dsy, (3.26)

where θ ∈ R. The operators above do not depend on η. Thus the norm of L−1(η, λ,K) for λ ∈ ∂Uη

is bounded by a constant that does not depend on η.
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Lemma 3.8. When η is sufficiently small, the following statements hold for the operator L(η, λ,K) :

H
−1/2
0 (∂D∗) → H

1/2
0 (∂D∗):

(i) L(η, λ,K) is analytic in λ in a neighborhood of Uη.

(ii) For λ ∈ Uη, L−1(η, λ,K) exists and the norm ∥L−1(η, λ,K)∥
H

−1/2
0 (∂D∗)→H

1/2
0 (∂D∗)

is bounded

by a positive constant independent of η.

(iii) L(η, λ,K) is a Fredholm operator of index zero for λ ∈ Uη.

Proof. (i) follows similar lines as in Lemma 3.7. For (ii), let f ∈ H
−1/2
0 (∂D∗) be the unique function

that satisfies S0f = 1. Since ⟨ϕ,S0ϕ⟩∂D∗ is equivalent to ∥ϕ∥2
H−1/2(∂D∗)

, we know∫
∂D∗

f(x) dsx = C1 > 0, (3.27)

where C1 is a constant. Thus for every ϕ ∈ H
−1/2
0 (∂D∗), we have the decomposition

ϕ =
ϕ̄

C1
f + g, (3.28)

where ϕ̄ =
∫
∂D∗

ϕ(x) dsx, and
∫
∂D∗

g(x) dsx = 0.

Since L(η, λ,K) is symmetric and ⟨ϕ,S−1
0 ϕ⟩∂D∗ is equivalent to ∥ϕ∥2

H1/2(∂D∗)
, we calculate

∣∣∣∣ ⟨ϕ,L(η, λ,K)ϕ⟩∂D∗

⟨S−1
0 L(η, λ,K)ϕ,L(η, λ,K)ϕ⟩∂D∗

∣∣∣∣ =
∣∣∣∣∣ − ln η

2π |ϕ̄|2(1 + o(1)) + ⟨g,S0g⟩∂D∗(1 + o(1))

C1(
ln η
2π )2|ϕ̄|2(1 + o(1)) + ⟨g,S0g⟩∂D∗(1 + o(1))

∣∣∣∣∣ . (3.29)

Thus when η is sufficiently small, ∥L−1(η, λ,K)∥
H

−1/2
0 (∂D∗)→H

1/2
0 (∂D∗)

≤ 1
min{C1,1} for λ ∈ Uη. This

finishes the proof of (ii).
(iii) is a direct corollary of (ii).

Lemma 3.9. There exists η0 > 0 such that for all η ∈ (0, η0) and λ ∈ Uη,

∥R(η, λ,K)∥H−1/2(∂D∗)→H1/2(∂D∗) ≤ Cη (3.30)

for some constant C independent of η.

Proof. There exists η0 > 0 and a constant C such that for all η ∈ (0, η0) and λ ∈ Uη, the following
holds

|∂α1
x ∂α2

y R1(η(x− y);λ)| < Cη, (3.31a)

|∂α1
x ∂α2

y R2(η(x− y);λ,p)| < Cη, (3.31b)

|∂α1
x ∂α2

y R0(η(x− y);λ,p)| < Cη (3.31c)

for all multi-indices |α1 + α2| ≤ 2, x,y ∈ ∂D∗ and λ ∈ Uη. The relations (3.31a) and (3.31b) can
be shown by a direct calculation, and (3.31c) was shown in [55]. An elementary calculation on the
Fourier coefficients concludes the proof.

Theorem 3.10. When η is sufficiently small, the following statements hold:
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(i) The operator S(η, λ,K) : H
−1/2
i (∂D∗) → H

1/2
i (∂D∗), i = 1, 2, attains exactly one character-

istic value λ∗ ∈ Uη of multiplicity 1. More precisely, there exists exactly one pair (λi, ρi) ∈
Uη ×H

−1/2
i (∂D∗) such that S(η, λi,K)ρi = 0, i = 1, 2. In addition, λ1 = λ2 =: λ∗ ∈ R and

ρ2(x) = ρ1(Fx).

(ii) The operator S(η, λ,K) : H
−1/2
0 (∂D∗) → H

1/2
0 (∂D∗) has no characteristic value in Uη.

(iii) The function ρ1 can be chosen such that

ρ1 = ϕ∗ +O(η). (3.32)

In addition, the function ρ2(x) := ρ1(Fx) spans the one-dimensional kernel space for S(η, λ∗,K)

restricted to the subspace H
−1/2
2 (∂D∗).

Proof. For (i), we first find the multiplicity of the characteristic values for S(η, λ,K) : H
−1/2
i (∂D∗) →

H
1/2
i (∂D∗), i = 1, 2. To this end, we apply Theorem A.1 by setting z = λ, X = H

−1/2
i (∂D∗),

Y = H
1/2
i (∂D∗), V = Uη, A(z) = L(η, λ,K) and B(z) = R(η, λ,K). Recall from Lemma 3.7

and Lemma 3.9 that A(z) and B(z) are analytic on a neighborhood of Uη, A(z) is Fredholm
of index zero on a neighborhood of Uη, and the multiplicity of A(z) in Uη is 1. When η is
sufficiently small, it follows that ∥A−1(z)B(z)∥ is small on ∂Uη by the uniform boundedness of
A−1(z) in ∂Uη over η and the smallness of B(z) in V̄ as η → 0. Thus the characteristic value

of S(η, λ,K) : H
−1/2
i (∂D∗) → H

1/2
i (∂D∗) attains multiplicity 1 in V for i = 1, 2. Since the null

multiplicity 1 corresponds to exactly one eigenpair, we deduce that there exists exactly one pair

(λi, ρi) ∈ Uη ×H
−1/2
1 (∂D∗) such that S(η, λi,K)ρi = 0, i = 1, 2. The statement for λ1 = λ2 and

ρ2(x) = ρ1(Fx) follows from ϕ ∈ H
−1/2
1 solves S(η, λ,K)ϕ(x) = 0 if and only if ϕ(F (x)) ∈ H

−1/2
2

solves S(η, λ,K)ϕ(Fx) = 0. Finally λi are real because Gf (x,y;λ,p) = Gf (y,x;λ,p), as can be
seen from (3.7).

For (ii), the argument is similar to that in (i), except that we identify X = H
−1/2
0 (∂D∗),

Y = H
1/2
0 (∂D∗). By Lemma 3.8 and Lemma 3.9 and Theorem A.1, we verify the statement.

For (iii), the correspondence between ρ1 and ρ2 follows similarly from Lemma 3.1. Finally, we

show that (3.32) holds. Let T0 : H
−1/2
1 (∂D∗) → H

1/2
1 (∂D∗) be defined by

T0ϕ(x) := L(η, λ0,K)ϕ(x) = S0ϕ(x)−
1

a

∫
∂D∗

x · yϕ(y) dsy, (3.33)

where we have used Lemma 3.5. Note that Ker(T0) = span{ϕ∗}. We define f(x) := x1 + ix2, then
it follows that

⟨ϕ∗, f⟩∂D∗ = ⟨S−1
0 f, f⟩∂D∗ ̸= 0.

The inequality follows from the choice of the size of the inclusion stated after (3.19), which implies

that the ⟨S−1
0 ·, ·⟩∂D∗ pairing on H

−1/2
1 (∂D∗) is an inner product [62]. Since T0 : H

−1/2
1 (∂D∗) →

H
1/2
1 (∂D∗) is a Fredholm operator, the range of T0 is perpendicular to Ker(T0) given by

RanT0 = {ψ ∈ H
1/2
1 (∂D∗) : ⟨ϕ∗, ψ⟩∂D∗ = 0}.

Define

Qψ := ψ − ⟨ϕ∗, ψ⟩∂D∗

⟨ϕ∗, f⟩∂D∗

f. (3.34)

25



Then Q is a projection and

QH
1/2
1 (∂D∗) = RanT0.

Let the density ρ1 ∈ H−1/2(∂D∗) be a solution to S(η, λ∗,K)ρ1 = 0, where ρ1 = ϕ∗ + ϕ(1) for
some ϕ1 ∈ (Ker(T0))

⊥. Applying Q to the following equation

0 = S(η, λ∗,K)ρ1 = (L(η, λ∗,K) +R(η, λ∗,K))ρ1

= (T0 + L(η, λ∗,K)− L(η, λ0,K) +R(η, λ∗,K))ρ1,

we obtain

0 = Q(T0 + L(η, λ∗,K)− L(η, λ0,K) +R(η, λ∗,K))ρ1 = Q(T0 +R(η, λ∗,K))ρ1. (3.35)

In the above, we have used the fact that

Ran (L(η, λ∗,K)− L(η, λ0,K)) ⊂ span{x1 + ix2}, Q(x1 + ix2) = 0.

Thus (3.35) implies that

Q(T0 +R(η, λ∗,K))ϕ(1) = −Q(T0 +R(η, λ∗,K))ϕ∗ = −QR(η, λ∗,K)ϕ∗. (3.36)

Let A be the inverse of T0 : (Ker(T0))
⊥ → Ran(T0), where the function space is perpendicular with

respect to the H1/2(∂D∗) inner product. We obtain

(I +AQR(η, λ∗,K))ϕ(1) = −AQR(η, λ∗,K)ϕ∗.

Using the boundedness of A and Q, which do not depend on η, and (3.30), we obtain

ϕ(1) = −(I +AQR(η, λ∗,K))−1AQR(η, λ∗,K)ϕ∗.

Therefore, ∥ϕ(1)∥H−1/2(∂D∗) = O(η).

Note that the eigenmodes wi in Theorem 2.1 is expanded by the single layer potential

wi(x) =

∫
∂D∗

Gf (x, ηy;λ∗,K)ρi(y) dsy, x ∈ Cz\D(η),

where ρi is defined in Theorem 3.10.

3.4 Slope of the Dirac cone

In this subsection, we establish the conical singularity of the dispersion surfaces near the point
(K,λ∗) for the band structure. In particular, we derive the slope value m∗ for the Dirac cone.

Theorem 3.11. When η is sufficiently small, the two dispersion surfaces around (λ∗,K) takes the
form

(λ− λ∗)
2 = m2

∗|p−K|2 +O(|p−K|3), m∗ ∈ R, m∗ ≥ 0. (3.37)

The coefficient m∗ represents the slope of the Dirac cone, and is given by

m∗ =
2

3

(
1 +O(η)

)
. (3.38)
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Proof. To prove (3.37), we apply directly Proposition 4.3 that will be proved in Section 9, instead
of presenting a similar proof here. Proposition 4.3 covers more general scenarios and can be applied
to derive (3.37). In more details, we set ε = 0 in Proposition 4.3 and notice that the Bloch wave
vector p near K can be expanded as p = K + ℓβ1 + µβ2, then the conical shape of the dispersion
relation (3.37) follows by observing that |p −K|2 = |ℓ + µτ̄ |2|β1|2. Thus m∗ = 1

|β1|
| θ∗γ∗ |, where θ∗

and γ∗ are defined in (4.8).
Next we compute the slope m∗ := 1

|β1|
| θ∗γ∗ |. Note that the ratio θ∗

γ∗
is independent of a scaling

of ρi’s. We can thus use ρi’s defined in Theorem 3.10(iii) for the calculation. Since

∂λG
f (y,x;λ,K) =

1

|Cz|
∑

m∈Λ̃∗

1

(λ− |m|2)2 e
im·(x−y),

we have

⟨ρ1, ∂λS(η, λ∗,K)ρ1⟩∂D∗

=
1

|Cz|

∫
(∂D∗)2

(
1

(λ− |m1|2)2
(3− 1

3
(2π)2(η|x− y|)2 +O(η3)) +O(1)

)
ρ1(x)ρ1(y) dsydsx

=
1

|Cz|
2a2

η2

(λ− |m1|2)2
2

3
(2π)2(1 +O(η)).

(3.39)

In addition,

(1, 0)T · ∇pG
f (y,x;λ,K) =− 1

|Cz|
∑

m∈Λ̃∗

2

(λ− |m|2)2 e
im·(x−y)m · (1, 0)T

− 1

|Cz|
∑

m∈Λ̃∗

i

λ− |m|2 e
im·(x−y)(x− y) · (1, 0)T .

Therefore,

⟨ρ2, (1, 0)T · ∇pG
f (y,x;λ,K)ρ1⟩∂D∗

=− 1

|Cz|

∫∫
∂D∗×∂D∗

(
2

(λ− |m1|2)2
(
−η2 2

9
(x1 − y1)(x2 − y2) +O(η3)

)
+

i

λ− |m1|2
O(η) +O(1)

)
ρ2(x)ρ1(y) dsydsx

=
1

|Cz|
2ia2

η2

(λ− |m1|2)2
4

9
(2π)2(1 +O(η)).

(3.40)
Here we have used the fact that ρ1 = ϕ∗ + O(η) and ρ2(x) = ρ1(Fx) in Theorem 3.10. Applying
Proposition 4.3 with ε = 0 again, we obtain m∗ =

1
|β1|

| θ∗γ∗ | =
2
3(1 +O(η)).

Theorems 3.10 and 3.11 combined give the existence and asymptotic analysis of the Dirac point
when the Bloch wave vector p = K as stated in Theorem 2.1. The Dirac point at K ′ follows
similarly since

Gf (x,y;λ,K ′) = Gf (x,y;λ,K). (3.41)

4 Band-gap opening at the Dirac point for the perturbed lattices

In this section, we consider the bandgap opening near the Dirac points for the perturbed honeycomb
lattices. More precisely, we consider the spectral problem (2.11), in which the obstacle in each period
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is rotated by an angle of ±ε for ε ∈ R. Here and henceforth, we denote D = D(η0) for a fixed
η0 > 0 for the ease of notation. We define the operator T (ε, λ,p) : H−1/2(∂D) → H1/2(∂D) as

T (ε, λ,p)[ϕ](x) :=

∫
∂D

Gf (Rεx, Rεy;λ,p)ϕ(y) dsy,x ∈ ∂D. (4.1)

Note that the ε in T (ε, λ,p) represents the rotation angle, while the η in S(η, λ,p) defined in
(3.3) represents the size of the obstacle. The dependence of T (ε, λ,p) on η is suppressed since η
is fixed at η0. Similar to the discussion in Section 3.1, (λ,p) belongs to the dispersion surface of
the honeycomb lattice if and only if the triple (λ,p, ϕ) ∈ R × Bz ×H−1/2(∂D) solves the integral
equation

T (ε, λ,p)[ϕ](x) = 0, x ∈ ∂D. (4.2)

The corresponding eigenmode is given by

uε(x) :=

∫
∂D

Gf (x, Rεy;λ,p)ϕ(y) dsy, x ∈ Cz\Dε. (4.3)

We extend uε(x) to Cz by letting

ũε(x) :=

{
uε(x), x ∈ Cz\Dε,

0, x ∈ Dε.
(4.4)

It is clear that ∥ũε∥L2(Cz) = ∥uε∥L2(Cz\Dε) and ∥ũε∥H1(Cz) = ∥uε∥H1(Cz\Dε). In what follows, for
convenience we will abuse the notations and denote both uε and ũε by uε.

4.1 Band structure and Bloch modes for the perturbed honeycomb structures

In this subsection, we compute the band structure of the perturbed honeycombs around K by a
perturbation argument. Recall that at the Dirac point (λ∗,K), there holds (see Proposition 3.10)

KerT (0, λ∗,K) = span {ρ1, ρ2} , (4.5)

where Rρ1(x) := ρ1(R
−1x) = τρ1(x), Rρ2(x) := ρ2(R

−1x) = τ̄ ρ2(x), and ρ2(x) = ρ1(Fx). From
now on, we normalize ρn such that

∥wn∥L2(Cz\D) = 1, (4.6)

where wn is the single-layer potential defined as

wn(x) :=

∫
∂D

Gf (x,y;λ,p)ρn(y) dsy, x ∈ Ω0, n = 1, 2. (4.7)

We first characterize the partial derivatives of the integral operator T (ε, λ,p) with respect to
ε, λ, and p respectively.
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Proposition 4.1. Let ρ = (ρ1, ρ2), where ρi are normalized such that (4.6) holds. Then the partial
derivatives of ⟨ρ, T (ε, λ,p)ρ⟩∂D at ε = 0, λ = λ∗ and p = K take the following forms:

⟨ρ, ∂λT (0, λ∗,K)ρ⟩∂D|λ=λ∗ =

(
γ∗ 0
0 γ∗

)
,

⟨ρ,β1 · ∇pT (0, λ∗,p)ρ⟩∂D|p=K =

(
0 θ∗
θ∗ 0

)
,

⟨ρ,β2 · ∇pT (0, λ∗,p)ρ⟩∂D|p=K =

(
0 τθ∗
τθ∗ 0

)
,

⟨ρ, ∂εT (ε, λ∗,K)ρ⟩∂D|ε=0 =

(
t∗ 0
0 −t∗

)
,

(4.8)

where t∗, γ∗ ∈ R, θ∗ ∈ C.

In the above, for (ϕ1, ϕ2) ∈ (H−1/2(∂D))2 and (ψ1, ψ2) ∈ (H1/2(∂D))2, we denote

⟨(ϕ1, ϕ2), (ψ1, ψ2)⟩∂D := ⟨ϕ1, ψ1⟩∂D + ⟨ϕ2, ψ2⟩∂D,

where the symbol ⟨·, ·⟩∂D on the right hand side represents the regular H−1/2(∂D)-H1/2(∂D) pair-
ing. The proof of Proposition 4.1 is given in Appendix B.

Remark 4.2. In (3.39) and (3.40), we calculated the values of γ∗ and θ∗ and showed that γ∗ ̸= 0
and θ∗ ̸= 0. For simplicity, in all calculations throughout the paper, we assume γ∗ > 0 and t∗ > 0.
The cases when γ∗ < 0 or t∗ < 0 can be treated similarly. Therefore, the main results in Section 2
hold regardless of the signs of γ∗ and t∗.

Proposition 4.3. Assume that t∗ > 0 and parameterize the quasimomenta near K by p(ℓ, µ) :=
K + ℓβ1 + µβ2. Let ℓ ∈ R, µ ∈ R and ε ≥ 0 be sufficiently small.

(i) The dispersion relations for the spectral problem (2.11) attain the following expansions:

λ1,±ε(p(ℓ, µ)) = λ∗ −
1

|γ∗|
√
ε2t2∗ + |θ∗|2|ℓ+ µτ̄ |2(1 +O(ε, ℓ, µ)),

λ2,±ε(p(ℓ, µ)) = λ∗ +
1

|γ∗|
√
ε2t2∗ + |θ∗|2|ℓ+ µτ̄ |2(1 +O(ε, ℓ, µ)).

(4.9)

(ii) The corresponding density functions for the integral equation (4.2) attain the expansions

ϕ1,ε(x;p(ℓ, µ)) = w1 + L(ε, ℓ, µ)w2 +O(ε, ℓ, µ),

ϕ2,ε(x;p(ℓ, µ)) = −L(ε, ℓ, µ)w1 + w2 +O(ε, ℓ, µ),
(4.10)

ϕ1,−ε(x;p(ℓ, µ)) = L(ε, ℓ, µ)w1 + w2 +O(ε, ℓ, µ),

ϕ2,−ε(x;p(ℓ, µ)) = w1 − L(ε, ℓ, µ)w2 +O(ε, ℓ, µ).
(4.11)

In the above,

L(ε, ℓ, µ) :=
θ∗(ℓ+ µτ)

εt∗ +
√
ε2t2∗ + |θ∗|2|ℓ+ µτ̄ |2

. (4.12)
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(iii) The corresponding Bloch modes with unit L2(Cz\D±) norm take the form

u1,ε(x;p(ℓ, µ)) = (w1 + L(ε, ℓ, µ)w2 +O(ε, ℓ, µ))
1√

1 + |L(ε, ℓ, µ)|2 +O(ε, ℓ, µ)
,

u2,ε(x;p(ℓ, µ)) =
(
−L(ε, ℓ, µ)w1 + w2 +O(ε, ℓ, µ)

) 1√
1 + |L(ε, ℓ, µ)|2 +O(ε, ℓ, µ)

,

(4.13)

u1,−ε(x;p(ℓ, µ)) =
(
L(ε, ℓ, µ)w1 + w2 +O(ε, ℓ, µ)

) 1√
1 + |L(ε, ℓ, µ)|2 +O(ε, ℓ, µ)

,

u2,−ε(x;p(ℓ, µ)) = (w1 − L(ε, ℓ, µ)w2 +O(ε, ℓ, µ))
1√

1 + |L(ε, ℓ, µ)|2 +O(ε, ℓ, µ)
.

(4.14)

Note that for all ε, ℓ and µ, the eigenvalues above satisfy λ1,±ε(p(ℓ, µ)) < λ2,±ε(p(ℓ, µ)). Hence,
a band gap is opened near the Dirac point for the spectral problem (2.11). Another observation is
that

|p−K|2 = |ℓβ1 + µβ2|2 =
4

3
(ℓ2 + µ2 − ℓµ) =

4

3
|ℓ+ µτ̄ |2.

This is used to relate Theorem 2.5 to Proposition 4.3.

Proof. Let V be a sufficiently small neighborhood of λ∗. We first show that for ε and |p − K|
sufficiently small, the characteristic value of T (ε, λ,p) in V has multiplicity two.

Note that for ε and |p−K| being sufficiently small, T (ε, λ,p) is an analytic family of operators
in the variable λ. When V is sufficiently small, from Section 3.3, it is known that λ = λ∗ is the
only characteristic value of T (0, λ,K) within V . Indeed, the multiplicity of the characteristic λ∗ of
T (0, λ,K) is two. This follows from (4.5) and (4.8). That is, KerT (0, λ∗,K) = span {ρ1, ρ2} and

⟨ϕ, ∂λT (0, λ,K)ϕ⟩∂D ̸= 0 ∀ϕ ∈ KerT (0, λ∗,K). (4.15)

Thus ∂λT (0, λ,K)|λ=λ∗ψ /∈ Ran(T (0, λ∗,K)). We conclude, ϕ is of rank one and the multiplicity
of T (0, λ∗,K) is two. Since T (ε, λ,p) is a Fredholm operator [60] and it is continuous with respect
to ε and p, by Theorem A.1, we deduce that T (ε, λ,p) has multiplicity two in V .

Next, we use the perturbation argument to show that for ε and |p−K| being sufficiently small,
T (ε, λ,p) attains two characteristic values in V , with multiplicity one each. This argument also
gives rise to the asymptotic expansion of the characteristic values and the density functions.

Let ε, ℓ, µ ≪ 1. We solve for (λ, ϕ) pairs in V ×H−1/2(∂D) such that T (ε, λ,p)ϕ = 0. Let us
express

p(ℓ, µ) = K + p(1), λ = λ∗ + λ(1), T (ε, λ,p(ℓ, µ)) = T (0) + T (1), ϕ = ϕ(0) + ϕ(1). (4.16)

Here |p(1)| = |ℓβ1 + µβ2| ≪ 1, λ(1) ≪ 1, T (0) = T (0, λ∗,K), T (1) = T (ε, λ,p) − T (0), ϕ(0) ∈
Ker(T (0)), and ϕ(1) ∈

(
Ker(T (0))

)⊥
, where the perpendicular sign is with respect to the inner

product of H−1/2(∂D). Using T (0)ϕ(0) = 0, the integral equation T (ε, λ,p)ϕ = 0 boils down to

T (0)ϕ(1) + T (1)(ϕ(0) + ϕ(1)) = 0. (4.17)

Note that T (0) : H−1/2(∂D) → H1/2(∂D) is a Fredholm operator and the range of T0 is the
space perpendicular to Ker(T (0)) in the dual sense. That is,

RanT (0) = {ψ ∈ H1/2(∂D) : ⟨ρi, ψ⟩∂D = 0, i = 1, 2}. (4.18)
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Define

Qψ := ψ −
∑
i=1,2

⟨ρi, ψ⟩∂D
⟨ρi, fi⟩∂D

fi, (4.19)

where fi = Sρi. It is straightforward to check that QH1/2(∂D) = Ran(T (0)) and Q is a projection.
Thus (4.17) is equivalent to

⟨ψ, T (0)ϕ(1) + T (1)(ϕ(0) + ϕ(1))⟩∂D = 0 ∀ψ ∈ KerT (0), (4.20)

and
T (0)ϕ(1) +QT (1)(ϕ(0) + ϕ(1)) = 0. (4.21)

Here we have used QT (0) = T (0).
Let A be the inverse of T (0)|(Ker(T (0)))⊥ : (Ker(T (0)))⊥ → Ran(T (0)). It follows from (4.21) and

ϕ(1) ∈ (Ker(T (0)))⊥ that
(I +AQT (1))ϕ(1) +AQT (1)ϕ(0) = 0.

Here we have used the fact thatAT (0)ϕ(1) = ϕ1 since ϕ1 ∈ Ran(T (0)). Since T (1) = O(|ε|, |ℓ|, |µ|, |λ(1)|),
when ε, ℓ and λ(1) are sufficiently small, (I + AQT (1)) is invertible with an inverse norm bounded
by 1

2 . Thus, there holds

ϕ(1) = −(I +AQT (1))−1AQT (1)ϕ(0), (4.22)

where (I +AQT (1))−1 is the inverse of I +AQT (1) : (Ker(T (0)))⊥ → Ran(T (0)). We obtain

(I +AQT (1))−1AQT (1) = O(|ε|, |ℓ|, |µ||λ(1)|).

Using the expansions

ϕ(0) = aρ1 + bρ2 for some constants a, b ∈ C, (4.23)

and

T (1) = ε∂εT (0, λ∗,K) + (ℓβ1 + µβ2) · ∇pT (0, λ∗,K) + λ(1)∂λT (0, λ,K) +O(|ε|2, |ℓ|2, |µ|2, |λ(1)|2),

and applying Proposition 4.1, (4.20) becomes

M(ε, ℓ, µ, λ(1))

(
a
b

)
= 0, (4.24)

where

M(ε, ℓ, µ, λ(1)) =

(
t∗ε+ γ∗λ

(1) ℓθ∗ + µτθ∗
ℓθ∗ + µτθ∗ −t∗ε+ γ∗λ

(1)

)
+O(|ε|2, |ℓ|2, |µ|2, |λ(1)|2). (4.25)

With the ansatz
λ(1) =

x

|γ∗|
√
ε2t2∗ + |θ∗|2|ℓ+ µτ |2, (4.26)

the inverse function theorem implies that when ε, ℓ, µ and ϕ(1) are sufficiently small, there exist
x = 1+O(ε, ℓ, µ) and x = −1+O(ε, ℓ, µ) such that λ(1) satisfies det(M(ε, ℓ, µ, λ(1))) = 0. For each
of these two values of λ(1), by solving (4.23), we obtain ϕ(1) from (4.22) and (4.23).

The expansion of normalized eigenmodes follows from Lemma 4.5 below.
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Before presenting Lemma 4.5, we introduce the following auxiliary lemma whose proof is ele-
mentary.

Lemma 4.4. Let X and Y be two Banach spaces. Consider two operators Aε, A0 : X → Y and
two functions fε, f0 ∈ Y . Suppose A−1

ε and A−1
0 exist. Then

∥A−1
ε fε −A−1

0 f0∥X ≤ ∥A−1
ε ∥Y→X∥A0 −Aε∥X→Y ∥A−1

0 ∥Y→X∥fε∥Y + ∥A−1
0 ∥Y→X∥fε − f0∥Y .

(4.27)

Lemma 4.5. Let

ũ1,ε(x;p(ℓ, µ)) :=

∫
∂D

Gf (x, Rεy;λ,p(ℓ, µ))ϕ1,ε(y) dsy, x ∈ Cz\Dε. (4.28)

There holds
∥ũ1,ε(·;p(ℓ, µ))−

(
w1 + L(ε, ℓ, µ)w2

)
∥H1(Cz) = O(ε, ℓ), n = 1, 2. (4.29)

Here wi are defined in (4.7) and L(ε, ℓ, µ) is defined in (4.12).

Proof. The function ũn,ε(x,p(ℓ, µ)) attains the quasi-momentum p(ℓ, µ) and it solves the differential
equation (

−∆− λ1,ε(p(ℓ, µ))
)
ũ1,ε(x;p(ℓ, µ)) = δ(x ∈ ∂Dε)ϕ1,ε(R

−εx) in Cz, (4.30)

The function w1 + L(ε, ℓ, µ)w2 attains the quasi-momentum K and it solves

(−∆− λ∗)
(
w1 + L(ε, ℓ, µ)w2

)
= δ(x ∈ ∂D)

(
ρ1(x) + L(ε, ℓ, µ)ρ2(x)

)
in Cz. (4.31)

Let us fix a pair of small ℓ and µ. Define the operators

Aε := −∆− λ1,ε(p(ℓ, µ)) and fε := δ(x ∈ ∂Dε)ϕ1,ε(R
−εx), for ε ̸= 0

and
A0 := −∆− λ∗ and f0 := δ(x ∈ ∂D)

(
ρ1(x) + L(ε, ℓ, µ)ρ2(x)

)
.

Then ũ1,ε −
(
w1 + L(ε, ℓ, µ)w2) = A−1

ε fε −A−1
0 f0. It is straightforward to verify that

|p(ℓ, µ)−K| = O(ℓ, µ), |λ1,ε(p(ℓ, µ))− λ∗| = O(ε, ℓ, µ),

∥δ(x ∈ ∂Dε)ϕ1,ε(R
−εx)− δ(x ∈ ∂D)

(
ρ1(x) + L(ε, ℓ, µ)ρ2(x)

)
∥H−1(Cz) = O(ε, ℓ, µ).

(4.32)

By Theorem 2.1, for ε sufficiently small, λ1,ε are uniformly away from {|m|2}m∈Λ̃∗ . Thus the
inverses of Aε and A0 exist and are uniformly bounded. Applying Lemma 4.4, we finish the
proof.

5 Floquet theory and the Green functions in a periodic strip with
a zigzag cross section

In this section and the subsequent two sections, we investigate the existence of interface modes
for the joint photonic structure along a zigzag interface that solve (2.14) for k∥ = k∗∥ := 4π

3 . The
purpose of this section is to introduce the Floquet theory and Green functions in the following
infinite strip

Ωε := ΩJ\ ∪m∈Z (Dε +me1), ε ∈ R.
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We note that when ε = 0, Ω0 represents the unperturbed strip. We define the following function
spaces that are quasi-periodic along e2:

Hε
loc := {u ∈ H1

loc(Ω
ε) : ∆u ∈ L2

loc(Ω
ε), u = 0 on ∪m∈Z (∂Dε +me1),

u(x+ e2) = e
ik∗∥u(x) for x ∈ Γ−, ∂ν1u(x+ e2) = e

ik∗∥∂ν1u(x) for x ∈ Γ−}.
(5.1)

Then the analysis boils down to the spectrum of the operator ∆ in Hε
loc, that is, eigenpairs (λ, u) ∈

R×Hε
loc satisfying

−∆u− λu = 0 on Ωε,

u = 0 on ∪m∈Z (∂Dε +me1).
(5.2)

5.1 Floquet theory in a periodic strip with a zigzag cross section

In this subsection, we decompose the operator ∆ on Hε
loc using the Floquet theory along the

direction e1. Let p(ℓ) := K + ℓβ1. For each ℓ ∈ R, we denote −∆ε(ℓ) the restriction of −∆ on the
space Hε(ℓ) with the quasi-momentum (K + ℓβ1) · e1 along the direction e1, i.e.

Hε(ℓ) := {u ∈ H1(Cz\D) : ∆u ∈ L2(Cz\Dε), u = 0 on ∂Dε,

u(x+ e2) = e
ik∗∥u(x) for x ∈ Γb, ∂ν2u(x+ e2) = e

ik∗∥∂ν2u(x) for x ∈ Γb

u(x+ e1) = ei(K+ℓβ1)·e1u(x) for x ∈ Γl, ∂ν1u(x+ e1) = ei(K+ℓβ1)·e1∂ν1u(x) for x ∈ Γl}.
(5.3)

Here Γb and Γl are the bottom and left boundaries of Cz shown in Figure 2.1, the directional

derivative ∂ν2 is normal to Γt and Γb in the direction ν2 = (12 ,
√
3
2 ) and the directional derivative

∂ν1 is normal to Γl and Γr in the direction ν1 = (12 ,−
√
3
2 ). Equivalently, we solve for the (λ, u) pair

for each ℓ ∈ R that satisfies

−∆u− λu = 0 in Cz\Dε,

u = 0 on ∂Dε,

u(x+ e2) = e
ik∗∥u(x) for x ∈ Γb,

∂ν2u(x+ e2) = e
ik∗∥∂ν2u(x) for x ∈ Γb,

u(x+ e1) = ei(K+ℓβ1)·e1u(x) for x ∈ Γl,

∂ν1u(x+ e1) = ei(K+ℓβ1)·e1∂ν1u(x) for x ∈ Γl.

(5.4)

For each fixed ℓ ∈ R, −∆ε(ℓ) is a self-adjoint positive operator with compact resolvent, thus its
spectrum is real, discrete, and accumulates at ∞. The eigenvalues of −∆ε(ℓ) are labeled as λn(ℓ)
in an increasing order

0 ≤ λ1,ε(ℓ) ≤ λ2,ε(ℓ) ≤ · · · ≤ λn,ε(ℓ) ≤ · · · . (5.5)

Note that λn,ε(ℓ) are 2π-periodic, continuous and piecewise differentiable functions in ℓ. The
corresponding eigenmodes un,ε(x,p(ℓ)) are chosen to be orthonormal with respect to the L2 inner
product in Cz\Dε. λn,ε(ℓ) may not be differentiable at points ℓ where λn,ε(ℓ) is not a simple
eigenvalue, which only occurs at a finite number of ℓ values within a period for each n.

The spectrum of −∆ε(ℓ) can alternatively be labeled as smooth branches as follows. The smooth
labeling enables a representation of the Green function using the Bloch modes to be introduced
in Section 5.2. To be more precise, there exists a sequence of complex neighborhoods Dn,ε of
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R, a sequence of analytic functions µn,ε(ℓ) : Dn,ε → C, and a sequence of analytic functions
vn,ε(x,p(ℓ)) : Dn,ε → H1(∆, Cz\Dε) such that

vn,ε(·,p(ℓ)) ∈ Hε(ℓ), −∆vn,ε(·,p(ℓ)) = µn,ε(ℓ)vn,ε(·,p(ℓ)), ℓ ∈ R,
(vn,ε(·,p(ℓ)), vm,ε(·,p(ℓ)))L2(Cz\Dε) = δm,n, ℓ ∈ R.

(5.6)

In the above,

H1(∆, Cz\Dε) := {u ∈ H1(Cz\Dε) : ∆u ∈ L2(Cz\Dε), u = 0 on ∂Dε,

u(x+ e2) = e
ik∗∥u(x) for x ∈ Γb, ∂ν2u(x+ e2) = e

ik∗∥∂ν2u(x) for x ∈ Γb}.
(5.7)

Moreover,
∀ℓ ∈ R, {µn,ε(ℓ), n ≥ 1} = {λn,ε(ℓ), n ≥ 1}, (5.8)

and the eigenmodes un,ε(·, ℓ) are chosen such that

∀ℓ ∈ R, {vn,ε(·,p(ℓ))), n ≥ 1} = {αn,εun,ε(·,p(ℓ))), n ≥ 1}, (5.9)

where αn,ε is an ℓ-dependent phase factor. We extended the eigenmodes un,ε and vn,ε to the whole
strip Ωε as quasi-periodic functions by letting

un,ε(x+me1,K + ℓβ1) = ei(K+ℓβ1)·me1un,ε(x,K + ℓβ1), x ∈ Cz\D, m ∈ Z,

vn,ε(x+me1,K + ℓβ1) = ei(K+ℓβ1)·me1vn,ε(x,K + ℓβ1), x ∈ Cz\D, m ∈ Z.
(5.10)

When ε = 0, for convenience we will abbreviate Dn,0, λn,0, un,0, µn,0 and vn,0 as Dn, λn, un,
µn and vn, respectively.

5.2 The band structure for the periodic strip Ωε with a zigzag cross section
near λ∗

In this subsection, we derive the band structure for the periodic strip Ωε with a zigzag cross section
near λ∗. Note that the eigenvalues that solve (5.4) near the Dirac point (λ∗,K) can be obtained
from Proposition 4.3 by letting µ = 0. Denoting L(ε, ℓ) = L(ε, ℓ, 0), where L(ε, ℓ, µ) is defined in
(4.12), we have

Lemma 5.1. Assume t∗ > 0. For sufficiently small ℓ ∈ R and ε ≥ 0, the eigenvalues for (5.4) are
given by

λ1,±ε(p(ℓ)) = λ∗ −
1

|γ∗|
√
ε2t2∗ + |θ∗|2ℓ2(1 +O(ε, ℓ)),

λ2,±ε(p(ℓ)) = λ∗ +
1

|γ∗|
√
ε2t2∗ + |θ∗|2ℓ2(1 +O(ε, ℓ)).

(5.11)

The L2-normalized Bloch modes for the first two bands on the ±ε-strips take the following forms

u1,ε(x;p(ℓ)) = (w1 + L(ε, ℓ)w2 +O(ε, ℓ))
1√

1 + |L(ε, ℓ)|2 +O(ε, ℓ)
,

u2,ε(x;p(ℓ)) =
(
−L(ε, ℓ)w1 + w2 +O(ε, ℓ)

) 1√
1 + |L(ε, ℓ)|2 +O(ε, ℓ)

,

(5.12)
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u1,−ε(x;p(ℓ)) =
(
L(ε, ℓ)w1 + w2 +O(ε, ℓ)

) 1√
1 + |L(ε, ℓ)|2 +O(ε, ℓ)

,

u2,−ε(x;p(ℓ)) = (w1 − L(ε, ℓ)w2 +O(ε, ℓ))
1√

1 + |L(ε, ℓ)|2 +O(ε, ℓ)
.

(5.13)

Remark 5.2. By Lemma 5.1, when Assumption 2.7 holds in β1, for an arbitrary fixed constant
d ∈ (0, 1), when ε > 0 is sufficiently small, −∆±ε on Ω±ε attain a common spectral band gap
(λ∗ − d| t∗γ∗ |ε, λ∗ + d| t∗γ∗ |ε).

Remark 5.3. When ε > 0 in Lemma 5.1, observe that λn,±ε(p(ℓ)), n = 1, 2, are smooth in ℓ.
Thus µn,±ε(p(ℓ)) = λn,±ε(p(ℓ)) and vn,±ε(x;p(ℓ)) = un,±ε(x;p(ℓ)).

Setting ε = 0 in Lemma 5.1, we observe that λn, n = 1, 2, are not smooth at ℓ = 0. Thus
µn(p(ℓ)) are obtained by matching different branches of λn as shown in the following lemma and
illustrated in Figure 5.1.

Lemma 5.4. For sufficiently small ℓ ∈ R,

µ1(p(ℓ)) = λ∗ + |θ∗
γ∗

|ℓ(1 +O(ℓ)) (increasing in ℓ),

µ2(p(ℓ)) = λ∗ − |θ∗
γ∗

|ℓ(1 +O(ℓ)) (decreasing in ℓ).

(5.14)

The corresponding Bloch modes can be chosen as

v1(x;p(ℓ)) =

(
θ∗
|θ∗|

w1 − w2 +O(ℓ)

)
1√

2 +O(ℓ)
,

v2(x;p(ℓ)) =

(
θ∗
|θ∗|

w1 + w2 +O(ℓ)

)
1√

2 +O(ℓ)
.

(5.15)

Let vi := vi(x;K). It follows thatv1 =
1√
2

(
θ∗
|θ∗|w1 − w2

)
v2 =

1√
2

(
θ∗
|θ∗|w1 + w2

) ,

{
w1 =

1√
2

θ∗
|θ∗|(v1 + v2)

w2 =
1√
2
(−v1 + v2)

. (5.16)

Remark 5.5. For n = 1, 2, there exist ℓ-dependent phase factors αn such that ∥un(·,p(ℓ)) −
αnun,ε(·,p(ℓ))∥H1(Cz) = O(ε) uniformly for ℓ > 0 that are sufficiently small; and there exist ℓ-
dependent phase factors βn such that ∥un(·,p(ℓ)) − βnun,ε(·,p(ℓ))∥H1(Cz) = O(ε) uniformly for
ℓ < 0 that are sufficiently small. The same holds when un,ε is replaced by un,−ε.

5.3 The q-sesquilinear form

Define the quasi-periodic Sobolev space on Γ, Hs(Γ), for s ∈ R by

Hs(Γ) :=

{
u(x0 + te2) =

∑
n∈Z

ane
ik∗∥tei2πnt : ∥u∥2Hs(Γ) :=

∑
n∈Z

|an|2(1 + |n|2)s
}
, (5.17)

Here x0 = −1
2e1 − 1

2e2 is the lower left corner of Cz.
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Figure 5.1: The labelings of the band eigenvalues: µn,ε are smooth branches, while λn,ε are piecewise
smooth. When ε ̸= 0, µn,ε = λn,ε for n = 1, 2.

Define the q-sesquilinear form on Γ for functions a, b in some neighborhood of Γ with traces in
H1/2(Γ) and normal derivatives in H−1/2(Γ):

q(a, b) := ⟨∂na, b⟩Γ − ⟨∂nb, a⟩Γ, (5.18)

where ∂n represents the normal derivative on Γ in the direction n = ν1 = (12 ,−
√
3
2 ), ⟨ϕ, ψ⟩Γ rep-

resents the H−1/2(Γ)-H1/2(Γ) pairing (basically
∫
Γ ϕψ ds). The q-sesquilinear form orthogonalized

the modes with the same quasimomentum and same energy. That is, if µn(p(ℓ0)) = µm(p(ℓ0)),
then

q(vn(·,p(ℓ0)), vm(·,p(ℓ0))) = 0, m, n ∈ {1, 2}, m ̸= n. (5.19)

q(vn(·,p(ℓ0)), vn(·,p(ℓ0))) = i
dµn(p(ℓ))

dℓ
|ℓ=ℓ0 , n = 1, 2. (5.20)

On the unperturbed strip Ω0, by Lemma 5.4, µ1(p(0)) = µm(p(0)) = λ∗ and p(0) = K, we know

q(vn(·,K), vm(·,K)) = 0, m, n ∈ {1, 2}, m ̸= n. (5.21)

q(vn(·,K), vn(·,K)) = i
dµn(p(ℓ))

dℓ
|ℓ=0, n = 1, 2. (5.22)

In addition, dµ2(p(ℓ))
dℓ |ℓ=0 = −dµ1(p(ℓ))

dℓ |ℓ=0. We denote

α∗ :=

∣∣∣∣dµn(p(ℓ))dℓ
|ℓ=0

∣∣∣∣ , n = 1, 2. (5.23)

Remark 5.6. By Lemma 5.4, the derivative α∗ defined in (5.23) is given by α∗ =
∣∣∣ θ∗γ∗ ∣∣∣.
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5.4 The Green functions in the periodic strip Ωε with a zigzag cross section

In this subsection, we introduce the Green functions in Ωε with the quasi-periodic conditions using
the limiting absorption principle and spectral representation in Section 5.1. This result extends
that in [38].

Consider solving the following problem in Ωε:
−∆u− (λ+ iσ)u = f in Ωε,

u = 0 on ∪m∈Z (∂Dε +me1),

u(x+ e2) = e
ik∗∥u(x) for x ∈ Γ−,

∂ν2u(x+ e2) = e
ik∗∥∂ν2u(x) for x ∈ Γ−,

(5.24)

where f ∈ L2(Ωε), and σ is a positive constant that converges to 0. The corresponding Green
function Gε(x,y;λ) satisfies

(−∆x − λ)Gε(x,y;λ) = δ(x− y) x ∈ Ωε,

Gε(x,y;λ) = 0 x ∈ ∪m∈Z(∂D
ε +me1),

Gε(x+ e2,y;λ) = e
ik∗∥Gε(x,y;λ) for x ∈ Γ−,

∂ν2G
ε(x+ e2,y;λ) = e

ik∗∥∂ν2G
ε(x,y;λ) for x ∈ Γ−.

(5.25)

In addition, the radiation conditions are imposed using the limiting absorption principle.
We will need the Green functions on Ω0 at the energy λ∗. Recall that λ∗ is only an eigenvalue

of (5.4) when ε = 0 and p = K, where λ∗ is an eigenvalue of (5.4) of multiplicity two. We have

G0(x,y;λ∗) =
∑
n≥3

1

2π

∫
[−π,π]

vn(y;p(ℓ))vn(x;p(ℓ))

µn(p(ℓ))− λ∗
dℓ+

∑
n=1,2

1

2π
p.v.

∫
[−π,π]

vn(y;p(ℓ))vn(x;p(ℓ))

µn(p(ℓ))− λ∗
dℓ

+
i

2α∗
v1(y;K)v1(x;K) +

i

2α∗
v2(y;K)v2(x;K), x,y ∈ Ω0,

(5.26)
where µn and vn are the eigenvalues and eigenfunctions that are analytic in ℓ as introduced in (5.6).
For convenience, we denote the integral portion of the Green function by

G̃0(x,y;λ∗) :=
∑
n≥3

1

2π

∫
[−π,π]

vn(y;p(ℓ))vn(x;p(ℓ))

µn(p(ℓ))− λ∗
dℓ+

∑
n=1,2

1

2π
p.v.

∫
[−π,π]

vn(y;p(ℓ))vn(x;p(ℓ))

µn(p(ℓ))− λ∗
dℓ.

(5.27)
When x · e1 → +∞, the terms in G0(x,y;λ∗) can be regrouped as

G0(x,y;λ∗) = G0,+(x,y;λ∗) +
i

α∗
v1(y;K)v1(x;K), (5.28)

where G0,+(x,y;λ∗) decays exponentially as x · e1 → +∞, and is given by

G0,+(x,y;λ∗) := G̃0(x,y;λ∗)−
i

2α∗
v1(y;K)v1(x;K) +

i

2α∗
v2(y;K)v2(x;K). (5.29)

When x · e1 → −∞, the terms in G0(x,y;λ∗) can be regrouped as

G0(x,y;λ∗) = G0,−(x,y;λ∗) +
i

α∗
v2(y;K)v2(x;K), (5.30)
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where G0,−(x,y;λ∗) decays exponentially as x · e1 → −∞, and is given by

G0,−(x,y;λ∗) := G̃0(x,y;λ∗) +
i

2α∗
v1(y;K)v1(x;K)− i

2α∗
v2(y;K)v2(x;K). (5.31)

Denote the Green functions in Ω±ε by G±ε(x,y;λ). For λ ∈ (λ∗ − d| t∗γ∗ |ε, λ∗ + d| t∗γ∗ |ε), by [38],
there holds

G±ε(x,y;λ) =
∑
n≥1

1

2π

∫
[−π,π]

vn,±ε(y;p(ℓ))vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ
dℓ, x,y ∈ Ω0. (5.32)

Moreover, G±ε(x,y;λ) decays exponentially as |x · e1| → ∞.

Remark 5.7. Note that the q-sesquilinear form and the Green functions are independent of phase
factors of the Floquet modes un, vn, un,±ε and vn,±ε.

6 Integral equations for the interface modes along a zigzag inter-
face

In this section, we establish the integral equations for the interface modes at a zigzag interface
separating two honeycomb lattices using the layer potentials [16, 60]. This is achieved by matching
the Dirichlet and Neumann traces of the wave fields along the interface. Let Γ be the interface two

lattices as shown in Figure 2.2 and n = (12 ,−
√
3
2 ) be the unit normal vector of Γ pointing to the

right. Let ε > 0 and λ ∈ (λ∗ − d| t∗γ∗ |ε, λ∗ + d| t∗γ∗ |ε), for (ψ, ϕ) ∈ H1/2(Γ)×H−1/2(Γ), we define the
single and double layer potentials:

S±ε(λ)ϕ(x) :=

∫
Γ
G±ε(x,y;λ)ϕ(y) dsy, x /∈ Γ,

D±ε(λ)ψ(x) :=

∫
Γ
∂nyG

±ε(x,y;λ)ψ(y) dsy x /∈ Γ,

(6.1)

where G±ε(x,y;λ) are the Green functions on the ±ε-strip defined in (5.32). The single layer
potential S±ε(λ)ϕ(x) can be continuously extended to Γ and it defines an bounded integer operator
from H−1/2(Γ) to H1/2(Γ), which we still denote by S±ε. Given (ψ, ϕ) ∈ H1/2(Γ) ×H−1/2(Γ), we
also define the integral operators

K±ε(λ)ψ(x) :=

∫
Γ
∂nyG

±ε(x,y;λ)ψ(y) dsy x ∈ Γ,

K∗,±ε(λ)ϕ(x) :=

∫
Γ
∂nxG

±ε(x,y;λ)ϕ(y) dsy x ∈ Γ.

(6.2)

It can be shown that K±ε : H1/2(Γ) → H1/2(Γ) and K∗ : H−1/2(Γ) → H−1/2(Γ) are bounded.
By taking the limit of the layer potentials as x → Γ, the following jump relationship holds [16]:

[Sεψ(λ)]± = Sε(λ)ψ,

[∂nSε(λ)ψ]± = ∓1

2
ψ +K∗,ε(λ)ψ,

[Dεϕ(λ)]± = ±1

2
ϕ+Kε(λ)ϕ,

[∂nDε(λ)ϕ]± =: N εϕ.

(6.3)

38



In the above, the subscript − and + represent the limit of the layer potentials as x → Γ from the left
and right side respectively. ∂n represents the normal derivative, and N±ε : H1/2(Γ) → H−1/2(Γ)
are well-defined bounded operators. In addition, it is clear that the jump relations (6.3) hold when
ε is replaced by −ε.

Assume that u(x) is an interface mode of (2.14) with the eigenvalue λ. Let u|Γ ∈ H1/2(Γ) and
∂nu|Γ ∈ H−1/2(Γ) be the traces of u and the normal derivatives of u on Γ. Then by the Green’s
formula, it can be shown that u attains the following representation in the infinite strip ΩJ,ε:

u(x) =

{[
Dε(λ)u|Γ

]
(x)−

[
Sε(λ)∂nu|Γ

]
(x) for x on the right of Γ,

−
[
D−ε(λ)u|Γ

]
(x) +

[
S−ε∂nu|Γ(λ)

]
(x) for x on the left of Γ.

(6.4)

Here we used the fact that u ∈ HJ,ε, especially the decay of u when |x · e1| → ∞ when applying
the Green’s formula. Taking the limit from either side of Γ, we obtain the following two systems
of integral equations: (

u|Γ
∂nu|Γ

)
=

(
Kε(λ) + 1

2I −Sε(λ)
N ε(λ) −K∗,ε(λ) + 1

2I

)(
u|Γ
∂nu|Γ

)
, (6.5)

and (
u|Γ
∂nu|Γ

)
=

(
−K−ε(λ) + 1

2I S−ε(λ)
−N−ε(λ) K∗,−ε(λ) + 1

2I

)(
u|Γ
∂nu|Γ

)
. (6.6)

The above is equivalent to the following two systems(
−(Kε(λ) +K−ε(λ)) Sε(λ) + S−ε(λ)
−(N ε(λ) +N−ε(λ)) K∗,ε(λ) +K∗,−ε(λ)

)(
u|Γ
∂nu|Γ

)
= 0,

and(
−Kε(λ) +K−ε(λ) + I Sε(λ)− S−ε(λ)
−N ε(λ) +N−ε(λ) K∗,ε(λ)−K∗,−ε(λ) + I

)(
u|Γ
∂nu|Γ

)
= 0.

(6.7)

It is obvious that u is nontrivial only when (u|Γ, ∂nu|Γ) is nontrivial.
Conversely, assume λ ∈ (λ∗ − d| t∗γ∗ |ε, λ∗ + d| t∗γ∗ |ε). Let (ψ, ϕ) ∈ H1/2(Γ) × H−1/2(Γ), which is

not necessarily the Cauchy data of an interface mode on the interface Γ. We define u(x) in the
infinite strip ΩJ,ε as a combination of single and double layer potentials:

u(x) =

{
[Dε(λ)ψ](x)− [Sε(λ)ϕ](x) on the right of Γ,

−[D−ε(λ)ψ](x) + [S−ε(λ)ϕ](x) on the left of Γ.
(6.8)

Since the Green functions G±ε(x,y;λ) decay as |x · e1| → ∞ for λ located in the gap, u defined
above is an interface mode if and only if it is nontrivial and its value and normal derivatives are
continuous across the interface Γ. Using (6.3), taking the limit of the layer potentials and their
normal derivatives as x → Γ, we obtain the system of integral equations:(

Kε(λ) + 1
2I −Sε(λ)

N ε(λ) −K∗,ε(λ) + 1
2I

)(
ψ
ϕ

)
=

(
−K−ε(λ) + 1

2I S−ε(λ)
−N−ε(λ) K∗,−ε(λ) + 1

2I

)(
ψ
ϕ

)
̸= 0. (6.9)

This is equivalent to(
−(Kε(λ) +K−ε(λ)) Sε(λ) + S−ε(λ)
−(N ε(λ) +N−ε(λ)) K∗,ε(λ) +K∗,−ε(λ)

)
(λ)

(
ψ
ϕ

)
= 0, (6.10)
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and (
Kε(λ)−K−ε(λ) + I −Sε(λ) + S−ε(λ)
N ε(λ)−N−ε(λ) −K∗,ε(λ) +K∗,−ε(λ) + I

)
(λ)

(
ψ
ϕ

)
̸= 0. (6.11)

Define the integral operators on H1/2(Γ)×H−1/2(Γ)

Tε(λ) :=

(
−Kε(λ) Sε(λ)
−N ε(λ) K∗,ε(λ)

)
, (6.12)

and
Tε
s(λ) := Tε + T−ε, Tε

t (λ) := −Tε + T−ε + I, Tε
n(λ) := Tε − T−ε + I, (6.13)

where I is the identity operator. Based on the above discussion, we obtain the following lemma for
the characterization of interface modes.

Lemma 6.1. Let λ ∈ (λ∗ − d| t∗γ∗ |ε, λ∗ + d| t∗γ∗ |ε).

(i) There exists an interface mode u satisfying (2.16) if and only if there exists (ψ, ϕ) ∈ H1/2(Γ)×
H−1/2(Γ) such that

Tε
s(λ)

(
ψ
ϕ

)
= 0, Tε

t (λ)

(
ψ
ϕ

)
̸= 0. (6.14)

Furthermore, each solution to (6.14) yields an interface mode expressed by (6.8).

(ii) If u is an interface mode satisfying (2.16), then 0 ̸= (u|Γ, ∂nu|Γ) ∈ H1/2(Γ) × H−1/2(Γ)
satisfies

Tε
s(λ)

(
u|Γ
∂nu|Γ

)
= 0, Tε

n(λ)

(
u|Γ
∂nu|Γ

)
= 0. (6.15)

Remark 6.2. First, suppose that (λ, ψi, ϕi) i = 1, · · · , N satisfy (6.14) for some positive integer
N . Let ui be defined by (6.8) correspondingly. When {(ψi, ϕi)}i=1,··· ,N are linearly independent,
{ui}i=1,··· ,N may be linearly dependent.

Second, the converse of Lemma 6.1 part (ii) does not hold. That is, a triple (λ, ψ, ϕ) satisfying
(6.15) may not produce an interface mode through (6.8).

Third, the subscript for Tε
s represents “sufficient”, that for Tε

t represents “nontrivial”, and that
for Tε

n represents “necessary”.

We introduce some notations similar to (6.1)-(6.3) and (6.12). Specifically, for ε = 0, in the
infinite strip Ω0, we define S0(λ∗), D0(λ∗), K0(λ∗), K∗,0(λ∗) and N 0(λ∗) parallel to (6.1)-(6.3)
where the Green functions are replaced by G0(x,y, λ∗) defined in (5.26), and S̃0(λ∗), D̃0(λ∗),
K̃0(λ∗), K̃∗,0(λ∗) and Ñ 0(λ∗), where the Green functions are replaced by G̃0(x,y, λ∗) defined in
(5.27). We also define S0,±(λ∗), D0,±(λ∗), K0,±(λ∗), K∗,0,±(λ∗) and N 0,±(λ∗), where the Green
functions are replaced by G0,±(x,y, λ∗) defined in (5.29) and (5.31). These layer potentials have
the jump relations when ε is replaced by 0 and λ is replaced by λ∗ in (6.3).

Finally, define the integral operators on H1/2(Γ)×H−1/2(Γ)

T0(λ∗) :=

(
−K0(λ∗) S0(λ∗)
−N 0(λ∗) K0,∗(λ∗)

)
and T̃0(λ∗) :=

(
−K̃0(λ∗) S̃0(λ∗)

−Ñ 0(λ∗) K̃0,∗(λ∗)

)
. (6.16)
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7 The proof of Theorem 2.9

In this section, we investigate interface modes along a zigzag interface using the integral equation
formulation in Lemma 6.1. We will first derive the limit of the integral operators, and then apply
the generalized Rouché theorem in Gohberg-Sigal theory to investigate the characteristic values of
the integral operators.

7.1 The limiting operators for Tε, Tε
s, Tε

t , and Tε
n

We derive asymptotic expansions for the integral operators Tε, Tε
s, Tε

t , and Tε
n in this subsection.

To this end, we first introduce several notations. For ϕ⃗ = (ψ, ϕ) ∈ H1/2(Γ)×H−1/2(Γ), let

ci(ϕ⃗) := ⟨ϕ, vi⟩Γ − ⟨∂nvi, ψ⟩Γ, (7.1)

where vi are defined in Remark 5.5. We also denote

v⃗i :=

(
vi|Γ
∂nvi|Γ

)
, i = 1, 2, (7.2)

and define the operators
Pϕ⃗ := c1(ϕ⃗)v⃗1 + c2(ϕ⃗)v⃗2, (7.3)

Qϕ⃗ := c2(ϕ⃗)v⃗1 + c1(ϕ⃗)v⃗2. (7.4)

Let β(h) and ξ(h) be two functions given by

β(h) :=
1

2

∣∣∣∣γ∗θ∗
∣∣∣∣ h√

( t∗γ∗ )
2 − h2

=
1

2α∗

h√
β2∗ − h2

,

ξ(h) :=
t∗

2|θ∗|
1√

( t∗γ∗ )
2 − h2

=
β∗
2α∗

1√
β2∗ − h2

,

(7.5)

where α∗ is defined in Remark 5.6 and β∗ :=
t∗
|θ∗| . We have the following lemma for the limit of the

integral operator T±ε as ε→ 0.

Proposition 7.1. Let Assumption 2.7 holds along β1 and t∗ > 0. Let d ∈ (0, 1) be a constant.
Then the following limit holds uniformly for h ∈ C that satisfy |h| < d| t∗γ∗ | as ε→ 0+:

T±ε(λ∗ + εh) → T̃0(λ∗) + β(h)P∓ ξ(h)Q =: U±(h), (7.6)

where the convergence is understood with the operator norm from H1/2(Γ)×H−1/2(Γ) to H1/2(Γ)×
H−1/2(Γ).

The proof of the proposition is presented in Appendix C. It is based on the representation of
the Green functions in the infinite strip in terms of the band modes [38]:

S±ε(λ)ϕ =
∑
n≥1

1

2π

∫
[−π,π]

⟨ϕ, vn,±ε(·;p(ℓ))⟩Γvn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ
dℓ, (7.7)

K±ε(λ)ψ =
∑
n≥1

1

2π

∫
[−π,π]

⟨∂nvn,±ε(·;p(ℓ)), ψ⟩Γvn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ
dℓ, (7.8)
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K∗,±ε(λ)ϕ =
∑
n≥1

1

2π

∫
[−π,π]

⟨ϕ, vn,±ε(·;p(ℓ))⟩Γ∂nvn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ
dℓ, (7.9)

N±ε(λ)ψ = ∂n

∑
n≥1

1

2π

∫
[−π,π]

⟨∂nvn,±ε(·;p(ℓ)), ψ⟩Γvn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ
dℓ,

 (7.10)

and

S̃0(λ)ϕ =

∑
n≥3

+
∑
n=1,2

p.v.

 1

2π

∫
[−π,π]

⟨ϕ, vn(·;p(ℓ))⟩Γvn(x;p(ℓ))
µn(p(ℓ))− λ

dℓ, (7.11)

K̃0(λ)ψ =

∑
n≥3

+
∑
n=1,2

p.v.

 1

2π

∫
[−π,π]

⟨∂nvn(·;p(ℓ)), ψ⟩Γvn(x;p(ℓ))
µn(p(ℓ))− λ

dℓ, (7.12)

K̃∗,0(λ)ϕ =

∑
n≥3

+
∑
n=1,2

p.v.

 1

2π

∫
[−π,π]

⟨ϕ, vn(·;p(ℓ))⟩Γ∂nvn(x;p(ℓ))
µn(p(ℓ))− λ

dℓ, (7.13)

Ñ 0(λ)ψ = ∂n

∑
n≥3

+
∑
n=1,2

p.v.

 1

2π

∫
[−π,π]

⟨∂nvn(·;p(ℓ)), ψ⟩Γvn(x;p(ℓ))
µn(p(ℓ))− λ

dℓ

 . (7.14)

Corollary 7.2. Let Assumption 2.7 hold along β1 and t∗ > 0. Let d ∈ (0, 1) be a constant. The
following limits hold under the operator norm from H−1/2(Γ) × H1/2(Γ) to H1/2(Γ) × H−1/2(Γ)
uniformly for h ∈ C that satisfy |h| < d| t∗γ∗ | as ε→ 0+:

Tε
s(λ∗ + εh) = Us(h) + R1(h, ε), (7.15)

Tε
t (λ∗ + εh) = Ut(h) + R2(h, ε), (7.16)

Tε
n(λ∗ + εh) = Un(h) + R3(h, ε). (7.17)

Here the limiting operators are

Us(h) := 2T̃0(λ∗) + 2β(h)P, Ut(h) := I+ 2ξ(h)Q, Un(h) := I− 2ξ(h)Q, (7.18)

and the remainder terms have the estimate ∥Ri(h, ε)∥H1/2(Γ)×H−1/2(Γ)→H1/2(Γ)×H−1/2(Γ) = o(1) as

ε→ 0+ uniformly for |h| < d| t∗γ∗ |, i = 1, 2, 3.

7.2 Properties of the limiting operators Us, Ut and Un

Using the definition of ci in (7.1), the definition of the q-sesquilinear form (5.18), and the relations
(5.21) and (5.22), we obtain

c1(v⃗1) = q(v1, v1) = ⟨∂nv1, v1⟩Γ − ⟨∂nv1, v1⟩Γ = iα∗,

c2(v⃗2) = q(v2, v2) = ⟨∂nv2, v2⟩Γ − ⟨∂nv2, v2⟩Γ = −iα∗,

ci(v⃗j) = q(vj , vi) = ⟨∂nvj , vi⟩Γ − ⟨∂nvi, vj⟩Γ = 0 for i ̸= j,

(7.19)

where v⃗i are defined in (7.2). Define the function spaces

X := span{v⃗1, v⃗2}, Y := {ϕ⃗ ∈ H1/2(Γ)×H−1/2(Γ)}, ci(ϕ⃗) = 0, i = 1, 2}. (7.20)

42



Then Y is the orthogonal complement of X in the sense of dual spaces. We let

PY (ϕ⃗) := ϕ⃗− c1(ϕ⃗)

iα∗
v⃗1 −

c2(ϕ⃗)

−iα∗
v⃗2. (7.21)

Since ci(PY (ϕ⃗)) = 0, i = 1, 2, we obtain the following direct sum decomposition:

H1/2(Γ)×H−1/2(Γ) = X
⊕

Y. (7.22)

The following fact will be used repeatedly in the sequel. (7.19) implies that v⃗1 and v⃗2 are
linearly independent. For the operators defined in (7.3) and (7.4), there holds

Pv⃗1 = iα∗v⃗1, Pv⃗2 = −iα∗v⃗2, Qv⃗1 = iα∗v⃗2, Qv⃗2 = −iα∗v⃗1, (7.23)

and
PY = QY = 0. (7.24)

Lemma 7.3. The kernel and range of the operator T̃0 are

Ker T̃0(λ∗) = X, Ran T̃0(λ∗) = Y. (7.25)

Proof. We first show X ⊂ Ker(T̃0(λ∗)). To this end, we establish the following relations:

T̃0(λ∗)v⃗1 =

(
T0(λ∗) +

1

2
I
)
v⃗1, T̃0(λ∗)v⃗2 =

(
T0(λ∗)−

1

2
I
)
v⃗2. (7.26)

We see that

−K0(λ∗)(v1|Γ)(x) + S0(λ∗)(∂nv1|Γ)(x)

=− K̃0(λ∗)(v1|Γ)(x)−
i

2α∗
(v1(x)⟨∂nv1, v1⟩+ v2(x)⟨∂nv2, v1⟩)

+ S̃0(λ∗)(∂nv1|Γ)(x) +
i

2α∗
(v1(x)⟨v1, ∂nv1⟩+ v2(x)⟨v2, ∂nv1⟩), x ∈ Γ.

(7.27)

Using (7.19), we obtain

−K0(λ∗)(v1|Γ)(x) + S0(λ∗)(∂nv1|Γ)(x)

=− K̃0(λ∗)(v1|Γ)(x) + S̃0(λ∗)(∂nv1|Γ)(x)−
1

2
v1(x), x ∈ Γ.

(7.28)

Hence, the first relation in (7.26) holds, and the other relation can be shown similarly.
Next we show that

(T0(λ∗) +
1

2
)v⃗1 = 0, (T0(λ∗)−

1

2
)v⃗2 = 0. (7.29)

For each constant A ∈ R, define ΓA := Γ + Ae1. Integrating by parts, we obtain when A > 0 and
x is between Γ and ΓA,

vi(x) = D0(λ∗)(vi|Γ)(x)−S0(λ∗)(∂nvi|Γ)(x)+
(
−D0

A(λ∗)(vi|ΓA
)(x) + S0

A(λ∗)(∂nvi|ΓA
)(x)

)
, (7.30)

and when A < 0 and x is between Γ and ΓA,

vi(x) = −D0(λ∗)(vi|Γ)(x)+S0(λ∗)(∂nvi|Γ)(x)+
(
D0

A(λ∗)(vi|ΓA
)(x)− S0

A(λ∗)(∂nvi|ΓA
)(x)

)
. (7.31)
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Here S0
A(λ∗) and D0

A(λ∗) represents the single and double layer potentials with kernel G0(x,y;λ∗)
as defined in (5.26) and normal derivative in the direction n. Set i = 2 in (7.30). By the relation
(5.28), the decay of G0,+(x,y;λ∗) and (7.19), the limit of (7.30) when A→ +∞ gives

v2(x) = D0(v2|Γ)(x)− S0(∂nv2|Γ)(x), x is to the right of Γ. (7.32)

Taking the trace and normal derivative of v2 from the right of Γ, we obtain the first relation in
(7.29). The second equation can be similarly obtained by setting i = 1 in (7.31). Combining (7.26)
and (7.29), we obtain X ⊂ Ker(T̃0(λ∗)).

The relation KerT̃0(λ∗) ⊂ X follows from Lemma 7.4 and the fact that −∆0 does not have
eigenvalues in the unperturbed strip.

For the range of T̃0, we observe

Ran T̃0(λ∗) =
{
(ψ1, ϕ1) ∈ H1/2(Γ)×H−1/2(Γ), ⟨ϕ1, ψ2⟩Γ + ⟨ϕ2, ψ1⟩Γ = 0 for all (ψ2, ϕ2) ∈ Ker

(
T̃0(λ∗)

)∗}
.

(7.33)
It is straightfoward to verify that(

T̃0(λ∗)
)∗

=

(
0 −1
1 0

)
T̃0(λ∗)

(
0 −1
1 0

)
(7.34)

Thus

Ran T̃0(λ∗) =
{
(ψ1, ϕ1) ∈ H1/2(Γ)×H−1/2(Γ), ⟨ϕ1, ψ2⟩Γ − ⟨ϕ2, ψ1⟩Γ = 0 for all (ψ2, ϕ2) ∈ Ker T̃0(λ∗)

}
= Y.

(7.35)

Lemma 7.4. Suppose ϕ⃗ ∈ H1/2(Γ)×H−1/2(Γ) satisfies

T̃0(λ∗)ϕ⃗ = 0, ϕ⃗ ∈ Y (or ci(ϕ⃗) = 0, i = 1, 2). (7.36)

Define

u(x) =

{
[D0(λ∗)ψ](x)− [S0(λ∗)ϕ](x) on the right of Γ,

−[D0(λ∗)ψ](x) + [S0(λ∗)ϕ](x) on the left of Γ.
(7.37)

Then u ∈ H1(Ω0) is an eigenfunction of −∆ in Ω0 with eigenvalue λ∗.

Proof. We only need to show that u and ∂nu are continuous across Γ, u is nonzero, and it decays
as |x · e1| → ∞.

We first verify the continuity of u and its normal derivatives across Γ. Observe that

T0(λ∗)ϕ⃗ = T̃0(λ∗)ϕ⃗+
i

2α∗
c1(ϕ⃗)v⃗1 +

i

2α∗
c2(ϕ⃗)v⃗2 = 0. (7.38)

Using the relations(
u|+Γ
∂nu|+Γ

)
=

(
1

2
I− 1

2
T0(λ∗)

)
ϕ⃗ =

1

2
ϕ⃗,

(
u|−Γ
∂nu|−Γ

)
=

(
1

2
I+

1

2
T0(λ∗)

)
ϕ⃗ =

1

2
ϕ⃗, (7.39)

we obtain that the jumps in u and ∂nu are both 0 across Γ and u is nonzero.
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Using relations (5.29) and (5.31), we obtain for x · e1 → +∞

D0(λ∗)ψ − S0(λ∗)ϕ = D0,+(λ∗)ψ − S0,+(λ∗)ϕ+
i

α∗
c1(ϕ⃗)v1 = D0,+(λ∗)ψ − S0,+(λ∗), (7.40)

and for x · e1 → −∞

−D0(λ∗)ψ + S0(λ∗)ϕ = −D0,−(λ∗)ψ + S0,−(λ∗)ϕ+
i

α∗
c2(ϕ⃗)v2 = D0,−(λ∗)ψ − S0,−(λ∗). (7.41)

Thus u decays exponentially as |x·e1| → ∞. We conclude u ∈ H1(Ω0) and the proof is complete.

Proposition 7.5. The following holds for h ∈ C that satisfy |h| < d| t∗γ∗ |:
(i) The operator Us(h) defined in (7.15) is analytic in h and it is a Fredholm operator with index

zero.

(ii) The only characteristic value of Us(h) is h = 0, and the kernel of Us(0) is given by

Ker Us(0) = span {v⃗1, v⃗2} = X. (7.42)

The multiplicity of the characteristic h = 0 is 2.

Proof. (i) The operator T0(λ∗) is a Fredholm operator with index zero because S0 and N0 are
Fredholm operators with index zero [60, 66] and the operators K0 andK∗,0 are compact. Therefore,
in view of the relation between T0(λ∗) and T̃0(λ∗) in (7.38) and the fact that the operator P is
compact, we conclude that Us(0) is a Fredholm operator with index zero.

(ii) Note that β(0) = 0, we see that h = 0 is a characteristic value of Us(h), with Ker Us(0) =
Ker T̃0(λ∗) = X by Lemma 7.3. Now we assume h ̸= 0 is a characteristics of Us(h). Then there
exists a nontrivial ϕ⃗ that satisfies (

2T̃0(λ∗) + 2β(h)P
)
ϕ⃗ = 0. (7.43)

Since RanP = X, Ran T̃0(λ∗) = Y and X ∩ Y = ∅, it follows that Pϕ⃗ = 0, which in turn implies
ϕ⃗ = 0. Thus h = 0 is the only characteristic.

The multiplicity of h = 0 is at least two, since Ker Us(0) = Ker T̃0(λ∗) = X is two dimensional.
We next show that every ϕ ∈ X is an eigenfunction of Us(0) of rank 1 (see Appendix A for the
definition of rank used here). Let ϕ⃗(h) be a family of functions in H1/2(Γ) × H−1/2(Γ) that are
analytic in a neighborhood of h = 0, and ϕ⃗ := ϕ⃗(0) ∈ Ker Us(0). We obtain

d
(
Us(h)ϕ⃗(h)

)
dh

|h=0 =
dUs(h)

dh
|h=0ϕ⃗+ Us(0)ϕ⃗

′(0) =
1

α∗β∗
Pϕ⃗+ Us(0)ϕ⃗

′(0), (7.44)

where we used (7.18) in the last equality above. Since RanP ⊂ X, RanUs(0) = RanT̃0 = Y and
X ∩ Y = ∅, we deduce that (7.44) is nonzero unless Pϕ⃗ = 0, which in turn implies ϕ⃗ = 0. That is,
every ϕ⃗ ∈ Ker Us(0) has rank 1, thus the multiplicity is exactly two.

Proposition 7.6. Let h ∈ C and |h| < d| t∗γ∗ |. The operators Un(h) and Ut(h) defined in (7.17)
and (7.16) are analytic in h and are Fredholm operators with index zero. The only characteristic
value of each operator is h = 0 with a multiplicity of 2. In addition, the kernel of Un(0) and Ut(0)
are given by

Ker Un(0) = span {v⃗1 + iv⃗2} and Ker Ut(0) = span {v⃗1 − iv⃗2} (7.45)

respectively.
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Proof. Since the structures of Un(h) and Ut(h) are similar, we only give the proof of the claims for
Un(h).

It is obvious that the operator Un(h) is a Fredholm operator since Q is a finite-rank operator.
Observe that for all h, Un(h)|Y = IY , thus Ker Un(h) ⊂ X. Under the basis {v⃗1, v⃗2} of X, using
(7.23), we obtain ϕ⃗ = av⃗1 + bv⃗2 ∈ Ker Un(h) if and only if(

1 2iξ(h)α∗
−2iξ(h) 1

)(
a
b

)
= 0. (7.46)

It is easy to verify that the determinant of the matrix 1− 4α2
∗(ξ(h))

2 is zero if and only if h = 0 by
(7.5). When h = 0, (a, b) = (1, i) spans the kernel since ξ(0) = 1

2α∗
.

For the multiplicity of h = 0, we observe

Un(h)|h=0 = I− 1

α∗
Q,

dUn(h)

dh
|h=0 = 0,

d2Un(h)

dh2
|h=0 = − 1

α∗β2∗
Q. (7.47)

Let ϕ⃗(h) be a family of H1/2(Γ)×H−1/2(Γ) operators that is analytic in a neighborhood of h = 0,
and ϕ⃗ := ϕ⃗(0) ∈ Ker Un(0). Then

d
(
Un(h)ϕ⃗(h)

)
dh

|h=0 = Un(0)ϕ
′(0) = 0 (7.48)

can be satisfied by the choice ϕ⃗′(0) = ϕ⃗(0). The second derivative is given by

d2
(
Un(h)ϕ⃗(h)

)
dh

|h=0 = − 1

α∗β2∗
Qϕ⃗+ (I− 1

α∗
Q)ϕ⃗′′(0). (7.49)

To make the second derivative zero, ϕ⃗′′(0) must be in X ⊃ Ran(Q). Let ϕ⃗′′(0) = av⃗1 + bv⃗2. Then
(7.49) is zero if and only if (

1 i
−i 1

)(
a
b

)
=

1

β2∗

(
1
i

)
. (7.50)

This equation has no solution (not even trivial) because the right-hand side is not in the range of
the matrix on the left-hand side. Thus h = 0 is a characteristic of multiplicity two.

7.3 The characteristic values for the operators Tε
s, Tε

n and Tε
t

Lemma 7.7. Let Assumption 2.7 hold along β1 and t∗ > 0. Let d ∈ (0, 1) be a constant. For
sufficiently small positive ε and |h0| < d| t∗γ∗ |, the following holds:

(i) The operator
2T̃0(λ∗) + PY R1(h, ε) : Y → Y (7.51)

is invertible, where PY is the projection defined in (7.21), and R1(h, ε) is the remainder
defined in Corollary 7.2.

(ii) Denote the inverse of the operator in (7.51) by A(h, ε) : Y → Y . For each ϕ⃗0 ∈ X, define

J1(h, ε)[ϕ⃗0] = −A(h0, ε)PY R1(h, ε)ϕ⃗0. (7.52)
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If ϕ⃗ ∈ Ker (Tε
s(λ∗ + εh0)), then

ϕ⃗ = ϕ⃗0 + J1(h0, ε)[ϕ⃗0], (7.53)

for some ϕ⃗0 ∈ X. Moreover,

∥J1(h, ε)[ϕ⃗0]∥H1/2(Γ)×H−1/2(Γ) = o(1) · ∥ϕ⃗0∥H1/2(Γ)×H−1/2(Γ) (7.54)

uniformly for |h| < d| t∗γ∗ | as ε→ 0+.

Proof. The invertibility of (7.51) follows from the observation that 2T̃0(λ∗) : Y → Y is invertible
and ∥R1(h, ε)∥H1/2(Γ)×H−1/2(Γ)→H1/2(Γ)×H−1/2(Γ) is of order o(1) uniformly for |h| < d| t∗γ∗ | as ε→ 0+.

In addition, the norm for its inverse ∥A(h, ε)∥Y→Y = O(1) uniformly for |h| < d| t∗γ∗ | as ε→ 0+.

If ϕ⃗ ∈ Ker (Tε
s(λ∗ + εh0)), by (7.22) and Corollary 7.2, we have the decomposition

ϕ⃗ = ϕ⃗0 + ϕ⃗1, ϕ⃗0 ∈ X, ϕ⃗1 ∈ Y, (7.55)

and
Tε
s(λ∗ + εh0) = 2T̃0(λ∗) + 2β(h0)P+ R1(h0, ε). (7.56)

As such
Tε
s(λ∗ + εh0)ϕ⃗ = (2T̃0(λ∗) + 2β(h0)P+ R1(h0, ε))(ϕ⃗0 + ϕ⃗1) = 0. (7.57)

Projecting into Y by PY , we obtain

(2T̃0(λ∗) + PY R1(h0, ε))ϕ⃗1 + PY R1(h0, ε)ϕ⃗0 = 0. (7.58)

Thus ϕ⃗1 = J1(h0, ε)[ϕ⃗0], and the proof is complete.

Lemma 7.8. Let Assumption 2.7 holds along β1 and t∗ > 0. Let d ∈ (0, 1) be a constant. For
sufficiently small positive ε, and for |h0| < d| t∗γ∗ |, every nontrivial ϕ⃗ ∈ Ker (Tε

s(λ∗+ εh0)) is of rank
1.

Proof. The goal is to prove that for all ϕ⃗(h) ∈ H1/2(Γ)×H−1/2(Γ), analytic in h with ϕ⃗(h0) = ϕ⃗,
there holds

d
(
Tε
s(λ∗ + εh)ϕ⃗(h)

)
dh

|h=h0 ̸= 0. (7.59)

To this end, we only need to show that there is no ψ⃗ ∈ H1/2(Γ)×H−1/2(Γ), such that

Tε
s(λ∗ + εh0)ψ⃗ +

d
(
Tε
s(λ∗ + εh)

)
dh

|h=h0 ϕ⃗ = 0. (7.60)

Taking the H−1/2(Γ)×H1/2(Γ)-H1/2(Γ)×H−1/2(Γ) innerproduct with

(
0 −1
1 0

)
ϕ⃗, we obtain

⟨
(
0 −1
1 0

)
ϕ⃗, (2β′(h0)P+ ∂hR1(h0, ε))ϕ⃗⟩H−1/2(Γ)×H1/2(Γ),H1/2(Γ)×H−1/2(Γ) = 0, (7.61)
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where we have used (7.34). Using the Cauchy integral representation of the h partial derivative

∂hR1(h, ε) =
1

2πi

∫
|z|= 1+d

2

R1(z, ε)

(z − h)2
dz. (7.62)

Thus
∥∂hR1(h, ε)∥H1/2(Γ)×H−1/2(Γ)→H1/2(Γ)×H−1/2(Γ) = o(1) (7.63)

uniformly for |h| < d| t∗γ∗ | as ε → 0+, since ∥R1(h, ε)∥H1/2(Γ)×H−1/2(Γ)→H1/2(Γ)×H−1/2(Γ) is of o(1)

uniformly for |h| < 1+d
2 | t∗γ∗ | when ε > 0 is sufficiently small. Writing ϕ⃗ in the form of (7.53) with

ϕ⃗0 = av⃗1 + bv⃗2 for a, b ∈ C, we obtain

2β′(h0)iα
2
∗(|a|2 + |b|2) + o(1) = 0. (7.64)

Since |β′(h0)| > | 1
2α∗β∗

| for |h| < d| t∗γ∗ |, the above equation never holds when ε > 0 is sufficiently

small unless a = b = 0. By (7.53), ϕ⃗0 = 0, which contradicts that ϕ⃗ is nontrivial. The proof is
complete.

To study the operators Tt and Tn, we decompose the space X further using the basis

u1 := v⃗1 + iv⃗2, u2 := v⃗1 − iv⃗2. (7.65)

Define
Xi := span{ui}, i = 1, 2. (7.66)

Then
X = X1

⊕
X2, H1/2(Γ)×H−1/2(Γ) = X1

⊕
X2

⊕
Y. (7.67)

It follows that

Pu1 = iα∗u2, Pu2 = iα∗u1, Qu1 = α∗u1, Qu2 = −α∗u2, PY = QY = 0. (7.68)

Similar to Lemma 7.7, we have the following characterization of the root functions of Tε
t (λ∗ + εh0)

and Tε
n(λ∗ + εh0). We will only give the proof of Lemma 7.9 as that of Lemma 7.10 is the same.

Lemma 7.9. Let Assumption 2.7 holds along β1 and t∗ > 0. Let d ∈ (0, 1) be a constant. The
following holds for sufficiently small ε > 0 and |h| < d| t∗γ∗ |,
(i) The operator

I− ξ(h)PX2
⊕

Y Q+ PX2
⊕

Y R3(h, ε) : X2

⊕
Y → X2

⊕
Y (7.69)

is invertible, where R3(h, ε) is the remainder defined in Corollary 7.2. Denote the inverse by
C(h, ε) : X2

⊕
Y → X2

⊕
Y .

(ii) Define
J2(h, ε)[u1] = −C(h, ε)PX2

⊕
Y R3(h, ε)u1. (7.70)

Then J2(h, ε)[u1] is analytic in h and

∥J2(h, ε)[u1]∥H1/2(Γ)×H−1/2(Γ) = o(1)∥u1∥H1/2(Γ)×H−1/2(Γ), uniformly for |h| < d| t∗
γ∗

| as ε→ 0+.

(7.71)
Moreover, if ϕ⃗ ∈ Ker (Tε

n(λ∗ + εh0)), then up to a constant factor

ϕ⃗ = u1 + J2(h0, ε)[u1]. (7.72)
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Proof of Lemma 7.9. The invertibility of (7.69) follows from PX2
⊕

Y Q|X2 = −α∗, ξ(h) > 0,

PX2
⊕

Y Q|Y = 0 and the uniform smallness of R3(h, ε). The analyticity of J2[ϕ⃗0](h, ε) in h and the
smallness (7.71) follow straightforwardly.

For the statement (7.72), by (7.67) and Corollary 7.2, we have

ϕ⃗ = u1 + ϕ⃗1(h, ε), for some ϕ⃗1(h, ε) ∈ X2

⊕
Y, (7.73)

and
Tε
n(λ∗ + εh0)ϕ⃗(h0, ε) =

(
I− ξ(h0)Q+ R3(h0, ε)

)
(u1 + ϕ⃗1(h0, ε)) = 0. (7.74)

Projecting into X2
⊕
Y using PX2

⊕
Y , we have

(I− ξ(h0)PX2
⊕

Y Q+ PX2
⊕

Y R3(h0, ε))ϕ⃗1(h0, ε) + PX2
⊕

Y R3(h0, ε)u1 = 0. (7.75)

By the invertibility of (7.69), ϕ⃗1 = ∥J2[ϕ⃗0](h, ε). The proof is concluded.

Lemma 7.10. Let Assumption 2.7 holds along β1 and t∗ > 0. Let d ∈ (0, 1) be a constant. Then
the following holds for sufficiently small ε > 0 and |h| < d| t∗γ∗ |:

(i) The operator

I+ ξ(h)PX1
⊕

Y Q+ PX1
⊕

Y R2(h, ε) : X1

⊕
Y → X1

⊕
Y.

is invertible, where R2(h, ε) is the remainder defined in Corollary 7.2. Denote the inverse by
B(h, ε) : X1

⊕
Y → X1

⊕
Y .

(ii) Let
J3(h, ε)[u2] = −B(h, ε)PX1

⊕
Y R2(h, ε)u2. (7.76)

Then ϕ⃗1(h, ε) is analytic in h and

∥J3(h, ε)[u2]∥H1/2(Γ)×H−1/2(Γ) = o(1)∥u2∥H1/2(Γ)×H−1/2(Γ), uniformly for |h| < d| t∗
γ∗

| as ε→ 0+.

(7.77)
Furthermore, if ϕ⃗ ∈ Ker (Tε

t (λ∗ + εh0)), then

ϕ⃗ = u2 + J3(h0, ε)[u2]. (7.78)

Proposition 7.11. Let Assumption 2.7 holds along β1 and t∗ > 0. Let d ∈ (0, 1) be a constant.
For sufficiently small ε > 0, the system

Tε
s(λ∗ + εh)ϕ⃗ = 0 and Tε

n(λ∗ + εh)ϕ⃗ = 0 (7.79)

attains at most one pair of solution (h, ϕ⃗), with |h| < d| t∗γ∗ | and ϕ⃗ ∈ H1/2(Γ)×H−1/2(Γ). The same
holds for the system

Tε
s(λ∗ + εh)ϕ⃗ = 0 and Tε

t (λ∗ + εh)ϕ⃗ = 0. (7.80)
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Proof. We only display the proof on the system (7.79). Suppose ϕ⃗ solves both equations in (7.79).
By Lemma 7.9, the solution to the second equation necessarily takes the form ϕ⃗ = u1 + J2(h, ε)[u1]
where J2(h, ε)[u1] is defined in (7.70). Substituting ϕ⃗ into the first equation in (7.79), we obtain

(2T̃0(λ∗) + 2β(h)P+ R1(h, ε))(u1 + J2(h, ε)[u1]) = 0. (7.81)

Projecting into X2 using PX2 , we obtain

2iα∗β(h)u2 + [PX2R1(h, ε)u1 + PX2

(
2β(h)P+ R1(h, ε)

)
J2(h, ε)[u1]] = 0. (7.82)

Since X2 is a one-dimensional space, (7.82) becomes

2iα∗β(h) + r(h, ε) = 0. (7.83)

Note that for each ε, r(h, ε) is analytic in h, and |r(h, ε)| → 0 as ε → 0+ uniformly in |h| < d| t∗γ∗ |.
Thus the Rouché Theorem for single-variable complex functions implies that there is exactly one
h0 that solves (7.83) in the region |h| < d| t∗γ∗ |. There is also at most one root function at h0, since

ϕ⃗ is determined by (7.72) when h = h0.

7.4 Proof of Theorem 2.9

Proof of Theorem 2.9. We claim that Tε
s(λ∗ + εh) is of multiplicity 2 in |h| < d| t∗γ∗ | when ε > 0 is

sufficiently small. In Theorem A.1, we identify z = h, X = Y = H1/2(Γ)×H−1/2(Γ), V = {h, |h| <
d| t∗γ∗ |}, A(z) = Us(h) and B(z) = R1(h, ε). In Proposition 7.5, we have shown that A(z) is analytic

and Fredholm of index zero on a neighborhood of V , and the multiplicity of A(z) in V is 2. On ∂V ,
we know A(z) is invertible and is independent of ε, and B(z) converges uniformly to 0 as ε → 0+

by Corollary 7.2. Since B(z) is analytic on a neighborhood of V , by Theorem A.1 and the relation
Tε
s(λ∗ + εh) = A(z) +B(z), we conclude the claim.
By Lemma 7.8, there are two pairs (hi, ϕ⃗i) solving Tε

s(λ∗+εh)ϕ⃗ = 0, i = 1, 2. We first show that
there is at least one interface mode. Assume ui generated by ϕ⃗i through the expression (6.8) are
both equal to zero. Then (hi, ϕ⃗i), i = 1, 2 are both solutions to the system (7.80). This contradicts
the uniqueness of simultaneous solutions to (7.80) established in Proposition 7.11. Next, we show
that there is at most one interface mode. Suppose there are two linearly independent interface
modes ui at hi respectively, i = 1, 2. Denote ϕ⃗i = (ui|Γ, ∂nui|Γ). Then (hi, ϕ⃗i), i = 1, 2 are the
solutions to the system (7.79). This contradicts the uniqueness of solutions to the system (7.79)
established in Proposition 7.11.

8 The interface modes along an armchair interface

In this section, we study interface modes along the armchair interface as stated in the eigenvalue
problem (2.20) and prove Theorem 2.12. To this end, we extend in parallel the mathematical
framework developed in the previous sections for the zigzag interface.

For ease of notation, we will abuse notations vi, v⃗i, ci, P, Q, X, ui, Xi that are introduced in
Sections 4, 5, 6, and 7 to represent the quantities relevant to the zigzag interface. In this section,
these notations represent the quantities relevant to the armchair interface.
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For the eigenvalue problem (2.20), the Floquet theory on the strip ΩJ
a = ∪n1∈Z(Ca + n1e

a
1)

corresponds to the slice of quasimomenta p(ℓ) := K + ℓβa
1. This slice intersects with both K + Λ

and K ′ + Λ, as p(0) = K, and p(−2π
3 ) = K ′ + β1 − β2. We have the following proposition whose

proof is given in Appendix B.

Proposition 8.1. Let ρ := (ρ1, ρ2), where ρi are the functions defined in Proposition 3.10 with
the normalization such that (4.6) holds. Let t∗, γ∗ ∈ R and θ∗ ∈ C be the constants defined in
Proposition 4.1. There holds

⟨ρ,βa
1 · ∇pT (0, λ∗,p)ρ⟩∂D|p=K =

(
0

√
3i τθ∗

−
√
3iτθ∗ 0

)
. (8.1)

Let ρ′ := (ρ′1, ρ
′
2), where

ρ′1(x) := ρ̄2(x), ρ′2(x) := ρ̄1(x). (8.2)

In particular,

Rρ′1(x) := ρ′1(R
−1x) = τρ′1(x), Rρ′2(x) := ρ′2(R

−1x) = τ , ρ′2(x) = ρ′1(Fx). (8.3)

The partial derivatives of ⟨ρ′, T (ε, λ,p)ρ′⟩∂D at ε = 0, λ = λ∗ and p = K ′ take the forms

⟨ρ′, ∂λT (0, λ,K
′)ρ′⟩∂D|λ=λ∗ =

(
γ∗ 0
0 γ∗

)
,

⟨ρ′,β1 · ∇pT (0, λ∗,p)ρ
′⟩∂D|p=K′ =

(
0 −θ∗

−θ∗ 0

)
,

⟨ρ′, ∂εT (ε, λ∗,K
′)ρ′⟩∂D|ε=0 =

(
−t∗ 0
0 t∗

)
.

(8.4)

In particular,

⟨ρ′,βa
1 · ∇pT (0, λ∗,p)ρ

′⟩∂D|p=K′ =

(
0 −

√
3i τθ∗√

3iτθ∗ 0

)
. (8.5)

Here ⟨·, ·⟩∂D represents the (H−1/2(∂D))2-(H1/2(∂D))2 pairing.

Define

αa
∗ := |

√
3i τθ∗
γ∗

| =
√
3α∗. (8.6)

8.1 Band structure of the periodic strip Ωε
a near the Dirac points

We start with the following strip region

Ωε
a := ΩJ

a\ ∪m≥0 (D
ε +mea1). (8.7)

When ε = 0, Ω0
a represents the region when the rotation angle ε = 0. For ε ∈ R, define

Hε,a
loc := {u ∈ H1

loc(Ω
ε
a) : ∆u ∈ L2

loc(Ω
ε
a), u = 0 on ∪m∈Z (∂Dε +mea1),

u(x+ e2) = e
ik∗∥u(x) for x ∈ Γa

−, ∂ν2u(x+ e2) = e
ik∗∥∂ν2u(x) for x ∈ Γa

−}.
(8.8)
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We consider the dispersion relation of the operator ∆ on Hε,a
loc, that is, we find (λ, u) ∈ R ×Hε,a

loc,
such that

−∆u− λu = 0 on Ωε
a,

u = 0 on ∪m∈Z (∂Dε +mea1).
(8.9)

At ℓ = 0 and p(0) = K, comparing (8.1) and the second equation in (4.8), −
√
3iτθ∗ is in the

place of θ∗. At ℓ = −2π
3 and p(−2π

3 ) = K ′, comparing (8.5) the second equation in (4.8),
√
3iτθ∗

is in the place of θ∗. Thus we obtain the following remark and lemma parallel to Remark 5.2 and
Lemma 5.4, respectively.

Remark 8.2. If the Assumption 2.7 holds along βa
1, then for an arbitrary fixed constant d ∈ (0, 1),

when ε > 0 is sufficiently small, the operator ∆ on Ω±ε
a have a common band gap (λ∗−

√
3d| t∗γ∗ |ε, λ∗+√

3d| t∗γ∗ |ε).
Lemma 8.3. Let p(ℓ) := K + βa

1. For |ℓ| ≪ 1,

µ1(p(ℓ)) = λ∗ +
√
3|θ∗
γ∗

|ℓ(1 +O(ℓ)) (increasing in ℓ),

µ2(p(ℓ)) = λ∗ −
√
3|θ∗
γ∗

|ℓ(1 +O(ℓ)) (decreasing in ℓ).

(8.10)

The corresponding Bloch modes can be chosen as

v1(x;p(ℓ)) =

(−i τθ∗
|θ∗|

w1 − w2 +O(ℓ)

)
1√

2 +O(ℓ)
,

v2(x;p(ℓ)) =

(−i τθ∗
|θ∗|

w1 + w2 +O(ℓ)

)
1√

2 +O(ℓ)
.

(8.11)

For |ℓ+ 2π
3 | ≪ 1,

µ1(p(ℓ)) = λ∗ +
√
3|θ∗
γ∗

|(ℓ+ 2π

3
)(1 +O(ℓ+

2π

3
)) (increasing in ℓ),

µ2(p(ℓ)) = λ∗ −
√
3|θ∗
γ∗

|(ℓ+ 2π

3
))(1 +O(ℓ+

2π

3
)) (decreasing in ℓ).

(8.12)

The corresponding Bloch modes can be chosen as

b1v1(x;p(ℓ)) =

(
i τθ∗
|θ∗|

w1 − w2 +O(ℓ)

)
1√

2 +O(ℓ+ 2π
3 )
,

b2v2(x;p(ℓ)) =

(
i τθ∗
|θ∗|

w1 + w2 +O(ℓ)

)
1√

2 +O(ℓ+ 2π
3 )
.

(8.13)

Here bi, i = 1, 2, are two phase factors.

In the above, the phase factors show up in (8.13) because vn(p(ℓ)) needs to be smooth for ℓ ∈
(−π, π) as explained in Section 5.1. Define vi := vi(x;p(0)) = vi(x;K), and v′i := bivi(x;p(−2π

3 )) =
bivi(x;K

′). We obtain the relations{
w1 =

1√
2
−iτθ∗
|θ∗| (v1 + v2)

w2 =
1√
2
(−v1 + v2)

,

{
w′
1 =

1√
2
iτθ∗
|θ∗| (v

′
1 + v′2)

w′
2 =

1√
2
(−v′1 + v′2)

. (8.14)
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8.2 Green’s function in the infinite strip and the integral equation formulation

Compared to the Green function (5.26) for the infinite strip Ω0 considered in Section 5, the Green
function in the strip Ω0

a contains four propagating modes: vi(x;K) and vi(x;K
′) (i = 1, 2), due to

the fact that p(ℓ) := K + βa
1ℓ intersects with both K + Λ and K ′ + Λ. As a result, it attains the

following spectral representation:

G0,a(x,y;λ∗) =
∑
n≥3

1

2π

∫
[−π,π]

vn(y;p(ℓ))vn(x;p(ℓ))

µn(p(ℓ))− λ∗
dℓ+

∑
n=1,2

1

2π
p.v.

∫
[−π,π]

vn(y;p(ℓ))vn(x;p(ℓ))

µn(p(ℓ))− λ∗
dℓ

+
∑
n=1,2

i

2αa
∗
vi(y;K)vi(x;K) +

∑
n=1,2

i

2αa
∗
vi(y;K ′)vi(x;K

′), x,y ∈ Ω0,

(8.15)
where its integral part takes the form

G̃0,a(x,y;λ∗) =
∑
n≥3

1

2π

∫
[−π,π]

vn(y;p(ℓ))vn(x;p(ℓ))

µn(p(ℓ))− λ∗
dℓ+

∑
n=1,2

1

2π
p.v.

∫
[−π,π]

vn(y;p(ℓ))vn(x;p(ℓ))

µn(p(ℓ))− λ∗
dℓ.

(8.16)
The Green function in Ω±ε

a attains the following spectral representation:

G±ε,a(x,y;λ) =
∑
n≥1

1

2π

∫
[−π,π]

vn,±ε(y;p(ℓ))vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ
dℓ, x,y ∈ Ω0. (8.17)

We now investigate the interface modes along the armchair interface. For s ∈ R, we define the
following quasi-periodic Sobolev space on Γa:

Hs,a(Γa) :=

{
u(x0 + tea2) =

∑
n∈Z

ane
iK·ea2tei2πnt : ∥u∥2Hs,a(Γa) :=

∑
n∈Z

|an|2(1 + n2)s

}
. (8.18)

Here x0 = −1
2e

a
1 − 1

2e
a
2.

We define the layer potentials S±ε,a(λ), D±ε,a(λ), K±ε,a(λ), K±ε,a(λ) and N±ε,a(λ) parallel to
(6.1), where the Green functions are replaced by G±ε,a(x,y, λ), the integral region is replaced by
Γa, the integral operators on H1/2,a(Γa)×H−1/2,a(Γa) are defined by

Tε,a(λ) :=

(
−Kε,a(λ) Sε,a(λ)
−N ε,a(λ) K∗,ε,a(λ)

)
, (8.19)

and

Tε,a
s (λ) := Tε,a + T−ε,a, Tε,a

t (λ) := −Tε,a + T−ε,a + I, Tε,a
n (λ) := Tε,a − T−ε,a + I. (8.20)

We characterize the interface modes by using boundary integral operators as follows.

Lemma 8.4. Let λ ∈ (λ∗ −
√
3d| t∗γ∗ |ε, λ∗ +

√
3d| t∗γ∗ |ε).

(i) There exists an interface mode u satisfying (2.20) if and only if there exists (ψ, ϕ) ∈ H1/2,a(Γa)×
H−1/2,a(Γa) such that

Tε,a
s (λ)

(
ψ
ϕ

)
= 0, Tε,a

t (λ)

(
ψ
ϕ

)
̸= 0. (8.21)

(ii) If u is an interface mode satisfying (2.20), then 0 ̸= (u|Γa , ∂nu|Γa) ∈ H1/2,a(Γa)×H−1/2,a(Γa)
satisfies

Tε,a
s (λ)

(
u|Γa

∂nu|Γa

)
= 0, Tε,a

n (λ)

(
u|Γa

∂nu|Γa

)
= 0. (8.22)
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8.3 Limiting operators

Define

ci(ϕ⃗) = ⟨ϕ, vi⟩Γa − ⟨∂nvi, ψ⟩Γa , c′i(ϕ⃗) = ⟨ϕ, v′i⟩Γa − ⟨∂nv′i, ψ⟩Γa , i = 1, 2. (8.23)

Here ⟨·, ·⟩Γa represents the H−1/2,a(Γa)-H1/2,a(Γa) pairing on the armchair interface Γa. Define
v⃗i := (vi|Γa , ∂nvi|Γa) and v⃗′i := (v′i|Γa , ∂nv

′
i|Γa). Similar to the argument for (7.19), we have

c1(v⃗1) = iαa
∗, c2(v⃗2) = −iαa

∗, ci(v⃗j) = 0 for i ̸= j,

c′1(v⃗
′
1) = iαa

∗, c′2(v⃗
′
2) = −iαa

∗, c′i(v⃗
′
j) = 0 for i ̸= j,

ci(v⃗
′
j) = c′i(v⃗j) = 0 for i, j = 1, 2.

(8.24)

Define
Pϕ⃗ := c1(ϕ⃗)v⃗1 + c2(ϕ⃗)v⃗2, P′ϕ⃗ := c′1(ϕ⃗)v⃗

′
1 + c′2(ϕ⃗)v⃗

′
2, (8.25)

and
Qϕ⃗ := c2(ϕ⃗)v⃗1 + c1(ϕ⃗)v⃗2, Q′ϕ⃗ := c′2(ϕ⃗)v⃗

′
1 + c′1(ϕ⃗)v⃗

′
2. (8.26)

Let

βa(h) :=
1

2αa
∗

h√
β2∗ − h2

, ξa(h) :=
β∗
2αa

∗

1√
β2∗ − h2

, (8.27)

where αa
∗ is defined in (8.6).

Proposition 8.5. Let Assumption 2.7 hold along βa
1 and t∗ > 0. Let d ∈ (0, 1) be a constant. The

following limit holds uniformly for h ∈ C satisfying |h| < d| t∗γ∗ | as ε→ 0+ under the operator norm

on H1/2,a(Γa)×H−1/2,a(Γa):
T±ε,a(λ∗ + εh) → U±(h), (8.28)

where
U±,a(h) := T̃0,a(λ∗) + βa(h)(P+ P′)∓ ξa(h)(Q−Q′), (8.29)

and

T̃0,a(λ) :=

(
−K̃0,a(λ) S̃0,a(λ)

−Ñ 0,a(λ) K̃∗,0,a(λ)

)
. (8.30)

Here the layer potentials S̃0,a(λ), D̃0,a(λ), K̃0,a(λ), K̃0,a(λ) and Ñ 0,a(λ) are defined parallel to
(6.1), where the Green functions are replaced by G̃0,a(x,y, λ) as defined in (8.16), and the integral
region is replaced by Γa.

Corollary 8.6. Let Assumption 2.7 hold along βa
1 and t∗ > 0. Let d ∈ (0, 1) be a constant. We

have
Tε,a
s (λ∗ + εh) = Ua

s(h) + Ra
1(h, ε), (8.31)

Tε,a
t (λ∗ + εh) = Ua

t (h) + Ra
2(h, ε), (8.32)

Tε,a
n (λ∗ + εh) = Ua

n(h) + Ra
3(h, ε), (8.33)

where

Ua
s(h) := 2T̃0,a(λ∗)+2βa(h)(P+P′), Ua

t (h) := I+2ξa(h)(Q−Q′), Ua
n(h) := I−2ξa(h)(Q−Q′),

(8.34)
and ∥Ra

i (h, ε)∥H1/2,a(Γa)×H−1/2,a(Γa)→H1/2,a(Γa)×H−1/2,a(Γa) = o(1) as ε → 0+ uniformly for |h| <
d| t∗γ∗ |, i = 1, 2, 3.
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Define the function spaces

X := span{v⃗1, v⃗2}, X ′ := span{v⃗′1, v⃗′2}, Z := {ϕ⃗ ∈ H1/2,a(Γa)×H−1/2,a(Γa), ci(ϕ⃗) = 0, i = 1, 2}.
(8.35)

PZ(ϕ⃗) := ϕ⃗− c1(ϕ⃗)

iαa
∗
v⃗1 −

c2(ϕ⃗)

−iαa
∗
v⃗2 −

c′1(ϕ⃗)

iαa
∗
v⃗′1 −

c′2(ϕ⃗)

−iαa
∗
v⃗′2. (8.36)

Since ci(PZ(ϕ⃗)) = c′i(PZ(ϕ⃗)) = 0, i = 1, 2, we obtain the direct sum decomposition:

H1/2,a(Γa)×H−1/2,a(Γa) = X
⊕

X ′
⊕

Z. (8.37)

The following fact will be used repeatedly in the proofs. The relations in (8.24) imply that v⃗1,
v⃗2, v⃗

′
1 and v⃗′2 are linearly independent. For the operators defined in (7.3) and (7.4),

Pv⃗1 = iαa
∗ v⃗1, Pv⃗2 = −iαa

∗ v⃗2, Qv⃗1 = iv⃗2, Qv⃗2 = −iαa
∗ v⃗1,

P′v⃗′1 = iαa
∗ v⃗

′
1, P′v⃗′2 = −iαa

∗ v⃗
′
2, Q′v⃗′1 = iv⃗′2, Q′v⃗′2 = −iαa

∗ v⃗
′
1,

(8.38)

and
PX ′ = QX ′ = 0, P′X = Q′X = 0, PZ = QZ = P′Z = Q′Z = 0. (8.39)

Proposition 8.7. The following holds for h ∈ C satisfying |h| < d| t∗γ∗ |. The operators U
a
s(h), Ua

s(h),
and Ua

t (h) are analytic in h and are Fredholm operators with index zero. The only characteristic
value of each operator is h = 0 and the multiplicity of the characeteric value is 4. In addition, the
kernels are Ua

s(0), Ua
t (0) and Ua

n(0) are given by

Ker Ua
s(0) = span

{
v⃗1, v⃗2, v⃗

′
1, v⃗

′
2

}
= X

⊕
X ′,

Ker Ua
t (0) = span

{
v⃗1 − iv⃗2, v⃗

′
1 + iv⃗′2

}
,

Ker Ua
n(0) = span

{
v⃗1 + iv⃗2, v⃗

′
1 − iv⃗′2

}
.

8.4 The characteristic values of the integral operators

Define
u1 := v⃗1 + iv⃗2, u2 := v⃗1 − iv⃗2, u′1 := v⃗′1 + iv⃗′2, u′2 := v⃗′1 − iv⃗′2, (8.40)

and
Xi := span{ui}, X ′

i := span{u′i}, i = 1, 2. (8.41)

Then

X = X1

⊕
X2, X ′ = X ′

1

⊕
X ′

2, H1/2,a(Γa)×H−1/2,a(Γa) = X1

⊕
X2

⊕
X ′

1

⊕
X ′

2

⊕
Z.

(8.42)
We have

Pu1 = iαa
∗u2, Pu2 = iαa

∗u1, Qu1 = αa
∗u1, Qu2 = −αa

∗u2, PX ′ = QX ′ = 0,

P′u′1 = iαa
∗u

′
2, P′u′2 = iαa

∗u
′
1, Q′u′1 = αa

∗u
′
1, Q′u′2 = −αa

∗u
′
2, P′X = Q′X = 0,

PZ = QZ = P′Z = Q′Z = 0

(8.43)

Lemmas 8.8-8.10 are parallel to Lemmas 7.8- 7.10. We state them below without proof.
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Lemma 8.8. Let Assumption 2.7 hold along βa
1 and t∗ > 0. Let d ∈ (0, 1) be a constant. Suppose

|h0| < d| t∗γ∗ | and 0 ̸= ϕ⃗ ∈ Ker Tε,a
s (λ∗ + εh0). When |ε| ≪ 1, the rank of ϕ⃗ is 1.

Lemma 8.9. Let Assumption 2.7 hold along βa
1 and t∗ > 0. Let d ∈ (0, 1) be a constant. For

sufficiently small positive ε and |h| < d| t∗γ∗ |, the operator below is invertible

I+ ξ(h)PX1
⊕

X′
2

⊕
Y (Q−Q′)+PX1

⊕
X′

2

⊕
Y Ra

2(h, ε) : X1

⊕
X ′

2

⊕
Y → X1

⊕
X ′

2

⊕
Y. (8.44)

Here PX1
⊕

X′
2

⊕
Y is the projection onto X1

⊕
X ′

2

⊕
Y associated to the direct sum (8.42), and

Ra
2(h, ε) is the remainder defined in Corollary 8.6. Denote the inverse by Ba(h, ε) : X1

⊕
X ′

2

⊕
Y →

X1
⊕
X ′

2

⊕
Y , and define

J4(h, ε)[ϕ⃗0] = −Ba(h, ε)PX1
⊕

X′
2

⊕
Y Ra

2(h, ε)ϕ⃗0, (8.45)

for each given ϕ⃗0 ∈ X2
⊕
X ′

1. We have J4(h, ε)[ϕ⃗0] is analytic in h and

∥J4(h, ε)[ϕ⃗0]∥H1/2,a(Γa)×H−1/2,a(Γa) = o(1)∥ϕ⃗0∥H1/2,a(Γa)×H−1/2,a(Γa), uniformly in h. (8.46)

Moreover, if ϕ⃗ ∈ Ker (Tε
t (λ∗ + εh0)), then

ϕ⃗ = ϕ⃗0 + J4(h, ε)[ϕ⃗0] (8.47)

for some ϕ⃗0 ∈ X2
⊕
X ′

1.

Lemma 8.10. Let Assumption 2.7 hold along βa
1 and t∗ > 0. Let d ∈ (0, 1) be a constant. For

sufficiently small positive ε and |h| < d| t∗γ∗ |, the operator below is invertible

I− ξ(h)PX2
⊕

X′
1

⊕
Y (Q−Q′)+PX2

⊕
X′

1

⊕
Y Ra

3(h, ε) : X2

⊕
X ′

1

⊕
Y → X2

⊕
X ′

1

⊕
Y. (8.48)

Here PX2
⊕

X′
1

⊕
Y is the projection onto X2

⊕
X ′

1

⊕
Y associated to the direct sum (8.42), and

Ra
3(h, ε) is the remainder defined in Corollary 8.6. Denote the inverse by Ca(h, ε) : X2

⊕
X ′

1

⊕
Y →

X2
⊕
X ′

1

⊕
Y , and define

J5(h, ε)[ϕ⃗0] = −Ca(h, ε)PX2
⊕

X′
1

⊕
Y Ra

3(h, ε)ϕ⃗0, (8.49)

for each given ϕ⃗0 ∈ X1
⊕
X ′

2. We have J5(h, ε)[ϕ⃗0] is analytic in h and

∥J5(h, ε)[ϕ⃗0]∥H1/2,a(Γa)×H−1/2,a(Γa) = o(1)∥ϕ⃗0∥H1/2,a(Γa)×H−1/2,a(Γa), uniformly in h. (8.50)

Moreover, if ϕ⃗ ∈ Ker (Tε
t (λ∗ + εh0)), then

ϕ⃗ = ϕ⃗0 + J5(h, ε)[ϕ⃗0] (8.51)

for some ϕ⃗0 ∈ X1
⊕
X ′

2.

Proposition 8.11. Let Assumption 2.7 hold along βa
1 and t∗ > 0. Let d ∈ (0, 1) be a constant.

For sufficiently small ε > 0, the system

Tε,a
s (λ∗ + εh)ϕ⃗ = 0 and Tε,a

n (λ∗ + εh)ϕ⃗ = 0 (8.52)

attains at most two pairs of solutions (h, ϕ⃗), with |h| < d| t∗γ∗ | and ϕ⃗ ∈ H1/2,a(Γa) × H−1/2,a(Γa).

Moreover, if h1 = h2, then ϕ⃗1 and ϕ⃗2 are linearly independent. The same holds for the system

Tε,a
s (λ∗ + εh)ϕ⃗ = 0 and Tε,a

t (λ∗ + εh)ϕ⃗ = 0. (8.53)
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Proof. Suppose ϕ⃗ solves both equations in (8.52). By Lemma 8.10, the solution to the second
equation necessarily takes the form ϕ⃗ = ϕ⃗0 + ϕ⃗1(h, ε), where ϕ⃗1(h, ε) = J5(h, ε)[ϕ⃗0] as defined in
(8.49), with ϕ⃗0 = au1 + bu′2 for some a, b ∈ C. Substituting ϕ⃗ into the first equation, we obtain

(2T̃0,a(λ∗) + 2βa(h)(P+ P′) + Ra
1(h, ε))(au1 + bu′2 + ϕ⃗1(h, ε)) = 0.

Projecting the above onto the space X2
⊕
X ′

1 using PX2
⊕

X′
1
, we obtain

PX2
⊕

X′
1
2βa(h)(P+P′)(au1+bu

′
2)+PX2

⊕
X′

1

(
(2βa(h)(P+ P′) + Ra

1(h, ε))ϕ⃗1(hε, ε) + Ra
1(h, ε)(au1 + bu′2)

)
= 0.

The projections onto X2 and X ′
1 give

(D(h) + E(h, ε))

(
a
b

)
= 0, (8.54)

where D(h) is defined by (
2iβa(h)αa

∗ 0
0 2iβa(h)αa

∗

)
(8.55)

and E(h, ε) is of higher order in ε.
It is obvious that D(h) is analytic in h in a neighborhood of {h ∈ C, |h| < d| t∗γ∗ |}. Furthermore,

h = 0 is the unique characteristic of D(h) in |h| < d| t∗γ∗ |, and the multiplicity of h = 0 is two.

Note that E(h, ε) is analytic and its matrix norm is of order o(1) uniformly in h as ε→ 0+. Thus
the generalized Rouché Theorem implies that there are two pairs of (hi, (ai, bi)) (i = 1, 2) solving
(8.54). When h1 = h2, (a1, b1) and (a2, b2) are linearly independent. By the independence of u2
and u′1, we complete the proof.

8.5 Proof of Theorem 2.12

Proof of Theorem 2.12. Using the same argument as that in the proof of Theorem 2.9, by Proposi-
tions 8.7 and Theorem A.1, we conclude that Tε,a

s (λ∗+εh) is of multiplicity four in |h| < d| t∗γ∗ | when
ε > 0 is sufficiently small. By Lemma 8.8, there are four pairs (hi, ϕ⃗i) solving Tε,a

s (λ∗ + εh)ϕ⃗ = 0,
i = 1, · · · , 4. Moreover, if any of the hi’s coincide, the corresponding ϕ⃗i’s form a linearly indepen-
dent set.

We first show that there are at least two interface modes. Let ui be generated by ϕ⃗i (6.8), where
the Green function is replaced by G±ε,a(x,y;λ) as defined in (8.17), and the integral domain is
replaced by Γa. Assume ui, i = 1, · · · , 4 represents fewer than two interface modes. Then we have
the following two cases:

(i) All ui, i = 1, · · · , 4 are zero. Then (hi, ϕ⃗i) are four solutions to (8.53), which contradicts with
Proposition 8.11.

(ii) After rearranging, for somem ∈ {2, 3, 4}, u1, u2, · · · , um are nonzero and span a one-dimensional
space, and the rest (4 −m) of ui’s are zero. Then it follows that h1 = · · · = hm. Also, us-
ing (ui|Γa , ∂nui|Γa), i = 1, · · · ,m, we can construct densities ϕ⃗′i, i = 1, · · · ,m − 1, which
are linearly independent and generates zero modes. Thus we have (4 − m) + (m − 1) = 3
simultaneous solutions to (8.53), which contradicts with Proposition 8.11.
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Next, we show that there are at most two interface modes. Suppose there are more than two lin-
early independent interface modes ui at hi respectively for i = 1, 2, 3. Denote ϕ⃗i = (ui|Γa , ∂nui|Γa).
Then (hi, ϕ⃗i) with i = 1, 2, 3 are solutions to the system (8.52), and if hi = hj , for some i ̸= j, then

ϕ⃗i and ϕ⃗j are linearly independent. This contradicts with Proposition 8.11.

9 Dispersion relations of interface modes

In this section, we investigate the dispersion relation along the zigzag interface as stated in The-
orem 2.13. The dispersion relations along the armchair interface and arbitrary rational interfaces
as stated in Theorems 2.14, 2.16 and 2.17 are proved in Appendix D.

For ε in a neighborhood of 0, define the Green function on the periodic zigzag strips with
quasimomentum k∗∥ + µ by

(−∆x − λ)Gε[µ](x,y;λ) = δ(x− y) x ∈ Ωε,

Gε[µ](x,y;λ) = 0 x ∈ ∪m∈Z(∂D
ε +me1),

Gε[µ](x+ e2,y;λ) = e
ik∗∥+µ

Gε[µ](x,y;λ) for x ∈ Γ−,

∂ν2G
ε[µ](x+ e2,y;λ) = e

ik∗∥+µ
∂ν2G

ε[µ](x,y;λ) for x ∈ Γ−,

Gε[µ](x,y;λ) satisfies the radiation conditions when |x · e1| → ∞.

(9.1)
Similar to (5.17) and (8.18), we define the following quasi-periodic Sobolev space on Γ for s ∈ R

Hs(Γ, µ) :=

{
u(x0 + te2) =

∑
n∈Z

ane
i(K+µβ2)·e2tei2πnt : ∥u∥2Hs(Γ,η) :=

∑
n∈Z

|an|2(1 + n2)s

}
. (9.2)

The functions in Hs(Γ, µ) attain the quasimomentum k∗∥+µ along the zigzag edge e2. In particular,

Hs(Γ, 0) = Hs(Γ) in (5.17).
Define the layer potentials S±ε(λ, µ), D±ε(λ, µ), K±ε(λ, µ), K±ε(λ, µ) and N±ε(λ, µ) in parallel

to (6.1), where the Green functions are replaced by G±ε[µ](x,y, λ) above. We also define the
integral operators on H1/2(Γ)×H−1/2(Γ) as in (6.12) and (6.13) by

Tε(λ, µ) :=

(
−Kε(λ, µ) Sε(λ, µ)
−N ε(λ, µ) K∗,ε(λ, µ)

)
, (9.3)

and
Tε
s(λ, µ) := Tε + T−ε, Tε

t (λ, µ) := −Tε + T−ε + I, Tε
n(λ, µ) := Tε − T−ε + I. (9.4)

Let M(µ) be the operator of multiplication by the factor e−iµβ2·x. Since ϕ ∈ Hs(Γ, µ) if and only if
M(µ)ϕ ∈ Hs(Γ), we have the following characterization of edge states with quasimomentum k∗∥+µ.

Lemma 9.1. Let µ = εζ. There exists an interface mode of quasimomentum k∗∥ + µ along e2 if

and only if there exists (ψ, ϕ) ∈ H1/2(Γ)×H−1/2(Γ), such that

M−1(εζ)Tε
s(λ∗ + εh, εζ)M(εζ)

(
ψ
ϕ

)
= 0, M−1(εζ)Tε

t (λ∗ + εh, εζ)M(εζ)

(
ψ
ϕ

)
̸= 0. (9.5)
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Moreover, if u is an interface mode with quasimomentum k∗∥ + µ along e2, then 0 ̸= (u|Γ, ∂nu|Γ) ∈
H1/2(Γ)×H−1/2(Γ) satisfies

M−1(εζ)Tε
s(λ∗ + εh, εζ)M(εζ)

(
u|Γ
∂nu|Γ

)
= 0, M−1(εζ)Tε

n(λ∗ + εh, εζ)M(εζ)

(
u|Γ
∂nu|Γ

)
= 0. (9.6)

Define

β(h, ζ) :=
1

2

∣∣∣∣γ∗θ∗
∣∣∣∣ h√

( t∗γ∗ )
2 + 3

4 | θ∗γ∗ |2ζ2 − h2
=

1

2α∗

h√
β2∗ +

3
4α

2
∗ζ

2 − h2
,

ξ(h, ζ) :=
t∗

2|θ∗|
1√

( t∗γ∗ )
2 + 3

4 | θ∗γ∗ |2ζ2 − h2
=

β∗
2α∗

1√
β2∗ +

3
4α

2
∗ζ

2 − h2
,

σ(h, ζ) := i

√
3

2
ζ

1√
( t∗γ∗ )

2 + 3
4 | θ∗γ∗ |2ζ2 − h2

= i

√
3

2
ζ

1√
β2∗ +

3
4α

2
∗ζ

2 − h2
.

(9.7)

Similarly to Proposition 7.1, we obtain the following operator limit.

Proposition 9.2. Let Assumption 2.7 hold along β1 and t∗ > 0. Let d ∈ (0, 1) be a constant. For
each constant ζ, the following limit holds uniformly for |h| < d| t∗γ∗ | as ε→ 0+ in the operator norm

from H1/2(Γ)×H−1/2(Γ) to H1/2(Γ)×H−1/2(Γ):

M−1(εζ)T±ε(λ∗ + εh, εζ)M(εζ) → T̃0(λ∗) + β(h, ζ)P∓ ξ(h, ζ)Q+ σ(h, ζ)O, (9.8)

where
Oϕ⃗ := −c2(ϕ⃗)v⃗1 + c1(ϕ⃗)v⃗2. (9.9)

In addition, there hold the uniform convergences

M−1(εζ)Tε
s(λ∗ + εh, εζ)M(εζ) → 2T̃0(λ∗) + 2β(h, ζ)P+ 2σ(h, ζ)O =: Us(h, ζ), (9.10)

M−1(εζ)Tε
t (λ∗ + εh, εζ)M(εζ) → I + 2ξ(h, ζ)Q =: Ut(h, ζ), (9.11)

M−1(εζ)Tε
n(λ∗ + εh, εζ)M(εζ) → I − 2ξ(h, ζ)Q =: Un(h, ζ), (9.12)

The proof is in Appendix D.
Now we are ready to prove Theorem 2.13.

Proof of Theorem 2.13. Assume t∗ > 0. We fix an ζ ̸= 0 and let ϕ⃗ = av⃗1+bv⃗2. First, Us(h, ζ)ϕ⃗ = 0
yields

iα∗

(
β(h, ζ) σ(h, ζ)
σ(h, ζ) −β(h, ζ)

)(
a
b

)
= 0. (9.13)

Solving (9.13), we obtain two characteristic values for h. More specifically, σ(h, ζ) = iβ(h, ζ) gives

that h =
√
3
2 α∗ζ, (a, b) = (1, i); and σ(h, ζ) = −iβ(h, ζ) gives that h = −

√
3
2 α∗ζ, (a, b) = (1,−i).

Next, Ut(h, ζ)ϕ⃗ = 0 yields(
1 −2iα∗ξ(h, ζ)

2iα∗ξ(h, ζ) 1

)(
a
b

)
= 0. (9.14)
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Solving (9.15), we obtain two characteristic values for h. Indeed, the condition 1−4α2
∗(ξ(h, ζ))

2 = 0
is achieved if and only if |2α∗ξ(h, ζ)| = 1, which is equivalent to 3

4α
2
∗ζ

2 − h2 = 0. For both

h = ±
√
3
2 α∗ζ, (a, b) = (1,−i).

Similarly, Un(h, ζ)ϕ⃗ = 0 yields that(
1 2iα∗ξ(h, ζ)

−2iα∗ξ(h, ζ) 1

)(
a
b

)
= 0, (9.15)

which also gives two characteristic values for h. For both h = ±
√
3
2 α∗ζ, (a, b) = (1, i).

Thus for a fixed ζ ̸= 0, Tε
s(λ∗+εh, ζ) has one characteristic value h ≈

√
3
2 α∗ζ, with root function

ϕ⃗ ≈ v⃗1 + iv⃗2. This ϕ⃗ generates a nonzero interface mode since Ut(h, ζ)(v⃗1 + iv⃗2) ̸= 0. The theorem
for t∗ > 0 follows by noting the following relation λ = λ∗+ εh, k∥ = (K+ εζβ2+ ℓβ1) ·e2 = k∗∥ + εζ

and α∗ = m∗|β1|.
When t∗ < 0, doing the parallel calculations, we obtain the theorem when sgn(t∗) = −1.

Appendix A Gohberg and Sigal theory

We briefly introduce the Gohberg and Sigal theory. We refer to Chapter 1.5 of [2] for a thorough
exposition of the topic.

Let X and Y be two Banach spaces. Let U(z0) be the set of all operator-valued functions with
values in B(X,Y ), which are holomorphic in some neighborhood of z0, except possibly at z0. Then
the point z0 is called a characteristic value of A(z) ∈ U(z0) if there exists a vector-valued function
ϕ(z) with values in X such that

1. ϕ(z) is holomorphic at z0 and ϕ(z0) ̸= 0,

2. A(z)ϕ(z) is holomorphic at z0 and vanishes at this point.

Here ϕ(z) is called a root function of A(z) associated with the characteristic value z0, and ϕ(z0)
is called an eigenvector. By this definition, there exists an integer m(ϕ) ≥ 1 and a vector-valued
function ψ(z) ∈ Y , holomorphic at z0, such that

A(z)ϕ(z) = (z − z0)
m(ϕ)ψ(z), ψ(z0) ̸= 0.

The number m(ϕ) is called the multiplicity of the root function ϕ(z). For ϕ0 ∈ KerA(z0), the
rank of ϕ0, which is denoted by rank(ϕ0), is defined as the maximum of the multiplicities of all
root functions ϕ(z) with ϕ(z0) = ϕ0.

Suppose that n = dim KerA(z0) < +∞ and the ranks of all vectors in KerA(z0) are finite. A
system of eigenvectors ϕj0 (j = 1, 2, · · · , n) is called a canonical system of eigenvectors of A(z)

associated to z0 if for j = 1, 2, · · · , n, rank(ϕj0) is the maximum of the ranks of all eigenvectors in

the direct complement in KerA(z0) of the linear span of the vectors ϕ10, · · · , ϕj−1
0 . We call

N(A(z0)) :=

n∑
j=1

rank(ϕj0)

the null multiplicity of the characteristic value z0 of A(z). Suppose that A−1(z) exists and is
holomorphic in some neighborhood of z0, except possibly at z0. Then the number

M(A(z0)) := N(A(z0))−N(A−1(z0))
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is called themultiplicity of z0. Note ifA(z) is bounded in a neighborhood of z0, thenN(A−1(z0)) =
0.

Now, let V be a simply connected bounded domain with a rectifiable boundary ∂V . Let A(z)
be an operator-valued function that is analytic in a neighborhood of V , is Fredholm of index zero in
V and is invertible in V except at possibly a finite number of points. For such a function A(z), the
full multiplicity M(A(z); ∂V ) counts the number of characteristic values of A(z) in V (computed
with their multiplicities). Namely,

M(A(z); ∂V ) :=
σ∑

i=1

M(A(zi)) =
σ∑

i=1

N(A(zi)),

where zi (i = 1, 2, · · · , σ) are all characteristic values of A(z) lying in V . The generalized Rouché
theorem for analytic operator-valued functions is stated as follows. This is a special case of the
generalized Roucheé theorem for finitely meromorphic operator-valued functions [2, Theorem 1.5].

Theorem A.1. The operator-valued function A(z) is analytic and Fredholm of index zero in a
neighborhood of V , A−1(z) exists except at a finite number of points in V . The operator-valued
function B(z) is analytic in a neighborhood of V . Suppose

∥A−1(z)B(z)∥B(X,Y ) < 1, z ∈ ∂V.

Then the multiplicity of A(z) in V equals the multiplicity of A(z) +B(z) in V . That is,

M(A(z); ∂V ) = M(A(z) +B(z); ∂V ).

In addition the multiplicities of A(z) and A(z) +B(z) do not involve their inverses. That is,

M(A(z); ∂V ) =
σ∑

i=1

N(A(zi)),

M((A+B)(z); ∂V ) =

σ′∑
i=i

N((A+B)(z′i)),

where zi, i = 1, · · · , σ are all characteristic values of A(z) in V , and z′i, i = 1, · · · , σ′ are all
characteristic values of (A+B)(z) in V .

Appendix B Proof of Propositions 4.1 and 8.1

We first display a set of facts that can be easily checked for the readers’ convenience. Define

Rs :=

(
cos s sin s
− sin s cos s

)
, s ∈ R, R := R 2π

3
and J :=

(
0 1
−1 0

)
. (B.1)

Acting on vectors in R2, it holds

R3 = I, I +R+R2 = 0, RaRb = RbRa,
∂

∂ε
Rε|ε=0 = J,

F 2 = I, FRθ = (Rθ)
−1F, J−1 = −J, JR = RJ, FJ = −JF.

(B.2)
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For all vectors x,y ∈ R2,
Rx ·Ry = x · y, Fx · Fy = x · y. (B.3)

The set Λ̃∗ := {K + q,q ∈ Λ∗} is invariant under R and F as shown in (3.10). The invariance of
∂D under R guarantees a partition

∂D = ⊔n=1,2,3Cn, x ∈ Cn iff x = Rn−1x′ for some x′ ∈ C1. (B.4)

We also have the relations

Gf (x,y;λ,p) = Gf (y,x;λ,p) ∀λ ∈ R,∀p ∈ R2, (B.5)

and

ρi(R−1x)ρi(R
−1y) = ρi(x)ρi(y), i = 1, 2, ρ1(R−1x)ρ2(R

−1y) = τ2ρ1(x)ρ2(y),

ρ1(Fx)ρ1(Fy) = ρ2(x)ρ2(y), ρ1(Fx)ρ2(Fy) = ρ2(x)ρ1(y).
(B.6)

Since D = RD = FD, it is straightforward to verify∫
∂D

∫
∂D

K(x,y)f(y)g(x) dsx dsy =

∫
∂D

∫
∂D

K(R−1x, R−1y)f(R−1x)g(R−1y) dsx dsy

=

∫
∂D

∫
∂D

K(Fx, Fy)f(Fx)g(Fy) dsx dsy.

(B.7)

Recall

⟨f, T (ε, λ,p)g⟩∂D :=

∫
∂D

∫
∂D

f(x)Gf (Rεx, Rεy;λ,p)g(y) dsx dsy, (B.8)

where ⟨·, ·⟩∂D represents the H−1/2(∂D)-H1/2(∂D) pairing.

Lemma B.1. For all λ ∈ R, all quasimomenta p with ℓ ∈ R, ε ∈ R, and f, g ∈ H−1/2(∂D),

⟨f, T (ε, λ,p)g⟩∂D = ⟨g, T (ε, λ,p)f⟩∂D, and ⟨f, T (ε, λ,p)f⟩∂D ∈ R. (B.9)

Proof. By (B.5),∫
∂D

∫
∂D

f(x)Gf (Rεx, Rεy;λ,p)g(y) dsx dsy =

∫
∂D

∫
∂D

f(x)Gf (Rεy, Rεx;λ,p)g(y) dsx dsy.

(B.10)

Now we are ready to prove Proposition 4.1.

Proposition 4.1. Since the derivatives in Proposition 4.1 are all with respect to real variables, by
Lemma B.1, the four matrices in Proposition 4.1 all take the form(

a c
c∗ b

)
, a, b ∈ R, c ∈ C. (B.11)

For the first equation, consider the λ derivative when ε = 0 and p = K. We have

∂λG
f (x,y;λ,K) =

1

|Cz|
∑

m∈Λ̃∗

1

(λ− |m|2)2 e
im·(x−y). (B.12)
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We observe that

∂λG
f (R−1x, R−1y;λ,K) =

1

|Cz|
∑

m∈Λ̃∗

1

(λ− |m|2)2 e
im·(x−y) =

1

|Cz|
∑

m∈Λ̃∗

1

(λ− |m|2)2 e
im·R−1(x−y)

=
1

|Cz|
∑

m∈Λ̃∗

1

(λ− |m|2)2 e
iRm·(x−y) = ∂λG

f (x,y;λ,K)

(B.13)
and

∂λG
f (Fx, Fy;λ,K) =

1

|Cz|
∑

m∈Λ̃∗

1

(λ− |m|2)2 e
im·F (x−y)

=
1

|Cz|
∑

m∈Λ̃∗

1

(λ− |m|2)2 e
iFm·(x−y) = ∂λG

f (x,y;λ,K).

(B.14)

Here we have used (3.10) and |m| = |Rm| = |Fm|. The diagonal terms are equal because∫
∂D

∫
∂D

∂λG
f (x,y;λ,K)ρ1(x)ρ1(y) dsx dsy =

∫
∂D

∫
∂D

∂λG
f (Fx, Fy;λ,K)ρ2(x)ρ2(y) dsx dsy

=

∫
∂D

∫
∂D

∂λG
f (x,y;λ,K)ρ2(x)ρ2(y) dsx dsy.

(B.15)
Here the first equality follows from (B.6) and (B.7), and the second equaltiy follows from (B.14).
The off-diagonal terms are zero follows from the relation below and the fact τ2 ̸= 1:∫
∂D

∫
∂D

∂λG
f (x,y;λ,K)ρ1(x)ρ2(y) dsx dsy = τ2

∫
∂D

∫
∂D

∂λG
f (R−1x, R−1y;λ,K)ρ1(x)ρ2(y) dsx dsy

= τ2
∫
∂D

∫
∂D

∂λG
f (x,y;λ,K)ρ1(x)ρ2(y) dsx dsy.

(B.16)
Here we have used (B.6), (B.7) and (B.13).

For the second equation, consider the ∇p derivative when ε = 0 around K

∇pG
f (x,y;λ,p)|p=K =− 1

|Cz|
∑

[m]∈[Λ̃∗]

2

(λ− |m|2)2 e
im·(x−y)m− 1

|Cz|
∑

[m]∈[Λ̃∗]

i

λ− |m|2 e
im·(x−y))(x− y)

(B.17)
We only need to show that the diagonal terms are zero. Decompose the integral domain into

∂D × ∂D =((C1 × C1) ⊔ (C2 × C2) ⊔ (C3 × C3))

⊔ ((C1 × C2) ⊔ (C2 × C3) ⊔ (C3 × C2))

⊔ ((C1 × C3) ⊔ (C2 × C1) ⊔ (C3 × C2)) .

(B.18)

Define the vectors

Ii,j :=

∫
Ci

∫
Cj

ρ1(x)∇pG
f (Rεx, Rεy;λ,p)ρ1(y) dsx dsy, i, j = 1, 2, 3. (B.19)
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We have

I2,2 =

− 1

|Cz|
∑

m∈Λ̃∗

∫
C2×C2

(
2

(λ− |m|2)2 e
im·(x−y)m+

i

λ− |m|2 e
im·(x−y)(x− y)1

)
ρ1(x)ρ1(y) dsx dsy

= − 1

|Cz|
∑

m∈Λ̃∗

∫
C1×C1

(
2

(λ− |m|2)2 e
im·R(x′−y′)m+

i

λ− |m|2 e
im·R(x′−y′)R(x′ − y′)

)
ρ1(Rx′)ρ1(Ry

′) dsx′ dsy′

= − 1

|Cz|
∑

m∈Λ̃∗

∫
C1×C1

(
2

(λ− |m|2)2 e
iR2m·(x′−y′)m+

i

λ− |m|2 e
iR2m·(x′−y′)R(x′ − y′)

)
ρ1(x′)ρ1(y

′) dsx′ dsy′

= − 1

|Cz|
∑

m′∈Λ̃∗

∫
C1×C1

(
2

(λ− |m′|2)2 e
im′·(x−y)Rm′ +

i

λ− |m′|2 e
im′·(x−y)R(x− y)

)
ρ1(x′)ρ1(y

′) dsx dsy

= RI1,1.
(B.20)

Similarly we have I3,3 = R2I1,1 and thus I1,1+I2,2+I3,3 = 0 by I+R+R2 = 0 on vectors as stated
in (B.2). Similarly, I1,2+ I2,3+ I3,1 = I1,3+ I2,1+ I3,2 = 0. Thus ⟨ρ1,∇pG

f (x,y;λ,p)|p=Kρ1⟩∂D=0.
The same method gives ⟨ρ2,∇pG

f (x,y;λ,p)|p=Kρ2⟩∂D=0.
For the third equation in (4.8), we only need to show

β2 · ⟨ρ1,∇pG
f (x,y;λ,p)|p=Kρ2⟩∂D=0 = τβ1 · ⟨ρ1,∇pG

f (x,y;λ,p)|p=Kρ2⟩∂D=0 (B.21)

This is true since∑
m∈Λ̃∗

∫
∂D×∂D

(
2

(λ− |m|2)2 e
im·(x−y)m · β2 +

i

λ− |m|2 e
im·(x−y)(x− y) · β2

)
ρ1(x)ρ2(y) dsx dsy

=
∑

m∈Λ̃∗

∫
∂D×∂D

(
2

(λ− |m|2)2 e
im·(x−y)m ·R−1β1 +

i

λ− |m|2 e
im·(x−y)(x− y) ·R−1β1

)
ρ1(x)ρ2(y) dsx dsy

=
∑

m∈Λ̃∗

∫
∂D×∂D

(
2

(λ− |m|2)2 e
iRm·R(x−y)Rm · β1 +

i

λ− |m|2 e
iRm·R(x−y)R(x− y) ·Rβ1

)
ρ1(R−1Rx)ρ2(R

−1Ry) dsx dsy

=
∑

m′∈Λ̃∗

∫
∂D×∂D

(
2

(λ− |m′|2)2 e
im′·(x′−y′)m′ · β1 +

i

λ− |m′|2 e
im′·(x′−y′)(x′ − y′) ·Rβ1

)
τρ1(x′)τ̄ ρ2(y

′) dsx′ dsy′ .

(B.22)
Here we have used (B.17), β2 = R−1β1 and (τ̄)2 = τ .

For the fourth equation, consider the ε derivative when p = K around ε = 0. Define

K(x,y) := ∂εG
f (Rεy, Rεx;λ,K)|ε=0 = − 1

|Cz|
∑

m∈Λ̃∗

i

λ− |m|2 e
im·(x−y)m · J(x− y). (B.23)

We verify

K(R−1x, R−1y) = − 1

|Cz|
∑

m∈Λ̃∗

i

λ− |m|2 e
im·R−1(x−y)m · JR−1(x− y)

= − 1

|Cz|
∑

m∈Λ̃∗

i

λ− |m|2 e
iRm·(x−y)Rm · J(x− y) = K(x,y)

(B.24)
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and

K(Fx, Fy) = − 1

|Cz|
∑

m∈Λ̃∗

i

λ− |m|2 e
im·F (x−y)m · JF (x− y)

=
1

|Cz|
∑

m∈Λ̃∗

i

λ− |m|2 e
iFm·(x−y)Fm · J(x− y) = −K(x,y).

(B.25)

Here we have used (B.2), (3.10) and |m| = |Rm| = |Fm|. Thus a similar argument as that for the
first equation gives opposite diagonal terms are zero off-diagonal terms.

Proof of Proposition 8.1. A linear combination of the second and third equations in (4.8) gives
(8.1), since β̃1 = β1 − β2.

Observe
K ′ + Λ∗ = −K + Λ∗. (B.26)

Using (B.12), (B.17) and (B.23), we know that

∂λG
f (y,x;λ,K ′) = ∂λGf (y,x;λ,K),

∇pG
f (y,x;λ,p)|p=K′ = −∇pGf (y,x;λ,p)|p=K

∂εG
f (Rεy, Rεx;λ,K ′)|ε=0 = ∂εGf (Rεy, Rεx;λ,K)|ε=0.

(B.27)

Using ρ′1(x) = ρ2(x) and ρ
′
2(x) = ρ1(x), we obtain

⟨ρ′1,∇pG
f (x,y;λ,p)|p=K′ρ′2⟩∂D=0 = −⟨ρ2,∇pGf (x,y;λ,p)|p=Kρ1⟩∂D=0 = −θ∗. (B.28)

This finishes the proof of (8.4).

Appendix C Proof of Proposition 7.1

In this subsection, all ⟨·, ·⟩ pairings represent the H1/2(Γ)-H−1/2(Γ) pairing. We prove Proposi-
tion 7.1 in this appendix. Recall the definitions of Tε(λ) in (6.12) and U±(h) in (7.1) to (8.29). We
are claiming that∥∥∥S±ε(λ∗ + εh)ϕ−

(
S̃0(λ∗)ϕ+ β(h)⟨ϕ, v1⟩v1+ β(h)⟨ϕ, v2⟩v2 ∓ ξ(h)⟨ϕ, v1⟩v2

∓ξ(h)⟨ϕ, v2⟩v1
)∥∥∥

H1/2(Γ)
/∥ϕ∥H−1/2(Γ) → 0.

(C.1)

∥∥∥K±ε(λ∗ + εh)ψ −
(
K̃0(λ∗)ψ+ β(h)⟨∂nv1, ψ⟩v1 + β(h)⟨∂nv2, ψ⟩v2

∓ξ(h)⟨∂nv1, ψ⟩v2 ∓ ξ(h)⟨∂nv2, ψ⟩v1)∥H1/2(Γ) /∥ψ∥H1/2(Γ) → 0,

(C.2)∥∥∥K∗,±ε(λ∗ + εh)ϕ−
(
K̃∗,0(λ∗)ϕ+ β(h)⟨ϕ, v1⟩∂nv1 + β(h)⟨ϕ, v2⟩∂nv2

∓ξ(h)⟨ϕ, v1⟩∂nv2 ∓ ξ(h)⟨ϕ, v2⟩∂nv1
)∥∥∥

H−1/2(Γ)
/∥ϕ∥H−1/2(Γ) → 0,

(C.3)∥∥∥N±ε(λ∗ + εh)ψ −
(
Ñ 0(λ∗)ψ+ β(h)⟨∂nv1, ψ⟩∂nv1 + β(h)⟨∂nv2, ψ⟩∂nv2

∓ξ(h)⟨∂nv1, ψ⟩∂nv2 ∓ ξ(h)⟨∂nv2, ψ⟩∂nv1)∥H−1/2(Γ) /∥ψ∥H−1/2(Γ) → 0,

(C.4)

65



In subsections C.1-C.3, we focus on S±ε(λ∗+εh) in (C.1). Using the representations of S±ε(λ∗+
εh) in (7.7) and S̃0(λ) in (7.11), we will break the integral in S±ε(λ∗ + εh) into three parts: (a)
near the Dirac point given by (C.5), (b) the first two bands away from the Dirac point given by
(C.25), and (c) higher bands given by (C.33). The convergence of the other three operators are
verified similarly, and are given by Lemma C.4, Lemma C.6, Corollary C.11 and Subsection C.4.

C.1 Near the Dirac point

Lemma C.1. The following convergence holds in the operator norm from H−1/2(Γ) to H1/2(Γ)
uniformly for h ∈ C that satisfy |h| < d| t∗γ∗ |, as ε→ 0+:

∑
n=1,2

1

2π

∫
[−ε1/3,ε1/3]

⟨ϕ, vn,±ε(·;p(ℓ))⟩vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− (λ∗ + εh)
dℓ

→ β(h)⟨ϕ, v1⟩v1 + β(h)⟨ϕ, v2⟩v2 ∓ ξ(h)⟨ϕ, v1⟩v2 ∓ ξ(h)⟨ϕ, v2⟩v1.
(C.5)

We prove this lemma by proving the next two lemmas.

Lemma C.2. The following convergence holds in the operator norm from H−1/2(Γ) to H1/2(Γ)
uniformly for h ∈ C that satisfy |h| < d| t∗γ∗ |, as ε→ 0+:

∑
n=1,2

1

2π

∫
[−ε1/3,ε1/3]

⟨ϕ, vn,±ε(·;p(ℓ))⟩vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− (λ∗ + εh)
dℓ→ a±(h)⟨ϕ,w1⟩w1 + b±(h)⟨ϕ,w2⟩w2. (C.6)

where
a+(h) = b−(h) = f1(h) + f4(h), b+(h) = a−(h) = f2(h) + f3(h). (C.7)

and

f1(h) =
1

2π

∫
R

1

− 1
|γ∗|
√
t2∗ + |θ∗|2ℓ2 − h

· 1

1 + |L(1, ℓ)|2 dℓ,

f2(h) =
1

2π

∫
R

1

− 1
|γ∗|
√
t2∗ + |θ∗|2ℓ2 − h

· |L(1, ℓ)|2
1 + |L(1, ℓ)|2 dℓ,

f3(h) =
1

2π

∫
R

1
1

|γ∗|
√
t2∗ + |θ∗|2ℓ2 − h

· 1

1 + |L(1, ℓ)|2 dℓ.

f4(h) =
1

2π

∫
R

1
1

|γ∗|
√
t2∗ + |θ∗|2ℓ2 − h

· |L(1, ℓ)|2
1 + |L(1, ℓ)|2 dℓ,

(C.8)

and L(eps, ℓ) = L(ε, ℓ, 0) and L(ε, ℓ, µ) is defined in (4.12). Note that the individual integrals in
(C.8) are all divergent, but f1(h) + f4(h) and f2(h) + f3(h) are convergent.

Proof. Define

I±ε
i (h) :=

1

2π

∫
[−ε1/3,ε1/3]

⟨ϕ, vi,±ε(·;p(ℓ))⟩vi,±ε(x;p(ℓ))

µi,±ε(p(ℓ))− (λ∗ + εh)
dℓ. (C.9)
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Using (5.11), (5.12), Remark 5.5 and

0 ≤ L(ε, ℓ) ≤ 1,

1

|γ∗|
√
ε2t2∗ + |θ∗|2ℓ2(1 +O(ε, ℓ))± εh =

(
1

|γ∗|
√
ε2t2∗ + |θ∗|2ℓ2 ± εh

)
(1 +O(ε, ℓ)), |h| < d| t∗

γ∗
|,

1

|1 + |L(ε, ℓ)|2 +O(ε, ℓ)| =
1

|1 + |L(ε, ℓ)|2|(1 +O(ε, ℓ)),

(C.10)
we obtain

Iε1(h) = − 1

2π

∫
[−ε1/3,ε1/3]

⟨ϕ,w1⟩w1 + L(ε, ℓ)⟨ϕ,w2⟩w1 + L(ε, ℓ)⟨ϕ,w1⟩w2 + |L(ε, ℓ)|2⟨ϕ,w2⟩w2 +O(ε, ℓ)∥ϕ∥H−1/2(Γ)

( 1
|γ∗|
√
ε2t2∗ + |θ∗|2ℓ2 + εh)(|1 + |L(ε, ℓ)|2|)

(1 +O(ε, ℓ)) dℓ.

(C.11)

The fact that L(ε,ℓ)

( 1
|γ∗|

√
ε2t2∗+|θ∗|2ℓ2±εh)

is odd in ℓ implies that

− 1

2π

∫
[−ε1/3,ε1/3]

⟨ϕ,w1⟩w1 + L(ε, ℓ)⟨ϕ,w2⟩w1 + L(ε, ℓ)⟨ϕ,w1⟩w2 + |L(ε, ℓ)|2⟨ϕ,w2⟩w2

( 1
|γ∗|
√
ε2t2∗ + |θ∗|2ℓ2 + εh)(|1 + |L(ε, ℓ)|2|)

dℓ

= − 1

2π

∫
[−ε1/3,ε1/3]

⟨ϕ,w1⟩w1 + |L(ε, ℓ)|2⟨ϕ,w2⟩w2

( 1
|γ∗|
√
ε2t2∗ + |θ∗|2ℓ2 + εh)(|1 + |L(ε, ℓ)|2|)

dℓ

(C.12)

Using

L(ε, ℓ) = L(1, ℓ/ε),
1

( 1
|γ∗|
√
ε2t2∗ + |θ∗|2ℓ2 + εh)

dℓ =
1

( 1
|γ∗|
√
t2∗ + |θ∗|2(ℓ/ε)2 + h)

dℓ/ε, (C.13)

we see that f1(h) and f2(h) emerge as the coefficients of ⟨ϕ,w1⟩w1 and ⟨ϕ,w2⟩w2 as ε → 0. A
similar argument for Iε2(h) gives that

Iε1(h) + Iε2(h) = Iε(h) +

∫
[−ε1/3,ε1/3]

O(ε, ℓ)∥ϕ∥H−1/2(Γ)

( 1
|γ∗|
√
ε2t2∗ + |θ∗|2ℓ2 + εh)(|1 + |L(ε, ℓ)|2|)

dℓ, (C.14)

where

Iε(h) → f1(h)⟨ϕ,w1⟩w1 + f2(h)⟨ϕ,w2⟩w2 + f4(h)⟨ϕ,w1⟩w1 + f3(h)⟨ϕ,w2⟩w2, as ε→ 0. (C.15)

Thus to establish the +ε identity in (C.6), we only need to show∫
[−ε1/3,ε1/3]

O(ε, ℓ)

( 1
|γ∗|
√
ε2t2∗ + |θ∗|2ℓ2 + εh)(|1 + |L(ε, ℓ)|2|)

dℓ→ 0, as ε→ 0. (C.16)

This is true because O(ε, ℓ) = O(ε1/3) within the integral domain, the integral domain is of size
ε1/3, and∫

[−ε1/3,ε1/3]

1
1

|γ∗|
√
ε2t2∗ + |θ∗|2ℓ2

dℓ = |γ∗
θ∗

|
∫
[−| θ∗

t∗
|ε−2/3,| θ∗

t∗
|ε−2/3]

1√
1 + x2

dx = O(ln ε). (C.17)

Here we have used
∫

1√
1+x2

dx = ln(x+
√
x2 + 1).

The −ε identity in (C.6) can be shown similarly.
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Lemma C.3. The coefficients defined in (C.7) are equal to

a+(h) = b−(h)= β(h)− ξ(h), b+(h) = a−(h)= β(h) + ξ(h), (C.18)

where β(h) and ξ(h) are defined in (7.5). There holds the identity

a±(h)⟨ϕ,w1⟩w1 + b±(h)⟨ϕ,w2⟩w2 = β(h)⟨ϕ, v1⟩v1 + β(h)⟨ϕ, v2⟩v2 ∓ ξ(h)⟨ϕ, v1⟩v2 ∓ ξ(h)⟨ϕ, v2⟩v1
(C.19)

Proof. We first derive the simplified forms of the coefficients a±(h) and b±(h). Direct calculation
shows

2π(f1(h) + f4(h)) =

∫
R

1

− 1
|γ∗|
√
t2∗ + |θ∗|2ℓ2 − h

· 1

1 + |L(1, ℓ)|2 dℓ+
∫
R

1
1
γ∗

√
t2∗ + |θ∗|2ℓ2 − h

· |L(1, ℓ)|2
1 + |L(1, ℓ)|2 dℓ,

= −
∫
R

1− |L(1, ℓ)|2
1 + |L(1, ℓ)|2 ·

1
γ∗

√
t2∗ + |θ∗|2ℓ2

1
(γ∗)2

(t2∗ + |θ∗|2ℓ2)− h2
dℓ+

∫
R

h
1

(γ∗)2
(t2∗ + |θ∗|2ℓ2)− h2

dℓ

(C.20)
Using

1− |L(1, ℓ)|2 = 2t∗

t+
√
t2∗ + |θ∗|2ℓ2

,

1 + |L(1, ℓ)|2 = 2
√
t2∗ + |θ∗|2ℓ2

t+
√
t2∗ + |θ∗|2ℓ2

,

1− |L(1, ℓ)|2
1 + |L(1, ℓ)|2 =

t∗√
t2∗ + |θ∗|2ℓ2

,∫
R

1
1

(γ∗)2
(t2∗ + |θ∗|2ℓ2)− h2

dℓ =
|γ∗|
|θ∗|

1√
( t∗γ∗ )

2 − h2
π,

(C.21)

we obtain the first equation in (C.18). The second equation in (C.18) can be similarly obtained.
The relation (C.19) can be obtained using the relation between wi and vi (5.16).

Using the same method, we obtain the convergence of the first two bands close to the Dirac
point in the other operators.

Lemma C.4. The following convergences hold in the operator norm from H−1/2(Γ) to H1/2(Γ),
from H1/2(Γ) to H1/2(Γ) and from H1/2(Γ) to H−1/2(Γ) respectively uniformly for h ∈ C that
satisfy |h| < d| t∗γ∗ |, as ε→ 0+:

∑
n=1,2

1

2π

∫
[−ε1/3,ε1/3]

⟨vn,±ε(·;p(ℓ)), ψ⟩∂nvn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ∗ − εh
dℓ

→ β(h)⟨∂nv1, ψ⟩v1 + β(h)⟨∂nv2, ψ⟩v2 ∓ ξ(h)⟨∂nv1, ψ⟩v2 ∓ ξ(h)⟨∂nv2, ψ⟩v1
(C.22)∑

n=1,2

1

2π

∫
[−ε1/3,ε1/3]

⟨∂nvn,±ε(·;p(ℓ), ψ)⟩vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ∗ − εh
dℓ→

β(h)⟨ϕ, v1⟩∂nv1 + β(h)⟨ϕ, v2⟩∂nv2 ∓ ξ(h)⟨ϕ, v1⟩∂nv2 ∓ ξ(h)⟨ϕ, v2⟩∂nv1
(C.23)
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∂n
∑
n=1,2

1

2π

∫
[−ε1/3,ε1/3]

⟨∂nvn,±ε(·;p(ℓ), ψ)⟩vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ∗ − εh
dℓ→

β(h)⟨∂nv1, ψ⟩∂nv1 + β(h)⟨∂nv2, ψ⟩∂nv2 ∓ ξ(h)⟨∂nv1, ψ⟩∂nv2 ∓ ξ(h)⟨∂nv2, ψ⟩∂nv1
(C.24)

C.2 The first two bands away from the Dirac point

Lemma C.5. The following convergence holds in the operator norm from H−1/2(Γ) to H1/2(Γ)
uniformly for h ∈ C that satisfy |h| < d| t∗γ∗ |, as ε→ 0:

∑
n=1,2

1

2π

∫
[−π,−ε1/3]∪[ε1/3,π]

⟨ϕ, vn,±ε(·;p(ℓ))⟩vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ∗ − εh
dℓ→

∑
n=1,2

1

2π
p.v.

∫
[−π,π]

⟨ϕ, vn(·;p(ℓ))⟩vn(x;p(ℓ))
µn(p(ℓ))− λ∗

dℓ.

(C.25)

Proof. We show that among the following five quantities, the difference between each adjacent pair
converges to zero in operator norm as ε→ 0. The five quantities are

I1ϕ :=
∑
n=1,2

lim
δ→0+

1

2π

∫
[−π,−δ]∪[δ,π]

⟨ϕ, vn(·;p(ℓ))⟩vn(x;p(ℓ))
µn(p(ℓ))− λ∗

dℓ,

I2ϕ :=
∑
n=1,2

1

2π

∫
[−π,−ε1/3]∪[ε1/3,π]

⟨ϕ, vn(·;p(ℓ))⟩vn(x;p(ℓ))
µn(p(ℓ))− λ∗

dℓ,

I3ϕ :=
∑
n=1,2

1

2π

∫
[−π,−ε1/3]∪[ε1/3,π]

⟨ϕ, un(·;p(ℓ))⟩un(x;p(ℓ))
λn(p(ℓ))− λ∗

dℓ,

I4ϕ :=
∑
n=1,2

1

2π

∫
[−π,−ε1/3]∪[ε1/3,π]

⟨ϕ, un,±ε(·;p(ℓ))⟩un,±ε(x;p(ℓ))

λn,±ε(p(ℓ))− λ∗ − εh
dℓ,

I5ϕ :=
∑
n=1,2

1

2π

∫
[−π,−ε1/3]∪[ε1/3,π]

⟨ϕ, vn,±ε(·;p(ℓ))⟩vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ∗ − εh
dℓ.

(C.26)

For I1 − I2 → 0, we define f(x, ℓ) := ⟨ϕ, v1(·;p(ℓ))⟩v1(x;p(ℓ)). From the analyticity of
v1(·;p(ℓ)) in ℓ in a neighborhood of R as H1(Cz\D) functions as stated above (5.6), we know
∥ d
dℓv1(·;p(ℓ))∥H1(Cz\D) is bounded on ℓ ∈ [0, 1], thus

∥f(·, ℓ)|∥H1/2(Γ) ≤ ∥ϕ∥H−1/2(Γ)max
|ℓ|≤1

(∥v1(·, ℓ)∥H1(Cz\D)∥v1(·, ℓ)|∥H1(Cz\D)),

∥ d
dℓ
f(·, ℓ)∥H1/2(Γ) = ∥⟨ϕ, d

dℓ
v1(·;p(ℓ))⟩v1(x;p(ℓ)) + ⟨ϕ, v1(·;p(ℓ))⟩

d

dℓ
v1(x;p(ℓ))∥H1/2(Γ)

≤ 2∥ϕ∥H−1/2(Γ) max
|ℓ|≤ε1/3

(∥ d
dℓ
v1(·, ℓ)|∥H1/2(Γ)∥v1(·, ℓ)|∥H1/2(Γ))

≤ 2∥ϕ∥H−1/2(Γ)max
|ℓ|≤1

(∥ d
dℓ
v1(·, ℓ)∥H1(Cz\D)∥v1(·, ℓ)|∥H1(Cz\D)).

(C.27)
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Thus ∥∥∥∥∥ lim
δ→0+

1

2π

∫
[−ε1/3,−δ]∪[δ,ε1/3]

⟨ϕ, v1(·;p(ℓ))⟩v1(x;p(ℓ))
µ1(p(ℓ))− λ∗

dℓ

∥∥∥∥∥
H1/2(Γ)

/∥ϕ∥H−1/2(Γ)

=

∥∥∥∥∥ lim
δ→0+

1

2π

∫
[−ε1/3,−δ]∪[δ,ε1/3]

f(x, ℓ)

|α∗|ℓ
(1 +O(ℓ)) dℓ

∥∥∥∥∥
H1/2(Γ)

/∥ϕ∥H−1/2(Γ)

=

∥∥∥∥∥ lim
δ→0+

1

2π

∫
[δ,ε1/3]

f(x, ℓ)− f(x,−ℓ)
|α∗|ℓ

+O(ℓ)
f(x, ℓ)

|α∗|ℓ
+O(ℓ)

f(x,−ℓ)
|α∗|ℓ

dℓ

∥∥∥∥∥
H1/2(Γ)

/∥ϕ∥H−1/2(Γ)

=O(ε1/3)

(
max

|ℓ|≤ε1/3
∥ d
dℓ
f(·, ℓ)|∥H1/2(Γ) + max

|ℓ|≤ε1/3
∥f(·, ℓ)|∥H1/2(Γ)

)
/∥ϕ∥H−1/2(Γ) → 0.

(C.28)
From Fig. 5.1, we observe I2 and I3 are the same, and I4 and I5 are the same. Finally, on the
integral domain,

|λn(p(ℓ))− λ∗| ⪆ ε1/3, |λn,±ε(p(ℓ))− λ∗ − εh| ⪆ ε1/3,

∥un,±ε(·;p(ℓ))− αun(·;p(ℓ))∥H1(Cz) = O(ε),

λn,±ε(p(ℓ))− εh− λn(p(ℓ)) = O(ε).

(C.29)

Here α is a phase factor that depends on ±ε, n and ℓ as remarked on Remark 5.5. Thus by
elementary insertion and grouping, I3 − I4 = O(ε1/3) → 0.

Using the same method, we obtain the convergence of the first two bands away from the Dirac
point in the other operators.

Lemma C.6. The following convergences hold in the operator norm from H−1/2(Γ) to H1/2(Γ),
from H1/2(Γ) to H1/2(Γ) and from H1/2(Γ) to H−1/2(Γ) respectively uniformly for h ∈ C that
satisfy |h| < d| t∗γ∗ |, as ε→ 0:

∑
n=1,2

1

2π

∫
[−π,−ε1/3]∪[ε1/3,π]

⟨vn,±ε(·;p(ℓ)), ψ⟩∂nvn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ∗ − εh
dℓ

→
∑
n=1,2

1

2π
p.v.

∫
[−π,π]

⟨ϕ, vn(·;p(ℓ))⟩∂nvn(x;p(ℓ))
µn(p(ℓ))− λ∗

dℓ.

(C.30)

∑
n=1,2

1

2π

∫
[−π,−ε1/3]∪[ε1/3,π]

⟨∂nvn,±ε(·;p(ℓ), ψ)⟩vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ∗ − εh
dℓ→

∑
n=1,2

1

2π
p.v.

∫
[−π,π]

⟨∂nvn(·;p(ℓ)), ψ⟩vn(x;p(ℓ))
µn(p(ℓ))− λ∗

dℓ,

(C.31)

∂n
∑
n=1,2

1

2π

∫
[−π,−ε1/3]∪[ε1/3,π]

⟨∂nvn,±ε(·;p(ℓ), ψ)⟩vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ∗ − εh
dℓ→

∂n
∑
n=1,2

1

2π
p.v.

∫
[−π,π]

⟨∂nvn(·;p(ℓ)), ψ⟩vn(x;p(ℓ))
µn(p(ℓ))− λ∗

dℓ.

(C.32)

70



C.3 Higher bands

In this section, we will prove Lemma C.7 and Lemma C.11.

Lemma C.7. The following convergence holds in the operator norm from H−1/2(Γ) to H1/2(Γ)
uniformly for h ∈ C that satisfy |h| < d| t∗γ∗ |, as ε→ 0:∑

n≥3

1

2π

∫
[−π,π]

⟨ϕ, vn,±ε(·;p(ℓ))⟩vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ∗ − εh
dℓ→

∑
n≥3

1

2π

∫
[−π,π]

⟨ϕ, vn(·;p(ℓ))⟩vn(x;p(ℓ))
µn(p(ℓ))− λ∗

dℓ.

(C.33)
(C.33) is equivalently be represented by∑

n≥3

1

2π

∫
[−π,π]

⟨ϕ, un,±ε(·;p(ℓ))⟩un,±ε(x;p(ℓ))

λn,±ε(p(ℓ))− λ∗ − εh
dℓ→

∑
n≥3

1

2π

∫
[−π,π]

⟨ϕ, un(·;p(ℓ))⟩un(x;p(ℓ))
λn(p(ℓ))− λ∗

dℓ,

(C.34)
where λn,±ε and λn are ranked increasingly as introduced in Section 5.1.

Remark C.8. The limits in Lemma C.7 do not depend on the sign of ε. Thus we will work with
ε with sufficiently small absolute values. We also use λn = λn,0 and un = un,0 when convenient.

Notice that un,ε are supported on different domains Cz\Dε as ε vaires. Instead of extending them
by 0 into Dε as done in (4.4), we convert them to the same support Cz\D through diffeomorphisms,
where results in [47, p.423] and [52] can be applied. Let x and yε be the Euclidean coordinates
of Cz\D and Cz\Dε. Fix an open set O compactly supported in Cz and containing Dε for all ε.
There is a smooth bijective map from Cz\D to Cz\Dε that is analytic in ε, denoted by yε = yε(x).
Moreover, we may require that yε(x) satisfy the following conditions:(i) yε(x) = x for x ∈ O, (ii)

|yε(x)−x| → 0 uniformly in Cz\D as ε→ 0, and (iii) the Jacobian |∂yε(x)
∂x | → 0 uniformly in Cz\D

as ε→ 0. Every function u(yε) on Cz\Dε can be treated as a function u(yε(x)) on Cz\D.
Since yε(x) = x in a neighborhood of Γ, Lemma C.7 follows from the following lemma and

taking trace to Γ.

Lemma C.9. As ε→ 0, the following convergence holds uniformly for h ∈ C that satisfy |h| < d| t∗γ∗ |

∥Sε,evan(λ∗ + εh)− S0,evan(λ∗)∥H−1/2(Γ)→H1(Cz\D) → 0, (C.35)

where

Sε,evan(λ∗ + εh)ϕ(x) :=
∑
n≥3

1

2π

∫
[−π,π]

⟨ϕ, un,ε(·;p(ℓ))⟩un,ε(yε(x);p(ℓ))

λn,ε(p(ℓ))− λ∗ − εh
dℓ,

S0,evan(λ∗)ϕ(x) :=
∑
n≥3

1

2π

∫
[−π,π]

⟨ϕ, un(·;p(ℓ))⟩un(x;p(ℓ))
λn(p(ℓ))− λ∗

dℓ.

(C.36)

We will prove Lemma C.9 using the dominant convergence theorem and the following results.

Lemma C.10. Let Sε,evan(λ∗+εh,p(ℓ)) and S0,evan(λ∗,p(ℓ)) be operators from H−1/2(Γ) to H1(Cz\D)
that are defined by

Sε,evan(λ∗ + εh,p)ϕ(x) :=
∑
n≥3

⟨ϕ, vn,ε(·;p(ℓ))⟩vn,ε(yε(x);p(ℓ))

µn,ε(p(ℓ))− λ∗ − εh
,

S0,evan(λ∗,p)ϕ(x) :=
∑
n≥3

⟨ϕ, vn(·;p(ℓ))⟩vn(x;p(ℓ))
µn(p(ℓ))− λ∗

.

(C.37)
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There is a constant ε1, such that the following three statements hold uniformly for h ∈ C that satisfy
|h| < d| t∗γ∗ |.

1. For each |ε| < ε1, Sε,evan(λ∗ + εh,p(ℓ)) are continuous in ℓ in the operator norm.

2. Sε,evan(λ∗ + εh,p(ℓ)) are uniformly bounded in the operator norm over ℓ and over |ε| < ε1.

3. For each ℓ ̸= 0, Sε,evan(λ∗ + εh,p(ℓ)) converge to S0,evan(λ∗,p(ℓ)) in the operator norm as
ε→ 0.

To prepare for the proof of Lemma C.10, we introduce the following functions for each fixed ℓ:

wε(x) :=
∑
n≥3

⟨ϕ, un,ε(·;p(ℓ))⟩un,ε(x;p(ℓ))
λn,ε(p(ℓ))− λ∗ − εh

(C.38)

and

ŵε(x) :=
∑
n≥3

⟨ϕ, un,ε(·;p(ℓ))⟩un,ε(yε(x);p(ℓ))

λn,ε(p(ℓ))− λ∗ − εh
. (C.39)

We introduce the following function spaces, whose more detailed properties can be found in [60, 66].
Let Hs(ℓ) be the Sobolev space on R2 of order s that is quasiperiodic with quasimomenta p(ℓ) · ei
in ei, i = 1, 2. Let L2,ε(ℓ) = H0,ε(ℓ) be H0(ℓ) functions that are supported on R2\ ∪n1,n2∈Z (Dε +

n1e1 + n2e2), H
1,ε(ℓ) be H1(ℓ) functions that are supported on R2\ ∪n1,n2∈Z (Dε + n1e1 + n2e2),

and H−1,ε(ℓ) distributions on R2\∪n1,n2∈Z (D
ε+n1e1+n2e2) who can be extended to distributions

in H−1(ℓ). The dual space of H1,ε(ℓ) is H−1,ε(ℓ).
The pairings on these spaces are defined through their quasiperiodic Fourier expansions. Denote

the L2,ε(ℓ)-L2,ε(ℓ) pairing by ⟨·, ·⟩ε, and the H−1,ε(ℓ)-H1,ε(ℓ) pairing by (·, ·)ε. The innerproduct
on H1,ε(ℓ) is given by ⟨∇u,∇v⟩ε + ⟨u, v⟩ε.

Define the operators (−∆ε(ℓ))
−1 : H−1,ε(ℓ) → H1,ε(ℓ) by

(−∆ε(ℓ))
−1f = u if and only if ⟨∇u,∇v⟩ε = (f, v)ε ∀v ∈ H1,ε(ℓ). (C.40)

Notice that when restricted on H1,ε(ℓ), the operator (−∆ε(ℓ))
−1 : H1,ε(ℓ) → H1,ε(ℓ) is bounded,

selfadjoint, compact and positive. Thus there exists an orthogonal eigensystem of (−∆ε(ℓ))
−1 that

is complete in H1,ε(ℓ). This eigensystem coinsides with λn,ε := λn,ε(p(ℓ)) and un,ε := un,ε(x,p(ℓ))
that are defined in Section 5.1. We have

(−∆ε(ℓ))
−1un,ε(ℓ) =

1

λn,ε(ℓ)
un(ℓ), 0 < λ1,n(ℓ) ≤ λ2,ε(ℓ) ≤ · · · → ∞,

⟨∇un,ε(ℓ),∇um,ε(ℓ)⟩ε + ⟨un,ε(ℓ), um,ε(ℓ)⟩ε = (1 + λn,ε(ℓ))δm,n.

(C.41)

We have the expansion

∀f ∈ H1,ε(ℓ), f =
∑
n≥1

⟨un,ε(ℓ), f⟩εun,ε(ℓ), which converges in H1,ε(ℓ). (C.42)

By the density of H1,ε(ℓ) in L2(Cε) and H−1,ε(ℓ), we also have

∀f ∈ L2(Cε), f =
∑
n≥1

⟨un,ε(ℓ), f⟩εun,ε(ℓ), which converges in L2(Cz\Dε), (C.43)
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and
∀f ∈ H−1,ε(ℓ), f =

∑
n≥1

(f, un,ε(ℓ))εun,ε(ℓ), which converges in H−1,ε(ℓ). (C.44)

For A ⊂ Z+, define the projection operator Pn∈A,ε,ℓ : H
1,ε(ℓ) → H1,ε(ℓ) by

Pn∈A,ε,ℓf =
∑
n∈A

⟨un,ε(ℓ), f⟩εun,ε(ℓ). (C.45)

It is straightforward to verify that the function wε in (C.38) solves the following problem

(I − (λ∗ + εh)(−∆ε(ℓ))
−1)w(x) = (−∆ε(ℓ))

−1

ϕδ(Γ)− ∑
n≥1,2

⟨ϕ, un,ε(·;p(ℓ))⟩un,ε(x;p(ℓ))


= Pn≥3,ε,ℓ(−∆ε(ℓ))

−1 (ϕδ(Γ)) .
(C.46)

This can be equivalently represented as

(−∆− (λ∗ + εh))w(x) = ϕδ(Γ)−
∑
n≥1,2

⟨ϕ, un,ε(·;p(ℓ))⟩un,ε(x;p(ℓ)). (C.47)

Here we have used ϕδ(Γ) ∈ H−1,ε(ℓ) and

(ϕδ(Γ), un,ε)ε = ⟨ϕ, un,ε(·;p(ℓ))⟩. (C.48)

The diffeomorphism yε(x) converts (C.38) to (C.39). We have the following change of variables
formulas ∫

Cz\Dε

u(yε)v(yε) dyε =

∫
Cz\D

u(yε(x))v(yε(x))

∣∣∣∣(∂yε

∂x

)∣∣∣∣ dx,∫
Cz\Dε

∇yεu(yε) · ∇yεv(yε) dyε =

∫
Cz\D

(
∂x

∂yε

)
∇xu(yε(x)) ·

(
∂x

∂yε

)
∇xv(y

ε(x))

∣∣∣∣(∂yε

∂x

)∣∣∣∣ dx.
(C.49)

Thus
∥u(yε(·))∥Hk,0(ℓ) = ∥u(·)∥Hk,ε(ℓ)(1 +O(ε)), k = −1, 0, 1. (C.50)

Define (−∆̃ε)
−1 : H−1,0(ℓ) → H1,0(ℓ) by

(−∆̃ε(ℓ))
−1f = u if and only if∫

Cz\D

(
∂x

∂yε

)
∇xu(x) ·

(
∂x

∂yε

)
∇xv(x)

∣∣∣∣(∂yε∂x

)∣∣∣∣ dx =

∫
Cz\D

f(x)v(x)

∣∣∣∣(∂yε∂x

)∣∣∣∣ dx. (C.51)

Then we have

(−∆̃ε(ℓ))
−1f(yε(·)) = u(yε(·)) if and only if (−∆ε(ℓ))

−1f(·) = u(·). (C.52)

Combining with (C.47), we obtain that (C.39) solves

(−∆̃ε − (λ∗ + εh))ŵ(x) = ϕδ(Γ)−
∑
n≥1,2

⟨ϕ, un,ε(·;p(ℓ))⟩un,ε(yε(x);p(ℓ)). (C.53)

We are ready to prove Lemma C.10.
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Proof of Lemma C.10. We know that there are constants ε1, c1, c2 > 0 and a family of constants
c3(ℓ) > 0 depending on ℓ such that

λn,ε(ℓ) > c1 for all |ε| < ε1, n ≥ 1, ℓ ∈ [−π, π];

λn,ε(ℓ) > λ∗ +
1 + d

2
| t∗
γ∗

|, for all |ε| < ε1, n ≥ 3, ℓ ∈ [−π, π];

|λn,ε(ℓ)− λ| > c2 for all |ε| < ε1, |λ− λ∗| < d| t∗
γ∗

|ε, n ≥ 3, ℓ ∈ [−π, π];

for each ℓ ̸= 0,

∣∣∣∣1− λ

λn,ε(ℓ)

∣∣∣∣ > c3(ℓ) for all |ε| < ε1, |λ− λ∗| < d| t∗
γ∗

|ε, n ≥ 1.

(C.54)
Statement 1 follows from the analyticity in p(ℓ) through gauge transformations [64, 38, 47].
For statement 2, before the diffeomorphism, treated as functions on Cz\Dε, (C.46) gives

v = (I − (λ∗ + εh)(−∆ε(ℓ))
−1)−1Pn≥3,ε,ℓ(−∆ε(ℓ))

−1 (ϕδ(Γ)) . (C.55)

We have

∥ϕδ(Γ)∥H−1,ε(ℓ) ≤ C∥ϕ∥H−1/2(Γ),∥∥(−∆ε(ℓ))
−1
∥∥
H−1,ε(ℓ)→H1,ε(ℓ)

= sup
n

∣∣∣∣1 + λn,ε(ℓ)

λn,ε(ℓ)

∣∣∣∣ ≤ 1 + c1
c1

,

∥Pn≥3,ε,ℓ∥H−1,ε(ℓ)→H1,ε(ℓ) ≤ 1,∥∥(I − (λ∗ + εh)(−∆ε(ℓ))
−1)−1

∥∥
Pn≥3,ε,ℓH1,ε(ℓ)→H1,ε(ℓ)

= sup
n≥3

∣∣∣∣∣
(
1− λ∗ + εh

λn,ε(ℓ)

)−1
∣∣∣∣∣ < 1

1− (λ∗ + d| t∗γ∗ |)/(λ∗ +
1+d
2 | t∗γ∗ )

.

(C.56)
Since the operator norms are related by a factor of (1 + O(ε)) uniformly when treated as maps
between functions on Cz\D through the diffeomorphisms, the proof of Statement 2 is complete.

For Statement 3, for each fixed ℓ, we apply Lemma 4.4 to

Aε = −∆̃ε − λ∗ − εh,

A0 = −∆̃0 − λ∗,

fε = ϕδ(Γ)−
∑
n≥1,2

⟨ϕ, un,ε(·;p(ℓ))⟩un,ε(yε(x);p(ℓ)),

f0 = ϕδ(Γ)−
∑
n≥1,2

⟨ϕ, un,ε(·;p(ℓ))⟩un,ε(x;p(ℓ)).

(C.57)

The forms defined in (C.51) are analytic in ε. Thus by [47], each pair of eigenvalue and eigeneigen-
function λn,ε, un,ε converges to λn, un in R × H1(Cz\D) at a rate of O(ε). Thus it is straight
forward to verify that when ε1 is sufficiently small, |ε| < ε1, |h| < d| t∗γ∗ |, for each ℓ ̸= 0, there exists
a constant C(ℓ), such that

∥A−1
0 ∥H−1,0(ℓ)→H1,0(ℓ), ∥A−1

ε ∥H−1,0(ℓ)→H1,0(ℓ) ≤ C(ℓ),

∥f0∥H−1,0(ℓ), ∥fε∥H−1,0(ℓ) ≤ C(ℓ)∥ϕ∥H−1/2(Γ),

∥fε − f0∥H−1,0(ℓ) ≤ εC(ℓ)∥ϕ∥H−1/2(Γ),

∥Aε −A0∥H1,0(ℓ)→H−1,0(ℓ) → 0.

(C.58)

Thus we obtain Statement 3.
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Since we showed convergence in H1, taking the normal derivatives and using the jump relations,
we obtain the following corollary.

Corollary C.11. The following convergence holds in the operator norm from H−1/2(Γ) to H−1/2(Γ)
uniformly for h ∈ C that satisfy |h| < d| t∗γ∗ |, as ε→ 0:

∑
n≥3

1

2π

∫
[−π,π]

⟨vn,±ε(·;p(ℓ)), ψ⟩∂nvn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ∗ − εh
dℓ→

∑
n≥3

1

2π

∫
[−π,π]

⟨ϕ, vn(·;p(ℓ))⟩∂nvn(x;p(ℓ))
µn(p(ℓ))− λ∗

dℓ.

(C.59)

C.4 Double layer potential and the convergence of higher bands

Let ψ ∈ H1/2(Γ). Denote the part of Cz\Dε to the left of Γ by Lε and that to the right of Γ by Rε.
Using (C.41), we know that when ε ̸= 0 or ℓ ̸= 0, λ∗ + εh ̸= λn,ε(ℓ) for all n,

v(x) :=
∑
n≥3

⟨∂nun,ε(·;p(ℓ)), ψ⟩un,ε(x;p(ℓ))
λn,ε(p(ℓ))− λ∗ − εh

(C.60)

is the unique function that satisfies

[v] = ψ, [∂nv] = 0,

(−∆− λ∗ − εh)v = −
∑
n=1,2

⟨∂nun,ε(·;p(ℓ)), ψ⟩un,ε(x;p(ℓ)) x ∈ Lε ∪Rε. (C.61)

Here [·] represents the jump of the quantity across Γ. The uniqueness follows from that the difference
between two such functions is a Floquet mode of quasimomentum p(ℓ) and energy λ∗+εh on Cz\Dε.

We next decompose v as the sum of two functions ũ and w which are introduced below. Let
E : H1/2(Γ) → H1,ε(ℓ) be an extension operator which is a right inverse of the trace operator, for
which functions in its image are supported in a neighborhood O1 of Γ that does not intersect O.
Thus this extension operator stays the same for all ℓ. Define

u := χRεEψ, (C.62)

where χRε is the characteristic function of Rε. Then u satisfies

[u] = ψ, [∂nu] = −∂nEψ,
(−∆− λ∗ − εh)u = χRε(−∆− λ∗ − εh)Eψ x ∈ Lε ∪Rε.

(C.63)

We have that there exists a constant C, such that for all ε, |h| < d| t∗γ∗ |, and ℓ,

∥u∥H1(Rε), ∥u∥H1(Lε) ≤ C∥ψ∥H1/2(Γ), ∥(−∆− λ∗ − εh)u∥H−1(Lε∪Rε) ≤ C∥ψ∥H1/2(Γ). (C.64)

Next we shift u along un,ε(ℓ), n = 1, 2, to make sure the source for the rest of v does not have
components in these two directions. Define

ũ := χRεEψ −
∑
n=1,2

⟨un,ε(ℓ), χRεEψ⟩εun,ε(ℓ) (C.65)
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Then ũ satisfies

[ũ] = ψ, [∂nũ] = −∂nEψ,
(−∆− λ∗ − εh)ũ = χRε(−∆− λ∗ − εh)Eψ −

∑
n=1,2

(λn,ε − λ∗ − εh)⟨un,ε(ℓ), χRεEψ⟩εun,ε(ℓ), x ∈ Lε ∪Rε.

(C.66)
Let w ∈ H1,ε(ℓ) be the solution to

[w] = 0, [∂nw] = ∂nEψ,

(−∆− λ∗ − εh)w =−
∑
n=1,2

⟨∂nEψ, un,ε(·;p(ℓ))⟩un,ε(x;p(ℓ))− χRε(−∆− λ∗ − εh)Eψ

+
∑
n=1,2

(λn,ε − λ∗ − εh)⟨un,ε(ℓ), χRεEψ⟩εun,ε(ℓ), x ∈ Lε ∪Rε.

(C.67)

Then w ∈ H1,ε(ℓ) is the solution to the PDE below on the entire Cz\Dε

(−∆− λ∗ − εh)w = (∂nEψ)δ(Γ)−
∑
n=1,2

⟨∂nEψ, un,ε(·;p(ℓ))⟩un,ε(x;p(ℓ))− χRε(−∆− λ∗ − εh)Eψ

+
∑
n=1,2

(λn,ε − λ∗ − εh)⟨un,ε(ℓ), χRεEψ⟩εun,ε(ℓ), x ∈ Cz\Dε.

(C.68)
It can be checked that the right hand side of (C.68) is orthogonal to un,ε(ℓ), n = 1, 2, thus w can
be treated using the procedure shown in Section C.3.

Integration by parts gives

⟨∂nEψ, un,ε(·;p(ℓ))⟩−⟨∂nun,ε(·;p(ℓ)), ψ⟩ = ⟨un,ε, (−∆−λ∗−εh)χRεEψ⟩−(λn,ε−λ∗−εh)⟨un,ε, χRεEψ⟩
(C.69)

Thus we see
v = ũ+ w.

Treating v − χRεEψ using the procedures in Section C.3, we conclude the convergence of

1

2π

∑
n≥3

∫
−π,π

⟨∂nun,ε(·;p(ℓ)), ψ⟩un,ε(x;p(ℓ))
λn,ε(p(ℓ))− λ∗ − εh

dℓ→ 1

2π

∑
n≥3

∫
−π,π

⟨∂nun(·;p(ℓ)), ψ⟩un(x;p(ℓ))
λn(p(ℓ))− λ∗

dℓ

(C.70)
in H1 on the right of Γ in the proper sense through diffeomorphism. Taking the traces and the
normal derivatives, we obtain the following convergences.

Lemma C.12. The following convergences hold in the operator norm from H1/2(Γ) to H1/2(Γ)
and from H1/2(Γ) to H−1/2(Γ) respectively uniformly for h ∈ C that satisfy |h| < d| t∗γ∗ |, as ε→ 0:

∑
n≥3

1

2π

∫
[−π,π]

⟨∂nvn,±ε(·;p(ℓ), ψ)⟩vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ∗ − εh
dℓ→

∑
n≥3

1

2π

∫
[−π,π]

⟨∂nvn(·;p(ℓ)), ψ⟩vn(x;p(ℓ))
µn(p(ℓ))− λ∗

dℓ,

(C.71)

∂n
∑
n≥3

1

2π

∫
[−π,π]

⟨∂nvn,±ε(·;p(ℓ), ψ)⟩vn,±ε(x;p(ℓ))

µn,±ε(p(ℓ))− λ∗ − εh
dℓ→ ∂n

∑
n≥3

1

2π

∫
[−π,π]

⟨∂nvn(·;p(ℓ)), ψ⟩vn(x;p(ℓ))
µn(p(ℓ))− λ∗

dℓ.

(C.72)
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Appendix D Proof of Propositions 9.2, and Theorems 2.16, 2.17
and 2.14.

Proof of Proposition 9.2. The proof is similar to that of Proposition 7.1. The leading order term
in the limit comes from the integrals close to the Dirac points. We only display this calculation
below.

Using (4.9), (4.13) and (4.14),

eiεζβ2·x
∑
n=1,2

1

2π

∫
[−ε1/3,ε1/3]

un,±ε(x;p(ℓ, εζ))un,±ε(y;p(ℓ, εζ))

λn,±ε(p(ℓ, εζ))− (λ∗ + εh)
dℓ e−iεζβ2·y

→F±
1 (h, ζ)w1(x)w1(y) + F±

2 (h, ζ)w2(x)w2(y) + F±
3 (h, ζ)w2(x)w1(y)

+ F±
4 (h, ζ)w1(x)w2(y) + o(1)∥ϕ∥H1/2(Γ).

(D.1)

Here

F+
1 (h, ζ) =

1

2π

∫
R

1− |L(ε, ℓ, εζ)|2
1 + |L(ε, ℓ, εζ)|2 · J(ε, ℓ, εζ)

−(J(ε, ℓ, εζ))2 + ε2h2
+

−εh
−(J(ε, ℓ, εζ))2 + ε2h2

dℓ,

F+
2 (h, ζ) =

1

2π

∫
R
−1− |L(ε, ℓ, εζ)|2
1 + |L(ε, ℓ, εζ)|2 · J(ε, ℓ, εζ)

−(J(ε, ℓ, εζ))2 + ε2h2
+

−εh
−(J(ε, ℓ, εζ))2 + ε2h2

dℓ,

F+
3 (h, ζ) =

1

2π

∫
R

L(ε, ℓ, εζ)

1 + |L(ε, ℓ, εζ)|2 · 2J(ε, ℓ, εζ)

−(J(ε, ℓ, εζ))2 + ε2h2
dℓ,

F+
4 (h, ζ) = F+

3 (h, ζ),

(D.2)

F−
1 (h, ζ) = F+

2 (h, ζ), F−
2 (h, ζ) = F+

1 (h, ζ), F−
3 (h, ζ) = F+

3 (h, ζ), F−
4 (h, ζ) = F+

4 (h, ζ),
(D.3)

L(ε, ℓ, εζ) is defined in (4.12) and

J(ε, ℓ, µ) =
1

|γ∗|
√
ε2t2∗ + |ℓ+ µτ̄ |2|θ∗|2. (D.4)

Note it turns out that the functions F±
i are independent of ε > 0. This is because

L(ε, ℓ, εζ)

1 + |L(ε, ℓ, εζ)|2 =
θ∗(ℓ+ εζτ)

2γ∗(ε, ℓ, εζ)
,

1− |L(ε, ℓ, εζ)|2
1 + |L(ε, ℓ, εζ)|2 =

εt∗
γ∗J(ε, ℓ, εζ)

.

(D.5)

Observing

|ℓ+ εζτ |2 = (ℓ− 1

2
εζ)2 +

3

4
(εζ)2, (D.6)

We set ℓ̃ = ℓ− 1
2εζ. Using

1

π

∫
R

1
1

(γ∗)2
(t2∗ +

3
4 |θ∗|2ζ2 + |θ∗|2ℓ̃2)− h2

dℓ̃ =

∣∣∣∣γ∗θ∗
∣∣∣∣ 1√

( t∗γ∗ )
2 + 3

4 | θ∗γ∗ |2ζ2 − h2
, (D.7)
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we obtain

F+
1 (h, ζ) = −ξ(h, ζ)+β(h, ζ), F+

2 (h, ζ) = ξ(h, ζ)+β(h, ζ), F+
3 (h, ζ) =

θ∗
|θ∗|

σ(h, ζ), F+
4 (h, ζ) =

θ∗
|θ∗|

σ(h, ζ).

(D.8)
Here ξ(h, ζ), β(h, ζ) and σ(h, ζ) are defined in (9.7). A coincidence is that σ(h, ζ) ∈ C, which
implies σ(h, ζ) = −σ(h, ζ).

Finally using

w1w̄1 =
1

2
(v1v̄1 + v2v̄2 + v2v̄1 + v1v̄2),

w2w̄2 =
1

2
(v1v̄1 + v2v̄2 − v2v̄1 − v1v̄2),

w2w̄1 =
1

2

θ∗
|θ∗|

(−v1v̄1 + v2v̄2 + v2v̄1 − v1v̄2),

w1w̄2 =
1

2

θ∗
|θ∗|

(−v1v̄1 + v2v̄2 − v2v̄1 + v1v̄2),

(D.9)

we finish the proof.

Proof of Theorem 2.16. Along the rational edge, we need to consider the quasimomenta

ℓβr
1 + µβr

2 = ℓ(bβ1 − aβ2) + µ(−dβ1 + cβ2) (D.10)

The leading order term in the counter part of matrix (4.25) is(
t∗ε+ γ∗λ

(1) (ℓ+ µτ)θ∗
(ℓ+ µτ̄)θ∗ −t∗ε+ γ∗λ

(1)

)
. (D.11)

Thus in the counter parts of L defined in (4.12) and J defined in (D.4), we have the replacement

ℓ+ µτ̄ → ℓ(b− aτ̄) + µ(−d+ cτ̄) =: Aℓ+Bµ, (D.12)

where A := b− aτ̄ and B := −d+ cτ̄ . Since

|Aℓ+Bµ|2 = |A|2(ℓ+ Re(AB̄)

|A|2 µ)2 +

(
|B|2 − |A|2

(
Re(AB̄)

|A|2
)2
)
µ2, (D.13)

we rewrite

Aℓ+Bµ = A(ℓ+
Re(AB̄)

|A|2 µ) + frµ, (D.14)

where fr is defined in (2.24). So we set ℓ̃ := ℓ + Re(AB̄)
|A|2 εζ when µ = εζ. It can be shown that

|fr|2 = |B|2 − |A|2
(
Re(AB̄)
|A|2

)2
. Define

Cr(h, ζ) :=
1

π

∫
R

1

1
(γ∗)2

(
t2∗ + |θ∗|2|A|2ℓ̃2 + |θ∗|2|fr|2ζ2

)
− h2

dℓ̃ =
1

2

∣∣∣∣γ∗θ∗
∣∣∣∣ 1√

( t∗γ∗ )
2 + 3

4 | θ∗Aγ∗ |2ζ2 − h2
.

(D.15)
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We use the superscript r to denote operators corresponding to (M(εζ))−1T±ε(λ∗ + εh, εζ)(M)(εζ)
defined in (9.8). The limits are

(Mr(εζ))−1T±ε,r(λ∗+εh, εζ)(Mr)(εζ) → T̃0,r(λ∗)+β
r(h, ζ)P∓ξr(h, ζ)Q+σr1(h, ζ)O1+σ

r
2(h, ζ)O2,

(D.16)
where

O1ϕ⃗ := c1(ϕ⃗)v⃗1 − c2(ϕ⃗)v⃗2, O2ϕ⃗ := −c2(ϕ⃗)v⃗1 + c1(ϕ⃗)v⃗2,

βr(h, ζ) = hCr(h, ζ), βr(h, ζ) =
t∗
|γ∗|

Cr(h, ζ),

σr1(h, ζ) = Re(fr)ζ|θ∗
γ∗

|Cr(h, ζ), σr2(h, ζ) = Im(fr)ζ|θ∗
γ∗

|Cr(h, ζ).

(D.17)

A calculation similar to the proof of Proposition 2.13 produces the result.

Proof of Theorem 2.17. Comparing to (4.8) and (8.4), we observe that at K and K ′, the signs of
θ∗ and t∗ are opposite. Thus the edge states bifurcating from K and K ′ have opposite dispersion
slopes.

Proof of Theorem 2.14. The dispersion relations on the zigzag interface and the armchair interface
in Theorems 2.13 and 2.14 are special cases of Propositions 2.16 and 2.17.

For the zigzag interface a = 0, b = 1, c = 1, d = 0 and A = 1, B = τ̄ , fr = 1
2 + τ̄ and |fr| =

√
3
2 .

For the armchair interface, a = 1, b = 1, c = 1, d = 0 and A = 1 − τ̄ , B = τ̄ , fr = 1+τ̄
2 and

|fr| = 1
2 .
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