
JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 2, DECEMBER 2023 1

A Universal List Decoding Algorithm with

Application to Decoding of Polar Codes

Xiangping Zheng and Xiao Ma, Member, IEEE

Abstract

This paper is concerned with a guessing codeword decoding (GCD) of linear block codes, which

is optimal and typically requires a fewer number of searches than the naive exhaustive search decod-

ing (ESD). Compared with the guessing noise decoding (GND), which is only efficient for high-rate

codes, the GCD is efficient for not only high-rate codes but also low-rate codes. We prove that the GCD

typically requires a fewer number of queries than the GND. Compared with the conventional ordered

statistics decoding (OSD), the GCD does not require the online Gaussian elimination (GE). In addition

to limiting the maximum number of searches, we suggest limiting the radius of searches in terms of

soft weights or tolerated performance loss to further reduce the decoding complexity, resulting in the

so-called truncated GCD. The performance gap between the truncated GCD and the optimal decoding

can be upper bounded approximately by the saddlepoint approach or other numerical approaches. The

derived upper bound captures the relationship between the performance and the decoding parameters,

enabling us to balance the performance and the complexity by optimizing the decoding parameters of

the truncated GCD. We also introduce a parallel implementation of the (truncated) GCD algorithm to

reduce decoding latency without compromising performance. Another contribution of this paper is the

application of the GCD to the polar codes. We propose a multiple-bit-wise decoding algorithm over a

pruned tree for the polar codes, referred to as the successive-cancellation list (SCL) decoding algorithm

by GCD. First, we present a strategy for pruning the conventional polar decoding tree based on the

complexity analysis rather than the specific bit patterns. Then we apply the GCD algorithm in parallel

aided by the early stopping criteria to the leaves of the pruned tree. Simulation results show that, without

any performance loss as justified by analysis, the proposed decoding algorithm can significantly reduce

the decoding latency of the polar codes.
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Index Terms

Guessing codeword decoding (GCD), list decoding, performance bound, polar codes.

I. INTRODUCTION

The ultra-reliable low-latency communication (URLLC), enabling applications that require

high reliability and very low latency, is an important use case of beyond 5G and 6G com-

munication networks [1]–[3], where URLLC in 6G requires a significantly lower end-to-end

latency (25µs ∼ 1ms) and a high level of transmission reliability (block error rates of 10−5 to

10−7), compared with the 5G new radio (NR) [4]. To meet the stringent requirements of URLLC,

the utilization of short block codes with efficient decoding algorithms has rekindled a great deal

of interest [5].

As a near maximum-likelihood (ML) decoding algorithm for short linear block codes, ordered

statistics decoding (OSD) [6], [7] produces a list of codewords by querying and re-encoding the

patterns in the most reliable basis (MRB), where the querying process is implemented in an order

of non-decreasing soft weight [6] or Hamming weight [7]. The OSD is universal and applicable

to any short linear block codes (from low rates to high rates). To reduce the complexity in

terms of the number of queries, several improved OSD algorithms have been proposed, such as

segmentation-discarding OSD (SD-OSD) [8], probability-based OSD (PB-OSD) [9] and linear-

equation OSD (LE-OSD) [10]. Recently, a variant of OSD called OSD with local constraints (LC-

OSD) has been proposed in [11], [12] to further reduce the number of queries. The basic idea

of LC-OSD is to select K + δ bits as the extended MRB. However, Gaussian elimination (GE)

is required by OSD for each reception of block. Even worse, the GE is a serial algorithm and

no efficient parallel implementation is available for a general matrix. The inevitable decoding

latency and complexity caused by the GE hinder the application of OSD in URLLC. One way

to solve this issue is to skip the GE process by precalculating and storing multiple systematic

generator matrices [13] or invoking specific decoding conditions [14]. Actually, by pre-storing

a systematic generator matrix, low-complexity reduced GE is sufficient for performing modified

OSD [15]. Another way is to relax the requirement of the MRB, leading to the representative

OSD (ROSD) of the staircase matrix codes [16] [17], where the GE can be implemented in

parallel, and the quasi-OSD (QOSD) of Reed-Solomon (RS) codes [18], where the GE can be
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replaced by the parallel Lagrange interpolation1.

In contrast to the OSD, the guessing random additive noise decoding (GRAND) algorithm [20],

[21] guesses the error patterns from the most likely to the least likely to find the correct codeword,

which was also mentioned in the introductory paragraph of [22]. Several variants were proposed

for improving the GRAND algorithm, such as the soft-GRAND (SGRAND) [23], GRAND

with symbol reliability information (SRGRAND) [24], ordered reliability bits GRAND (ORB-

GRAND) [25], and partially constrained-GRAND (PC-GRAND) [26]. However, the GRAND

algorithms are effective (in terms of complexity) only for the short-length and high-rate linear

block codes [25].

As a class of capacity-achieving codes for binary-input output-symmetric discrete-memoryless

channels (BIOS-DMCs), polar codes [27] have been employed for 5G systems for use in control

channels [1], [2]. Under the successive cancellation (SC) decoding algorithm, polar codes can

approach the maximum likelihood (ML) performance when the code length tends to infinity [27].

To enhance the decoding performance in the finite code length regime, the SC list (SCL)

decoding algorithm [28] and the cyclic redundancy check (CRC) aided SCL (CA-SCL) decoding

algorithm [29], [30] were proposed, which can achieve satisfactory performance. The main issue

of the SCL decoding algorithm is the decoding latency since it is a sequential bit-by-bit decoding

algorithm. This becomes clear if one is aware that a polar code can be represented by a rooted

binary tree, over which the SCL decoding can be implemented by a pre-order traversal and a

post-order traversal [31]. One main approach to reducing the decoding latency is pruning the tree

by merging multiple leaf nodes with a predefined bit pattern into a single node (a subcode) for

decoding, such as rate-0/rate-1 nodes [31], [32], and single-parity-check (SPC)/repetition (REP)

nodes [33]. Later, Sarkis et al. [34] proposed a fast list decoder for the rate-1 and SPC nodes,

which is an empirical approach and does not guarantee the same performance as the conventional

SCL decoding. To achieve the same performance as the conventional SCL decoder, Hashemi et

al. [35] proposed a fast list decoder for the rate-1 and SPC nodes, where the required number of

path splitting (related to the list size) is derived. To further reduce the decoding latency, five new

types of nodes, namely, Type-I, Type-II, Type-III, Type-IV, and Type-V nodes in the decoding

tree were introduced in [36] and the corresponding fast list decoders were designed in [37] based

1The Lagrange interpolation was also used to parallelize the GE in the OSD of Bose-Chaudhuri-Hocquenghem (BCH)

codes [19], where extended systematic generator matrix are formed not for BCH codes themselves but for the corresponding

RS codes.
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on the works in [35]. Most of the aforementioned nodes [31]–[37] can be treated as special cases

of the generalized REP (G-REP) nodes and generalized parity-check (G-PC) nodes [38], which

can be further generalized to the sequence repetition (SR) nodes [39], [40]. Recently, Ren et

al. [41] proposed an SR-list decoding algorithm that can be divided into two phases: enumerating

all information bit possibilities for the low-rate part and sequential node-based list decoding for

the high-rate part.

In this paper, the OSD-like algorithms are referred to as the guessing codeword decod-

ing (GCD) algorithms, while the GRAND-like algorithms are referred to as the guessing noise

decoding (GND) algorithm since they are also applicable to other noisy channels after transfor-

mation. Recently, it has been proved in [42] that the GCD algorithm is an ML decoding algorithm

and can be more efficient than the GND algorithm, where the GCD produces a list of codewords

by re-encoding patterns in increasing soft weight order over an information set (selected offline)

instead of the MRB. For this reason, we focus on the GCD algorithm without online GE

and develop an optimal list decoding [43] that lists the L most likely codewords as output.

We present three conditions for truncation, which can be optimized to reduce the complexity

in terms of the number of queries with negligible performance loss, referred to as truncated

GCD. Moreover, we propose a parallel (truncated) GCD to reduce the decoding latency without

sacrificing performance. By the use of the GCD, we propose a multiple-bit-wise SCL decoding

algorithm for polar codes by embedding GCD into a pruned tree to reduce the decoding latency.

The main contributions of this paper are summarized as follows.

1) We prove by analysis that the GCD typically requires a fewer number of queries than the

GND, indicating that the GCD is more efficient than the GND since the complexity per

query is comparable.

2) Theoretically, we estimate the upper bound on the performance gap between the truncated

GCD and the GCD, which does not rely on any specific code. We also propose to utilize

the saddlepoint technique [44], [45] to speed up the calculation of the performance gap.

3) The estimated performance gap relates the performance of the truncated GCD to the

decoding parameters, such as the maximum query number, providing guidelines on the

choices of the proposed three conditions. To further reduce the decoding latency, we

consider performing the (truncated) GCD in parallel.

4) For practical application to polar decoding, we first present a strategy for pruning the polar

decoding tree based on the complexity analysis. Distinguished from existing strategies,
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which depend on certain specific bit patterns, our strategy does not depend on any specific

bit patterns. Then we present the multiple-bit-wise successive cancellation list (SCL)

decoding algorithm by GCD, where we apply the GCD algorithm in parallel aided by the

early stopping criteria to the low/high-rate sub-codes. The proposed decoding algorithm

is analyzed in comparison with the SCL decoding algorithm, suggesting no performance

loss.

The rest of this paper is organized as follows. In Section II, we illustrate the system model

and analyze the efficiency of the GCD. In Section III, we provide the complexity analysis and

present four variants of GCD to reduce the complexity and latency. In Section IV, we apply

the GCD in polar decoding and present a multiple-bit-wise SCL decoding algorithm for polar

codes over a pruned tree, namely the SCL decoding algorithm by GCD. Section V concludes

this paper.

II. GUESSING CODEWORD DECODING

A. Problem Statement

Let F2 = {0, 1} be the binary field and C [N,K] be a binary linear block code of dimension

K and length N . The binary linear block code C [N,K] can be specified either by a generator

matrix G of size K ×N or a parity-check matrix H of size (N −K)×N . Associated with an

information vector u ∈ FK
2 is a codeword c = uG, which must satisfy cHT = 0, where HT is

the transpose of H. Now suppose that c ∈ FN
2 is transmitted over a binary input discrete-time

memoryless channel (B-DMCs), resulting in y ∈ YN , where Y is the alphabet of the channel

outputs. In this paper, the components of a vector, say y, are indexed from 1 to its length. We

interchangeably use yi and y[i] to represent the i-th component of y.

Upon receiving y, the log-likelihood ratio (LLR) vector r is calculated as

ri = ln
PY |C(yi|ci = 0)

PY |C(yi|ci = 1)
, 1 ≤ i ≤ N, (1)

where PY |C(·|·) is the conditional probability mass (or density) function specifying the channel.

Given the LLR vector r, the hard-decision vector z ∈ FN
2 is calculated as

zi =

0, if ri ≥ 0

1, if ri < 0
, 1 ≤ i ≤ N. (2)
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The ML decoding is to find a codeword v∗ such that

v∗ = argmax
v∈C

PY |C(y|v), (3)

which is equivalent to

v∗ = argmin
v∈C

log
PY |C(y|z)
PY |C(y|v)

. (4)

For a test vector v ∈ FN
2 , we can define its corresponding test error pattern (TEP) e ∈ FN

2 as

e ≜ z − v. (5)

This can be written as z = v + e and hence the channel is transformed into an additive noise

channel, which accepts the codeword as input and delivers the hard-decision vector as output.

Defining the soft weight2 of a TEP e, denoted by γ(e), as

γ(e) ≜ log
PY |C(y|z)

PY |C(y|z − e)
=

N∑
i=1

ei|ri|, (6)

we can see that γ(e) ≥ 0 for any vector e ∈ FN
2 and γ(e) = 0 for e = 0. In contrast to the

Hamming weight, the soft weight of e, as a weighted sum, is determined not only by its non-zero

components but also by the corresponding reliabilities |ri| with ei = 1. Then the ML decoding

is equivalent to the lightest soft weight decoding. That is, the ML decoding is equivalent to

min
e∈FN

2

γ(e)

s.t. eHT = s,

(7)

where s = zHT is the computable syndrome.

Without loss of generality, we assume that the first N − K columns of H are linearly

independent. That is, H can be transformed by elementary row operations into a systematic

form,

H→ [I P], (8)

where I is the identity matrix of order N −K and P is a matrix of size (N −K)×K. Then a

TEP e can be written as e = (eI , eP ), where eI ∈ FN−K
2 and eP ∈ FK

2 . Similarly, r = (rI , rP )

and z = (zI , zP ). We see that, for any valid TEP e, eI is uniquely determined by eP since

eI +ePP
T = s. Hereafter, by a valid TEP e, we mean a vector e such that z−e is a codeword.

A valid TEP e is referred to as the true TEP (TrTEP) if z − e is the transmitted codeword.

2This can be viewed as a kind of discrepancy [46], which was referred to as confidence level [6] and ellipsoidal weight [47].
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Now, for any 1 ≤ L ≤ 2K , we consider the optimal list decoding that finds the L lightest

valid TEPs, collectively denoted as L. Not surprisingly, this can be achieved by exhaustive search

decoding (ESD), which sorts all 2K TEPs and has a complexity of order O(2K). One approach

to reducing the complexity is limiting the search space. If so, we need to answer the following

three questions:

1) Search space: for what TEPs to search?

2) Search order: in which order to search?

3) Termination: under which condition to terminate the search?

Intuitively, the search space should be as small as possible but contain the TrTEP as often as

possible. Given the search space, the search order (known as strategy [47]) should query the

TrTEP as early as possible. Given a search order, the search should be terminated when further

searches are unnecessary.

We aim to design a list decoding with low complexity such that the error probability of the

list decoding is as small as possible. Here, following [43] [48, Exercise 5.20], we say that a

list-decoding error has occurred if the TrTEP is not in the list of the decoding output. For a list

decoding with list size L, we denote by ϵ(L) the probability of a list-decoding error. Specifically,

ϵ(1) is the frame error rate (FER) of the ordinary decoding algorithm.

In this paper, we present the GCD algorithm and then introduce three conditions for truncation

to further reduce the complexity. For the time being, we assume that an ordered (partial) TEP

generator is available for all partial TEPs eP ∈ FK
2 that delivers e

(i)
P before e

(j)
P if γ

(
e
(i)
P

)
<

γ
(
e
(j)
P

)
or γ

(
e
(i)
P

)
= γ

(
e
(j)
P

)
but e

(i)
P is prior to e

(j)
P in the lexicographic order. Then a

sequence of eP ∈ FK
2 can be produced (on demand) such that

γ
(
e
(1)
P

)
≤ γ

(
e
(2)
P

)
≤ · · · ≤ γ

(
e
(ℓ)
P

)
≤ · · · ≤ γ

(
e
(2K)
P

)
. (9)

In principle, the ordered TEP generator can be implemented, say, with the aid of the flipping

pattern tree (FPT) [49] [23] [9] [12], which will be described for integrity in Section III-A. Given

the sorted partial TEPs (9), the GCD as described in Algorithm 1 finds the L ≥ 1 lightest valid

TEPs (corresponding to the L best codewords). We also illustrate in Fig. 1 the update process

of the linked list L in Algorithm 1.

Theorem 1. The TEPs in L are the L lightest ones and hence the output codewords in Algo-

rithm 1 are the L most likely ones.
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Algorithm 1 GCD
Input: The parity-check matrix [I P], the LLR vector r, the list size L, and the maximum

query number ℓmax = 2K .

1: Initialization: L = {f (i), 1 ≤ i ≤ L} is a linked list of size L which is maintained in

order (non-decreasing soft weight) during the query process and the initial L elements in L

are set to NULL TEPs with soft weight ∞.

2: for ℓ = 1, . . . , ℓmax do

3: Generate the ℓ-th lightest partial TEP e
(ℓ)
P .

4: if γ
(
e
(ℓ)
P

)
≥ γ

(
f (L)

)
then

5: break.

6: else

7: e
(ℓ)
I = s− e

(ℓ)
P PT .

8: e(ℓ) =
(
e
(ℓ)
I , e

(ℓ)
P

)
.

9: if γ
(
e(ℓ)
)
< γ

(
f (L)

)
then

10: Update the list L by removing f (L) and inserting e(ℓ).

11: end if

12: end if

13: end for

Output: The list L and the corresponding codewords {c|c = z − e, e ∈ L}.

Proof: Let e(ℓ) =
(
e
(ℓ)
I , e

(ℓ)
P

)
be the ℓ-th queried TEP in the GCD and denote by L(ℓ) =

{f (ℓ,i), 1 ≤ i ≤ L} the linked list consisting of the L lightest TEPs among the queried ℓ TEPs.

Let γ(ℓ)
L be the soft weight of the heaviest TEP in L(ℓ). That is,

γ
(ℓ)
L = max

f∈L(ℓ)
γ(f) = γ

(
f (ℓ,L)

)
. (10)

The GCD terminates at the j-th query in either of the following two cases, γ
(
e
(j)
P

)
≥ γ

(j−1)
L

or j = 2K . The latter case occurs only when γ
(
e
(ℓ)
P

)
≥ γ

(ℓ−1)
L is not activated for all ℓ ≤ 2K ,

which is actually an ESD algorithm. In this case, the delivered list L = L(2K), which naturally

consists of the L lightest valid TEPs. The former case occurs when γ
(
e
(j)
P

)
≥ γ

(j−1)
L for some

j < 2K , which is the case of interest in terms of the complexity. In this case, the delivered

L = L(j−1), which consists of the L lightest valid TEPs as proved below. We have, for all
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Initialization

index 𝑖 1 2 L

TEP 𝒇𝑖
(0) NULL NULL … NULL

soft weight γ 𝒇𝑖
(0) ∞ ∞ … ∞

size: L

the 1-st query

the 𝓁 − 1 -th query

⋮

light TEP heavy TEP

TEP 𝒇𝑖
(1) 𝒆(1) NULL … NULL

soft weight γ 𝒇𝑖
(1) 𝛾 𝒆(1) ∞ … ∞

TEP 𝒇𝑖
(𝓁−1)

𝒇1
(𝓁−1)

𝒇2
(𝓁−1) … 𝒇𝐿

(𝓁−1)

soft weight γ 𝒇𝑖
(𝓁−1)

𝛾 𝒇1
(𝓁−1)

𝛾 𝒇2
(𝓁−1) … 𝛾 𝒇𝐿

(𝓁−1)

⋮

The GCD is terminated at the j-th query when 𝛾 𝒆𝑃
(𝑗)

≥ 𝛾 𝒇𝐿 or  𝑗 = 2𝐾.

TEP 𝒇𝑖 𝒇1 𝒇2 … 𝒇𝐿

soft weight γ 𝒇𝑖 𝛾 𝒇1 𝛾 𝒇2 … 𝛾 𝒇𝐿

final state

(the j-th query)

the 𝓁 -th query

TEP 𝒇𝑖
(𝓁)

𝒇1
(𝓁)

𝒇2
(𝓁) … 𝒇𝐿

(𝓁)

soft weight γ 𝒇𝑖
(𝓁)

𝛾 𝒇1
(𝓁)

𝛾 𝒇2
(𝓁) … 𝛾 𝒇𝐿

(𝓁)

if 𝛾 𝒆(𝓁) ≥ 𝛾 𝒇𝐿
𝓁−1

then

keep unchanged.

if 𝛾 𝒆(𝓁) < 𝛾 𝒇𝐿
𝓁−1

then

update by inserting 𝒆(𝓁).

Fig. 1. The update process of the linked list L.

unqueried TEP e(ℓ) (ℓ ≥ j),

γ
(j−1)
L ≤ γ

(
ẽ
(j)
P

)
(by assumption)

≤ γ
(
ẽ
(ℓ)
P

)
(ẽ

(ℓ)
P is non-decreasing)

≤ γ
(
ẽ(ℓ)
)
. (ẽ(ℓ) = (ẽ

(ℓ)
I , ẽ

(ℓ)
P ))

(11)

On the other hand, the definition of L(j−1) ensures that γ(j−1)
L ≤ γ

(
e(ℓ)
)

holds for all queried

TEPs e(ℓ) (ℓ < j) satisfying e(ℓ) /∈ L(j−1).
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B. Guessing Codeword Versus Guessing Noise

Assuming that an ordered TEP generator is available, the GCD algorithm generates and re-

encodes partial TEPs, while the GND (SGRAND) algorithm [23] produces the whole TEPs from

most likely to least likely until a valid TEP has been found. Intuitively, the GND algorithm can

be extended to an optimal list decoding algorithm, delivering the L most likely codewords as

output. The differences between the GND and the GCD along with their complexity per query

are analyzed below.

• At the ℓ-th query, the GND generates the ℓ-th lightest TEP e(ℓ) ∈ FN
2 , while the GCD

generates the ℓ-th lightest partial TEP e
(ℓ)
P ∈ FK

2 . The complexity is comparable for K ≈ N .

• For the ℓ-th TEP e(ℓ), the GND calculates H
(
e(ℓ)
)T for checking with a complexity of

order O((N −K)N). In contrast, the GCD calculates e
(ℓ)
I = s− e

(ℓ)
P PT with a complexity

of order O((N − K)K), delivering a valid TEP e(ℓ) = (e
(ℓ)
I , e

(ℓ)
P ). Since the size of the

matrix P is smaller than that of the matrix H, the complexity of the re-encoding in the

GCD is usually lower than the complexity of the checking in the GND unless H is a very

sparse matrix but P is a dense matrix.

• The checking in the GND compares HeT and sT , while the checking in the GCD compares

γ(eP ) and γ
(
f (L)

)
. The complexity is comparable.

• The GND checks TEPs with non-decreasing soft weights but generates only L valid TEPs

just before its termination. In contrast, the GCD re-encodes partial TEPs with non-decreasing

soft weights but generates at least L valid TEPs with γ
(
f (L)

)
non-increasing.

The total complexity can be roughly measured by the operations per query multiplied by the

number of queries. We have seen that the complexity per query for the GCD is not higher than

that of the GND. Then an immediate question arises: Can a GCD be more efficient than a GND?

The answer is positive, and the key is the early stopping criterion γ(eP ) ≥ γ(e∗).

Theorem 2. The number of queries for the GCD is less than or equal to the number of queries

for the GND.

Proof: Assume that e∗ = (e∗
I , e

∗
P ) is the L-th lightest valid TEP, which is not known in

advance but exists. The GND terminates eventually, and checks a list LGND = PGND ∪ QGND,

where PGND = {e ∈ FN
2 | γ(e) < γ(e∗)} and QGND is a subset of {e ∈ FN

2 | γ(e) = γ(e∗)}.

In contrast, the GCD terminates with f (L) = e∗ and re-encodes a list LGCD = PGCD ∪ QGCD,
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where PGCD = {eP ∈ FK
2 | γ(eP ) < γ(e∗)} and QGCD = {eP ∈ FK

2 | γ(eP ) = γ(e∗)}. The

set QGND (if non-empty) consists of those (invalid) TEPs e ∈ FN
2 that satisfy γ(e) = γ(e∗) but

are prior to e∗ in the lexicographic order. In contrast, the set QGCD (if non-empty) consists of

those partial TEPs eP ∈ FK
2 that satisfy γ(eP ) = γ(e∗) but are prior to e∗

P in the lexicographic

order. This occurs only when γ(e∗
I) = 0 and hence γ(eP ) = γ(e∗

P ) = γ(e∗) since, otherwise,

γ(eP ) ≤ γ(e∗
P ) < γ(e∗).

For any eP ∈ LGCD, we construct a TEP e = (0, eP ) with 0 ∈ FN−K
2 . We have e ∈ LGND

since either γ(e) < γ(e∗) or γ(e) = γ(e∗) but is prior to e∗ in the lexicographic order. The

latter case is true since eP is prior to e∗
P and hence e is prior to e∗ in the lexicographic order.

Thus we have constructed an injective mapping eP → e = (0, eP ) from LGCD into LGND. This

completes the proof that |LGCD| ≤ |LGND|.

Example 1. (A toy example) Consider the Hamming code CHamming[7, 4] over a binary symmetric

channel (BSC) with cross error probability p < 1/2. In this case, the soft weight is equivalent

to Hamming weight. No matter what codeword is transmitted and what vector is received, the

GND with L = 1 will find the lightest TEP e∗ with at most 8 queries, one for the all zero TEP

and 7 for the TEPs with Hamming weight one. The first query is successful if and only if the

true error pattern is a codeword, which occurs with a probability p0 = (1−p)7+7p3(1−p)3+p7.

Hence, the average number of queries for the GND is given by

p0 + 2p1 + 3p1 + 4p1 + 5p1 + 6p1 + 7p1 + 8p1 = p0 + 35p1, (12)

where p1 = (1− p0)/7. In contrast, the maximum number of queries for the GCD with L = 1

is 5, one for the all-zero partial TEP and 4 for the partial TEPs with Hamming weight one.

The first query is successful if and only the TEP (obtained from eP = 0 by re-encoding) has a

Hamming weight zero or one. In either case, further queries are not necessary because all the

remaining queries are for eP with WH(eP ) ≥ 1 and must deliver e with WH(e) ≥ WH(eP ) ≥ 1.

The probability that the first query is successful is given by p0 + 3p1. The average number of

queries for the GCD is given by

(p0 + 3p1) + 2p1 + 3p1 + 4p1 + 5p1 = p0 + 17p1, (13)

which is strictly less than the average number of queries for the GND.

Example 2. Consider a binary linear block code C [N,K] over a BSC. In this case, the soft

weight is equivalent to Hamming weight. Suppose that e∗ = (e∗
I , e

∗
P ) is the L-th lightest valid
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TEP, which is not known in advance but exists. There are two cases. One is WH(e
∗
I) > 0 and

the other is WH(e
∗
I) = 0.

• For WH(e
∗
I) > 0, the GCD will definitely find f (L) = e∗ within

∑WH(e∗P )
i=0

(
K
i

)
queries. The

GCD continues the query process since it cannot check whether f (L) is the L-th lightest

one or not. As the query process proceeds, WH(eP ) increases but f (L) (= e∗) keeps

unchanged. Once all eP ∈ FK
2 with WH(eP ) < WH(e

∗) have been re-encoded, the GCD

can safely confirm that f (i) (1 ≤ i ≤ L) are the L lightest valid TEPs. Therefore, the total

number of queries for the GCD is min
{
2K ,

∑WH(e∗)−1
i=0

(
K
i

)}
, which is strictly less than∑WH(e∗)−1

i=0

(
N
i

)
, a lower bound on the number of queries for the GND.

• For WH(e
∗
I) = 0, the number of queries for the GCD is

∑WH(e∗)−1
i=0

(
K
i

)
+T , where T is the

rank of e∗
P (according to the lexicographic order) in the set {eP ∈ FK

2 |WH(eP ) = WH(e
∗
P )}.

Again, this number is strictly less than
∑WH(e∗)−1

i=0

(
N
i

)
+ T ′, the number of queries for the

GND, where T ′ is the rank of e∗ in the set {e ∈ FN
2 |WH(e) = WH(e

∗)}.

Example 3. Consider three Reed-Muller (RM) codes, CRM[32, 6], CRM[32, 16] and CRM[32, 26],

over an additive white Gaussian noise channel (AWGN) with binary phase shift keying (BPSK)

modulation. Shown in Fig. 2 are the average numbers of queries per reception of noisy codeword

for the GCD and the GND at target FER 10−3 (corresponding to different signal-to-noise

ratios (SNRs) for different code rates). We see that the GCD requires a fewer number of queries

than the GND, validating our analysis. We also see that the gap between the number of queries

is narrowed as the code rate increases. This suggests that, compared with the GND, the GCD

is more universal and applicable to codes with a wide range of code rates.

Remarks. We have shown that the GCD typically requires a fewer number of queries than

the GND and that the two algorithms have comparable complexity per query, indicating that

the GCD is more efficient than the GND. For practical applications, we need to find efficient

ways to generate the TEPs, possibly with tolerated performance loss. We will present in detail

an ordered TEP generator aided by the FTP, while any TEP generator developed for the GND

can be transferred as a partial TEP generator. For example, the hardware-efficient generator

implemented in the ORBGRAND [25], [50], [51] has been employed for generating partial TEPs

in the partial OSD (POSD) algorithm [52], achieving lower complexity and better performance

than the GND (with a limited maximum list size) algorithm.
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Fig. 2. Average number of queries for the GND (SGRAND) and the GCD of the RM codes of length N = 32 and dimension

K ∈ {6, 16, 26}. Here, the channel is BPSK-AWGN, the target FER = 10−3 and L = 1.

III. AN ORDERED TEP GENERATOR AND COMPLEXITY ANALYSIS

A. Flipping Pattern Tree

For any partial TEP eP ∈ FK
2 , we define its support set as S(eP ) = {j : eP [j] ̸= 0}, whose

cardinality |S(eP )| is the Hamming weight WH(eP ) of eP . Notice that a vector f ∈ FK
2 can

be uniquely specified by its support set S(f). Without loss of generality, we assume that the

partial reliability vector is non-decreasing. That is,

|rP [1]| ≤ |rP [2]| ≤ · · · ≤ |rP [K]|.

All possible partial TEPs eP ∈ FK
2 are arranged as vertexes into an ordered rooted tree, denoted

by T , as described below.

• The root of the tree is the all-zero vector 0, located at the 0-th level.

• For i ≥ 1, the i-th level of the tree consists of all partial TEPs with Hamming weight i.

• For a vertex f with minS (f) > 1 at the i-th level, we define its left-most child, denoted

as f↓, by S (f↓) = S (f) ∪ {1}. By convention, we assume for the empty set Φ that

minΦ =∞.

• For a vertex f at the i-th level (i ≥ 1) with minS(f) < K and minS(f) + 1 /∈ S(f),

we define its adjacent right-sibling, denoted as f→, by S (f→) = S(f) \ {minS(f)} ∪

{minS(f) + 1}.

• The root has K children. For i ≥ 1, a vertex f has minS(f)− 1 children.
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0000

1000 0100 0010 0001

1100 1010 0110

1110

1001 0101 0011

1101 1011 0111

1111

Fig. 3. A rooted tree with K = 4.

Example 4. Consider K = 4. A rooted tree T which takes (0000) as root is presented in Fig. 3.

To define the total order of all vertexes, we write f ≺ g if one of the following conditions

holds:

1) γ(f) < γ(g),

2) γ(f) = γ(g) and WH(f) < WH(g),

3) γ(f) = γ(g) and WH(f) = WH(g) but f is prior to g in the lexicographic order.

We can see that the root of T has soft weight γ(0) = 0. Given a vertex f with soft weight γ(f),

its leftmost child f↓ (if it exists) has soft weight γ(f↓) = γ(f)+ |rP [1]|, while its adjacent right-

siblings f→ (if it exists) has soft weight γ(f→) = γ(f)−|rP [i]|+|rP [i+1]|, where i = minS(f).

Obviously, we have the following lemma.

Lemma 1. For each vertex f of T , we have f ≺ f↓ (if f↓ exists) and f ≺ f→ (if f→ exists).

Therefore, it is not necessary to consider f↓ and f→ before f is queried. Such a structure of

the tree T is critical to design the FPT algorithm, which generates one-by-one upon request all

partial TEPs in the following order

M ≜ e
(1)
P ≺ e

(2)
P ≺ · · · ≺ e

(i)
P ≺ · · · , (14)

where M is the linked list maintained in order. The FPT algorithm is described in Algorithm 2,

from which we observe that once a partial TEP eP is generated, eP is removed from M and

(at most) two new partial TEPs are inserted into M. One is its left-most child eP↓ (if it exists)
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Algorithm 2 FPT algorithm
Input: The ascending sorted reliability vector |rP | ∈ RK , and the search order ℓ ≤ ℓmax ≤ 2K .

Output: The ℓ-th lightest partial TEP e
(ℓ)
P .

1: M← 0. ▷ A linked list which is maintained in order during the query process.

2: function FPT(|rP |, ℓ) ▷ This should be called in order of ℓ = 1, 2, . . . , ℓmax.

3: e
(ℓ)
P ← the head partial TEP in M.

4: if minS
(
e
(ℓ)
P

)
> 1 then ▷ Left-most child.

5: eP↓ = e
(ℓ)
P .

6: eP↓[1] = 1.

7: Update the linked list M by inserting eP↓.

8: end if

9: if minS
(
e
(ℓ)
P

)
< K and minS

(
e
(ℓ)
P

)
+ 1 /∈ S

(
e
(ℓ)
P

)
then ▷ Adjacent right sibling.

10: eP→ = e
(ℓ)
P .

11: eP→

[
minS

(
e
(ℓ)
P

)]
= 0.

12: eP→

[
minS

(
e
(ℓ)
P

)
+ 1
]
= 1.

13: Update the linked list M by inserting eP→.

14: end if

15: Update the linked list M by removing e
(ℓ)
P .

16: end function

by flipping the first bit from 0 to 1, and the other is its adjacent right-sibling eP→ (if it exists)

by flipping two bits indexed by minS (eP ) (from 1 to 0) and minS (eP ) + 1 (from 0 to 1).

Example 5. Consider a linear block code C [4, 4]. Let y be the received vector from a memoryless

channel that specifies the LLR vector r = {0.5, 1.0,−1.2, 1.9}. The process of the FPT algorithm

with a linked list M to generate an ordered list of the five best TEPs is shown in Fig. 4, along

with the progressive construction of the ordered rooted tree T , from which we can see that the

ordered list of the five best TEPs is {0000, 1000, 0100, 0010, 1100}.

B. Complexity Analysis

The computational complexity can be evaluated by the number of operations (OPs). As shown

in Algorithm 2, the complexity of insertion and deletion of new partial TEPs in a linked list is
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Initialization 0000

the 1-st query

0000

1000

0000

1000

pop  0000

push 1000

the 2-nd query

0100

pop  1000

push 0100

0000

1000 0100

the 3-rd query

0010

1100

pop  0100

push 1100

         0010

0000

01001000

1100

0010

the 4-th query

1100

1010

0001

pop  0010

push 1010

         0001

1010

0001

the 5-th query pop  1100

0000

01001000

1100

0010

1010

0001

0000

01001000

1100

0010 0001

1010

ℳ 𝒯 

current queried TEPxxxx

‘x’ is a placeholder for either 0 or 1. 

newly inserted TEPxxxx

Fig. 4. An example of the FPT algorithm to generate an ordered list of the five best TEPs {0000, 1000, 0100, 0010, 1100}.

Here, M is a linked list and T is an ordered rooted tree.

proportional to log(|M|), while generating new partial TEPs only requires O(K) OPs by some

naive sequence manipulations. Denote by ℓavg the average number of queries per received vector.

Thus the computational complexity of the FPT algorithm can be evaluated as

CFPT
avg =O (ℓavg log ℓavg)︸ ︷︷ ︸

linked list M

+ O (ℓavgK)︸ ︷︷ ︸
sequence manipulation

. (15)

The computational complexity of the GCD involves four dominant parts:

1) Sorting. Sorting the partial reliability vector |rP | ∈ RK as the input to the FPT algorithhm

requires O(K logK) OPs.

2) FPT. The complexity of FPT is measured by CFPT
avg .



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 2, DECEMBER 2023 17

3) Re-encoding. The GCD calculates s = zHT with a complexity of order O((N −K)N),

delivering the first valid TEP e(1) = (s,0). For ℓ > 1, if e
(ℓ)
P is generated by its parent,

denoted as e(j)
P (j < ℓ) by flipping one bit, the corresponding e

(ℓ)
I can be simply calculated

by e
(ℓ)
I = e

(j)
I −

(
PT
)
1
, where

(
PT
)
1

stands for the first row of the matrix PT , delivering

a new TEP e(ℓ) =
(
e
(ℓ)
I , e

(ℓ)
P

)
, which avoids many unnecessary computations and only

requires (N −K) OPs. Similarly, if e(ℓ)
P is generated by its adjacent left-sibling, denoted

as e
(k)
P (k < ℓ) by flipping two bits, e(ℓ)

I = e
(k)
I +

(
PT
)
i
−
(
PT
)
i+1

with 2(N −K) OPs,

where i = minS
(
e
(k)
P

)
and

(
PT
)
i

stands for the i-th row of the matrix PT .

4) The complexity of insertion and deletion in the linked list L with size L is at most logL

for each query.

Thus the overall computational complexity of the GCD can be evaluated as

CGCD
avg =O (K logK)︸ ︷︷ ︸

sorting

+O (ℓavg(N −K))︸ ︷︷ ︸
re-encoding

+O (ℓavg logL)︸ ︷︷ ︸
linked list L

+CFPT
avg .

(16)

Remarks. It is worth pointing out that the GCD performs the GE offline, which is distinguished

from the OSD. Consequently, the complexity of transforming H into [I P] is not taken into

account in the above analysis.

Now, we compare the GCD with the existing optimal decoding algorithms, including ESD

and OSD [6], [7], in terms of the decoding complexity.

1) The differences in the number of queries.

• Typically, due to the use of a sufficient condition for termination, the GCD requires a

fewer number of queries than the ESD since the maximum query number of the GCD

is set to be 2K .

• The number of queries for the OSD is usually less than the number of queries for the

GCD since the OSD queries the TEPs in the MRB and the TrTEP is expected to be

queried earlier.

2) The differences in the complexity.

• Compared with the ESD, the GCD requires a fewer number of queries but sorts the

partial TEPs. Therefore, the decoding complexity of the GCD is in general lower than

that of the ESD unless the code dimension K is very small, in which case the ESD

is preferable.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 2, DECEMBER 2023 18

-11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13
10

-6

10
-4

10
-2

10
0
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(b) Average number of queries at the target FER 10−5.

Fig. 5. ML decoding of the RM codes CRM[64,K] with OSD and GCD (L = 1).

• Compared with the GCD, the OSD has a fewer number of queries but requires online

GE operation. The complexity comparison between the GCD and the OSD depends

on the code rates and the channels. For low/high-rate codes, the GCD is more efficient

than the OSD. For the channels with bad quality, the number of queries dominates

the complexity and the OSD is a preferable choice, while for the channels with

good quality, the GE dominates the complexity. In the latter case, the GCD is more

competitive.

Example 6. We have simulated the RM codes with different code rates over BPSK-AWGN

channels. The simulation results are shown in Fig. 5. From Fig. 5a, we see that both the GCD

and the OSD exhibit the ML decoding performance. From Fig. 5b, we observe that for moderate

code rates, the GCD requires more queries than the OSD. For low code rates and high code rates,

we see that the average number of queries can be reduced to ten or even a few both for the GCD

and the OSD. Taking into account the complexity of the online GE, we can safely conclude that,

compared with OSD, GCD is preferable for the low/high-rate codes. For the moderate/high-rate

codes, we see that the number of queries is much less than that of the naive ESD.

C. Truncated GCD

As an optimal list decoding, the GCD algorithm queries the partial TEPs in descending order

of their probability until the L most lightest valid TEPs are identified. Recalling that a list
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Fig. 6. Average number of queries of the GCD and the GA GCD for the RM code CRM[64, 42]. Here, L = 1.

decoding error has occurred if the TrTEP (corresponding to the sent codeword) is not in the list

L, we have the error probability ϵ(L,GCD) of the GCD given by

ϵ(L,GCD) = P{the TrTEP is not in the list L}. (17)

Example 7. Consider an RM code CRM[64, 42]. We compare the genie-aided (GA) GCD3 and

the GCD in terms of the average number of queries over BPSK-AWGN channels, as shown

in Fig. 6, from which we see that the GA GCD achieves a fewer average number of queries

compared with the GCD. This suggests that the average number of queries can be reduced

without too much performance degradation.

To avoid unnecessary queries, we propose a sub-optimal list decoding algorithm, which

truncates the ordered search whenever certain conditions are fulfilled even if the L lightest

TEPs have not been identified. Such a sub-optimal list decoding is referred to as a truncated

GCD and the resulting L lightest valid TEPs are collectively denoted as Ltruncated. The error

probability of the truncated GCD, denoted as ϵ(L, truncated), is then defined as the probability

3The GA GCD is similar to the GCD with the only difference that the GA GCD terminates immediately once when the

TrTEP is queried.
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that the TrTEP is not in Ltruncated. That is,

ϵ(L, truncated) = P{the TrTEP is not in the list Ltruncated}

= P{eP is not queried}+ P{eP is queried but the TrTEP is not in the list Ltruncated}

≤ P{eP is not queried}+ P{the TrTEP is not in the list L}

= P{eP is not queried}+ ϵ(L,GCD),
(18)

Hence, the performance gap between the truncated GCD and the GCD can be bounded by

0 ≤ ϵ(L, truncated)− ϵ(L,GCD) ≤ P{eP is not queried}. (19)

In the case when the probability P{eP is not queried} is negligible, the truncated GCD performs

almost the same as the GCD. We propose three conditions for truncation, which attempt to reduce

the average number of queries but keep P{eP is not queried} at a tolerable level.

Definition 1 (Truncated GCD with maximum query number ℓmax). If the query process reaches

the ℓmax-th query, terminate the GCD. This truncated GCD is denoted as ℓmax-GCD, where

ℓmax ≥ 1 is preset to be around the average rank of the partial TrTEP (typically much less than

2K).

Definition 2 (Truncated GCD with soft weight threshold τs). If for some j,

γ
(
e
(j)
P

)
≥ τs, (20)

terminate the GCD. This truncated GCD is denoted as τs-GCD, where τs > 0 is preset to be

around the average soft weight of the partial TrTEP (typically far less than the maximum soft

weight).

Definition 3 (Truncated GCD with tolerated error probability loss τp). If for some j,

j∑
i=1

P
(
e
(i)
P |rP

)
≥ 1− τp, (21)

terminate the GCD. This truncated GCD is denoted as τp-GCD, where τp is typically preset to

be lower than the target error probability by an order of magnitude.
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1) ℓmax-GCD: We have the following proposition.

Proposition 1. The performance gap between the ℓmax-GCD and the GCD is upper bounded by

P{D > ℓmax}. That is,

ϵ(L, ℓmax) ≤ ϵ(L,GCD) + P{D > ℓmax}, (22)

where D represents the number of the partial TEPs lighter than the partial TrTEP eP .

Proof: Define

D ≜ {f ∈ FK
2 : γ(f) ≤ γ(eP )}. (23)

We have D = |D|. From (19), the error probability of the ℓmax-GCD can be bounded by

ϵ(L, ℓmax) ≤ ϵ(L,GCD) + P{eP is not queried}

= ϵ(L,GCD) + P{D > ℓmax}.
(24)

To provide the guideline on the choice of the parameter ℓmax, we turn to P{D > ℓmax}, the

complementary cumulative distribution function (CCDF) of the random variable D. Without loss

of generality, we assume that the all-zero codeword 0 ∈ FN
2 is sent. Since the randomness of D

comes from the LLR vector rP , we write D(rP ) and have

P{D > ℓmax} = ErP [I{D(rP ) > ℓmax}], (25)

where I is the indicator function. One direct way to calculate D(rP ) is to count the exact

number by listing all sequences in the set D. This can be achieved by the FPT algorithm

which is efficient for the codes with K ≤ 64. More generally, we may employ the saddlepoint

approximation [44] [45] to calculate D(rP ).

Suppose that f is a random vector distributed uniformly over FK
2 . Then D(rP ) can be written

as
D(rP ) = 2KP{γ(f) ≤ γ(eP )|rP}

= 2KP

{
K∑
i=1

fi|rP [i]| −
K∑
i=1

eP [i]|rP [i]| < 0

∣∣∣∣rP
}

= 2KP

{
K∑
i=1

(fi − eP [i])|rP [i]| < 0

∣∣∣∣rP
}

= 2KP

{
K∑
i=1

Wi|rP [i]| < 0

∣∣∣∣rP
}

= 2KP {W < 0|rP} ,

(26)
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in which eP [i] = I[rP [i] < 0] with the indicator function I[·], Wi = (fi − eP [i])|rP [i]|, and

W =
K∑
i=1

Wi. W1, . . . ,WK are independent random variables with distribution

P{Wi = 0|rP} = P{fi = eP [i]|rP} =
1

2
, (27)

P{Wi = ri|rP} = P{fi ̸= eP [i]|rP} =
1

2
. (28)

From (26), we turn to estimate the tail probability of the random variable W by employing

saddlepoint approximation [44], [45]. Define the cumulant generating function of W as

κ(s) = logE
[
esW

]
=

K∑
i=1

logE
[
esWi

]
=

K∑
i=1

logE
[
1

2
+

1

2
esrP [i]

]
.

(29)

Then according to [45], the probability density function P (w) is given by

P (w) ≈ eκ(ŝ)−ŝw · 1√
2πκ′′(ŝ)

e
− (w−κ′(ŝ))2

2κ′′(ŝ) , (30)

where κ′ and κ′′ denote the first and the second order derivative of κ(s), respectively, and ŝ is

the solution of κ′(s) = 0. Thus given rP , the D(rP ) can be estimated by

D(rP ) = 2K · P {W < 0|rP}

= 2K ·
∫ 0

−∞
P (w)dw

≈ 2K · 1
2
eκ

′(ŝ)−ŝκ′(ŝ)+ 1
2
ŝ2κ′′(ŝ) · erfc

(
κ′(ŝ)− ŝ2κ′′(ŝ)√

2κ′′(ŝ)

)
,

(31)

in which erfc(x) is the complementary error function. Averaging I{D(rP ) > ℓmax} with respect

to rP from (31), we obtain the approximation of the P{D > ℓmax}.

Example 8. In this example, we employ the saddlepoint approximation (31) to estimate P{D >

ℓmax}. We also utilize the FPT algorithm to count the exact number D(rP ). The simulation

results are shown in Fig. 7, from which we see that the results estimated by the saddlepoint

method match well with those calculated by counting. For any given ℓmax, the P{D > ℓmax}

decreases as the SNR increases. Specifically, the rank of eP is less than 103 for about 90%

realization of r at SNR = 4.0 dB while about 98% realization at SNR = 5.0 dB. We also

observe that for a large ℓmax, the P{D > ℓmax} can be sufficiently small. As ℓmax increases,
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Fig. 7. The CCDF of D. Here, K = 42.
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Fig. 8. Simulation results of the RM code CRM[64, 42] for GCD and ℓmax-GCD. Here, L = 2.

the computational complexity increases but the performance gain is marginal. This motivates us

to adaptively select maximum query numbers at different SNRs to trade off performance and

complexity.

Example 9. Consider an RM code CRM[64, 42]. We present the performance and average number

of queries of the ℓmax-GCD and the GCD over BPSK-AWGN channels, as shown in Fig. 8, from

which we see that the ℓmax-GCD exhibits comparable performance to the GCD but requires a

fewer average number of queries.
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2) τs-GCD: We have the following proposition.

Proposition 2. The performance gap between the τs-GCD and the GCD is upper bounded by

P{Γ > τs}. That is,

ϵ(L, τs) ≤ ϵ(L,GCD) + P{Γ > τs}, (32)

where Γ represents the soft weight of the partial TrTEP eP .

Proof: From (19), the error probability of the τs-GCD is bounded by

ϵ(L, τs) ≤ ϵ(L,GCD) + P{eP is not queried}. (33)

Since P{eP is not queried} = P{Γ > τs}, we have

ϵ(L, τs) ≤ ϵ(L,GCD) + P{Γ > τs}. (34)

To provide the guideline on the choice of the parameter τs, we turn to P{Γ > τs}, the CCDF

of the random variable Γ. Without loss of generality, we assume that the all-zero codeword

0 ∈ FN
2 is sent. Since the randomness of Γ comes from the LLR vector rP , we write Γ(rP ) and

have

Γ(rP ) =
K∑
i=1

zP [i]|rP [i]|. (35)

Therefore, we can estimate P{Γ > τs} by the Monte Carlo simulation. We can also approximate

P{Γ > τs} with the Chernoff bound since Γ is a sum of K independent and identically

distributed (i.i.d.) random variables. This is also distinguished from the OSD, for which the

performance analysis becomes more involved due to the dependence of the MRB. See [7] for

details.

Example 10. Fig. 9 provides the CCDF of Γ for K = 42. Based on the simulation results from

Fig. 9, we compare the τs-GCD with the GCD in terms of the performance and average number

of queries for an RM code CRM[64, 42] over BPSK-AWGN channels, as shown in Fig. 10, from

which we see that the τs-GCD exhibits comparable performance to the GCD but requires a fewer

average number of queries.

Notice that, to reduce the performance loss brought by the truncated GCD, we can carefully

optimize the parameters ℓmax and τs at a given SNR by simulating (offline) the related CCDFs.
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Fig. 9. The CCDF of Γ. Here, K = 42.
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Fig. 10. Simulation results of the RM code CRM[64, 42] for GCD and τs-GCD. Here, L = 2.

This can be circumvented by employing the τp-GCD, where the parameter τp is simply set to

be lower than the target error probability by an order of magnitude.

3) τp-GCD: We have the following proposition.

Proposition 3. The performance gap between τp-GCD is upper bounded by τp. That is,

ϵ(L, τp) ≤ ϵ(L,GCD) + τp. (36)
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Proof: From (19), the error probability of the τp-GCD is bounded by

ϵ(L, τp) ≤ ϵ(L,GCD) + P{eP is not queried}. (37)

Since
2K∑
i=1

P (e
(i)
P |rP ) = 1, (38)

the probability that eP is not queried is bounded by τp. That is,

P{eP is not queried} =
2K∑

i=j+1

P (e
(i)
P |rP ) ≤ τp, (39)

where the query process is terminated at the j-th query (j < 2K). Hence, we have

ϵ(L, τp) ≤ ϵ(L,GCD) + τp. (40)

Example 11. Consider an extended BCH (eBCH) code CeBCH[64, 51]. We have presented the

performance and the average number of queries for the GCD and three truncated GCD algorithms

over BPSK-AWGN channels, along with the probabilities P{eP is not queried} for different ℓmax

and τs. The simulation results are shown in Figs. 11, from which we observe that the performance

of the truncated GCD is similar to that of the GCD but with a fewer average number of queries.

Remarks. It is worth pointing out that the upper bound of the performance gap does not

depend on any specific code since the event that eP is not queried is solely related to the

condition to truncate the searches of partial TEPs. In other words, these three conditions are

universally applicable to all linear block codes of dimension K (over the same channel), as

confirmed by the following example.

Example 12. In this example, we present in Fig. 12 the performance of the ℓmax-GCD and

the GCD for three types of codes: RM, polar, and random codes, over BPSK-AWGN channels,

along with the upper bound of the performance gaps. Specifically, given a specific SNR, ℓmax

is set based on the optimal list decoding performance of the random code Crandom[64, 42] and

used to decode all three types of codes with different code lengths. The results show that the

random code Crandom[64, 42] performs better than the RM code CRM[64, 42] and the polar code

Cpolar[64, 42]. From Fig. 12b, we observe that the codes with the same dimension K = 42 have
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Fig. 11. Simulation results of the eBCH code CeBCH[64, 51] for GCD and truncated GCD. Here, L = 1.

the same upper bound of the performance gap and the simulated performance gap matches well

with the upper bound in the high SNR region.

Remarks. Notice that the condition γ (eP ) ≥ γL in GCD is sufficient to identify the lightest

TEPs but is typically too strong, which might be relaxed to γ (eP ) + ∆ ≥ γL by introducing a

positive tolerance ∆. If so, the GCD can be terminated earlier, resulting in a lower complexity. It

has been illustrated in [12] [53] that setting ∆ = E[γ(eI)], the expection of the true partial TEP

eI , incurs negligible performance loss. Also, notice that all truncations and early termination

criteria can be integrated for further complexity reduction.
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Fig. 12. Simulation results of the RM, polar, and random codes with the same code dimension K = 42 for ℓmax-GCD and

GCD. Here, L = 1.

D. Parallel GCD

We consider implementing the (truncated) GCD in parallel to reduce the decoding latency

without compromising performance, referred to as the parallel GCD.

Without loss of generality, we assume that the reliability of the information part is non-

decreasing. That is,

|rP [1]| ≤ |rP [2]| ≤ · · · ≤ |rP [K]|.

Given a non-negative integer δ ≤ K, the matrix P can be written as P = [P1,P2]. Similarly,

the partial TEP eP can be written as eP = (eP1 , eP2), in which eP1 = eP [1 : δ] ∈ Fδ
2 contains

the first δ components in eP and eP2 = eP [δ + 1 : K] ∈ FK−δ
2 contains the remaining K − δ

components in eP . Different from the query process over eP in the GCD algorithm, 2δ partial

TEPs e
(i)
P1

(1 ≤ i ≤ 2δ) are first enumerated, and then the query process are implemented over

eP2 . That is, at the ℓ-th query, e(ℓ)
P2

is produced by the FPT and juxtaposed to eP1 , resulting in

2δ parallel TEPs e(ℓ,i) (1 ≤ i ≤ 2δ), as illustrated in Fig. 13. Specifically, the juxtaposition to

the i-th partial TEP e
(i)
P1

is not necessary whenever

γ
(
e
(i)
P1

)
+ γ

(
e
(ℓ)
P2

)
≥ γL, (41)

where γL represents the current L-th most lightest TEP among all the queried TEPs. Thus the

parallel GCD, as summarized in Algorithm 3, is terminated when the condition (41) is satisfied

for all 2δ partial TEPs e
(i)
P1

(1 ≤ i ≤ 2δ).
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Fig. 13. The parallel implementation at the ℓ-th query, where the partial TEP e
(ℓ)
P2

is delivered by the FPT algorithm and

juxtaposed to 2δ TEPs in parallel.
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Fig. 14. The average number of queries of the parallel GCD and the original GCD for the RM code CRM[64, 42]. Here, L = 1.

Example 13. Consider the RM code CRM[64, 42]. We compare the parallel GCD with the GCD

over BPSK-AWGN channels in this example. The comparisons on the average number of queries

are shown in Fig. 14, from which we see that the parallel GCD has a significant reduction in

the number of queries, compared with the GCD, indicating a much lower decoding latency. In

addition, as the δ increases, the reduction becomes more significant.
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Algorithm 3 Parallel GCD

Input: The parity-check matrix [I P], the LLR vector r, the list size L, an integer δ, and the

maximum query number ℓmax = 2K .

1: Initialization: L = {f (i), 1 ≤ i ≤ L} is a linked list of size L which is maintained in

order (with non-decreasing soft weight) during the query process and the initial L elements

in L are set to NULL TEPs with soft weight ∞.

2: N = {e(i)
P1
, 1 ≤ i ≤ 2δ}. ▷ Enumerate 2δ partial TEPs.

3: s
(i)
P1

= e
(i)
P1
PT

1 , ti ← 0, for 1 ≤ i ≤ 2δ.

4: mt ← 0.

5: for ℓ = 1, . . . , ℓmax do

6: if certain conditions for truncation are satisfied then

7: break.

8: end if

9: if mt == 2δ then

10: break.

11: else

12: Generate the ℓ-th lightest partial TEP e
(ℓ)
P2

.

13: for i = 1, . . . , 2δ in parallel do

14: if ti == 1 then

15: continue.

16: end if

17: if γ
(
e
(i)
P1

)
+ γ

(
e
(ℓ)
P2

)
≥ γ

(
f (L)

)
then

18: ti ← 1, mt ← mt + 1.

19: continue.

20: else

21: e
(ℓ,i)
P =

(
e
(i)
P1
, e

(ℓ)
P2

)
.

22: e
(ℓ,i)
I = s− s

(i)
P1
− e

(ℓ,i)
P2

PT
2 .

23: e(ℓ,i) =
(
e
(ℓ,i)
I , e

(ℓ,i)
P

)
.

24: if γ
(
e(ℓ,i)

)
< γ

(
f (L)

)
then

25: Update the list L by removing f (L) and inserting e(ℓ,i).

26: end if
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27: end if

28: end for

29: end if

30: end for

Output: The list L and the corresponding codewords {c|c = z − e, e ∈ L}.

IV. APPLICATION TO POLAR DECODING

Although the GCD is developed for short codes and only efficient for high-rate or low-rate

codes, it can be embedded in the decoders for long codes that are constructed from short codes,

including polar codes [27], block oriented unit memory convolutional codes (BOUMCCs) [54]

and twisted-pair superposition transmission (TPST) codes [55], among others. In this section,

we apply the GCD to polar codes with a wide range of code lengths.

We consider a polar code C [N,K] with length N = 2m. We select K reliable subchannels

indexed by the subset A ⊆ {1, 2, . . . , N − 1} to transmit the information bits uA and the

remaining N − K subchannels indexed by the complementary set Ac to transmit frozen bits

uAc (set to zeros here). Then the codeword is obtained by c = uGm, where4 u = (uA,uAc)

and Gm ∈ FN×N
2 is the Arikan matrix. The parity-check matrix H is formed by the columns of

Gm with indices in Ac [56]. Suppose that c is modulated by BPSK into x with xi = (−1)ci ,

1 ≤ i ≤ N and then transmitted through an AWGN channel with zero mean and variance σ2,

resulting in y = x+ n, where n ∼ N (0, σ2In).

A. Polar Decoding Tree

The conventional polar decoding can be implemented over a full binary tree with m levels and

2m leaf nodes at the m-th level. We index the leaf nodes from left to right by {1, 2, . . . , N}. Given

an inner node v, we denote its left child node and right child node by vl and vr, respectively.

Let Iv be the set of the indices of all leaf nodes which are the descendents of the node v.

Each node v at the i-th level, 0 ≤ i ≤ m, is associated with a polar sub-code C [n, k] of length

n = 2m−i and dimension k = |Iv ∩ A|. Specifically, the root node is associated with the polar

4Notice that the notation u = (uA,uAc) does not mean that the active bits uA are located at the left to the frozen bits

uAc . Instead, it means that uA = (ui : i ∈ A) denotes K active bits indexed by A and uAc = (ui : i ∈ Ac) denotes the

N −K frozen bits indexed by Ac.
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code C [N,K], and the leaf node is associated with either an active bit or a frozen bit. Upon

receiving y, each node is also associated with an LLR vector r ∈ Rn and a vector β ∈ Fn
2 .

The SC decoding algorithm starts by initializing the root node with r = (r1, r2, . . . , rN)

corresponding to the received vector y and then performs recursively according to the following

rules.

1) For an inner node v at the i-th level,

a) when its LLR vector is available, the LLR vector associated with its left child rvl is

computed by

rvl [j] = f(rv[j], rv[j + 2m−i−1]) (42)

for 1 ≤ j ≤ 2m−i−1, where

f(a, b) = sgn(a)sgn(b)min(|a|, |b|). (43)

b) when βvl of its left child node vl is available,

rvr [j] = g(rv[j], rv[j + 2m−i−1],βvl [j]) (44)

for 1 ≤ j ≤ 2m−i−1, where

g(a, b, c) = (−1)ca+ b. (45)

c) when βvl and βvr are available, its associated vector βv is computed via

βv = (βvl ⊕ βvr ,βvr) , (46)

where ⊕ denotes the bit-wise XOR.

2) For a leaf node v at the m-th level, if |Iv ∩ A| = 0, z = 0. If |Iv ∩ A| = 1, thenz = 0, r ≥ 0

z = 1, otherwise
, (47)

where r is the (available) associated LLR. For the SC decoding, set β = z, while, for the

SCL decoding, set β = 0 and 1 for path extension.

Instead of making hard decisions at each active leaf node v satisfying |Iv ∩A| = 1, the SCL

decoding algorithm extends each survival path at an active leaf node into two paths by setting

β = 0 and 1, and retains L best paths at each decoding step based on the path metric.

The polar code C [N,K] is conventionally represented by a polar tree consisting of m = logN

levels and N leaf nodes. The polar tree can also be pruned to reduce the number of levels and the
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(a) (b) (c)

Fig. 15. Three polar trees of the code C [8, 4]. (a) The conventional tree with 3 levels and 8 leaf nodes, where black circles

denote the active bits and white circles at the leaf nodes denote the frozen bits. (b) The pruned tree with one level and 2 leaf

nodes. (c) The pruned tree with 2 levels and 3 leaf nodes.

leaf nodes. As an example, Fig. 15 illustrates three different polar trees of the polar code C [8, 4],

where Fig. 15a is the conventional polar decoding tree and Figs. 15b and 15c are two pruned

polar trees. For the traditional polar tree, we use the SCL decoding algorithm to make decisions

bit by bit in serial. While, for the pruned polar tree, we naturally use the GCD algorithm to make

multiple-bit-wise decisions for the leaves with low-rate and high-rate codes. In the following

subsection, we will discuss how to prune the polar tree such that the multiple-bit-wise SCL

decoding algorithm has relatively low complexity.

B. Strategy for Pruning the Polar Decoding Tree

Let v be a node of the polar tree and C [n, k] be the associated sub-code. For the list decoding

algorithms with a list size L, the node v is associated with L LLR vectors (if any), which

correspond to L partial paths up to v. These partial paths are then extended by appending n bits

according to certain rules. This can be done at least by one of the two list decoding algorithms,

namely, the SCL decoding algorithm, and the GCD algorithm. To extend a partial path, the SCL

decoding algorithm requires a pre-order traversal of the subtree to make choices bit by bit at n

leaf nodes and a post-order traversal of the subtree to obtain the final L candidates associated

with node v. This means that the SCL algorithm visits twice all the 2n− 1 nodes of the subtree

stemming from v. The complexity of the SCL algorithm can be evaluated as

CSCL = O (2kL log(2L))︸ ︷︷ ︸
sorting

+O (Ln log n)︸ ︷︷ ︸
f-g calculation

+O
(
L
n

2
log n

)
︸ ︷︷ ︸

transformation

. (48)
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In contrast, the GCD algorithm visits the node v only once without going into the subtree. Let

ℓavg be the average query number per LLR vector. From (16), the complexity of the L parallel

GCD processors can be evaluated by

CL GCD
avg = O (Lk log k)︸ ︷︷ ︸

sorting

+O (ℓavg (L log ℓavg + logL+ Lk))︸ ︷︷ ︸
searching

+O (Lℓavg(n− k))︸ ︷︷ ︸
re-encoding

. (49)

Based on the complexity shown in (48)-(49), we consider the strategy for pruning the polar

tree in the following. The main motivation and the basic idea of the strategy is to prune the

conventional polar tree such that the GCD algorithm for each resulting leaf node of the pruned

polar tree has lower complexity than the conventional (bit-wise) SCL algorithm. This finally

leads to a pruned tree with leaf nodes, referred to as the GCD nodes, that perform the GCD

algorithm.

We propose to visit the nodes over a polar tree in a pre-order traversal. To visit a node

v (initially being the root node), we perform the genie-aided GCD algorithm5 with a list size

L and a maximum query number ℓmax to estimate (by simulations) the average query number

ℓavg. Whenever the complexity of the GCD algorithm is less than that of the SCL decoding

algorithm on the node, the node v serves as a GCD node and the sub-tree stemming from the

node v is pruned. Notice that the offline strategy can be refined to achieve further complexity and

decoding reduction by merging or splitting nodes into relatively high-rate and low-rate codes.

As an example, the pruned polar tree of a polar code [128, 74] has 4 levels and 5 leaves, as

shown in Fig. 16.

We now compare our strategy with the existing approaches that are based on special bit patterns

to prune the polar decoding tree. The commonly used nodes for fast SCL [33], [36], [38]–[40]

are tabulated in Table I, from which we see that these node types depend on the bit patterns, i.e.,

the specific frozen bit positions or the specific information bit positions. In contrast, we derive

the pruned tree based on the complexity analysis, where the leaf nodes are identified into GCD

nodes with a relatively high (or low) rate. By the pruning strategy, a GCD node decoded by the

GCD has lower complexity compared with the SCL decoding.

C. Successive Cancellation List Decoding Algorithm by GCD

In this subsection, we present a multiple-bit-wise SCL decoding algorithm by GCD. Given

a pruned polar tree of the polar code C [N,K], our proposed decoding algorithm is similar to

5The genie-aided GCD algorithm knows the correct partial path preceded the current node.
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Fig. 16. A pruned polar tree of C [128, 74], where the red box denotes the GCD node.

TABLE I

THE COMMONLY USED NODES FOR FAST SCL ALGORITHMS

Node Type Definition

Rate-0 node all bits are frozen.

Rate-1 node all bits are information bits.

REP node all bits are frozen except the last one.

SPC node all bits are information bits except the first one.

Type-I node all bits are frozen bits except the last two.

Type-II node all bits are frozen bits except the last three.

Type-III node all bits are information bits except the first two.

Type-IV node all bits are information bits except the first three.

Type-V node all bits are frozen bits except the last three and the fifth-to-last.

G-REP node all its descendants are rate-0 nodes, except the rightmost one at a certain level that is a generic node.

G-PC node all its descendants are rate-1 nodes, except the leftmost one at a certain level that is rate-0.

SR node (rate-0 node/REP node, · · · , rate-0 node/REP node, a generic node).

the SCL decoding algorithm, with the main difference lying in the decoding process of the leaf

nodes. For the SCL decoding algorithm, a leaf node is associated with a single bit and the

decoding is performed bit by bit. In contrast, for the proposed decoding algorithm, a leaf node

is associated with a short code and the decoding can be performed sub-block by sub-block by

employing the GCD algorithm, which extend each partial path into L best candidates, resulting

in L2 extended partial paths. From the perspective of performance, the proposed algorithm has

the following property.
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step 1 step 2 step 3

Fig. 17. The list decoding process of the C [3, 3] with L = 2 to illustrate the difference between the two list decoding algorithms,

the SCL decoding algorithm and the GCD algorithm.

Proposition 4. Given L partial paths, for decoding the sub-code C [n, k] corresponding to some

leaf node in the pruned polar tree, the L extended paths delivered by the proposed algorithm

are no worse (in terms of paths metrics) than those delivered by the SCL decoding algorithm.

Proof: Given L partial paths, the GCD algorithm extends each partial path into L best

candidates, resulting in L2 extended partial paths, from which L optimal candidates from the

code C [n, k] can be selected by sorting.

The SCL algorithm is a greedy algorithm, which extends each partial path into two paths

at each active leaf and keeps L best paths from 2L extended paths according to the local path

metric. Evidently, some partial paths are discarded halfway and do not survive to the final sorting

processing. As a result, the final output of the conventional SCL algorithm may not be the L

most likely ones from the code C [n, k].

Example 14. To illustrate the difference between the above two list decoding algorithms for

decoding the sub-code C [n, k], we present the list decoding process of the C [3, 3] with L = 2,

as shown in Fig. 17. The GCD algorithm outputs the two optimal paths selected from the final

16 extended paths at step 3. In contrast, the SCL decoding algorithm only retains two extended

paths at each step and outputs the two paths selected from the four extended paths at step 3.
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Remarks. Notice that Proposition 4 says that, given the same partial paths, the performance

of any leaf node decoded by the proposed decoding algorithm is not worse than that with the

conventional SCL decoding algorithm. This is also intuitively true for the whole code, but we

have no rigorous proof.

D. Parallel GCD Algorithm with the Early Stopping Criteria

Given a pruned polar decoding tree that has q leaves, in this subsection, we show how to extend

partial paths at a GCD node, denoted by vi and associated with a sub-code Ci[ni, ki] (1 ≤ i ≤ q).

We assume that, for i ≥ 1, the partial paths generated from the leaf node v1 to vi are collectively

denoted by Li and that L0 = ∅ for convention. The objective of decoding at the GCD node vi

is to extend each partial path in Li−1 into (at most) the Li most likely valid paths (validated by

the frozen bits and the possibly existing CRC bits of the sub-code) and then select the Li most

likely valid paths from Li−1 · Li valid paths. Here, Li = |Li| ≥ 1 and we allow Li ̸= Li−1 for

more general use cases. For each partial path in Li−1 indexed by p ∈ {1, 2, . . . , Li−1}, denote by

β
(p)
1→(i−1) =

(
β

(p)
1 ,β

(p)
2 , . . . ,β

(p)
i−1

)
the bit sequence associated with the p-th partial path through

the first (i− 1) leaf nodes such that β(p)
j ∈ Cj (1 ≤ j < i). Then the LLR vector at the node vi

associated with the partial path β
(p)
1→(i−1), denoted as r

(p)
i , can be derived from (42)-(46). Given

the LLR vector r(p)
i and the corresponding hard-decision z

(p)
i , the GCD generates a list of valid

TEPs and remains the Li lightest ones
{
e
(p,ℓ)
i , 1 ≤ ℓ ≤ Li

}
, corresponding to Li sub-codewords{

β
(p,ℓ)
i = e

(p,ℓ)
i + z

(p)
i , 1 ≤ ℓ ≤ Li} ⊆ Ci. Then the p-th partial path β

(p)
1→(i−1) can be extended

to Li partial paths
{
β

(p,ℓ)
1→i =

(
β

(p)
1→(i−1),β

(p,ℓ)
i

)
, 1 ≤ ℓ ≤ Li

}
. For i ≥ 1, to a path β

(p,ℓ)
1→i =(

β
(p)
1→(i−1),β

(p,ℓ)
i

)
, we assign recursively a path metric λ

(
β

(p,ℓ)
1→i

)
= λ

(
β

(p)
1→(i−1)

)
+ γ

(
e
(p,ℓ)
i

)
with λ (β1→0) = 0. It can be verified that the SCL decoding attempts to find L paths with

minimum path metrics.

To reduce the latency, we may perform Li−1 GCD processors in parallel, each for one preceded

partial path in Li−1. If so, the Li−1 GCD may require different numbers of queries to identify the

most likely Li valid extended paths, indicating that the “speed” of generating the most likely Li

valid paths can be different for different preceded partial paths. To terminate some GCD earlier

and avoid unnecessary queries, we propose the early stopping criteria at the GCD nodes without

sacrificing the performance. The basic idea is to stop as early as possible the GCD for those

preceded paths that cannot generate any candidates better than the worst valid paths in Li if Li

already has Li members, i.e., |Li| = Li. The parallel GCD algorithm with the early stopping
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criteria for the GCD node vi, whose systematic parity-check matrix is denoted as H = [I P], is

summarized in Algorithm 4. Specifically, for the q-th GCD node, the goal is to find the optimal

valid path. In this case, we keep only the up-to-date best valid path in Lq during the decoding

process in Algorithm 4, i.e., Lq = 1.

E. Numerical Results

In this subsection, we simulate 5G polar codes [1] over BPSK-AWGN channels and validate

our theoretical analysis in Section IV-C. Furthermore, with the proposed early stopping criteria,

we show the decoding latency reduction of the proposed decoding algorithm compared with

existing SCL decoding algorithms. Specifically, the GCD node C [n, k] with relatively low rate

k ≤ logL is simply decoded by ESD, which does not require the in-order generation of eP .

1) Performance Comparisons:

Example 15. Consider the 5G polar codes with an 11-bit CRC C [128, 32], C [128, 64], and

C [128, 96], where the generator polynomial for the CRC is x11+x10+x9+x5+1. Fig. 18 shows

the pruned tree of C [128, 64] with an 11-bit CRC, which has 10 GCD nodes. For C [128, 96] with

an 11-bit CRC, the pruned tree has 7 GCD nodes. For C [128, 32] with an 11-bit CRC, the pruned

tree has 11 GCD nodes. We compare the proposed multiple-bit-wise SCL decoding algorithm and

the CA-SCL decoding algorithm under a list size L ∈ {8, 16, 32}. For N = 128 and R ∈ {1/4,

1/2, 3/4}, the performance comparisons are shown in Fig. 19. For C [128, 64] under different

list sizes, the performance comparisons are shown in Fig. 20. As shown in Figs. 19-20, we can

see that the performance of the proposed decoding algorithm is no worse than (even slightly

better than) that of the SCL decoding algorithm for different code rates under different list sizes.

We also notice that the performance cannot be improved further by increasing the maximum

number of queries ℓmax from 100 to 105. Thus ℓmax = 100 is sufficient and we fix ℓmax = 100 in

the following simulations.

Example 16. Consider the 5G polar codes with an 11-bit CRC for N ∈ {256, 1024} and

R ∈ {1/4, 1/2, 3/4}. The pruned tree of the 5G polar code C [256, 193] consists of 15 GCD

nodes, where the right sub-tree contains 3 GCD nodes C [32, 26], C [32, 32], and C [64, 64]. The

simulation results regarding the performance are shown in Figs. 21-22. It can be seen that, for

these code rates and code lengths, the performance of the proposed SCL decoding algorithm by
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Algorithm 4 Parallel GCD Algorithm with the Early Stopping Criteria

Input: The partial paths Li−1 =
{
β

(p)
1→(i−1), 1 ≤ p ≤ Li−1

}
, the corresponding path metrics

Pi−1 =
{
λ
(
β

(p)
1→(i−1)

)
, 1 ≤ p ≤ Li−1

}
, the maximum query number ℓmax ≤ 2ki , and the

parity-check matrix H = [I P] associated with the node vi.

1: Initializations:

1.a: Li = {f (j), 1 ≤ j ≤ Li} is a linked list of size Li which is maintained in order

(non-decreasing path metric) and initialized as Li NULL paths with metric ∞.

1.b: tp ← 0, for 1 ≤ p ≤ Li−1.

1.c: mt ← 0.

2: Calculations of LLRs: Given a partial path β
(p)
1→(i−1) ∈ Li−1 for 1 ≤ p ≤ Li−1, calculate r

(p)
i

following (42)-(46), z(p)
i following (46)-(47), and s

(p)
i = z

(p)
i HT .

3: for ℓ = 1, 2, . . . , ℓmax do ▷ The τp-truncation and the τs-truncation along with other early

termination criteria can also be integrated here.

4: for p = 1, 2, . . . , Li−1 in parallel do

5: if tp == 0 then

6: e
(p,ℓ)
P ∈ Fki

2 ← the ℓ-th partial TEP generated from the p-th GCD processor.

7: if γ
(
e
(p,ℓ)
P

)
+ λ

(
β

(p)
1→(i−1)

)
≥ λ

(
f (Li)

)
then

8: tp ← 1, mt ← mt + 1.

9: else

10: e
(p,ℓ)
I = s

(p)
i − e

(p,ℓ)
P PT .

11: β
(p,ℓ)
i = z

(p)
i −

(
e
(p,ℓ)
I , e

(p,ℓ)
P

)
.

12: Extend the partial path β
(p)
1→(i−1) to β

(p,ℓ)
1→i , where β

(p,ℓ)
1→i =

(
β

(p)
1→(i−1),β

(p,ℓ)
i

)
.

13: if λ
(
β

(p,ℓ)
1→i

)
< λ

(
f (Li)

)
then

14: Update the list Li by removing f (Li) and inserting β
(p,ℓ)
1→i .

15: end if

16: end if

17: end if

18: end for

19: end for

Output: The list Li and the corresponding path metrics Pi.
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Fig. 18. A pruned polar tree of the 5G polar code C [128, 64] with an 11-bit CRC, where the red box denotes the GCD node.

The root is for C [128, 75] due to the existence of the CRC.
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Fig. 19. Performance comparisons between the proposed SCL decoding and the CA-SCL decoding for the 5G polar codes of

length N = 128. Here, the list size L = 8, R ∈ {1/4, 1/2, 3/4} and the maximum query number ℓmax is 100 or 105.

GCD is no worse than (even slightly better than) that of the CA-SCL decoding algorithm. This

suggests that the proposed algorithm is universal, as expected.

2) Decoding Latency Comparisons: We now compare the decoding latency of the proposed

decoding algorithm with that of the CA-SCL decoding [28] and the fast SCL decoding [37].

Specifically, we compute the required total number of time steps to decode different nodes under

the following assumptions similar to [35], [37]. First, we assume there is no resource limitation

so that all the parallelizable instructions are performed in one clock cycle. Second, the LLR

calculations in (42) and (44) consume one time step, while the hard decision on LLRs and bit

operations in (46) and (47) are carried out instantaneously. Third, the decoder extends all L

paths to 2L paths, sorts the corresponding 2L paths based on the PMs, and selects the smallest
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Fig. 20. Performance comparisons between the proposed SCL decoding and the CA-SCL decoding for the 5G polar code

C [128, 64] with an 11-bit CRC. Here, the list size L ∈ {8, 16, 32} and the maximum query number ℓmax is 100.
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Fig. 21. Performance comparisons between the proposed SCL decoding and the conventional SCL decoding for the 5G polar

codes of length N = 256. Here, the list size L = 8, R ∈ {1/4, 1/2, 3/4} and the maximum query number ℓmax is 100.

L ones during one time step. For our proposed decoding algorithm, the GCD node C [n, k] with

k ≤ logL requires k + 1 time steps similar to the commonly used nodes like REP, Type-I and

Type-II nodes, and the GCD node C [n, k] with relatively high rate requires ℓavg +max
(
1, n

2L

)
time steps, where sorting n bits in an order of increasing reliabilities requires max(1, n

2L
) time

steps and each query requires one time step. Table II shows the numbers of decoding time steps

for N = 128 with a list size L = 32. Table III shows the numbers of decoding time steps for

N = 256 with a list size L = 32. Table IV shows the numbers of decoding time steps for
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Fig. 22. Performance comparisons between the proposed SCL decoding and the conventional SCL decoding for the 5G polar

codes of length N = 1024. Here, the list size L = 8, R ∈ {1/4, 1/2, 3/4} and the maximum query number ℓmax is 100.

N = 1024 with a list size L = 32.

As we can see, the proposed decoding algorithm requires fewer time steps than the SCL

decoding algorithm [28] and has a significant reduction in decoding latency compared with

the fast SCL decoding algorithm [37] for the 5G polar codes with N ∈ {128, 256, 1024} and

R ∈ {1/4, 1/2, 3/4} under the list size L = 32. The number of decoding time steps for high-rate

nodes in [37] is related to the list size and the code length. In contrast, the number of decoding

time steps for GCD nodes in the proposed decoding algorithm mainly relies on the query number

which is small in the high SNR region. For example, under a list size L = 32, the rate-1 node

C [128, 128] requires 32 time steps in [37] while in the proposed decoding algorithm, as a GCD

node, it requires ℓavg + 2 time steps which are generally less than 10 in the high SNR region.

Remark. It is worth pointing out that the decoding latency of the conventional SCL decoding

algorithm is irrelevant to the SNR, while that of the proposed decoding algorithm varies with

the SNR due to the trial-and-error nature of the GCD. For applications in 6G with reliability

requirement at the level of 99.99999% where the SNR is relatively high and the errors are

typically sparse in the noisy received vector, one or two queries for the GCD is sufficient,

suggesting that the proposed decoding algorithm can be very efficient.

3) A Rethinking of Construction for Polar Codes: As we know, the construction of polar

codes is almost equivalent to ranking the bit-channels according to their reliabilities, which

depend heavily on the bit-by-bit SC decoding algorithm. An immediate question arises: Given
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TABLE II

THE NUMBERS OF DECODING TIME STEPS FOR N = 128 WITH A LIST SIZE L = 32.

R 1/4 1/2 3/4

SCL [28] 297 329 361

Fast SCL [37] 52 75 114

Our proposed decoder (3.0 dB) 52 58 87

Our proposed decoder (4.5 dB) 50 51 84

TABLE III

THE NUMBERS OF DECODING TIME STEPS FOR N = 256 WITH A LIST SIZE L = 32.

R 1/4 1/2 3/4

SCL [28] 585 649 713

Fast SCL [37] 94 159 190

Our proposed decoder (3.0 dB) 64 108 170

Our proposed decoder (4.5 dB) 62 107 170

TABLE IV

THE NUMBERS OF DECODING TIME STEPS FOR N = 1024 WITH A LIST SIZE L = 32.

R 1/4 1/2 3/4

SCL [28] 2313 2569 2825

Fast SCL [37] 283 460 784

Our proposed decoder (3.0 dB) 226 380 416

Our proposed decoder (4.5 dB) 221 334 330

the proposed multiple-bit-wise decoding algorithm, is it feasible to improve the SC-based con-

struction? The answer is intuitively positive, but we have not found any systematic approaches.

Heuristically, we may move some active bits from the left sub-tree to the right sub-tree, increasing

the rate of the GCD node and fully exploiting the potential of the GCD algorithm, since GCD

is more effective for the low/high-rate codes. To illustrate this idea, we present the following

example.

Example 17. Consider the 5G polar code with an 11-bit CRC C [128, 64], where the generator

polynomial for the CRC is x11+x10+x9+x5+1. A pruned tree is illustrated in Fig. 23 which
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Fig. 23. A pruned polar tree and its improved counterpart of the 5G polar code C [128, 64] with an 11-bit CRC, where the red

solid box denotes the GCD node of the 5G polar code C [128, 64] and the red dash box denotes the GCD node in the improved

counterpart, respectively.
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Fig. 24. Performance comparisons between the proposed SCL decoding and the CA-SCL decoding for the 5G polar code

C [128, 64] with an 11-bit CRC and the corresponding improved 5G polar code C ′[128, 64]. Here, the list size L ∈ {8, 16}.

consists of 10 GCD nodes. We then move the information bit allocated at the least reliable active

channel (belong to the leftmost leaf node) to the most reliable frozen channel (belong to the

rightmost leaf node). The resulting code is denoted as C ′[128, 64], whose pruned tree is slightly

different from that of the 5G C [128, 64]. The simulation results are shown in Fig. 24, from

which we can see that, the performance of C ′[128, 64] has nearly 0.2 dB gain over that of the

original 5G polar code C [128, 64].

V. CONCLUSIONS

In this paper, we have analyzed the GCD and presented three conditions for truncation,

resulting in the truncated GCD. To analyze the upper bound on the performance gap between
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the truncated GCD and the GCD, we utilize the saddlepoint approach which does not depend

on the specific code structure. Simulation results show that the approximation is accurate, which

provides the guideline on the choice of the decoding parameters. It is also shown that the

truncated GCD can reduce the complexity in terms of the number of TEPs, without noticeable

performance loss in comparison with the GCD. To further reduce the decoding latency, we

have proposed a parallel framework for the (truncated) GCD. These decoding techniques can

find applications not only to decoding of short block codes in ultra-reliable and low-latency

communications but also to decoding of long codes constructed from short block codes. When

applied to decoding of polar codes, the proposed multiple-bit-wise SCL decoding by GCD incurs

no performance loss but exhibits significant latency advantages compared with the existing SCL

decoding.
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