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Abstract

In continuation of the work [DHL23b], we study a higher-order Painlevé-type equation, arising as a
string equation of the 3rd order reduction of the KP hierarchy. This equation appears at the multi-critical
point of the 2-matrix model with quartic interactions, and describes the Ising phase transition coupled
to 2D gravity, cf. [CGM90; Dou90], and the forthcoming [DHL23b; DHL23a]. We characterize this
equation in terms of the isomonodromic deformations of a particular rational connection on P1. We also
identify the (nonautonomous) Hamiltonian structure associated to this equation, and write a suitable
τ -differential for this system. This τ -differential can be extended to the canonical coordinates of the
associated Hamiltonian system, allowing us to verify Conjectures 1. and 2. of [IP18]. We also present a
fairly general formula for the τ -differential of a special class of resonant connections, which is somewhat
simpler than that of [BM05].
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1. Introduction.

In this work, we mainly study the following pair of equations for two functions U = U(t5, t2, x), V =
V (t5, t2, x): {

0 = 1
2V

′′ − 3
2UV + 5

2 t5V + t2,

0 = 1
12U

(4) − 3
4U

′′U − 3
8 (U

′)2 + 3
2V

2 + 1
2U

3 − 5
12 t5

(
3U2 − U ′′)+ x.

(1.1)

Here (and throughout the present work), ′ = ∂
∂x . We will also sometimes instead write x := t1, as this

notation is more convenient in certain instances. We have tried to keep our notations for this equation close
to those of [FGZ95]. The above is known as the (3, 4) string equation, and appears in the study of the Ising
model coupled to 2D gravity, as we shall now make apparent.

This is a continuation of the recent work [DHL23b], in which we set up a Riemann-Hilbert analysis of the
2-matrix model with quartic interactions, corresponding to the Ising model on random quadrangulations. In
[DHL23b], we replicated the results of [Kaz86; BK86] for the genus-zero partition function, thus providing
a fully rigorous proof of their formula. The next task in our program is to investigate the multi-critical
point of this model, which corresponds to the Ising (3, 4) minimal model of conformal field theory coupled to
2D-gravity. At the level of the steepest descent analysis, this amounts to finding the “right” model Riemann-
Hilbert problem at the turning points, for which the matching condition is satisfied. Such a parametrix is
presently absent from the literature; the current work aims to fill this gap.

In finding such a parametrix, we are not completely in the dark; as usual, physicists have already
provided us the foundations. An equation characterizing this critical point was first derived in [Bré+90;
CGM90; Dou90], and recognized to be a string equation to a 3rd order reduction of the KP hierarchy. This
equation is precisely (1.1). More generally, it is conjectured that all critical points of the 2-matrix model
are characterized by the so-called (q, p)-string equations (see the discussion in §2), which arise as symmetry
constraints of the KP hierarchy. We will not make any general statements about these string equations here.
We continue with a more detailed description of the connection of Equation (1.1) with the 2-matrix model.

1.1. Connection to the 2-matrix model.

As previously mentioned, the above equation arises when studying the triple scaling limit of the 2-matrix
model with quartic interactions. The partition function for this model is

Zn(τ, t,H;N) :=

¨
e
N tr

[
τXY− 1

2X
2− eHt

4 X4− 1
2Y

2− e−Ht
4 Y 4

]
dXdY, (1.2)

where the integration here is carried out over the Cartesian product of the space of n×n Hermitian matrices
with itself. This matrix model can be identified with the Ising model on random quadrangulations [Kaz86;
BK86]. The multicritical point of this model, which characterizes the Ising spin-ordering transition coupled
to gravity, occurs at

t = tc = − 5

72
, τ = τc =

1

4
, H = Hc = 0. (1.3)

Evidently, since tc < 0, the matrix integral (1.2) is non-convergent. We must therefore make an appropriate
analytic continuation of this integral in order to make sense of the multicritical point. This construction is
demonstrated in [DHL23b]: here, by a slight abuse of notation, we shall denote both the partition function
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and its analytic continuation by Zn(τ, t,H;N). In [CGM90; Dou90] (cf. the earlier work [Bré+90] for the
model without the external field or temperature parameters), the following triple scaling limit is introduced:

n

N
= ξ, t− tc ∼ N−6/7, tξ = tc(1−N−6/7x), H = N−5/7t2, τ = τc(1−N−2/7t5). (1.4)

After scaling, one finds that the partition function converges to (see the works [Gin+90; FGZ95]), as n→ ∞,

C2 d
2

dx2
logZn(τ, t,H;N) → −U(t5, t2, x), (1.5)

for some constant C2 > 0. Here, U(t5, t2, x) is a solution to the string equation (1.1). This suggests that the
multicritical partition function for this model is in fact a τ -function of equation (1.1). It is the purpose of
Part III of this series of works [DHL23a] to make rigorous sense of this scaling limit. In this work, we study
the limiting object, i.e. the equation that results after performing this scaling limit.

One of the shortcomings of the work in the physics literature is that one is only able to identify that
the multicritical partition function solves a particular integrable equation; there is no indication from this
analysis which solution one has convergence to, or what properties the resulting solution has. An important
consequence of our analysis is that one can identify the particular solution of (1.1) arising from the triple
scaling limit of the 2-matrix model, and, since we furnish a Riemann-Hilbert formulation of the equation,
this solution is amenable to asymptotic analysis.

1.2. Outline and Statement of Results.

The remainder of this work is organized as follows. We review the KP approach to this equation in §2,
and recast the problem in matrices, which will give us the right framework to develop a Riemann-Hilbert
formulation. The a version of the follow result is proven in §4.

Proposition 1.1. The string equation (1.1), and its compatibility with the (reduced) KP-flows Q
2/3
+ , Q

5/3
+ ,

is equivalent to the isomonodromy deformations with respect to t5, t2, x of the following linear differential
equation for a function Ψ = Ψ(λ; t5, t2, x):

∂Ψ

∂λ
= L(λ; t5, t2, x)Ψ, (1.6)

where

L(λ; t5, t2, x) =
(

0 0 1
0 0 0
0 0 0

)
λ2 +

(
0 2t5+

1
4QU −QV

1 0 2t5+
1
4QU

0 1 0

)
λ (1.7)

+

(
1
8Q

2
U−PW+ 1

2PV − 1
4 t5QU− 1

6 t
2
5 L12 L13

1
2QV − 1

4QW 2PW− 1
4Q

2
U+ 1

2 t5QU+ 1
3 t

2
5 L23

t5− 1
2QU

1
2QV + 1

4QW
1
8Q

2
U−PW− 1

2PV − 1
4 t5QU− 1

6 t
2
5

)
,

where

L12 :=
5

16
QUQW − PU +

1

4
t5QW − 3

8
QUQV − 1

2
t5QV + t2,

L13 :=
1

16
Q2

W +
7

32
Q3

U +
3

4
Q2

V − 3

2
PWQU +

5

16
t5Q

2
U − 2t5PW +

1

4
t25QU + x+

8

27
t35,

L23 := − 5

16
QUQW + PU − 1

4
t5QW − 3

8
QUQV − 1

2
t5QV + t2.

From our setup, and some inspiration of where to look based on the classical Painlevé transcendents,
we can write the string equation as a 3 + 3 dimensional Hamiltonian system, in which the coordinates
(QU , QV , QW ;PU , PV , PW ) are canonical. The induced flows along the t5, t2, and x := t1 directions are
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generated by (nonautonomous) Hamiltonians H5, H2, H1, which pairwise commute with respect to the
following Poisson bracket: if f, g are functions of the variables (QU , QV , QW ;PU , PV , PW ), we define

{f, g} :=
∑

a∈{U,V,W}

(
∂f

∂Qa

∂g

∂Pa
− ∂f

∂Pa

∂g

∂Qa

)
. (1.8)

This is the essence of our next Proposition, which we will prove a version of in §3:

Theorem 1.1. Let (QU , QV , QW ;PU , PV , PW ) parameterize the solutions of the isomonodromy defor-
mations of the connection (1.7). Then, there exist functions H5, H2, H1, polynomially dependent on
(QU , QV , QW ;PU , PV , PW ) and t5, t2, t1, such that

∂Qa

∂tk
=
∂Hk

∂Pa
,

∂Pa

∂tk
= −∂Hk

∂Qa
, (1.9)

where a ∈ {U, V,W}, k = 1, 2, 5, and x := t1. We call Hk Hamiltonians. These Hamiltonians commute with
respect to the Poisson bracket (1.8):

{Hk, Hj}+
∂Hk

∂tj
− ∂Hj

∂tk
= 0, (1.10)

where k, j = 1, 2, 5.

We then set about defining a τ -function for this system; as it will turn out, the differential equation (1.6)
shares the same problem as the equivalent problem for the linear system associated to Painlevé I (PI): either
the leading coefficient of the pole of L is not diagonalizable, or (as we shall see) a transformed version of
it does have diagonalizable leading coefficient at infinity, but carries a resonant Fuchsian singularity at the
origin. Thus, the standard definition of the τ -differential as given in [JMU81] does not apply. If we try to
ignore the contribution from the resonant singularity (as is done for PI, cf. [JM81; LR17; ILP18]), it turns
out the τ -differential is not closed. Thus, we must provide an alternate definition of the τ -differential; this is
established in Section 5.3. Although most of this work is dedicated to the study of the string equation (1.1),
we were able to derive a fairly general formula for the τ -differential of a linear differential equation with
polynomial coefficients whose leading term is not diagonalizable. The motivation for the class of equations
we study arises from the so-called (p, q) string equations (see [Gin+90] for an overview). An alternative
formula was derived by Bertola and Mo [BM05] in terms of spectral invariants; the formula we present is in
terms of a residue in the local gauge, and thus may merit interest, as it gives an alternative way to compute
the τ -differential. We thus present our result as a theorem:

Theorem 1.2. Fix q ≥ 2, and consider the differential equation

∂Ψ

∂λ
= A(λ; t)Ψ, (1.11)

where A(λ; t) is a q × q matrix, polynomial in λ, whose leading term is the nondiagonalizable matrix

A(λ; t) = Λrλk + · · · , (1.12)

for some 0 < r < q, k ≥ 0, where Λ = Λ(λ) is

Λ(λ) :=



0 0 · · · 0 0 λ
1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


.
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Then, there is a formal solution of the form

Ψ(λ; t) = g(λ)

[
I+

Ψ1(t)

λ1/q
+O(λ−2/q)

]
︸ ︷︷ ︸

G(λ;t)

eΘ(λ;t), (1.13)

where Θ(λ; t) is a diagonal matrix, polynomial in λ1/q, and g(λ) = λ∆qUq, for some constant, diagonal,
traceless matrix ∆q, and constant matrix Uq. Let tℓ be the collection of isomonodromic times. If we define

ω̂JMU :=
∑
ℓ

(〈
A(λ; t)

dG

dtℓ
G−1

〉
−
〈
∆q

λ

dG

dtℓ
G−1

〉)
dtℓ, (1.14)

then we have that
d ω̂JMU = 0. (1.15)

We can then formally define a τ -function by ω̂JMU = d log τ(t). Using this definition in the case of (1.7),
we obtain the following proposition:

Proposition 1.2. The (modified) JMU isomonodromic tau function for the isomonodromic system defined
by (1.7) is given by

d log τ(t5, t2, t1) =
3

2
(H5dt5 +H2dt2 +H1dt1) , (1.16)

where H5, H2, and H1 are the Hamiltonians of the Theorem 1.1.

We shall see that this definition coincides (up to an overall multiplicative factor) with the τ -function as
defined by Okamoto [Oka81; Oka99], justifying our modification of the isomonodromic τ -function.

A “dressed” version of the τ -function as defined here will be what appears as the critical partition function
for the quartic 2-matrix model; this will be the main result of the forthcoming work [DHL23a]. This work
is the analogy of the analyses of Painlevé I [Oka81; Fok+06], which were subsequently used for the analysis
of the critical points of the quartic and cubic 1-matrix models [DK06; BD16].

There has been much interest in recent years concerning the dependence of the isomonodromic τ -function
on the monodromy data (equivalently, on any set of initial conditions for the isomonodromy equations)
[Ber10; ILP18; LR17; IP18], in particular due to its applications in determining the constant factors in the
asymptotics of τ -functions. Building on earlier works, in [IP18] the authors greatly simplify the procedure
for calculating these constant factors for the 6 Painlevé equations. They proposed two conjectures to this
end, which we give the full statement of in Section 5.3. In our situation, these conjectures are equivalent to
the following proposition, which we prove in Section 5.3:

Proposition 1.3. The extended τ -differential ω0 for the system defined by (1.7) is given by

ω0 =
3

2
ωcla + dG, (1.17)

where ωcla is

ωcla =
∑

a∈{U,V,W}

PadQa −
∑

k∈{1,2,5}

Hkdtk, (1.18)

and G is the polynomial

G =
3

7

[
3t1H1 +

5

2
t2H2 + t5H5 − PUQU − 3

2
PVQV − 3

2
PWQW

]
. (1.19)

This result is in agreement with the conjectures of [IP18], adding further validity to these statements.
We give the full definition of ω0 in Section 5.3 as well. Furthermore, there are currently not many explicit
examples of multivariate isomonodromic τ -functions in the literature, and so the above provides another
non-trivial example of an isomonodromic τ -function arising from an integrable equation.
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1.3. Notations.

Throughout this work, we will frequently make use of several notations without comment. We list some of
these notations here, for the convenience of the reader.

• ω = e
2πi
3 denotes the principal third root of unity,

• Eij will denote the 3× 3 matrix with a 1 in the ijth position, and zeros elsewhere,

• If A is a square matrix, the notation λA is defined to mean λA := exp(A log λ), where “exp” here is
the usual matrix exponential.

• Throughout, we make the identification of coordinates t1 ≡ x.

1.4. Acknowledgements.

This research was partially supported by the European Research Council (ERC), Grant Agreement No.
101002013. The author would also like to thank Marco Bertola, Maurice Duits and Seung-Yeop Lee for
valuable discussions during the preparation of this manuscript.

2. Rational reductions of the KP hierarchy and the string equation.

In this section, we overview the derivation of the equation (1.1) as the string equation of an appropriate
rational reduction of the KP hierarchy; we then recast this equation in matrix form, which sets up the
framework for us to later realize the equation as arising from isomonodromy deformation. We do not
attempt to give a comprehensive introduction to reductions of the KP hierarchy; for a full introduction,
one should consult [Dic03], for example. We provide the necessary definitions that should allow the reader
to follow the computations on their own, without any explanation of their origin or function. Further, we
remark that what appears in this section can be treated as purely formal computation; we will use what we
develop here as a objects to be compared to what comes later. For the reader uninterested in the origins of
the equations we shall study later, this section can be safely ignored.

2.1. The basics of KP, rational reductions, and string equations.

We begin with a list of definitions:

• A pseudodifferential operator is an expression of the form X =
∑

k∈ZXi∂
i, where the coefficients Xi

are functions of t1 := x, and possibly a collection of other variables {tk}, ∂ := ∂
∂x , and the symbol ∂−1

is defined using the generalized Leibniz rule

∂−1 ◦ f =

∞∑
k=0

(−1)kf (k)∂−k−1 = f∂−1 − f ′∂−2 + f ′′∂−3 + ...

Note the relation ∂−1 ◦∂ = ∂ ◦∂−1 = 1, the identity operator. Such operators are interpreted as acting
on functions of x.

• The purely differential part or principal part of a pseudodifferential operator X is written X+, and is
defined to be

X+ :=
∑
k≥0

Xk∂
k.

• The order of a pseudodifferential operator X is the largest k such that Xk ̸= 0; if no such k exists, we
say the operator is of infinite order. One can interpret the order of X+, with the word order standing
for the usual definition of order of a differential operator.
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We now define the KP operator

L := ∂ + α1∂
−1 + α2∂

−2 + α3∂
−3 + · · · , (2.1)

where the αk are assumed to be functions of t1 := x, and a (possibly infinite) collection of other “times”
{tk}. We define operators Ak := Lk

+; note that since L is of order 1, the operators Ak are of order k. The
KP hierarchy is defined by the set of equations[

L− λ,
∂

∂tk
−Ak

]
= 0, k = 1, 2, ... (2.2)

with the assumption that the eigenvalue λ is independent of the tk’s. It then follows that the flows ∂
∂tk

−Ak

pairwise commute (cf. [Dic03]):[
∂

∂tk
−Ak,

∂

∂tk
−Aj

]
= 0, k, j = 1, 2, ... (2.3)

which implies the integrability of this collection of equations. A rational reduction of the KP hierarchy is
obtained by requiring that a given power of the KP operator L is purely differential, i.e. that

Lq ≡ Lq
+ = Aq. (2.4)

The resulting hierarchy of equations retains the property of integrability. If we require that Lq is purely
differential, we call the hierarchy the KdVq hierarchy (sometimes, this hierarchy is also called the qth Gelfand-
Dickey hierarchy). These hierarchies also carry a natural bihamiltonian structure [Adl79; DS85; Dic03]. If
q = 2, the resulting hierarchy agrees with the well-known KdV hierarchy. For the KdVq hierarchy, we define
the differential operator Q by

Q := Lq. (2.5)

We sometimes express the original KP operator as L = Q1/q, when there is no cause for ambiguity. A string
equation of the KdVq hierarchy is obtained by the requirement that

[Q,P ] = 1, (2.6)

where the operator P is a polynomial in the operator Q
1/q
+ , with of the form (cf. [FGZ95]):

P :=
∑
k≥1

k mod q ̸≡0

(
1 +

k

q

)
tk+qQ

k/q
+ =

∑
k≥1

k mod q ̸≡0

(
1 +

k

q

)
tk+qAk. (2.7)

the order of a string equation is the largest index k such that ck :=
(
1 + k

q

)
tk+q ̸= 0. If the order of the

string equation is p, we call the string equation the (q, p) string equation. Such equations generate additional
symmetries of the KdVq hierarchy, although these additional symmetries do not necessarily commute amongst
themselves.

2.2. The (3, 4) string equation.

We now specialize to the case q = 3, p = 4, which is what is relevant for us. Consider the operator

Q := ∂3 − 3

2
U∂ − 3

4
U ′ +

3

2
V, (2.8)

where U, V are functions of the variables t5, t2, and x. We take this operator to be the generator of the
KdV3 hierarchy, and will be interested in the (3, 4) string equation.
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Let us briefly explain the choice of parametrization of Q (it essentially comes from [Dou90], and more
generally [FIZ91]). We momentarily denote Q := Q(x) to stress that the variable of differentiation is x.
Under any diffeomorphism x→ x(σ), the composition

Q̃(σ) :=

(
dx

dσ

)2

◦Q(x(σ)) ◦
(
dx

dσ

)
= ∂3σ − 3

2
Ũ∂σ − 3

4
Ũσ +

3

2
Ṽ (2.9)

retains the form of Q(x), while U , V transform as

Ũ(σ) = U(x(σ))

(
dx

dσ

)2

+ 2{x, σ}, (2.10)

Ṽ (σ) = V (x(σ))

(
dx

dσ

)3

, (2.11)

i.e. as an projective connection1 and as a rank 3 tensor, respectively. The operator Q is then seen to act
covariantly from the space of rank 1 tensors to rank 2 tensors. At the physical level, this makes consistent
our choice of parametrization of the operator Q: U will act as the classical analog of the stress-energy tensor
for the underlying conformal field theory, and V will ultimately be responsible for the non-perturbative Z2-
symmetry breaking of the model [Dou90], i.e. the shift in the magnetic field away from zero (see Subsection
4.3 for an interpretation of this statement).

From here on, we will not make any changes of coordinate, and so ∂ = ∂
∂x . Now, expanding Q1/3 in

pseudodifferential operators, we find that

Q1/3 = ∂ − 1

2
U∂−1 +

1

2

[
V +

1

2
U ′
]
∂−2 − 1

4

[
1

3
U ′′ + U2 + 2V ′

]
∂−3 +O(∂−4),

Q2/3 = ∂2 − U +O(∂−1),

Q4/3 = ∂4 − 2U∂2 + 2 [V − U ′] ∂ +

[
V ′ +

1

2
U2 − 5

6
U ′′
]
+O(∂−1),

Q5/3 = ∂5 − 5

2
U∂3 +

5

2

[
V − 3

2
U ′
]
∂2 +

5

4

[
U2 − 7

3
U ′′ + 2V ′

]
∂

+
5

4

[
4

3
V ′′ + UU ′ − 2

3
U ′′′ − 2UV

]
+O(∂−1).

The (3, 4) string equation is then given by [Q,P ] = 1, where

P := Q
4/3
+ +

5

3
t5Q

2/3
+ = ∂4 −

[
2U − 5

3
t5

]
∂2 + 2 [V − U ′] ∂ +

[
V ′ +

1

2
U2 − 5

6
U ′′ − 5

3
t5U

]
. (2.12)

(we set the flow along Q
1/3
+ to 0, as it can be removed by an overall translation x→ x+ c; further, we have

set the flow t7 := 3
7 ). One can then verify that

Proposition 2.1. The (3, 4) string equation is equivalent to the following system on U , V :{
0 = 1

2V
′′ − 3

2UV + 5
2 t5V + t2,

0 = 1
12U

(4) − 3
4U

′′U − 3
8 (U

′)2 + 3
2V

2 + 1
2U

3 − 5
12 t5

(
3U2 − U ′′)+ x.

(2.13)

Proof. There is nothing deep happening here; the proof is a direct calculation, and so we omit it.

1Here, {x, λ} denotes the Schwarzian derivative of x with respect to σ: {x, σ} :=
...
x
ẋ

− 3
2

(
ẍ
ẋ

)2
, where ẋ = dx

dσ
. This is

the only place we will see the appearance of the Schwarzian derivative in this work; we hope our notation will not cause later
confusion when {·, ·} will represent the Poisson bracket.
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Since we will not consider any other string equations in what follows, we will refer to the (3, 4) string
equation as simply the string equation. The string equation is linearized on the Baker-Akhiezer function
ψ = ψ(λ; t5, t2, x): {

Pψ = ∂λψ,

Qψ = λψ.
(2.14)

The compatibility of this linear system is equivalent to the string equation (1.1). This linearization is useful
to us, since we can now write the action of the operators P , Q as a closed-form system of linear differential
equations on the functions ψ, ψ′, and ψ′′.

Proposition 2.2. Define the column vector2 Ψ(λ; t5, t2, x) := ⟨ψ′′ − 3
4Uψ,ψ

′, ψ⟩T . Then, the pair of
equations on ψ written above are equivalent to the following vector equations:{

∂xΨ = QΨ,

∂λΨ = PΨ,
(2.15)

where the matrices Q(λ; t5, t2, x), P(λ; t5, t2, x) are given by the expressions

Q(λ; t5, t2, x) := E13λ+

(
0 3

4U − 3
2V

1 0 3
4U

0 1 0

)
, (2.16)

P(λ; t5, t2, x) := E13λ
2 +

(
0 5

3 t5+
1
4U −V

1 0 5
3 t5+

1
4U

0 1 0

)
λ (2.17)

+

(
1
2V

′− 1
12U

′′+ 1
8U

2− 5
12 t5U

1
12U

′′′− 7
16UU ′− 3

8UV+ 5
12 t5U

′+t2
1
16 (U

′)2− 1
8UU ′′+ 7

32U
3+ 3

4V
2− 5

12 t5U
2+x

1
2V− 1

4U
1
6U

′′− 1
4U

2+ 5
6 t5U − 1

12U
′′′+ 7

16UU ′− 3
8UV− 5

12 t5U
′+t2

5
3 t5−

1
2U

1
2V+ 1

4U − 1
2V

′− 1
12U

′′+ 1
8U

2− 5
12 t5U

)
.

The compatibility condition [Q,P ] = 1 is equivalent to the compatibility condition for the linear system
(2.15):

[Q,P ] = 1 ⇐⇒ ∂P
∂x

− ∂Q
∂λ

+ [P,Q] = 0.

Proof. The proof here is again a direct calculation. The only point to remark on is that we have used the
string equation to substitute for higher-order derivatives of U , V .

One also requires that the string equation is compatible with the other flows of the hierarchy; in our
situation, we require that the string equation is compatible with the t2 and t5 flows. The linearization of
these flows on ψ are given by

∂

∂t2
ψ = Q

2/3
+ ψ = ψ′′ − Uψ, (2.18)

∂

∂t5
ψ = Q

5/3
+ ψ = (λ+ V )ψ′′ +

1

12

(
U ′′ − 3U2 − 6V ′)ψ′ (2.19)

+
1

2

(
UU ′ − 1

6
U ′′′ − UV − 2λU − 5

3
t5V − 2

3
t2

)
ψ,

where we have already utilized compatibility of the string equation with the t5 flow to reduce the order of
the right hand side from 5 to 3. We can similarly write the above two equations in matrix form:

Proposition 2.3. The equations (2.18), (2.19) are equivalent to the following pair of matrix equations:

∂

∂t2
ψ = Q

2/3
+ ψ ⇐⇒ ∂Ψ

∂t2
=M(λ; t5, t2, x)Ψ, (2.20)

∂

∂t5
ψ = Q

5/3
+ ψ ⇐⇒ ∂Ψ

∂t5
= E(λ; t5, t2, x)Ψ, (2.21)

2The factor of − 3
4
Uψ added to the first entry is only to make the resulting matrices look more symmetric; this is an aesthetic

choice, and is not essential. One can undo this by making an appropriate gauge transformation.
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where the vector Ψ = ⟨ψ′′ − 3
4Uψ,ψ

′, ψ⟩T , and the matrices M(λ; t5, t2, x), E(λ; t5, t2, x) are defined to be

M(λ; t5, t2, x) =
(

0 1 0
0 0 1
0 0 0

)
λ+

(
− 1

4U
1
4U− 3

2V
9
16U

2− 1
4U

′′

0 1
2U − 1

4U− 3
2V

1 0 − 1
4U

)
. (2.22)

E(λ; t5, t2, x) =
(

0 1 0
0 0 1
0 0 0

)
λ2 +

(
− 1

4U
1
4U

′− 1
2V

5
16U

2− 1
6U

′′

0 1
2U − 1

4U
′− 1

2V

1 0 − 1
4U

)
λ (2.23)

+

(
1
4UV− 1

2UU ′ 1
12U

′′′− 5
6 t5V− 1

3 t2 e12 e13
1
12U

′′− 1
4U

2+ 1
2V

5
3 t5V− 1

2UV+ 2
3 t2 e23

V 1
12U

′′− 1
4U

2− 1
2V

1
4UV+ 1

2UU ′− 1
12U

′′′− 5
6 t5V− 1

3 t2

)
,

where

e12 : =
1

8
(U ′)2 − 3

16
U ′′U − 1

4
U ′V +

1

8
V ′U +

5

16
U3 +

5

12
t5
(
U ′′ − 3U2 + 2V ′)+ x,

e23 : =
1

8
(U ′)2 − 3

16
U ′′U +

1

4
U ′V − 1

8
V ′U +

5

16
U3 +

5

12
t5
(
U ′′ − 3U2 − 2V ′)+ x,

e13 : =
1

8
U ′′V +

1

8
U ′V ′ − 9

16
U2V +

25

6
t25V + t2U +

5

3
t5t2.

Proof. Again, there is not much to show here: the proof is a direct calculation. We remark that one can make
calculations slightly less tedious by first substituting with the string equation for higher order derivatives in

Q
5/3
+ , and then calculating derivatives of ψ with respect to x.

Remark 2.1. Note that all of the matrices P,Q,M , and E are traceless; this is a consequence of the fact
that the generating operator Q has no term of order ∂2. We also comment here that in what follows, the
matrices Q,M , and E can in fact be seen to arise on their own by requiring isomonodromy for the connection
∂λ − P. We present these matrices here for comparison to our results later.

The requirement that all of the above equations are compatible with one another further determines the
derivatives of U(t5, t2, x), V (t5, t2, x) with respect to t2 and t5; this can either be done at the level of the

operators Q
k/3
+ , or can be performed using the matrices P,Q,M , and E. The result is the following:

Proposition 2.4. The compatibility of the the operators λ−Q, ∂
∂λ−P ,

∂
∂t2

−Q2/3
+ , ∂

∂t5
−Q5/3

+ (equivalently,
the compatibility of the corresponding matrix equations) is equivalent to the string equation (1.1), and the
following PDEs:

∂U

∂t2
= −2V ′, (2.24)

∂V

∂t2
=

1

6
U ′′′ − UU ′, (2.25)

∂U

∂t5
=

∂

∂x

[
−1

6
UU ′′ +

1

8
(U ′)2 +

1

4
U3 − 1

2
V 2 − 5

9
t5
(
3U2 − U ′′)+ 4

3
x

]
, (2.26)

∂V

∂t5
=

∂

∂x

[
1

12
U ′′V − 1

4
U ′V ′ +

5

16
U2V −

(
5

3
t5 +

1

4
U

)2

V − t2U

]
. (2.27)

Proof. The proof is once again a direct calculation. We remark only that the compatibility conditions[
λ−Q,

∂

∂t2
−Q

2/3
+

]
= 0,

[
λ−Q,

∂

∂t5
−Q

5/3
+

]
= 0

are enough to infer (2.24)–(2.27); the remaining compatibility conditions are consistent with this calculation,
and thus redundant.
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The above proposition justifies our notation for ′ = ∂
∂x : all other derivatives can be rewritten in terms

of ∂
∂x . We will sometimes refer to equations (2.24)–(2.27) above, along with the string equation, collectively

as the string equation, by a slight abuse of language. Also notice that, in the equations (2.24), (2.25), one
can eliminate V to obtain that U satisfies a scaled version of the Boussinesq equation, with t2 playing the
role of the ‘time’ variable:

∂2U

∂t22
=

∂

∂x

[
1

6
U ′′′ − UU ′

]
. (2.28)

This is not a surprise, as the Boussinesq equation comes exactly from this compatibility condition [Zak73];
for this reason, the KdV3 hierarchy is sometimes referred to as the Boussinesq hierarchy.

Remark 2.2. The structure of the KP hierarchy allowed us to derive an system of ODEs for the functions
U, V , and a system of compatible PDEs which describe the dependence of U, V on the auxiliary variables
t5, t2. However, this structure is lacking on the analytical side; it is difficult to do any sort of analysis on the
resulting equations, as they are nonlinear. The good news is that these are not just any nonlinear equations;
they are in fact integrable. Much success has been found in the past for analyzing the solutions of other
string equations using the isomonodromy method [Kap88; Kap04; KK93; FIK91; FIK92]. For example, the
(2, 3) string equation is equivalent to Painlevé I:

u′′(x) = 6u2(x) + x, (2.29)

and the full Painlevé I hierarchy appears as the series of (2, 2k + 1) string equations [Tak07; Oka99]. Such
equations admit a representation as the isomonodromy deformations of certain linear differential equations
with rational coefficients [CV07; CIK10], have Hamiltonian structure [Tak07], carry a τ -function, etc. Simi-
larly, the six Painlevé equations also admit these features [Oka81; Oka80; HW93; Oka99; Fok+06], as does
the Painlevé II hierarchy [CJM06; MM07]. The aim of the rest of this work is to develop these tools for the
(3, 4) string equation.

3. Hamiltonian Structure of the (3, 4) String Equation.

Here, we develop a Hamiltonian formulation of the string equation (1.1), (2.24)–(2.27). We develop this
formalism before moving to the isomonodromy setting, as the notations of this section will serve as convenient
coordinates for parametrizing the solution to the isomonodromy problem. We will first define a set of Darboux
coordinates, and show that the corresponding Hamilton equations are equivalent to the string equation. We
further show that one can define a τ -function in the sense of Okamoto [Oka81; Oka99] via this construction.

Our methods for finding Darboux coordinates here are admittedly a little ad hoc; we have a good “guess”
of where things come from, and can develop a system of coordinates which match up with what we need.
We will explain our procedure for identifying a “good” set of Darboux coordinates in Subsection 3.2. In this
section, we shall revert to the notation

x = t1, (3.1)

as it will be more convenient here when indexing sums.

3.1. Hamiltonian Structure and Okamoto τ-function.

Here, we prove a version of Theorem (1.1).

Theorem 3.1. Given a solution U = U(t5, t2, x), V = V (t5, t2, x) of the equations (1.1), (2.24)–(2.27), define
functions

QU : = U − 4

3
t5, QV := V, QW := U ′, (3.2)

PU : =
1

4

(
3UU ′ − 1

3
U ′′′ − 7

3
t5U

′
)
, PV := V ′, PW :=

1

12
U ′′ − 1

6
t5U +

7

18
t25. (3.3)
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(Here, we recall that x := t1). Then, there exist functions H5, H2, H1, polynomially dependent on
(QU , QV , QW , PU , PV , PW ), and on t5, t2, t1, such that

∂Qa

∂tk
=
∂Hk

∂Pa
,

∂Pa

∂tk
= −∂Hk

∂Qa
, (3.4)

for a ∈ {U, V,W}, k = 1, 2, 5. These functions are defined up to the addition of an explicit function of the
variables t5, t2, t1; these “integration constants” can be chosen so that3

{Hk, Hj}+
∂Hk

∂tj
− ∂Hj

∂tk
= 0, (3.5)

for k, j = 1, 2, 5. Here, the Poisson bracket {·, ·} is defined by Equation (1.8). Furthermore, the Hamiltonians
satisfy the stronger condition

{Hk, Hj} =
∂Hk

∂tj
− ∂Hj

∂tk
= 0. (3.6)

Explicitly, these functions are given by

H1 = PUQW + 6P 2
W + 2t5QUPW − 2t25PW − 3

8
QUQ

2
W − 1

8
t5Q

2
W +

1

2
P 2
V − 1

8
Q4

U − 1

4
t5Q

3
U

+
1

2
t25Q

2
U − 3

2
QUQ

2
V +

19

27
t35QU − t1QU +

1

2
t5Q

2
V + 2t2QV − 4

3
t5t1 +

41

54
t45, (3.7)

H2 = −2PUPV − 6PWQUQV + 2t5PWQV + 4t2PW +
1

4
QVQ

2
W +

1

2
PVQUQW − 1

2
t5PVQW

+Q3
V +Q3

UQV +
1

2
t5Q

2
UQV − t2Q

2
U − 2t5t2QU − 65

27
t35QV + 2t1QV − 22

9
t25t2, (3.8)

H5 =
3

8
Q4

V − 1

128
Q4

W + 4P 3
W − 1

16
Q6

U − 65

9
t25t2QV − PUPVQV + PUPWQW − 3

4
PUQWQ2

U

− 29

18
t25PUQW − 1

2
t2QWPV − 1

4
t5QUP

2
V − 1

4
t5PWQ2

W − 2t5PWQ3
U − 3

2
t25PWQ2

U

− 71

27
t35PWQU + 2t1PWQU − 5t5PWQ2

V + 2t2PWQV − 4t5t1PW − 1

16
t5Q

2
WQ2

U +
29

48
t25Q

2
WQU

+ 5t5P
2
WQU +

3

4
t5Q

2
UQ

2
V +

1

2
t2Q

2
UQV + t5t1Q

2
U + t5PUQWQU +

1

2
t5QWPVQV

+
1

2
QWPVQUQV +

47

12
t25QUQ

2
V +

19

9
t25t1QU − 2t5P

2
U − 9

2
P 2
WQ2

U − 20

3
t25P

2
W +

49

108
t35Q

3
U

− 1

8
Q3

UQ
2
V − 1

4
t1Q

3
U − 299

216
t45Q

2
U − 2173

972
t55QU − t22QU +

3

16
t5Q

5
U − 14

9
t25P

2
V +

7

18
t25Q

4
U

+
1

8
Q2

UP
2
V − PWP 2

V + PWQ4
U +

163

27
t45PW +

3

32
Q2

WQ3
U − 1

16
Q2

WQ2
V +

11

108
t35Q

2
W

− 1

8
t1Q

2
W − 38

27
t35Q

2
V +

1

2
t1Q

2
V + P 2

UQU − 2

3
t21 +

82

27
t35t1 −

556

243
t65 −

22

9
t5t

2
2. (3.9)

Conversely, if one starts with the functions H5, H2, H1, Hamilton’s equations (3.4) for these functions are
equivalent to the string equation (1.1), (2.24)–(2.27).

Proof. Let us prove that the equations

∂Qa

∂t1
=
∂H1

∂Pa
,

∂Pa

∂t1
= −∂H1

∂Qa
,

3Some caution must be taken here; the symbol ∂
∂tk

is taken to mean = ∂
∂tk

∣∣∣∣
Pa,Qa=const.
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a ∈ {U, V,W}, can be integrated to a function H1. By direct calculation,

∂QU

∂t1
= U ′ = QW .

On the other hand, Hamilton’s equations tell us that

QW =
∂QU

∂t1
=
∂H1

∂PU
.

Integrating, we find that

H1 = PUQW + f(QU , QV , QW , PV , PW ; t5, t2, t1).

(note that f is independent of the variable PU ). Next, we have that

∂PU

∂t1
=

1

4

(
3(U ′)2 + 3UU ′′ − 1

3
U ′′′′ − 7

3
t5U

′′
)

=
3

8
(U ′)2 +

1

2
U3 +

3

2
V 2 − 5

4
t5U

2 − 1

6
t5U

′′ + t1

=
3

8
Q2

W − 2t5PW +
1

2
Q3

U +
3

4
t5Q

2
U − t25QU +

3

2
Q2

V + t1 −
19

27
t35,

where we have used the string equation (1.1) to rewrite ∂PU

∂t1
in terms of the Hamiltonian variables {Qa, Pa},

and t5, t2, t1. Hamilton’s equations tell us that

3

8
Q2

W − 2t5PW +
1

2
Q3

U +
3

4
t5Q

2
U − t25QU +

3

2
Q2

V + t1 −
19

27
t35 =

∂PU

∂t1
= − ∂H1

∂QU
= − ∂f

∂QU
.

The left hand side of the above is independent of PU , and so both sides can be integrated to obtain that

f = −3

8
QUQ

2
W + 2t5QUPW − 1

8
Q4

U − 1

4
t5Q

3
U +

1

2
t25Q

2
U − 3

2
QUQ

2
V − xQU +

19

27
t35QU + f̃(QV , QW , PV , PW ).

Our expression for H1 now reads

H1 = PUQW − 3

8
QUQ

2
W + 2t5QUPW − 1

8
Q4

U − 1

4
t5Q

3
U +

1

2
t25Q

2
U − 3

2
QUQ

2
V − t1QU +

19

27
t35QU + f̃ ,

i.e. we have completely determined the dependence of H1 on QU , PU . Continuing in this fashion, one is able
to determine the function H1 up to an explicit function of the variables t5, t2, t1; similar calculations for the
Hamilton equations in the variables t2, t5 result in functions H2, H5, also defined up to the addition of an
explicit function of the variables t5, t2, t1. Denote these functions, which we will call “integration constants”,
by ck(t5, t2, t1), k = 1, 2, 5. Calculating the Poisson brackets of the Hamiltonians in pairs, we obtain the
equations

{H5, H2}+
∂H5

∂t2
− ∂H2

∂t5
=
∂c5
∂t2

− ∂c2
∂t5

,

{H5, H1}+
∂H5

∂t1
− ∂H1

∂t5
=
∂c5
∂t1

− ∂c1
∂t5

+
4

3
t1 −

82

27
t35,

{H2, H1}+
∂H2

∂t1
− ∂H1

∂t2
=
∂c2
∂t1

− ∂c1
∂t2

.

So, for example, we can take

c5 = −2

3
t21 +

82

27
t35t1 −

556

243
t65 −

22

9
t5t

2
2, c2 = −22

9
t25t2, c1 = −4

3
t5t1 +

41

54
t45.
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From this calculation one can see that the condition {Hk, Hj} = ∂Hk

∂tj
− ∂Hj

∂tk
= 0 holds, for k, j = 1, 2, 5.

Conversely, suppose we start with the functions H5, H2, and H1. We check only that the first Hamiltonian
flow is equivalent to the string equation (1.1); the remaining equations can be obtained in an identical manner.
Given H1, Hamilton’s equations in the variable t1 read

Q′
U =

∂H1

∂PU
= QW , Q′

V =
∂H1

∂PV
= PV , Q′

W =
∂H1

∂PW
= 12PW + 2t5QU − 2t25,

P ′
U = − ∂H1

∂QU
=

1

2
Q3

U +
3

2
Q2

V +
3

8
Q2

W +
3

4
t5Q

2
U − 2t5PW − t25QU − 19

27
t35 + t1,

P ′
V = − ∂H1

∂QV
= 3QUQV − t5QV − 2t2, P ′

W = − ∂H1

∂QW
= 12PW − 2t5QU − 2t25.

If we define U := QU + 4
3 t5, V := QV , then the first three equations tell us that QW = U ′, PV = V ′, and

PW = 1
12U

′′ − 1
6 t5U + 7

18 t
2
5. Making these substitutions into the equation P ′

V = − ∂H1

∂QV
, we obtain

V ′′ = 3UV − 5t5V − 2t2,

which is the second part of the string equation. Differentiating the equation P ′
W = − ∂H1

∂QW
once more with

respect to t1, and inserting the expression for P ′
U , we obtain the first part of the string equation.

Remark 3.1. (Homogeneous changes of coordinate.) Although the explicit equations for the Hamiltonians
are rather unwieldy, the Hamiltonians themselves enjoy some nice properties, as we shall see in the subsequent
remarks. The first observation one can make is that H1, H2, and H5 are weighted homogeneous polynomials,
in the following sense.

Proposition 3.1. Fix κ ∈ C \{0}. Under the change of variables

(QU , QV , QW , PU , PV , PW , t1, t2, t5) 7→ (κ2QU , κ
3QV , κ

3QW , κ5PU , κ
4PV , κ

4PW , κ6t1, κ
5t2, κ

2t5), (3.10)

the Hamiltonians H1, H2, H5 transform as

(H1, H2, H5) 7→ (κ8H1, κ
9H2, κ

12H5). (3.11)

The proof of this proposition follows from direct calculation using formulae (3.7)–(3.9).
One should note that the calculation of the integration constants in the above does not determine them

uniquely; we have made a choice which is consistent with the formulae we shall meet later, and the require-
ment that the Hamiltonians are weighted homogeneous polynomials.

Remark 3.2. (t2 → 0 limit.) There is a well-defined Hamiltonian system which emerges in the t2 → 0 limit,
obtained by simultaneously sending (QV , PV , t2) to zero. The result is a 2 + 2-dimensional completely inte-
grable non-autonomous Hamiltonian system, in the variables (QU , QW , PU , PW , t1, t5). The corresponding
Hamiltonians are obtained by directly setting QV = PV = t2 = 0 in Formulas (3.7)–(3.9). This Hamiltonian
system corresponds to the Z2-symmetric reduction that we shall study in Section 4.3.

Remark 3.3. (Okamoto τ -function and a stronger integrability condition.) The above proposition also
provides us with another useful object: since

∂Hj

∂tk
− ∂Hk

∂tj
= 0, k, j = 1, 2, 5, (3.12)

we have the following corollary:

Corollary 3.1. Consider the differential

ωOkamoto := H5dt5 +H2dt2 +H1dt1. (3.13)

and let d denote the exterior differential in the variables t5, t2, t1. Then, ωOkamoto is closed:

dωOkamoto = 0. (3.14)
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Thus, we can locally integrate this differential up to a function on the parameter space, τ = e
´
ωOkamoto .

This observation for similar Painlevé systems was made by Okamoto in [Oka81; Oka99], and was used as the
definition of the τ -differential for such equations. This definition of the τ -function is perhaps less familiar to
the readership than the usual isomonodromic τ -function defined by Jimbo, Miwa, and Ueno (JMU) [JMU81].
As we shall see in Section 5, the Okamoto definition coincides (up to an overall multiplicative constant) with
the JMU isomonodromic τ -function.

As a final remark, one can calculate that the coordinates we use here actually satisfy a stronger condition
than (3.12) still: we have that

∂

∂tk

∣∣∣∣
P,Q=const.

Hj =
∂Hj

∂tk
, (3.15)

for any k, j = 1, 2, 5.

3.2. A formal derivation of the Darboux coordinates.

We did not explain how we found the Darboux coordinates (3.2),(3.3), we only demonstrated that they
indeed work for the purposes of Proposition (3.1). Construction of Darboux coordinates for closely related
systems has been performed in [BHH23] (see also the earlier work [BM05]). However, these methods do
not apply directly to our system: The leading term of the matrix P(λ; t5, t2, t1) is not diagonalizable, and
moreover (as we shall soon see) upon an appropriate gauge transformation which makes the leading term
diagonal, the connection matrix develops a resonant Fuchsian singularity at the origin. This is similar to
what occurs in the case of Painlevé I, cf. [JM81], formulae C2 and C5. Here, we furnish a formal argument
on where this choice of coordinates comes from, and how one might develop a good set of such coordinates
in a similar setting.

An outline of this procedure is as follows:

(i.) Construct an appropriate Hamiltonian H̃1, i.e. a function satisfying ∂H̃1

∂t1
= −U .

(ii.) Require that U, V are two of the canonical coordinates. Assume all other canonical coordinates are
independent of U, V .

(iii.) Use Hamilton’s equations to identify the variables canonically conjugate to U, V . If this procedure
fails, then the ansatz that the other canonical coordinates are independent of U, V is incorrect; find a
minimal modification of this ansatz, and proceed.

(iv.) Identify the remaining independent coordinates Q̃W , P̃W ,

(v.) Use the procedure of the preceding proof to construct the other Hamiltonians H̃2, H̃5. If these Hamil-

tonians satisfy {H̃k, H̃j} =
∂H̃j

∂tk
− ∂H̃k

∂tj
= 0, for k = 1, 2, 5, then we are done. If not, then proceed to

the next step.

(vi.) Find a canonical transformation (Q̃, P̃ , H̃) → (Q,P,H) such that, in the new coordinate system,

{Hk, Hj} =
∂Hj

∂tk
− ∂Hk

∂tj
= 0.

We begin with step (i.). We search for a function H̃1 such that ∂H̃1

∂t1
= −U . From this, we can infer that

H̃1 = −t1U + f(U,U ′, U ′′, U ′′′, V, V ′, t5, t2, t1),

for some undetermined function f . The relation ∂H̃1

∂t1
= −U , along with the above formula, imply that

∂

∂t1
[f(U,U ′, U ′′, U ′′′, V, V ′, t5, t2, t1)] = −t1U ′

= −
(

1

12
U (4) − 3

4
U ′′U − 3

8
(U ′)2 +

3

2
V 2 +

1

2
U3 − 5

12
t5
(
3U2 − U ′′))U ′

=
∂

∂t1

[
1

24
(U ′′)2 − 1

12
U ′′′U ′ +

3

8
U(U ′)2 − 1

8
U4 − 5

24
t5
[
(U ′)2 − 2U3

]]
− 3

2
U ′V 2,
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where we have used the string equation (1.1) to substitute for t1. Using the identity 3
2U

′V 2 = 3
2

∂
∂t1

[
UV 2

]
−

3UV V ′, and using the other half of the string equation to substitute 3UV = V ′′+5t5V +2t2, we obtain that

∂

∂t1
[f(U,U ′, U ′′, U ′′′, V, V ′, t5, t2, x)]

=
∂

∂t1

[
1

24
(U ′′)2 − 1

12
U ′′′U ′ +

3

8
U(U ′)2 − 1

8
U4 − 5

24
t5
[
(U ′)2 − 2U3

]
− 3

2
UV 2

]
+ 3UV V ′

=
∂

∂t1

[
1

24
(U ′′)2 − 1

12
U ′′′U ′ +

3

8
U(U ′)2 − 1

8
U4 − 5

24
t5
[
(U ′)2 − 2U3

]
− 3

2
UV 2

]
+ (V ′′ + 5t5V + 2t2)V

′

=
∂

∂t1

[
1

24
(U ′′)2 − 1

12
U ′′′U ′ +

3

8
U(U ′)2 − 1

8
U4 − 5

24
t5
[
(U ′)2 − 2U3

]
− 3

2
UV 2 +

1

2
(V ′)2 +

5

2
t5V

2 + 2t2V

]
.

Thus, up to an overall integration constant (functionally independent of U ,V ), we can write H̃1 as

H̃1 =
1

24
(U ′′)2 − 1

12
U ′′′U ′ +

3

8
U(U ′)2 − 1

8
U4 − 5

24
t5
[
(U ′)2 − 2U3

]
− 3

2
UV 2 +

1

2
(V ′)2 +

5

2
t5V

2 +2t2V − t1U.

We now require that Q̃U := U, Q̃V := V . We must search for a third coordinate, as well as canonically
conjugate variables to the Q̃a’s. We identify the variable P̃V conjugate to Q̃V first, as this turns out to
be the simplest situation. We make the assumption that P̃U , P̃V , and the other variables Q̃W , P̃W do not
depend explicitly on U, V ; thus, we can calculate derivatives of H1 with respect to Q̃U , Q̃V without any
further knowledge of the form of the unknown coordinates. If Hamilton’s equations are to hold, we must
have that

∂

∂t1
P̃V = − ∂H̃1

∂Q̃V

= 3Q̃U Q̃V − 5t5Q̃V − 2t2 = Q̃′′
V ,

where we have used the string equation in the last equality. Thus, we see that we may take P̃V = V ′. A
similar calculation for Q̃U yields that

∂

∂t1
P̃U = − ∂H̃1

∂Q̃U

= − 1

12
U (4) +

5

12
t5U

′′ − 3

4
UU ′′,

which cannot be integrated fully, due to the presence of the term 3
4UU

′′. This suggests that our original

assumption that the P̃U coordinate was independent of U is incorrect, which effects our calculation of the

partial derivative ∂H̃1

∂Q̃U
. A good replacement ansatz for P̃U is then P̃U = − 1

12U
′′′ + αUU ′ + βt5U

′, for

some constants α, β, to be determined4. With this definition of P̃U , and still assuming that the remaining

coordinates Q̃W , P̃W are independent of U, V , we recalculate ∂H̃1

∂Q̃U
:

∂

∂t1
P̃U = − ∂H̃1

∂Q̃U

= − 1

12
U (4) +

5

12
t5U

′′ − 3

4
UU ′′ − α(U ′)2.

When α = 3
4 , the right hand side can be integrated. The result is that

∂

∂t1
P̃U =

∂

∂t1

[
− 1

12
U ′′′ +

5

12
t5U

′ − 3

4
UU ′

]
,

which implies that β = 5
12 in our ansatz. Thus, the only remaining independent functions that have not been

accounted for are U ′, U ′′. We take the simplest choice: Q̃W := U ′, and search for a canonically conjugate
variable. We have that

∂

∂t1
P̃W = − ∂H̃1

∂Q̃W

= − 1

12
U ′′′,

4This ansatz is essentially what one might infer by integrating − 1
12
U(4) + 5

12
t5U ′′ − 3

4
UU ′′, since ∂

∂t1
UU ′ = (U ′)2 + UU ′′.
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and so we may take P̃W := − 1
12U

′′. Our system of coordinates is then

Q̃U : = U, Q̃V := V, Q̃W := U ′.

P̃U : =
1

4

(
3UU ′ − 1

3
U ′′′ − 5

3
t5U

′
)
, P̃V := V ′, P̃W :=

1

12
U ′′.

One can readily check that the choice of coordinates we have made is consistent with the remaining Hamilton
equations. In other words, one can also consistently construct functions H̃2, H̃5, such that the equations

∂Q̃a

∂tk
=
∂H̃k

∂P̃a

,
∂P̃a

∂tk
= −∂H̃k

∂Q̃a

hold, for a ∈ {U, V,W}, k = 1, 2, 5. Furthermore, one can find integration constants (functions independent
of the Hamiltonian variables) such that the following equations hold:{

H̃k, H̃j

}
+
∂H̃k

∂tj
− ∂H̃j

∂tk
= 0,

for k, j = 1, 2, 5.
One might be tempted to think that we have completed our task, and the system of coordinates we

have found here works just as well as the one we used in Proposition 3.1. However, there is an additional
constraint we have imposed in Proposition 3.1 that is not satisfied here: we required that the quantities
{Hk, Hj}, ∂Hk

∂tj
− ∂Hj

∂tk
to vanish separately :

{Hk, Hj} = 0 =
∂Hk

∂tj
− ∂Hj

∂tk
. (3.16)

One can readily check that the system of Hamiltonians H̃k do not satisfy this condition. Indeed, this
condition is quite important, as if we try to define a τ -differential as in (3.13) using the tilde-coordinates,
one finds that this differential is not closed.

Of course, canonical coordinates for Hamiltonian systems are not unique: one can always make a canonical
transformation to obtain a new set of coordinates. In other words, if we define the non-degenerate 2-form

Ω :=
∑

a∈{U,V,W}

dPa ∧ dQa −
∑

k∈{1,2,5}

dHk ∧ dtk, (3.17)

then any change of coordinates (Q̃a, P̃a, H̃k, t5, t2, t1) → (Qa, Pa, Hk, t5, t2, t1) which preserves Ω will retain
the form of Hamilton’s equations. One might hope to find a canonical transformation to some system of
coordinates for which the Hamiltonians in these coordinates satisfy the condition (3.16). This is achievable;
the result is stated in the following Proposition.

Proposition 3.2. The change of coordinates

QU := Q̃U − 4

3
t5, QV := Q̃V , QW := Q̃W , (3.18)

PU := P̃U − 1

6
t5Q̃W , PV := P̃V , PW := P̃W − 1

6
t5Q̃U +

7

18
t25, (3.19)

H1 := H̃1, H2 := H̃2, H5 := H̃5 −
4

3
P̃U +

1

6
Q̃U Q̃W − 5

9
t5Q̃W (3.20)

is canonical.
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Proof. The proof is a straightforward calculation; we must show the equality Ω̃ = Ω. On one hand, we have
that

dH5 ∧ dt5 = dH̃5 ∧ dt5 −
4

3
dP̃U ∧ dt5 +

1

6
Q̃UdQ̃W ∧ dt5 +

1

6
Q̃W dQ̃U ∧ dt5 −

5

9
t5dQ̃W ∧ dt5︸ ︷︷ ︸

γ

:= dH̃5 ∧ dt5 + γ.

Furthermore,

dPU ∧ dQU = dP̃U ∧ dQ̃U − 4

3
dP̃U ∧ dt5 −

1

6
t5dQ̃W ∧ dQ̃U +

1

6
Q̃W dQ̃U ∧ dt5 +

2

9
t5dQ̃W ∧ dt5,

dPW ∧ dQW = dP̃W ∧ dQ̃W − 1

6
t5dQ̃U ∧ dQ̃W +

1

6
Q̃UdQ̃W ∧ dt5 −

7

9
dQ̃W ∧ dt5.

Summing these contributions, we see that

dPU ∧ dQU + dPW ∧ dQW = dP̃U ∧ dQ̃U + dP̃W ∧ dQ̃W + γ.

Since dPV ∧ dQV = dP̃W ∧ dQ̃V , dH1 ∧ dt1 = dH̃1 ∧ dt1, dH2 ∧ dt2 = dH̃2 ∧ dt2, we see that Ω̃ = Ω.

One should immediately recognize the coordinates obtained here as those of Proposition 3.1.

Remark 3.4. Let us comment on how this canonical transformation might be hypothesized. One first notices

that, in the tilde-coordinate system, the bracket {H̃1, H̃2} = 0, and also that ∂H̃1

∂t2
= ∂H̃2

∂t1
. This suggests

that the transformation we make should only involve the Hamiltonian H̃5. Furthermore, one should first
attempt to make changes of variables involving only P̃U , Q̃U , P̃W , Q̃W , as P̃V , Q̃V do not interact with these
variables. The requirement that the condition (3.16) then essentially fixes the form of the transformation.

To summarize, the philosophy is the following: find some set of Darboux coordinates that realize the
string equation (1.1), (2.24)–(2.27) as a Hamiltonian system. There is a natural way to make an educated
guess. Then, all one must do is make a canonical transformation to a more convenient set of coordinates,
i.e. one satisfying the condition (3.16).

4. The Isomonodromy Approach.

In this section, we study the isomonodromy approach to the (3, 4) string equation. A Riemann-Hilbert
formulation of this equation is given, and the various symmetries of the Riemann-Hilbert problem are studied.

We now want to study the monodromy preserving deformations of the equation

∂Ψ

∂λ
= L(λ; t5, t2, x)Ψ, (4.1)

where L(λ; t5, t2, x) is given by the expression

L(λ; t5, t2, x) =
(

0 0 1
0 0 0
0 0 0

)
λ2 +

(
0 2t5+

1
4QU −QV

1 0 2t5+
1
4QU

0 1 0

)
λ (4.2)

+

(
1
8Q

2
U−PW+ 1

2PV − 1
4 t5QU− 1

6 t
2
5 L12 L13

1
2QV − 1

4QW 2PW− 1
4Q

2
U+ 1

2 t5QU+ 1
3 t

2
5 L23

t5− 1
2QU

1
2QV + 1

4QW
1
8Q

2
U−PW− 1

2PV − 1
4 t5QU− 1

6 t
2
5

)
,

and

L12 :=
5

16
QUQW − PU +

1

4
t5QW − 3

8
QUQV − 1

2
t5QV + t2,

L13 :=
1

16
Q2

W +
7

32
Q3

U +
3

4
Q2

V − 3

2
PWQU +

5

16
t5Q

2
U − 2t5PW +

1

4
t25QU + x+

8

27
t35,

L23 := − 5

16
QUQW + PU − 1

4
t5QW − 3

8
QUQV − 1

2
t5QV + t2.
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(Note that this expression for L coincides with the definition of P before, with the definitions (3.2), (3.3)
taken into account).

Remark 4.1. Similarly to the works [BHH23; BM05], one can recover the Hamiltonians of the previous
section from the spectral curve. The spectral curve corresponding to L(λ; t5, t2, x) admits an explicit repre-
sentation in terms of these Hamiltonians:

0 = det(ξI− L(λ; t5, t2, x)) = ξ3 −
[
5t5λ

2 + 2t2λ+H1 +
5

3
t5x

]
ξ + ℓ0(λ; t5, t2, x), (4.3)

where ℓ0 is the degree 4 polynomial

ℓ0(λ; t5, t2, x) = λ4 +

(
125

27
t35 + x

)
λ2 +

(
1

2
H2 +

50

9
t25t2

)
λ+

1

2
H5 +

25

18
t25H1 +

20

9
t5t2 +

1

3
x2. (4.4)

However, as an ODE, Equation (4.1) is “defective”; the leading coefficient at the only singularity of L
(λ = ∞) is not diagonalizable. Thus, the usual technology used for linear differential equations with rational
coefficients [Was02; JMU81; Fok+06] does not directly apply. This situation is reminiscent of the situation
for the so called “Fuchs-Garnier” Lax pair for Painlevé I (see C2 of [JM81]). The resolution in the case of
Painlevé I, discovered in [JM81], is to make an appropriate gauge transformation which (after a change of
variables λ = ζ2) diagonalizes the leading term at infinity, at the price of introducing a resonant Fuchsian
singularity at the origin (see C5 of [JM81]).

The first goal of this section is to try and find an analogous transformation for the equation (4.1). We
have the following Proposition:

Proposition 4.1. Define the matrix

g(λ) =
i√
3

λ1/3 0 0
0 1 0
0 0 λ−1/3


︸ ︷︷ ︸

λ∆/3

1 ω ω2

1 1 1
1 ω2 ω


︸ ︷︷ ︸

−i
√
3U

, (4.5)

and set Ψ := gΦ (note that det g(λ) = 1, ∆ = diag (1, 0,−1), and that U†U = UU† = I). Then, if Ψ satisfies
the ODE (4.1), after the change of variables λ = ζ3, the function Φ := Φ(ζ; t5, t2, x) satisfies the ODE

∂Φ

∂ζ
= L(ζ; t5, t2, x)Φ, (4.6)

where

L(ζ) = 3

1 0 0
0 ω 0
0 0 ω2

 ζ6 +

4∑
k=0

Lkζ
k +

i√
3

(
0 −1 1
1 0 −1
−1 1 0

)
ζ

. (4.7)

Proof. The proof is a direct calculation. Explicitly, one has that L(ζ) = 3ζ2L̃(ζ3), where

L̃(λ) =

[
g−1L(λ)g − g−1 dg

dλ

]
.

Remark 4.2. Although the proof of the above proposition is straightforward, some remarks are in order.

1. Note that the matrix U conjugates L from the outside; if we had instead simply defined the gauge
transformation simply by g(λ) := λ∆/3, and subsequently made the change of variables λ = ζ3, the
effect we set out for (making the leading coefficient at infinity diagonalizable) would still be achieved.
In other words, after an appropriate change of variables, λ∆/3 makes the leading coefficient of L at
infinity diagonalizable, and U makes this coefficient diagonal.
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2. The choice of such g is not unique; one may also additionally multiply g(λ) on the right by any diagonal
invertible matrix, and still achieve the desired result. This gauge freedom corresponds to the freedom
in the choice of diagonalization matrix.

3. We stress that this transformation is analogous to the one made in [JM81] for Painlevé I; indeed, here
we also see the appearance of a resonant singularity at the origin. Note that the residue at 0 of L has
eigenvalues ±1, 0. Thus, there is no monodromy around this singularity: the solution will have a first
order pole at zero. The form of the solution near ζ = 0 is

Φ(ζ) =
[
U−1 +O(ζ)

]
ζ−∆ =

U−1E11

ζ
+O(1), ζ → 0, (4.8)

We can also bring the other Lax matrices into the new gauge:

Proposition 4.2. Under the gauge transformation induced by g(λ), and the coordinate transformation
λ = ζ3, the matrices Q, M , and E transform to

N (ζ; t5, t2, x) := g−1Q(ζ3; t5, t2, x)g, M(ζ; t5, t2, x) := g−1M(ζ3; t5, t2, x)g, E(ζ; t5, t2, x) := g−1E(ζ3; t5, t2, x)g,

where the matrices N , M, E are given by

N (ζ; t5, t2, x) :=

1 0 0
0 ω 0
0 0 ω2

 ζ +
N−1

ζ
−

1
2V ·D0

ζ2
,

M(ζ; t5, t2, x) :=

1 0 0
0 ω2 0
0 0 ω

 ζ2 +

0∑
k=−1

Mkζ
k +

1
12

(
9
4U

2 − U ′′) ·D0

ζ2
,

E(ζ; t5, t2, x) :=

1 0 0
0 ω2 0
0 0 ω

 ζ5 +

3∑
k=−1

Ekζk +
1
24

(
U ′′V − 9

2U
2V + U ′V ′ + 8t2U + 10

3 t5(10t5 − 4t2)
)
·D0

ζ2
,

where the matrix D0 is the nilpotent matrix

D0 := 3 · U−1E13U =

(
1 ω2 ω
ω2 ω 1
ω 1 ω2

)
. (4.9)

Note that all of the above matrices have a second-order pole at ζ = 0; this is due to the resonant
singularity in the “spectral” matrix L(ζ; t5, t2, x). Further, observe that the most singular terms in each
of these matrices is a multiple of the same nilpotent matrix. We will re-derive these matrices from the
isomonodromic deformations of the system (4.6) later.

We now return to the analysis of the equation (4.6). Since L has diagonal leading coefficient at infinity,
many useful theorems in the theory of linear ODEs with rational coefficients now apply. For example, we
can claim that

Proposition 4.3. The ODE (4.6) admits the formal series solution at ζ = ∞

Φ(ζ) =

[
I+

Φ1

ζ
+

Φ2

ζ2
+O(ζ−3)

]
eΘ(ζ;t5,t2,x), (4.10)

where Θ(ζ; t5, t2, x) = diag (ξ1(ζ; t5, t2, x), ξ2(ζ; t5, t2, x), ξ3(ζ; t5, t2, x)), and

ξj(ζ; t5, t2, x) =
3

7
ωj−1ζ7 + ω1−jt5ζ

5 + ω1−jt2ζ
2 + ωj−1xζ, (4.11)

j = 1, 2, 3.
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Proof. We refer to [Was02; Fok+06; JMU81] for the details. The exact form the exponential part of the
asymptotics can be inferred by considering the eigenvalues of the matrix L(ζ; t5, t2, x); indeed, one can
readily check that the expressions ξj(ζ; t5, t2, x) are the principal part of the eigenvalues of L(ζ; t5, t2, x) at
ζ = ∞.

Remark 4.3. The previous proposition implies in turn that (by “undoing” the gauge transformation) that
Ψ admits the formal expansion

Ψ(λ) = g(λ)

[
I+

Φ1

λ1/3
+

Φ2

λ2/3
+O(λ−3)

]
eΘ(λ1/3;t5,t2,x). (4.12)

Note that the coefficients in the subexponential part of the expansion agree with the corresponding coefficients
of Φ. These asymptotics are precisely what appear in the local parametrices of the critical quartic 2-matrix
model. Thus, we can use results about Φ to construct our model Riemann-Hilbert problem.

The explicit form of the coefficient matrices Lk is not so important at this stage; the only immediately
relevant information is the form of the formal asymptotic expansion for Φ(ζ), as in Equation (4.10).

Remark 4.4. For completeness, we record the form of the “regularized” spectral curve here:

0 = det [ξI− L(ζ; t5, t2, x)] = ξ3 −
[
45t5ζ

10 + 18t2ζ
7 +

(
9

2
H1 + 15t5t1

)
ζ4 − 3

∂H1

∂PV
ζ +

1

ζ2

]
ξ − ℓ̃0, (4.13)

where ℓ̃0 = ℓ̃0(λ; t5, t2, t1) is

ℓ̃0(λ; t5, t2, t1) = 27ζ18 + (125t35 + 27x)ζ12 +

(
27

2
H2 + 150t25t2

)
ζ9 +

(
27

2
H5 +

75

2
t25H1 − 9

∂H2

∂PV

+ 60t5t
2
2 + 9x2

)
ζ6 − ∂

∂PV

(
9H5 + 25t25H1

)
ζ3 − 6PW +

3

4
Q2

U − 3

2
t5QU − t25. (4.14)

Before proceeding to the construction of an appropriate Riemann-Hilbert problem for Φ, we first study
some of the symmetries of the equation.

4.1. Symmetry of Φ(ζ).

Proposition 4.4. Define the matrix

S :=
(

0 1 0
0 0 1
1 0 0

)
. (4.15)

Then, L(ζ; t5, t2, x) satisfies the symmetry condition

L(ζ; t5, t2, x) = ωSTL(ωζ; t5, t2, x)S. (4.16)

Proof. The proof of this fact follows almost immediately from the fact that g(ωζ(λ)) = g(ζ(λ))ST . By the
definition of L(ζ), we have that:

ωL(ωζ) = 3ζ2
[
g−1(ωζ)L(ζ3)g(ωζ)− g−1(ωζ)

dg

dλ
(ωζ)

]
= 3ζ2S

[
g−1(ζ)L(ζ3)g(ζ)− g−1(ζ)

dg

dλ
(ζ)

]
ST

= SL(ζ; t5, t2, x)ST ;

multiplication on the left by ST and the right by S yields the result.
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Similar argumentation yields that the matrices E ,M, and N have the symmetries

STE(ωζ; t5, t2, x)S = E(ζ; t5, t2, x), STM(ωζ; t5, t2, x)S = M(ζ; t5, t2, x),

STN (ωζ; t5, t2, x)S = N (ζ; t5, t2, x). (4.17)

Corollary 4.1. The formal expansion Φ(ζ; t5, t2, x) satisfies the symmetry condition

Φ(ζ; t5, t2, x) = STΦ(ωζ; t5, t2, x)S. (4.18)

Proof. Denote the right hand side of the above equation by Φ̃(ζ; t5, t2, x) := STΦ(ωζ; t5, t2, x)S. Then, by
direct calculation,

dΦ̃

dζ
= ωST dΦ

dζ
(ωζ; t5, t2, x)S = ωSTL(ωζ)Φ(ωζ)S = ωSTL(ωζ)SΦ̃(ζ) = L(ζ)Φ̃(ζ),

where the last line follows from Lemma (4.4). Thus, both Φ̃(ζ) and Φ(ζ) solve the same equation; furthermore,
since eΘ(ζ) = ST eΘ(ωζ)S, we see that Φ̃(ζ) = Φ(ζ).

The above corollary in turn implies the coefficients Φk of the formal expansion satisfy

Φk = ω−kSTΦkS. (4.19)

This fact will become particularly useful when we begin solving for the coefficients Φk in terms of the
coefficients of L.

4.2. Proof of Proposition (1.1).

In this subsection, we prove a version of Proposition (1.1). What is contained here is the direct analog
of Proposition 5.6, 5.7 and Theorem 5.3 of [Fok+06] for the Painlevé I system. Before formulating the
Proposition, we state a technical lemma:

Lemma 4.1. Consider the functions ξj(ζ) = ξj(ζ; t5, t2, x) defined by Equation (4.11), and fix ϵ > 0. For
any t5, t2, x in some fixed compact set K ⊂ C3, there exists a constant M =MK such that, for all |ζ| > MK ,
and for any ℓ ∈ Z,

Re ξ1(ζ) < Re ξ2(ζ),
π

21
(6ℓ+ 2) + ϵ < arg ζ <

π

21
(6ℓ+ 5)− ϵ, (4.20)

Re ξ2(ζ) < Re ξ3(ζ),
π

21
(6ℓ) + ϵ < arg ζ <

π

21
(6ℓ+ 3)− ϵ, (4.21)

Re ξ1(ζ) < Re ξ3(ζ),
π

21
(6ℓ+ 1) + ϵ < arg ζ <

π

21
(6ℓ+ 4)− ϵ. (4.22)

Proof. The lemma follows from straightforward calculation; one has that

1

|ζ|7
Re ξj(ζ) =

3

7
cos

[
7 arg ζ +

2π

3
(j − 1)

] (
1 +O(|ζ|−2)

)
,

and so it is clear that for |ζ| taken to be sufficiently large, Re ξj(ζ) is dominated by the first term. Comparison
of the values of cos(7θ + 2π

3 (j − 1)) functions for different values of the argument θ yields the result.

We can now formulate and prove the following Proposition, which is a more precise statement of (1.1).

Proposition 4.5. Let U(t5, t2, x), V (t5, t2, x) solve the string equation (1.1), (2.24)–(2.27). Let Φ(k)(ζ; t5, t2, x)
be solutions to the linear ODE (4.6), which are uniquely determined by the condition that

Φ(k)(ζ; t5, t2, x) =
[
I+O(ζ−1)

]
eΘ(ζ;t5,t2,x), ζ → ∞, ζ ∈ Ωk, (4.23)
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where the open sectors Ωk are defined to be

Ωk :=
{
ζ ∈ C :

π

21
(k − 3) < arg ζ <

π

21
(k + 1)

}
, k = 1, ..., 42. (4.24)

The functions Φ(k) are related by

Φ(k+1)(ζ; t5, t2, x) = Φ(k)(ζ; t5, t2, x)Sk, k = 1, ..., 41, Φ(1)(ζ; t5, t2, x) = Φ(42)(e2πiζ; t5, t2, x)S42

where the matrices Sk have the form

Sk = I+ sk



E32, k ≡ 0 mod 6,

E31, k ≡ 1 mod 6,

E21, k ≡ 2 mod 6,

E23, k ≡ 3 mod 6,

E13. k ≡ 4 mod 6,

E12, k ≡ 5 mod 6.

(4.25)

Furthermore, the Sk satisfy the identities

Sk+14 = STSkS, S1 · · ·S14 = ST . (4.26)

In particular it follows from the above that, sk+14 = sk, and that generically there are only 6 independent
Stokes parameters. Furthermore, denote Φ(0)(ζ; t5, t2, x) to be the solution of (4.6) near ζ = 0, normalized
as follows:

Φ(0)(ζ; t5, t2, x) =
[
U−1 +O(ζ)

]
ζ−∆. (4.27)

The functions Φ(1)(ζ; t5, t2, x) and Φ(0)(ζ; t5, t2, x) are related by the unimodular constant matrix C:

Φ(1)(ζ; t5, t2, x) = Φ(0)(ζ; t5, t2, x)C, det C = 1. (4.28)

The equations (4.27),(4.28) imply that C has three free parameters. Thus, the string equation (1.1), (2.24)–
(2.27) are associated with 6 + 3 = 9 constant monodromy data.

Proof. Standard ODE theory [Was02; Fok+06; JMU81] establishes that the functions Φ(k)(ζ; t5, t2, x) are
indeed uniquely specified by the asymptotic condition (4.23). The structure of the Stokes matrices Sk can
be inferred as follows. Note that Φ(k), Φ(k+1) are both defined on the sector

δΩk := Ωk ∩ Ωk+1 =
{
ζ ∈ C :

π

21
(k − 2) < arg ζ <

π

21
(k + 1)

}
.

Since both Φ(k), Φ(k+1) satisfy equation (4.6), their ratio
(
Φ(k)

)−1
Φ(k+1) =: Sk is a constant matrix. We

have that

Sk = lim
ζ→∞
ζ∈δΩk

(
Φ(k)

)−1

Φ(k+1) = lim
ζ→∞
ζ∈δΩk

e−Θ(ζ)
[
I+O(ζ−1)

]
eΘ(ζ).

Equivalently, component-wise,

(Sk)ij = lim
ζ→∞
ζ∈δΩk

eξj(ζ)−ξi(ζ)
[
δij +O(ζ−1)

]
,

where the functions ξj(ζ) = ξj(ζ; t5, t2, x) are defined by Equation (4.11). The above formula implies
immediately that the diagonal components of Sk are all identically 1. The all but one of the remaining
entries can be determined by taking the above limit in various parts of the sector. We furnish the proof
here for the case k = 6ℓ + 1; the structure of the Stokes matrices in the other cases may be obtained in an
identical manner.
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If k = 6ℓ + 1, consider first the sector
{

π
21 (6ℓ− 1) < arg ζ < π

21 (6ℓ)
}

⊂ δΩk. Using Lemma 4.1, we
see that there is a definite ordering of Re ξj(ζ) in this sector for |ζ| sufficiently large, given by Re ξ3(ζ) <
Re ξ1(ζ) < Re ξ2(ζ). This implies that (Sk)21 = (Sk)23 = (Sk)13 = 0. On the other hand, in the sector{

π
21 (6ℓ) < arg ζ < π

21 (6ℓ+ 1)
}
⊂ δΩk, for |ζ| sufficiently large the ordering Re ξ3(ζ) < Re ξ2(ζ) < Re ξ1(ζ)

holds, and so we find that (Sk)12 = 0 in addition. Finally, in the sector
{

π
21 (6ℓ+ 1) < arg ζ < π

21 (6ℓ+ 2)
}
⊂

δΩk, for |ζ| sufficiently large the ordering Re ξ2(ζ) < Re ξ3(ζ) < Re ξ1(ζ) holds, and so we see that (Sk)32 =
0. The only entry which cannot be determined by the above line of argumentation is (Sk)31; thus, the two
solutions are related by

Φ(6ℓ+2) = Φ(6ℓ+1) [I+ s6j+1E31] .

Now, Proposition 4.4 and Equations (4.17) imply that, if Φ(ζ; t5, t2, x) is a solution to the linearization
equations, then so is STΦ(ωζ; t5, t2, x)S. Since ζ ∈ Ωk implies that ωζ ∈ Ωk+14, we obtain the relations

Φ(k)(ζ; t5, t2, x) = STΦ(k+14)(ωζ; t5, t2, x)S ⇐⇒ SΦ(k)(ω2ζ; t5, t2, x)ST = Φ(k+14)(ζ; t5, t2, x).

This implies the relation STSkS = Sk+14; one can further check that this is consistent with the formula (4.25)
for the Stokes matrices, i.e. the only relation that this implies is the following one among the parameters:
sk+14 = sk. Furthermore, we have that

SΦ(1)(ζ; t5, t2, x)ST = Φ(15)(ωζ; t5, t2, x) = Φ(1)(ωζ; t5, t2, x)S1 · · ·S14,

which implies the following identity for the solution Ψ(0)(ζ; t5, t2, x) in a neighborhood of ζ = 0:

SΦ(0)(ζ; t5, t2, x)CST = Φ(0)(ωζ; t5, t2, x)CS1 · · ·S14

Using Equation (4.8), we further see that Φ(0)(ωζ; t5, t2, x) = SΦ(0)(ζ; t5, t2, x), and so

SΦ(0)(ζ; t5, t2, x)CST = Φ(0)(ωζ; t5, t2, x)CS1 · · ·S14 = SΦ(0)(ζ; t5, t2, x)CS1 · · ·S14.

Since SΦ(0)(ζ; t5, t2, x)C is invertible, we obtain the identity ST = S1 · · ·S14. Equations (4.26) imply that
there are only 6 independent Stokes parameters.

Now, let us show that the matrix C depends only on 3 independent parameters. Suppose Φ(0), Φ̃(0) are
two different solutions in a neighborhood of ζ = 0 which connect to Φ(1) through the matrices C, C̃. In other
words,

Φ(1) = Φ(0)C = Φ̃(0)C̃.
Now, the functions Φ(0)(ζ)ζ∆, Φ̃(0)(ζ)ζ∆ are holomorphic and invertible in a neighborhood of zero, and so
it follows that the matrix

J (ζ) := ζ−∆CC̃−1ζ∆

must be holomorphic and invertible as well. This places constraints on the matrix K := CC̃−1; we find that

K =

(
k11 0 0
k21 k22 0
k31 k32 k33

)
,

where the diagonal elements are subject to the constraint k11k22k33 = 1. Furthermore, one can utilize the
gauge freedom (cf. Remark 4.2, point 2.) to further eliminate two of the parameters below the diagonal.
This leaves three free parameters.

Remark 4.5. One can show that the generic solution to the constraint equations (4.26) is given by

s7 =
s1s3s6 − s2s6 + s1 + 1

W1
, s8 =

−s1s3W2 + s2W2 +W1 − s2s4 − s3
W1W2

,

s9 =
W1 − s2s4 − s3

W2
, s10 = −W1, s11 = −W2, s12 =

−W2 − s3s5 + s4
W1

, (4.29)

s13 =
−s4s6W1 − s5W1 +W2 + s3s5 − s4

W1W2
s14 =

−s1s4s6 − s1s5 − s6 + 1

W2
,
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with s1, ..., s6 free parameters, if

W1 := s1s3s5 − s1s4 − s2s5 − 1 ̸= 0 and W2 := s2s4s6 + s2s5 + s3s6 + 1 ̸= 0. (4.30)

There are many subcases if W1 or W2 vanish; we shall save the study of these for later. We now see that
there are generically 6 free Stokes parameters, which is consistent with the fact that the string equation (1.1)
is of order 4 + 2 = 6.

We now state the “converse” to the above: we formulate a Riemann-Hilbert problem associated to the
string equation.

Proposition 4.6. Let {Sk}42k=1 be the constant 3× 3 matrices defined by (4.25), satisfying relations (4.26).
Furthermore, let C be a constant 3× 3 matrix satisfying

det C = 1, KC ∼ C,

where K is any unimodular lower-triangular matrix as prescribed by the previous proposition, with ∼
denoting similarity equivalence. For ζ, t5, t2, x ∈ C, define the 3×3 sectionally analytic function X(ζ; t5, t2, x)
as follows:

X(ζ; t5, t2, x) :=

{
X(0)(ζ; t5, t2, x), |λ| < 1,

X(k)(ζ; t5, t2, x), λ ∈ Ωk ∩ {|λ| > 1}, k = 1, ..., 42,
(4.31)

where the sectors Ωk are defined as in (4.24). Finally, let X(ζ; t5, t2, x) solve the following Riemann-Hilbert
problem:

X(k+1)(ζ; t5, t2, x) = X(k)(ζ; t5, t2, x)e
Θ(ζ;t5,t2,x)Ske

−Θ(ζ;t5,t2,x), k = 1, ..., 42, X43 = X1.

X(1)(ζ; t5, t2, x) = X0(ζ; t5, t2, x)e
Θ(ζ;t5,t2,x)ζ−∆Ce−Θ(ζ;t5,t2,x), (4.32)

X(1)(ζ; t5, t2, x) = I+O(ζ−1), ζ → ∞,

where Θ(ζ; t5, t2, x), ∆ are as previously defined. Then, the above Riemann-Hilbert problem defined a unique
matrix X(λ; t5, t2, x) which is meromorphic in t5, t2, x. Furthermore, if we denote

X(1)(ζ; t5, t2, x) = I+
X

(1)
1 (t5, t2, x)

ζ
+
X

(1)
2 (t5, t2, x)

ζ2
+O(ζ−3), (4.33)

then

U(t5, t2, x) := 2
d

dx

[
X

(1)
1 (t5, t2, x)

]
11
,

V (t5, t2, x) := −2
d

dx

[
X

(1)
2 (t5, t2, x)−

1

2
X

(1)
1 (t5, t2, x)

2

]
11

= − d

dt2

[
X

(1)
1 (t5, t2, x)

]
11
,

Then U, V are meromorphic in t5, t2, x, and satisfy the string equation (1.1), (2.24)–(2.27).

Proof. Uniqueness of the solution to this problem follows from the usual Liouville argument. Observe that
if we set

Φ(k) = X(k)eΘ, k = 1, ..., 42, Φ(0) = X(0)eΘζ−∆,

Then the functions Φ(k) satisfy the relations (4.25), (4.28). By construction, we can find a system of contours
Γ such that the jump matrix of the above Riemann-Hilbert problem is smooth, and decays exponentially for
ζ → ∞ (for example, one may take the unit circle unioned with the rays {arg ζ = π

21k}
42
k=1 ∩ {|ζ| > 1}). By

standard Riemann-Hilbert arguments (cf. [Fok+06]), we obtain that the solution to this RHP exists, and
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depends meromorphically on its parameters t5, t2, x. Our next task is to extract the string equation from
the isomonodromy/zero-curvature conditions. Write the asymptotic expansion for Φ(ζ; t5, t2, x) as

Φ(ζ; t5, t2, x) =

(
I+

∞∑
k=1

Φk(t5, t2, x)

ζk

)
eΘ(ζ;t5,t2,x).

In general, we have the following procedure for determining the entries of the matrices Φk:

1. First, observe that we only have to determine the first row of Φk:

[Φk]1,· := [ak(t5, t2, x), bk(t5, t2, x), ck(t5, t2, x)].

The rest of the entries are determined by the symmetry constraint (4.19).

2. Using the formal expansion of Φ, form the series

dΦ

dζ
Φ−1 = L(ζ; t5, t2, x) +

∞∑
k=2

Rk(t5, t2, x)

ζk
;

where we use our previous expression for L (4.7) to parameterize the entries of the above. The
condition that Φ(ζ) satisfies the differential equation dΦ

dζ = LΦ determines the coefficients {bk, ck}7k=1

as differential polynomials in the variables U(t5, t2, x), V (t5, t2, x), and (for the kth function, k ≥ 3)
the functions {aj}k−2

j=1 ; it also imposes the constraint

Rk(t5, t2, x) ≡ 0, k = 2, 3, ...

3. The condition that the coefficients Rk vanish identically allows us to solve for the rest of the variables.
More precisely, for k = 2, 3, ..., we have that

(a) [Rk]11 can be solved for ak−1 as a differential polynomial in U(t5, t2, x), V (t5, t2, x),

(b) [Rk]12 can be solved for bk+6 as a differential polynomial in U(t5, t2, x), V (t5, t2, x), and the
functions {aj}k−2

j=1 ,

(c) [Rk]13 can be solved for ck+6 as a differential polynomial in U(t5, t2, x), V (t5, t2, x), and the
functions {aj}k−2

j=1 .

the symmetry constraint (4.19) implies that solving the above three equations makes Rk ≡ 0.

In particular, we obtain that

Φ1 =

(
− 1

2H1 0 0

0 −ω2

2 H1 0
0 0 −ω

2 H1

)
(4.34)

where d
dxH1 = −U is the Hamiltonian for the x-variable. Also,

Φ2 =

 1
8 (H1)

2− 1
4H2 − iω2√

3
12 U iω

√
3

12 U

iω2√
3

12 U ω( 1
8 (H1)

2− 1
4H2) − i

√
3

12 U

− iω
√

3
12 U i

√
3

12 U ω2( 1
8 (H1)

2− 1
4H2)

, (4.35)

where d
dxH2 = 2V is the Hamiltonian for the t2-variable.

Direct calculation then shows that:

1. The zero-curvature equation between the ζ, x variables is equivalent to the string equation (1.1);

2. The zero-curvature equation between the ζ, t2 variables is equivalent to the equations (2.24), (2.25),
modulo the string equation5,

5By “modulo the string equation” we mean that we must use the string equation to replace higher order derivatives of the
functions U, V in the variable x.
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3. The zero-curvature equation between the ζ, t5 variables is equivalent to the equations (2.26), (2.27),
modulo the string equation,

4. Modulo the string equation (1.1), (2.24)–(2.27), the other zero-curvature equations between (t5, t2), (t2, x),
and (t5, x), vanish identically. In other words, these equations result in no new differential conditions
on the functions U, V .

Remark 4.6. We list the 1-1 entries of the first few matrices Φk(t5, t2, x) here, for the convenience of the
reader.

[Φ1]11 = −1

2
H1,

[Φ2]11 =
1

8
(H1)

2 − 1

4
H2,

[Φ3]11 = − 1

48
(H1)

3 +
1

2
H1H2,

[Φ4]11 =
1

384
(H1)

4 +
1

32
(H1)

2H2 +
1

32
(H2)

2 − 5

24
t5H2 +

1

12
V ′ − 1

96
U2 +

1

6
t2x,

[Φ5]11 = − 1

38400
(H1)

5 +
1

192
(H1)

3H2 −
1

64
H1(H2)

2 − 1

24

(
V ′ − 1

8
U2

)
H1

− 5

48
t5H1H2 −

1

12
t2xH1 +

1

90
U ′′′ − 1

16
UU ′ − 1

24
UV − 1

10
H5,

[Φ6]11 =
1

46080
H6

1 − 1

1536
H4

1H2 +
1

256
H2

1H
2
2 − 1

384
H3

2 +
1

20
H5H1 +

5

192
t5H2H

2
1

− 1

768

(
U2 − 8V ′ − 16t2x

)
H2

1 − 5

96
t5H

2
2 +

1

180

(
15

4
UV +

45

8
UU ′ − U ′′′

)
H1

+
1

384

(
U2 − 8V ′ − 16t2x

)
H2 +

5

192
U3 − 1

72
U ′′U +

1

12
V 2 +

1

144
(U ′)2,

As a final result of this subsection, we state without proof the equivalent Riemann-Hilbert formulation
in the λ-plane.

Proposition 4.7. Define Stokes rays {γk}, k = ±1, ...,±7, as shown in Figure 4.1. Explicitly, these rays
are defined as

γ±k :=
{
λ
∣∣ arg λ = ± π

14
± π

7
(k − 1)

}
, k = 1, ..., 7.

Furthermore, set ρ := (−∞, 0); orient all of these rays outwards from the origin. Let {Sk, S−k}k=1,...,7 be a
collection of constant matrices of the form given in 4.1, subject to the constraint

S−7 · · ·S−1S1 · · ·S7 = ST . (4.36)

Consider the following Riemann-Hilbert problem for a 3× 3 sectionally analytic function Ψ(λ; t5, t2, x):
Ψ+(λ; t5, t2, x) = Ψ−(λ; t5, t2, x)Sk, λ ∈ γk, k = ±1, ...,±7,

Ψ+(λ; t5, t2, x) = Ψ−(λ; t5, t2, x)S, λ ∈ ρ,

Ψ(λ; t5, t2, x) = g(λ)
[
I+ Φ1

λ1/3 + Φ2

λ2/3 +O(λ−1)
]
eΘ(λ1/3;t5,t2,x), λ→ ∞,

(4.37)

where g(λ) is as defined in (4.5), and Φ1, Φ2 are as defined in Equations (4.34), (4.35). Then, the solution to
this Riemann-Hilbert problem is unique, provided the asymptotics (this includes Φ1,Φ2!) above are specified.
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Re λ

γ1

γ−1

γ2

γ−2

γ3

γ−3

γ4

γ−4

γ5

γ−5

γ6

γ−6

γ7

γ−7

ρ

I+ s1E21

I+ s−1E31

I+
s2
E23

I+
s−

2E
32

I+
s 3
E
1
3

I
+
s
−
3 E

1
2

I+
s 4
E

1
2

I
+

s
−
4 E

1
3

I
+
s
5 E

3
2

I+
s −

5
E
2
3

I+
s
6E

31

I+
s−

6
E21

I+ s7E21

I+ s−7E31

S

Figure 4.1: The Stokes lines γj , for the Riemann-Hilbert problem for Ψ(λ). Each of the Stokes sectors is
bisected by an anti-Stokes line, depicted by a dashed line. All contours are oriented outwards from the
origin. Note that we have also labelled the anti-Stokes line (−∞, 0] by ρ. The Stokes matrix Sk is the matrix
associated to the parameter sk; these parameters are not all independent, and must satisfy the equation
S−7 · · ·S−1S1 · · ·S7 = ST . The equivalent diagram for the Φ(ζ)-Riemann-Hilbert problem in the ζ plane
has 42 rays.
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Furthermore, The functions

U(t5, t2, x) := 2
d

dx
[Φ1(t5, t2, x)]11 ,

V (t5, t2, x) := −2
d

dx

[
Φ2(t5, t2, x)−

1

2
Φ1(t5, t2, x)

2

]
11

= − d

dt2
[Φ1(t5, t2, x)]11 ,

satisfy the string equation.

Remark 4.7. It is important to note that the solution to the above Riemann-Hilbert problem is not unique
unless the coefficients Φ1, Φ2 in the asymptotic expansion are specified. This is again a phenomenon shared
by the Painlevé I system [Kap04; KK93; Fok+06], and is ultimately due to the gauge freedom arising from
the resonant singularity at the origin. Since all choices of gauge lead to the same integrability condition, we
are free to fix a gauge, and work in it. Fixing a gauge is equivalent to making a choice of the form of Φ1,
Φ2, up to multiplication by a unimodular lower triangular matrix. This gauge freedom was first pointed out
in the work of Drinfeld and Sokolov [DS85].

4.3. A non-local Z2 symmetry reduction.

As it turns out, there is an additional (and generically, non-local) symmetry of the above Riemann-Hilbert
problem, which can be identified with the Z2-parity of the magnetic field. This is summarized in the following
Proposition:

Proposition 4.8. Let Φ(ζ; t5, t2, x) be a solution to the Riemann-Hilbert problem defined by Proposition
4.6. Then,

Φ(−ζ; t5,−t2, x)−T = Φ(ζ; t5, t2, x), (4.38)

provided the Stokes parameters satisfy

sk(t5, t2, x;U,U
′, U ′′, U ′′′, V, V ′) = −sk+7(t5,−t2, x;U,U ′, U ′′, U ′′′,−V,−V ′), k ∈ Z14 . (4.39)

Proof. Note that −Θ(−ξ; t5,−t2, x)T = Θ(ξ; t5, t2, x). This implies that the functions Φ(ζ; t5, t2, x) and
Φ(−ζ; t5,−t2, x)−T both have the same leading-order asymptotics at infinity. Thus, if these two functions
have the same jumps, then their ratio is holomorphic, and equal to the identity at infinity; the usual
Liouville argument then implies that Φ(ζ; t5, t2, x) = Φ(−ζ; t5,−t2, x)−T . Comparing the jumps of the these
two functions, we see that the Stokes matrices must satisfy

Sk(t5, t2, x, U, U
′, U ′′, U ′′′, V, V ′) = Sk+21(t5,−t2, x, Ǔ , Ǔ ′, Ǔ ′′, Ǔ ′′′, V̌ , V̌ ′)−T , k ∈ Z42,

where f̌(t5, t2, x) = f(t5,−t2, x). Using the relations (4.26), along with the formulae (4.25), this implies the
following relation on the Stokes parameters:

sk(t5, t2, x, U, U
′, U ′′, U ′′′, V, V ′) = −sk+7(t5,−t2, x, Ǔ , Ǔ ′, Ǔ ′′, Ǔ ′′′, V̌ , V̌ ′)T , k ∈ Z14 . (4.40)

In fact, the above is equivalent to (4.39). To see this, suppose that the relation (4.40) holds, and expand the
solutions Φ(ζ; t5, t2, x), Φ(−ζ; t5,−t2, x)−T at infinity. One finds that

Φ(ζ; t5, t2, x) =

[
I+

Φ1(t5, t2, x)

ζ
+

Φ2(t5, t2, x)

ζ2
+O(ζ−3)

]
eΘ(ζ;t5,t2,x),

Φ(−ζ; t5,−t2, x)−T =

[
I+

ΦT
1 (t5,−t2, x)

ζ
+

Φ2T
1 (t5,−t2, x)− ΦT

2 (t5,−t2, x)
ζ2

+O(ζ−3)

]
eΘ(ζ;t5,t2,x)

Equating the coefficients6, one finds that

H1(t5,−t2, x) = H1(t5, t2, x), H2(t5,−t2, x) = −H2(t5, t2, x), H5(t5,−t2, x) = H5(t5, t2, x),

6One should calculate the coefficients up to Φ3; from here, all of the relations stated can be inferred. This inference is direct
for all of the relations except the one for H5; this relation can be inferred from the rest of the relations, and the formula (3.9)
for H5.
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U(t5,−t2, x) = U(t5, t2, x), V (t5,−t2, x) = −V (t5, t2, x).

In other words, U,H1, H5 are even functions of t2, and H2, V are odd functions of t2. This justifies the
equivalence of (4.40) and (4.39).

As a consequence of the above Proposition, we obtain a number of important corollaries:

Corollary 4.2. If the Stokes parameters satisfy Relation (4.39), then functions U, V , and the Hamiltonians
H1, H2, H5 satisfy the following relations:

H1(t5,−t2, x) = H1(t5, t2, x), H2(t5,−t2, x) = −H2(t5, t2, x), H5(t5,−t2, x) = H5(t5, t2, x), (4.41)

U(t5,−t2, x) = U(t5, t2, x), V (t5,−t2, x) = −V (t5, t2, x). (4.42)

Furthermore, the Okamoto τ -function, defined by d log τOkamoto = H5dt5 + H2dt2 + H1dx, satisfies
τOkamoto(t5,−t2, x) = τOkamoto(t5, t2, x).

Corollary 4.3. If the Stokes parameters satisfy Relation (4.39), and t2 = 0, then V ≡ 0, H2 ≡ 0, and the
string equation (1.1) reduces to

1

12
U (4) − 3

4
U ′′U − 3

8
(U ′)2 +

1

2
U3 − 5

12
t5
(
3U2 − U ′′)+ x. (4.43)

The only other nonzero part of the string equation is then

∂U

∂t5
=

∂

∂x

[
−1

6
UU ′′ +

1

8
(U ′)2 +

1

4
U3 − 5

9
t5
(
3U2 − U ′′)+ 4

3
x

]
. (4.44)

Furthermore, the generic dimension of the Stokes manifold is reduced from 6 to 4.

Proof. On the hyperplane t2 = 0, the nonlocal equations (4.39), (4.41), and (4.42) become local. In partic-
ular, we see that

V (t5, 0, x) = V (t5,−0, x) = −V (t5, 0, x),

i.e. V (t5, 0, x) ≡ 0. Similarly, we obtain that H2(t5, 0, x) ≡ 0. Finally, when t2 = 0, the Z14-periodicity of
the Stokes parameters further reduces to a Z7 ×Z2-periodicity:

sk+7 = −sk,

and consequently the relation S1 · · ·S14 = ST implies that the Stokes manifold is generically of dimension
4.

Remark 4.8. The generic solution to the constraint equations (4.26) on the t2 = 0 hyperplane (which
further implies sk+7 = −sk) is given by

s5 =
s1s4 + s3 + 1

s1s3 − s2
, s6 = −s1(s2s4 + s3)− s4(s1s3 − s2)− s2s3

(s1s3 − s2)(s2s4 + s3)
, s7 =

s1s4 − s2 + 1

s2s4 + s3
. (4.45)

where s1, s2, s3, s4 are free parameters, and provided s1s3 − s2 ̸= 0, s1s3 − s2 ̸= 0. This reduction of the
dimension of the Stokes manifold is consistent with the reduction of the order of the string equation from 6
to 4.

This symmetry gives an interpretation to our previous statement that V is responsible for the non-
perturbative Z2 symmetry-breaking of the model: this function is only non-zero when t2, the parameter
that is identified with a shift in the magnetic field, is nonzero. We point out that this symmetry also passes
through to the λ-gauge, without issue.
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Remark 4.9. Z14 symmetry. Finally, we remark that the above symmetry is a special case of a more general
Z14 symmetry, which is the analog of the Z5 symmetry possessed by Painlevé I [Kap88]; it is in fact just a

realization of the subgroup Z2 of Z14. Let β := e
2πi
42 = e

πi
21 denote the principal 42nd root of unity, and note

that
STΘ(β−1ζ;β12t5, β

9t2, β
−6x)S = −Θ(ζ; t5, t2, x). (4.46)

An identical line of argumentation to the preceding section shows that Φ(ζ; t5, t2, x) satisfies the symmetry
condition

Φ(ζ; t5, t2, x) = STΦ(β−1ζ;β12t5, β
9t2, β

−6x)S, (4.47)

Provided that the Stokes parameters satisfy

sk(t5, t2, x;U,U
′, U ′′, U ′′′, V, V ′) = −sk+1(β

12t5, β
9t2, β

−6x; Ǔ , Ǔ ′, Ǔ ′′, Ǔ ′′′, V̌ , V̌ ′), (4.48)

where here f̌(t5, t2, x) = f(β12t5, β
9t2, β

−6x). We also have the following relations:

β2U(β12t5, β
9t2, β

−6x) = U(t5, t2, x),

β3V (β12t5, β
9t2, β

−6x) = V (t5, t2, x),

and finally that the Okamoto τ -function satisfies

τOkamoto(β
12t5, β

9t2, β
−6x) = τOkamoto(t5, t2, x). (4.49)

Based on the appearance of a 42nd root of unity, one might be tempted to think that this system possesses
a full Z42 = Z7 ⊕Z3 ⊕Z2 symmetry group. In fact, as we shall now show, the subgroup Z3 appears in a
trivial manner, and thus does not play a role. Let us denote by χ the operation of acting by this symmetry
on Φ, i.e. the map

χ [Φ(ζ; t5, t2, x)] := STΦ(β−1ζ;β12t5, β
9t2, β

−6x)S. (4.50)

Clearly, χ42 = 1, the identity map on Φ. Note that χ6 is the generator of the subgroup Z7, χ
14 is the

generator of the subgroup Z3, χ
21 is the generator of the subgroup Z2. Let us first see that χ14 = 1, the

identity map. If we apply χ14, we obtain that

χ14[Φ(ζ; t5, t2, x)] = STΦ(ωζ; t5, t2, x)S = Φ(ζ; t5, t2, x),

as we already observed in Subsection 4.1. So, the subgroup Z3 does not participate, and there is generically
a Z14 symmetry acting on the solutions.

Note further that, if we apply the generator of the subgroup Z2 to Φ, we obtain that

χ21 [Φ(ζ; t5, t2, x)] = Φ(−ζ; t5,−t2, x)−T , (4.51)

which is precisely the Z2 symmetry described in this subsection. The Z7 symmetry is nontrivial, i.e. the
generator of this subgroup χ6 acts nontrivially on Φ. However, there is no clear simplification or physical
interpretation of this symmetry, as was the case for the Z2 subgroup.

5. The Isomonodromic and Extended τ-Function.

Associated to almost any linear differential equation with rational coefficients is an object called the isomon-
odromic τ -function. The τ -function has many important properties. For example, its zeros determine where
the inverse monodromy problem for the associated linear equation are not solvable [Mal83; Pal99]. Further-
more, the τ -function itself is often the object that appears in many physical applications; this is also the case
for the multi-critical quartic 2-matrix model. However, the word “almost” is the antagonist in this story. As
we have seen, in many cases of interest, the leading coefficient of the singularity of the connection matrix is
not diagonalizable, or, if we make a change of gauge, a resonant Fuchsian singularity manifests at the origin.
In either case, the theory introduced in [JMU81] is not applicable. This motivates us to give a modified
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definition of the τ -differential. Most of this section can be read completely independently of the rest of this
work.

In this first part of this section, we will work in slightly more generality, in order to show that our
definition is indeed a sensible extension of the τ -function, as defined by Jimbo, Miwa, and Ueno. Our
definition is meant to address the case of the general (p, q) string equations, which all share the feature that
1. the leading term of the polynomial connection matrix A(λ) is not diagonalizable, and 2. in a suitably
regularized gauge, the connection matrix develops a resonant Fuchsian singularity at the origin.

We divide this section into the following parts: in Subsection 5.1, we lay out a set of assumptions
for a model problem with a single non-diagonalizable singularity at infinity (or, equivalently, a resonant
Fuchsian singularity at 0), for which we will define a suitable τ -differential. In Subsection 5.2, we will see the
shortcoming of the original JMU definition, and show that the modified definition of the τ -function (up to
an irrelevant constant factor) indeed makes sense, and coincides with the Okamoto τ -function (3.13) in the
settings of the rest of this work. In Section 5.3, we extend the τ -function to the initial data of the associated
Hamiltonian system (cf. Proposition 3.1), and verify Conjectures 1. and 2. of [IP18] for the system at hand.

We adopt the following set of notations. First, let q ≥ 2. If X : C → Mq(C) is a matrix-valued function
which admits a Laurent expansion at λ = ∞, we define

⟨X(λ)⟩ := Res
λ=∞

trX(λ)dλ. (5.1)

We list some of the key properties of ⟨·⟩ below, which the reader may readily check:

1. (Cyclicity) ⟨X(λ)Y (λ)⟩ = ⟨Y (λ)X(λ)⟩,

2. (Integration by Parts)⟨ ∂
∂λX(λ)⟩ = 0, and, consequentially, ⟨X ′(λ)Y (λ)⟩ = −⟨X(λ)Y ′(λ)⟩.

3. If X = X(λ; t) depends on additional parameters t, and d denotes the exterior differential in these
parameters, then d⟨X(λ; t)⟩ = ⟨dX(λ; t)⟩.

4. If A is a constant (in λ) matrix, then ⟨Aλ−k−1⟩ = (trA)δk,0. In particular, this implies that if X(λ) is
a polynomial, then ⟨X(λ)⟩ = 0.

5. (Ad-invariance) If A,B,C are matrix-valued functions, then ⟨A[B,C]⟩ = ⟨[A,B]C⟩.

We now list a set of assumptions on which the remainder of our calculation will be based. The motivation
for this assumptions comes from what one should expect out of the (p, q) string equation in general. When
restricted to the case q = 3, p = 4, these assumptions coincide with what we have derived in the preceding
sections of the present work.

5.1. Main assumptions for the model problem.

Given q ≥ 2, we fix an integer p coprime to q. Setting ωq := e
2πi
q , we then define q × q matrices ∆q,Uq as

follows:

(∆q)ij :=
1

2

(
1− 2j − 1

q

)
δij , (5.2)

(Uq)ij :=

{
ω

1
2 (q−2i+1)(j−1)
q , q odd,

ω
1
2 (q−2i)(j−1)+1
q , q even,

(5.3)

where i, j = 1, ..., q. As well as the shift matrix

Sq :=

 0 1 0 ... 0 0
0 0 1 ... 0 0
...
...
...
. . .

...
...

0 0 0 ... 0 1
1 0 0 ... 0 0

ω 1
2 δq
q , (5.4)

32



where δq = 0 if q is odd, and δq = 1 if q is even. (Note that Sq is unitary: S†
q = S−1

q ). Finally, we define

functions ϑ
(q,p)
j (λ; t) as

ϑ
(q,p)
j (λ; t) :=

q

p+ q
ω(j−1)p
q λ

p+q
q +

p+q−1∑
ℓ=1

ℓ mod q ̸=0

tℓω
(j−1)ℓ
q λℓ/q, (5.5)

for j = 1, ..., q. Subsequently, we define the matrix-valued functions

gq(λ) := λ∆qUq, Θ(λ; t) := diag (ϑ
(q,p)
1 (λ; t), · · · , ϑ(q,p)q (λ; t)). (5.6)

If we denote Θa := ∂Θ
∂ta

, we can see that the conditions

∂Θa

∂tb
− ∂Θb

∂ta
= [Θa,Θb] = 0; (5.7)

hold trivially. By construction, these matrices have jumps on the negative real axis (with orientation taken
outwards), given by:

Lemma 5.1. For λ < 0,

gq,+(λ) = gq,−(λ)Sq, Θ+(λ; t) = S†
qΘ−(λ; t)Sq (5.8)

The proof is a direct computation with the formulae given above, and so we omit it. Consider the
following lemma:

Lemma 5.2. Let gq(λ) be an SLq(C)-valued function on C \(−∞, 0] such that gq,+(λ) = gq,−(λ)Sq, where
S ∈ SLd(C). Consider the series

R(λ) := I+
∞∑

m=1

Ψm

λm/q
. (5.9)

Then, the function
R̂(λ) := gq(λ)R(λ)g

−1
q (λ) (5.10)

is holomorphic in a neighborhood of infinity if and only if the coefficients Ψm satisfy the symmetry relation

Ψm = ω−m
q S−1

q ΨmSq. (5.11)

Proof. Set Ψ0 := I. For each r = 0, ..., q − 1, set

Rr(λ) :=

∞∑
k=0

Ψkq+rλ
−k.

Then, R(λ) can be rewritten as

R(λ) =

q−1∑
r=0

Rr(λ)λ
r/q.

The functions Rr(λ) are analytic at infinity, and satisfy the relation Rr(λ) = ωr
qS−1

q Rr(λ)Sq, since ω
kq+r
q =

ωr
q . Since λ

r/q
+ = λ

r/q
− ωr

q , it follows that[
Rr(λ)λ

r/q
]
+
= S−1

q

[
Rr(λ)λ

r/q
]
−
Sq,

for each r = 0, ..., q − 1, and thus that

R+(λ) = S−1
q R−(λ)Sq.
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Therefore,

R̂+(λ) = g+(λ)R+(λ)g
−1
+ (λ) = g−(λ)SqS−1

q R−(λ)SqS−1
q g−1

− (λ) = g−(λ)R−(λ)g
−1
− (λ),

and thus R̂(λ) has no jumps near λ = ∞. Thus, R̂(λ) extends to a holomorphic function in a neighborhood
of infinity. Reading the above proof from bottom to top yields the other direction of the lemma.

With this lemma in mind, we are motivated to define the function

Ψ(λ; t) := g(λ)

[
I+

Ψ1(t)

λ1/q
+

Ψ2(t)

λ2/q
+O(λ−3/q)

]
eΘ(λ;t), (5.12)

where the coefficients Ψk(t) satisfy the symmetry constraint ω−k
q S†

qΨk(t)Sq = Ψk(t). This formal series
therefore satisfies the jump condition

Ψ+(λ; t) = Ψ−(λ; t)Sq, λ < 0,

as a consequence of the above lemma. Similarly, if we define the function G(λ; t) := Ψ(λ; t)e−Θ(λ;t), we can
see that G+(λ; t) = G−(λ; t)Sq, for λ < 0. We assert that Ψ(λ; t) is the (formal) solution to the following
collection of differential equations

∂Ψ

∂λ
= A(λ; t)Ψ(λ; t),

∂Ψ

∂tℓ
= Bℓ(λ; t)Ψ(λ; t), ℓ = 1, ..., p+ q − 1, ℓ mod q ̸≡ 0. (5.13)

Here, all matrices A(λ; t), Bℓ(λ; t) are assumed to be polynomials in λ. Furthermore, by formal differentiation
of the series (5.12), one can deduce that the leading coefficient of A(λ; t) is (for p = kq + r)

A(λ; t) = Λrλk + · · · , (5.14)

where Λ = Λ(λ) is the matrix

Λ(λ) :=



0 0 · · · 0 0 λ
1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 1 0 0
0 0 · · · 0 1 0


. (5.15)

In particular, it is apparent that the leading coefficient of A(λ; t) is not diagonalizable. As we performed
in the case of the (3, 4) string equation, if we perform a gauge transformation λ = ζq, Ψ = gqΦ, then the
transformed connection matrices have the following properties:

Proposition 5.1. Under the change of gauge λ = ζq, Ψ = gqΦ, the matrix Φ satisfies the differential
equations

∂Φ

∂ζ
= Â(ζ; t)Φ(ζ; t),

∂Φ

∂tℓ
= B̂ℓ(ζ; t)Φ(ζ; t), (5.16)

for ℓ = 1, .., p+ q − 1, ℓ mod q ̸≡ 0, where the matrices Â(ζ; t), B̂ℓ(ζ; t) are given by

Â(ζ; t) = qζq−1Ã(ζq; t), (5.17)

B̂ℓ(ζ; t) = g−1
q Bℓ(ζ

q; t)gq, (5.18)

where Ã(λ; t) = g−1
q A(λ; t)gq − g−1

q
dgq
dλ .

This proposition is a direct analog of Proposition 4.2, and so we omit the proof. The only point we want
to emphasize about these matrices is that:
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1. For ζ → ∞, A(ζ; t) has asymptotics

A(ζ; t) = q

(
1 0 ...
0 ωp

q ...

...
...
. . .

)
ζp+q−1 +O(ζp+q−2), (5.19)

so we have indeed ‘regularized’ the singular point at infinity: the leading term is diagonal.

2. The matrix A(ζ; t) has a first order pole at ζ = 0, which arises from the term g−1
q

dgq
dλ . Note that this

term does not depend on the coefficients of the matrix A(λ; t), and thus can be computed explicitly:

lim
ζ→0

ζÂ(ζ; t) = −qU−1∆U , (5.20)

where ∆ was the diagonal matrix from before (cf. Equation (5.2)). We have that q∆jj − q∆ii = j − i,
and

max
i,j

q|∆jj −∆ii| = q − 1.

Crucially, we observe that this singularity is resonant.

3. Due to the form of gq(λ(ζ)), the matrices Bℓ(ζ; t) develop poles of order at most q − 1 at ζ = 0.

4. The zero-curvature equations hold in the ζ-gauge as well (this is just the trivial observation that the
zero-curvature equations hold, independent of the choice of coordinate system).

Thus, the above isomonodromic system has analogous complications as the Painlevé I system in [JMU81]
and the (3, 4) string equation discussed in this work. To conclude this section, let us summarize our main
assumptions about the system we will be studying.

• Assumption 1. We are given a matrix-valued formal series Ψ(λ; t) of the form (5.12).

• Assumption 2. Ψ(λ; t) satisfies the differentials equations (5.13), for polynomial matrices A(λ; t),
B(λ; t).

• Assumption 3. The zero-curvature equations ∂A
∂tℓ

− ∂Bℓ

∂λ +[A,Bℓ] = 0, ∂Br

∂tℓ
− ∂Bℓ

∂tr
+[Br, Bℓ] = 0, hold.

One can see that the system we are studying in the present work emerges when we specialize to q = 3, p = 4.

5.2. Modification of ωJMU .

Before proceeding to discuss our modification of the τ -differential, let us clarify why there is a need for such a
modification. First, if we start with a connection matrixA(λ; t) whose leading term is not diagonalizable, then
the standard definition given by Jimbo, Miwa and Ueno fails to hold. One can then attempt to transform
into a gauge which resolves this problem, as we have discussed. In this new gauge, the situation can be
treated by [JMU81] at ζ = ∞. However, one finds that a new problem arises at ζ = 0: a resonant Fuchsian
singularity emerges, which again brings us out of the context of the work of [JMU81]. In the literature for
Painlevé I [LR17; IP18], this problem is typically surmounted by simply ignoring any contributions from
the resonant singularity, and one is able to proceed without further complications. However, in the present
situation (and also the situation we outlined in the previous subsection), we are not afforded this luxury.
Indeed, if we transform into the ζ-gauge and directly apply the definition of [JMU81] to the connection (4.7),
simply ignoring the contribution from the resonant singularity, we find that

dωJMU =

(
U3 + 3V 2 +

1

4
(U ′)2 − 1

2
UU ′′ +

5

2
t5

(
1

3
U ′′ − U2

)
+ 2x

)
dt5dt1

+

(
U ′′V − 3U2V + 2t2U +

25

3
t25V +

10

3
t5t2

)
dt5dt2 ̸= 0. (5.21)
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Of course, one can simply add to ωJMU the differential

α = −1

3

(
1

6
U ′′′ − UU ′

)
dt5 = −1

3

∂V

∂t2
dt5, (5.22)

whose differential is precisely −dωJMU , so that this new, modified differential is indeed closed. However,
it is not obvious where this term arises from, or how to treat closely related systems apart from ad-hoc
analysis.

The aim of this subsection is to provide a general definition of a modified τ -differential ω̂JMU for systems
of the form discussed in the previous subsection, which has the following properties:

1. The modified differential is closed: d ω̂JMU = 0,

2. When there are no resonant Fuchsian singularities, the modified differential coincides with the definition
given in [JMU81]: ω̂JMU = ωJMU .

With this in mind, we define the modified τ -differential to be

Definition 5.1.

ω̂JMU =
∑
ℓ

(〈
A(λ; t)

dG

dtℓ
G−1

〉
−
〈
∆q

λ

dG

dtℓ
G−1

〉)
dtℓ. (5.23)

Equivalently, expressed in terms of local quantities in the ζ-gauge,

ω̂JMU =
∑
ℓ

〈
Â(ζ; t)

dS

dtℓ
S−1

〉
dtℓ, (5.24)

where S(ζ; t) = I+ Ψ1(t)
ζ + Ψ2(t)

ζ2 +O(ζ−3), where the residue is now taken at ζ = ∞.

Let us remark that both definitions indeed make sense, in that the terms inside the brackets ⟨·⟩ are formal
Laurent series in λ (respectively, ζ). This requires no commentary in the latter case. In the former case, this
is slightly more subtle: note that dG

dtℓ
and G both have jumps only on the left. Since the jump matrix for

G is constant, we see that the ratio dG
dtℓ
G−1 is single-valued near infinity, and thus admits a Laurent series

expansion there.
Our first important observation is that this definition agrees with the definition given in [JMU81] in the

case when the resonant Fuchsian singularity at the origin vanishes (equivalently, when the leading term of
A(λ; t) is diagonalizable). Recall that, if A(λ; t) is a polynomial in λ with diagonalizable leading term, then
we can write a formal series solution to the differential equation ∂Ψ

∂λ = A(λ; t)Ψ as

Ψ(λ; t) =

[
I+

Ψ1(t)

λ
+

Ψ2(t)

λ2
+O(λ−3)

]
︸ ︷︷ ︸

G(λ;t)

eΘ(λ;t),

where Θ is a diagonal matrix whose entries are polynomials in λ. The definition of the Jimbo-Miwa-Ueno
τ -differential is then

ωJMU := −
∑
ℓ

〈
G−1 dG

dλ

∂Θ

∂tℓ

〉
dtℓ. (5.25)

An alternative, equivalent expression given later (cf. [ILP18; IP18]) is

ωJMU =
∑
ℓ

〈
A(λ; t)

∂G

∂tℓ
G−1

〉
dtℓ. (5.26)

Comparing this definition to our definition of ω̂JMU , we see that ω̂JMU indeed reduces to ωJMU when we
are in a standard case.

It remains to see that d ω̂JMU = 0. We establish this through a sequence of lemmas.
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Lemma 5.3.
ω̂JMU = ωJMU +

∑
ℓ

〈
Â(ζ; t)B̂ℓ(ζ; t)

〉
dtℓ, (5.27)

where the residue here is taken at ζ = ∞.

Proof. The proof mimics the calculation that ω̂JMU = ωJMU in the case where the matrices Â(ζ; t), B̂ℓ(ζ; t)
are all polynomials; we must take care to make sure that every step pushes through. Let us expand the
expression ∑

ℓ

⟨Â(ζ; t)B̂ℓ(ζ; t)⟩dtℓ;

note that when the Lax matrices are polynomials, this expression vanishes identically. Now, since Φ(ζ; t) =
S(ζ; t)eΘ(ζ;t), we can rearrange the identities ∂Φ

∂ζ = ÂΦ, ∂Φ
∂tℓ

= B̂ℓΦ to read Â = SΘζS
−1 + ∂S

∂ζ S
−1, B̂ℓ =

SΘℓS
−1 + ∂S

∂tℓ
S−1. Inserting these expressions into our previous identity, we find that

∑
ℓ

⟨Â(ζ; t)B̂ℓ(ζ; t)⟩dtℓ =
∑
a

⟨ÂB̂ℓ⟩dtℓ =
∑
ℓ

〈
(SΘζS

−1 +
∂S

∂ζ
S−1)(SΘℓS

−1 +
∂S

∂tℓ
S−1)

〉
dtℓ

=
∑
ℓ

⟨ΘζΘℓ⟩︸ ︷︷ ︸
polynom.

+

〈
∂S

∂ζ
S−1 ∂S

∂tℓ
S−1

〉
+

〈
S−1 ∂S

∂ζ
Θℓ

〉
︸ ︷︷ ︸

−[ωJMU ]ℓ

+

〈
ΘζS

−1 ∂S

∂tℓ

〉 dtℓ
= −ωJMU +

∑
ℓ

[〈
∂S

∂ζ
S−1 ∂S

∂tℓ
S−1

〉
+

〈
ΘζS

−1 ∂S

∂tℓ

〉]
dtℓ

= −ωJMU +
∑
ℓ

〈(
SΘζS

−1 +
∂S

∂ζ
S−1

)
∂S

∂tℓ
S−1

〉
dtℓ

= −ωJMU +
∑
ℓ

〈
Â(ζ; t)

∂S

∂tℓ
S−1

〉
dtℓ.

Lemma 5.4. For the system on Φ(ζ; t),

dωJMU =
∑〈

∂B̂a

∂ζ
B̂b

〉
dta ∧ dtb. (5.28)

(Note that, since B̂a are no longer polynomials in the ζ-gauge, the expression on the right hand side does
not necessarily vanish).

Proof. Let ωa denote the coefficient of dta in ωJMU . We shall first calculate ∂ωa

∂tb
. By direct calculation,

∂ωa

∂tb
=

〈
S−1 ∂S

∂tb
S−1 ∂S

∂ζ
Θa

〉
−
〈
S−1 ∂2S

∂tb∂ζ
Θa

〉
−
〈
S−1 ∂S

∂ζ

∂Θa

∂tb

〉
.

Now, the equation ∂Φ
∂tb

= B̂b(ζ; t)Φ implies that ∂S
∂tb

= B̂bS − SΘb. So, we can rewrite the above as

∂ωa

∂tb
=

〈
S−1B̂b

∂S

∂ζ
Θa

〉
−
〈
ΘbS

−1 ∂S

∂ζ
Θa

〉
−
〈
S−1 ∂

∂ζ

[
B̂bS − SΘb

]
Θa

〉
−
〈
S−1 ∂S

∂ζ

∂Θa

∂tb

〉
= −

〈
ΘbS

−1 ∂S

∂ζ
Θa

〉
−

〈
S−1 ∂B̂b

∂ζ
SΘa

〉
+

〈
S−1 ∂S

∂ζ
ΘbΘa

〉
+

〈
∂Θb

∂ζ
Θa

〉
−
〈
S−1 ∂S

∂ζ

∂Θa

∂tb

〉
.
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Using the identity 〈
∂Θb

∂ζ
Θa

〉
=

〈
∂

∂ζ

(
SΘbS

−1
)
SΘaS

−1

〉
+

〈
S−1 ∂S

∂ζ
[Θa,Θb]

〉
, (5.29)

cyclicity, and representing SΘaS
−1 = B̂a − ∂S

∂ta
S−1, the above can be arranged to read

∂ωa

∂tb
= −

〈
S−1 ∂S

∂ζ

∂Θa

∂tb

〉
−

〈
∂B̂b

∂ζ
SΘaS

−1

〉
+

〈
∂

∂ζ

(
SΘbS

−1
)
SΘaS

−1

〉

= −
〈
S−1 ∂S

∂ζ

∂Θa

∂tb

〉
−

〈
∂B̂b

∂ζ
B̂a

〉
+

〈
∂B̂b

∂ζ

∂S

∂ta
S−1

〉
+

〈
∂B̂b

∂ζ
Ba

〉
−

〈
∂B̂b

∂ζ

∂S

∂ta
S−1

〉

−
〈
∂

∂ζ

(
∂S

∂tb
S−1

)
Ba

〉
+

〈
∂

∂ζ

(
∂S

∂tb
S−1

)
∂S

∂ta
S−1

〉
Using integration by parts on the second to last term, we obtain that

∂ωa

∂tb
= −

〈
S−1 ∂S

∂ζ

∂Θa

∂tb

〉
+

〈
∂B̂a

∂ζ

∂S

∂tb
S−1

〉
+

〈
∂

∂ζ

(
∂S

∂tb
S−1

)
∂S

∂ta
S−1

〉
.

Now, the argument of the last term is of order O(ζ−2), and thus has no residue. So, our final expression for
∂ωa

∂tb
is

∂ωa

∂tb
=

〈
∂B̂a

∂ζ

∂S

∂tb
S−1

〉
−
〈
S−1 ∂S

∂ζ

∂Θa

∂tb

〉
.

Interchanging the roles of a and b allows one to compute ∂ωb

∂ta
; the difference of these two quantities is

∂ωa

∂tb
− ∂ωb

∂ta
=

〈
∂B̂a

∂ζ

∂S

∂tb
S−1

〉
−

〈
∂B̂b

∂ζ

∂S

∂ta
S−1

〉
−
〈
S−1 ∂S

∂ζ

(
∂Θa

∂tb
− ∂Θb

∂ta

)〉
.

Closedness of ωJMU is equivalent to the vanishing of the above expression, for all a, b. Indeed, it is easy to
see that the last term vanishes, by the integrability condition (5.7); it remains to see that the expression

∂ωa

∂tb
− ∂ωb

∂ta
=

〈
∂B̂a

∂ζ

∂S

∂tb
S−1

〉
−

〈
∂B̂b

∂ζ

∂S

∂ta
S−1

〉

vanishes. Here is the first place where the fact that the matrices B̂a are not polynomials in ζ comes into
play. Again writing the identity (5.29), and representing SΘaS

−1 = B̂a − ∂S
∂ta

S−1, we see that〈
∂Θb

∂ζ
Θa

〉
=

〈
∂B̂b

∂ζ
B̂a

〉
−

〈
∂B̂b

∂ζ

∂S

∂ta
S−1

〉
−
〈
∂

∂ζ

(
∂S

∂tb
S−1

)
B̂a

〉
−
〈
∂

∂ζ

(
∂S

∂tb
S−1

)
∂S

∂ta
S−1

〉
+

〈
S−1 ∂S

∂ζ
[Θa,Θb]

〉
.

Now, the integrability condition (5.7) implies that the last term vanishes; we also have already seen that the
second to last term vanishes, as its argument is residueless. Similarly, since the matrices Θa are polynomial
in ζ, the argument left hand side is residueless, and thus vanishes. Integrating the third term by parts, we
obtain the identity 〈

∂B̂b

∂ζ

∂S

∂ta
S−1

〉
−

〈
∂B̂a

∂ζ

∂S

∂tb
S−1

〉
=

〈
∂B̂b

∂ζ
B̂a

〉
= −

〈
∂B̂a

∂ζ
B̂b

〉
,
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and so we see that
∂ωa

∂tb
− ∂ωb

∂ta
=

〈
∂B̂a

∂ζ
B̂b

〉
.

If the matrices B̂a are polynomials, then the right hand side vanishes identically; otherwise, we obtain the
expression above.

Lemma 5.5.

d
∑
ℓ

〈
Â(ζ; t)B̂ℓ(ζ; t)

〉
dtℓ = −

∑
a<b

〈
∂B̂a

∂ζ
B̂b

〉
dta ∧ dtb. (5.30)

Proof. Put

σ :=
∑
ℓ

〈
Â(ζ; t)B̂ℓ(ζ; t)

〉
dtℓ,

and let σa := ⟨ÂB̂a⟩ denote the coefficient of dta of σ. We then have that, using the integrability conditions
for B̂ℓ, Â,

∂σa
∂tb

=

〈
∂Â

∂tb
B̂a

〉
+

〈
Â
∂B̂a

∂tb

〉

=

〈(
∂B̂b

∂ζ
+ [B̂b, Â]

)
B̂a

〉
+

〈
Â
∂B̂a

∂tb

〉

=

〈
∂B̂b

∂ζ
B̂a

〉
+
〈
Â[B̂a, B̂b]

〉
+

〈
Â
∂B̂a

∂tb

〉
where in the last equality we have used the Ad-invariance of the bracket. Then, we can compute [dσ]ba to
be

[dσ]ba =
∂σa
∂tb

− ∂σb
∂ta

= 2

〈
∂B̂b

∂ζ
B̂a

〉
+ 2

〈
Â[B̂a, B̂b]

〉
+

〈
Â

(
∂B̂a

∂tb
− ∂B̂b

∂ta

)〉

= 2

〈
∂B̂b

∂ζ
B̂a

〉
+
〈
Â[B̂a, B̂b]

〉
.

In the last line, we have again used the integrability conditions for B̂ℓ, Â. We claim that
〈
Â[B̂a, B̂b]

〉
=

−
〈

∂B̂b

∂ζ B̂a

〉
. On one hand, expanding

〈
Â[B̂a, B̂b]

〉
,

〈
Â[B̂a, B̂b]

〉
=

〈
qζq−1

(
g−1
q A(ζq)gq − g−1

q

dgq
dλ

)
[g−1

q Ba(ζ
q)gq, g

−1
q Bb(ζ

q)gq]

〉
=

〈
qζq−1

(
g−1
q A(ζq)gq − g−1

q

dgq
dλ

)
g−1
q [Ba(ζ

q), Bb(ζ
q)]gq

〉
= ⟨qζq−1A(ζq)[Ba(ζ

q), Bb(ζ
q)]⟩ −

〈
qU∆U−1

ζ
[Ba(ζ

q), Bb(ζ
q)]

〉
= −

〈
qU∆U−1

ζ
[Ba(ζ

q), Bb(ζ
q)]

〉
,

where the last equality follows from the fact that all of the expressions inside the first bracket are polynomials.
On the other hand, we calculate that

∂B̂b

∂ζ
= −g−1

q

dgq
dζ

g−1
q Bb(ζ

q)gq + g−1
q

∂

∂ζ
Bb(ζ

q)gq + g−1
q Bb(ζ

q)gq,
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and so 〈
∂B̂b

∂ζ
B̂a

〉
=

〈
dgq
dζ

g−1
q [Ba(ζ

q), Bb(ζ
q)]

〉
+

〈
∂

∂ζ
(Bb(ζ

q))Ba(ζ
q)

〉
=

〈
qU∆U−1

ζ
[Ba(ζ

q), Bb(ζ
q)]

〉
.

It follows that

[dσ]ba = 2

〈
∂B̂b

∂ζ
B̂a

〉
+
〈
Â[B̂a, B̂b]

〉
=

〈
∂B̂b

∂ζ
B̂a

〉
; (5.31)

an integration by parts yields that this is equal to −
〈

∂B̂a

∂ζ B̂b

〉
. This completes the proof.

As a result of these lemmas, we finally obtain the Theorem

Theorem 5.1. Closedness of the modified τ -differential/analog of Theorem 1.2. Under the assumptions of
Subsection 5.1, and given Definition 5.1,

d ω̂JMU = 0. (5.32)

Proof. One simply must add the results of Lemmas 5.4 and 5.5, in accordance with the fact that

ω̂JMU = ωJMU +
∑
ℓ

〈
Â(ζ; t)B̂ℓ(ζ; t)

〉
dtℓ,

as per Lemma 5.3.

Remark 5.1. Note that the explicit form of the matrices ∆q,Uq was not so important in the proof of this
proposition. The only details that mattered were the fact that gq(λ) was of the form gq(λ) = λ∆qUq, and
the fact that Ψ(λ; t), G(λ; t) had jumps only on the right.

Remark 5.2. In principle, the above theorem/definition of the τ -differential should follow from the work of
Bertola and Mo [BM05] on isomonodromic deformations of resonant rational connections. We nevertheless
feel our theorem is worth writing down, for the following reasons:

• Although our theorem is less general, the corresponding expression for the modified τ -differential is
more manageable,

• The expression for the τ -differential in [BM05] is in terms of spectral invariants, whereas our expression
is in terms of formal residues in the local gauge. This is more in line with the original expression for
the τ -differential provided by Jimbo, Miwa, and Ueno [JMU81]. These expressions should of course be
equivalent.

Remark 5.3. Irrelevance of modification in the case of Painlevé I. This construction is unnecessary in the
case of the usual Painlevé I Lax pair, and so the τ -differential as defined by Jimbo, Miwa, and Ueno [JM81]
or Lisovyy and Roussillon [LR17] agrees with the one given here. Recall that this Lax pair in the ζ-gauge is
given by (cf. [JM81], Formula C5, or [LR17], Formulae 2.4a and 2.4b)

Â(ζ; t) = (4ζ4 + 2q2 + t)σ3 − (2pζ + (2ζ)−1)σ1 − (4qζ2 + 2q2 + t)iσ2,

B̂(ζ; t) = (ζ + q/ζ)σ3 − iqζ−1σ2,

where σk are the standard Pauli matrices. Here, q solves Painlevé I, and p = q′ (although the calculations
we perform now are independent of this fact). Using the fact that tr(σjσk) = 2δjk, we find that

tr Â(ζ; t)B̂(ζ; t) = 4ζ(2ζ4 + 2qζ2 − q2 + t/2).

Hence ⟨Â(ζ; t)B̂(ζ; t)⟩ = 0, and ω̂JMU = ωJMU by Lemma 5.3. However, as we have seen in the rest of the
present work, this construction is nontrivial in general. Indeed, one can readily check that for the next entry
of the Painlevé I hierarchy (the (2, 5) string equation), this contribution is indeed nontrivial.
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By comparing the coefficients of the expression we obtained in the previous proposition, we can show
that ωOkamoto is a constant multiple of the modified differential ω̂JMU :

Proposition 5.2. The differentials ωOkamoto, ω̂JMU are related by

ωOkamoto =
2

3
ω̂JMU . (5.33)

Proof. The proof is straightforward, and follows from definitions. Note that L has terms of degree 7, and so
we must compute S(ζ) = I+ Φ1

ζ + · · · to terms of order ζ−8. This calculation can be performed by applying

our previous calculations (cf. Remark 4.6); one finds that the coefficients ω̂t5 , ω̂t2 , and ω̂x are differential
polynomials in the variables {[Φk]11}7k=1, and the functions U, V . One can match these coefficients explicitly
to the Hamiltonians from before, up to a proportionality factor of 2/3, and so we can identify ω̂JMU with
ωOkamoto.

Consequentially, if we define the corresponding τ -functions by τ = e
´
ω, we see that the τ -functions

arising from these definitions are related by τ3Okamoto = τ2JMU .

5.3. The τ-function on the extended monodromy data.

The τ -function also depends intrinsically on the extended monodromy data of the system; in our case, the
Stokes parameters s1, ..., s6. It is thus natural to ask the question What is the dependence of the τ -function
on the extended monodromy data? Such a question is by no means new, and has been addressed in the
literature before by various sources [Mal83; Pal99; Ber10; LR17; ILP18]. This problem of determining the
dependence of the τ -function on the extended monodromy data has many important applications, one of
the main ones being the problem of determining constant factors for the asymptotics of τ -functions [LR17;
ILP18; IP18]. This subsection will be organized as follows: we first introduce the definition of the extended
JMU differential, in the context of the previous section. We then overview some of the main points given
in [IP18] about the role of the Hamiltonian structure of Painlevé equations in the problem of computing
constant factors. We also state their conjectures. We conclude by showing that their conjectures hold in the
case of the isomonodromic system associated to the string equation.

Let us first define the extended JMU τ -differential. We work again with the system (5.16). Let T
denote the space of isomonodromic deformation parameters of this system7, and denote dT the differential
in these parameters (note that we had previously used the notation d for this object). Associated to the
system (5.16) are a number of parameters which we refer to collectively as monodromy data. For the system
(5.16), the monodromy data will consist of a number of Stokes parameters. We denote these parameters
by {mℓ}, denote the space of these parameters by M, and denote the differential in these parameters as
dM. A specification of a solution to the isomonodromy equations (the zero curvature conditions) depend
intrinsically on the monodromy data {mℓ}, and thus the JMU τ -function also depends on these parameters.
One is then led to wonder how τ depends on these parameters. This question can essentially be answered if
one can extend the JMU differential from a closed differential on T to a closed differential on all of T ×M.
This can be accomplished through the following steps [ILP18]:

1. Define the following 1-form on T ×M:

ω0 :=
〈
Â(ζ)dT S(ζ)S

−1(ζ)
〉
+
〈
Â(ζ)dMS(ζ)S−1(ζ)

〉
. (5.34)

This 1-form obviously has the property that its restriction to T coincides with the usual JMU τ -
differential. Furthermore, one can show that

Ω0 := (dT + dM)ω0 (5.35)

is a 2-form on M only. In other words, the restriction of Ω0 to T vanishes identically; this is equivalent
to the fact that (i.) dT ωJMU = 0, and (ii.) Ω0 contains no cross-terms of the form dtk ∧ dmℓ.

7Actually, one can extend all the definitions naturally to the universal covering T̃ of T , and this is really where we want to
define dT . However, we will not be going far enough into this subject for this distinction to make much of a difference.
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2. By means of asymptotic analysis, one can calculate (at least in principle) Ω0 explicitly. Once this
expression is obtained, construct a 1-form ωcorrection on M such that dωcorrection = Ω; then, put

ω̂ := ω0 − ωcorrection. (5.36)

The 1-form ω̂ then by construction is closed on T ×M, and its restriction to T agrees with the JMU
τ -differential. We are thus justified in calling ω̂ the extended τ -differential. Such a differential is of
course not unique, as our construction of ωcorrection is defined only up to the addition of an exact
differential on M.

With the definition of the extended τ -differential in place, we now proceed to discuss the Hamiltonian aspects
of the problem. In [IP18], the central role of the Hamiltonian structure of Painlevé equations with regards
to the problem of evaluation of constant factors was demonstrated. Let us briefly overview some of their
main philosophical arguments; we will essentially be summarizing Section 2 of [IP18].

Consider a completely integrable Hamiltonian system with Darboux coordinates {Pa, Qa}, with Hamilto-
nians {Hk} with respect to the times {tk}. Denote the parameter space of times by T ; suppose the Darboux
coordinates depend additionally on a collection of monodromy parameters {mℓ},

Qa = Qa(tk,mℓ), Pa = Pa(tk,mℓ), (5.37)

and denote the parameter space of the monodromy parameters by M. We define the classical action differ-
ential on the total space T ×M:

ωcla :=
∑
a

PadQa −
∑
k

Hkdtk =
∑
k

(
Pa
∂Qa

∂tk
−Hk

)
dtk +

∑
ℓ

(∑
a

Pa
∂Qa

∂mℓ

)
dmℓ. (5.38)

The fact that the system is a completely integrable Hamiltonian system implies that the differential is closed
in the time parameters. In other words, if we define dT :=

∑
k dtk

∂
∂tk

, then

dT

(
ωcla

∣∣
{mℓ=const.}

)
= 0. (5.39)

This is nothing but the classical statement that the symplectic form defined by (3.17) vanishes along the
trajectories of the Hamiltonian flows. Note that in many cases, including our own, there is already a
connection between the classical action and the isomonodromic τ -function: namely, we have that d log τ =∑

kHkdtk, and so the τ -function appears as a “truncation” of the classical action integral. If we take the
total differential (on the whole of T ×M) of formula (5.38), we find that

(dT + dM)ωcla =
∑
a

dMPa ∧ dMQa =: Ω, (5.40)

which is reminiscent of formula (5.35). This observation led Its and Prokhorov to make the following
conjectures:

Conjecture 1. ([IP18].) Suppose the parameter space T ×M is equipped with a symplectic structure Ω.
Then, there exists a constant γ ∈ C such that

Ω0 = γΩ, (5.41)

where Ω0 is the 2-form defined by (5.35).

Conjecture 2. ([IP18].) There exists a function G(Pa, Qa, tk), rational in the variables {Pa}, {Qa}, {tk},
such that

ω0 = γωcla + dG. (5.42)
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These conjectures allow one to write a formula for the variation of the τ -function in terms of the mon-
odromy parameters, which in practice is much more efficient in application to the evaluation of constant
factors than many earlier procedures. If we define the τ -function as log τ :=

´
C
ω̂, where C ⊂ T is a ‘nice’

curve in the deformation parameter space, the formula is (see Remark 3 of [IP18])

∂

∂mℓ
log τ =

∑
a

Pa
∂Qa

∂mℓ

∣∣∣∣
∂C

+
∂G

∂mℓ

∣∣∣∣
∂C

. (5.43)

In [IP18], the authors were able to verify this conjecture for the classical Painlevé transcendents. In fact,
these conjectures hold in our situation as well, as the next Proposition states.

Proposition 5.3. Consider the isomonodromic system defined by (4.6), and define the extended 1-form for
this system by

ω0 :=
〈
L(ζ)dT S(ζ)S

−1(ζ)
〉
+
〈
L(ζ)dMS(ζ)S−1(ζ)

〉
, (5.44)

where L is as defined in (4.7), and S(ζ) = I+
∑∞

k=1
Φk

ζk . Then,

ω0 =
3

2
ωcla + dG, (5.45)

where G is the polynomial

G =
3

7

[
3t1H1 +

5

2
t2H2 + t5H5 − PUQU − 3

2
PVQV − 3

2
PWQW

]
. (5.46)

This verifies Conjectures 1. and 2. for the system (4.6).

Proof. The proof of this proposition is a straightforward, albeit tedious, calculation. since L(ζ) is degree 7
in ζ, one must in principle compute terms up to order ζ−8 in the expansion of S(ζ); however, the symmetry
of L, S under conjugation by the matrix S actually implies one must only compute up to terms of order
ζ−7. This calculation involves (cf. the proof of Proposition 4.6) determining the off-diagonal terms of the
matrices Φk up to order 13. Once one has successfully calculated the coefficients Φ1, ...,Φ7, one can use
formula (5.34) with the Hamiltonian variables as coordinates on the monodromy manifold M to compute
the coefficients of ω0. Calculating the dPU ∧ dQU -coefficient of (dT + dM)ω0,

∂(ω0)QU

∂PU
− ∂(ω0)PU

∂QU
=

3

2
.

Similarly, the coefficients of the dPV ∧ dQV , dPW ∧ dQW terms in (dT + dM)ω0 are constant, and equal to
3
2 . On the other hand, we have the equalities

−3

2

∂Hk

∂Qa
=
∂(ω0)tk
∂Qa

− ∂(ω0)Qa

∂tk
,

−3

2

∂Hk

∂Pa
=
∂(ω0)tk
∂Pa

− ∂(ω0)Pa

∂tk
,

for every k ∈ {1, 2, 5}, a ∈ {U, V,W}; all other coefficients of (dT + dM)ω0 vanish identically (Note that we
could have also inferred this constant from the relation of ω̂JMU and ωOkamoto). Subtracting

3
2ωcla from ω0,

we obtain the differential

dG := ω0 −
3

2
ωcla.

By construction, this differential is closed. Consequentially, it can be integrated up to a function G =
G(QU , QV , QW , PU , PV , PW ; t1, t2, t5). Direct calculation shows that this function is

G =
3

7

[
3t1H1 +

5

2
t2H2 + t5H5 − PUQU − 3

2
PVQV − 3

2
PWQW

]
,

as claimed.
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6. Discussion and Outlook.

In summary, we have constructed a Riemann-Hilbert formulation of the (3, 4) string equation, which will
appear as the model Riemann-Hilbert problem in the local analysis of the multi-critical quartic 2-matrix
model [DHL23a]. The string equation is equivalent to a 3 + 3-dimensional, completely integrable non-
autonomous Hamiltonian system. Furthermore, we were able to calculate an appropriate τ -function for this
system. Upon extending this τ -function to the canonical coordinates, we were able to verify Conjectures 1
and 2 of [IP18], lending them further validity.

Aside from the completion of the work [DHL23a], we hope to further investigate the large-parameter
asymptotics of the above Riemann-Hilbert problem. This is a standard question whenever a Riemann-
Hilbert problem such as the one described in this work arises. The physically relevant solution to the string
equation, according to [FGZ95], should have asymptotic expansion of the form

U(t5, t2, x) ∼ x1/3

( ∞∑
k=0

uk(t5, t2)x
−k/3

)
, V (t5, t2, x) ∼ x−1/3

( ∞∑
k=0

vk(t5, t2)x
−k/3

)
. (6.1)

The work [DHL23a] shows that the partition function of the critical two matrix model can be written in
terms of U(t5, t2, x); it is not yet clear what the particular solution looks like.

There is also an additional physical motivation for the study of these asymptotics. As observed by
Crnković, Ginsparg, and Moore [CGM90], there should exist a “renormalization group flow” between
the multicritical points of the 2-matrix model. Formally, this observation says that, given a solution
U(t5, t2, x), V (t5, t2, x) of the string equation (1.1), if we make the scaling

u(t5, t2, x) := t
2/5
5 U(t5, t2, t

1/5
5 x), v(t5, t2, x) := t

3/5
5 V (t5, t2, t

1/5
5 x), (6.2)

and take a formal limit as t5 → ∞, then v → 0, and u→ û(x), where û solves the Painlevé I equation, after
a rescaling of the variables. A full investigation of this statement can be performed via steepest descent
analysis for the Riemann-Hilbert problem developed in this work. Some preliminary calculations suggest
that this Riemann-Hilbert problem “flows” to a 3 × 3 version of the Painlevé I Riemann-Hilbert problem.
The associated Lax pair has appeared in the literature before [JKT09], and this 3 × 3 problem also seems
to appear in the local parametrices of the critical energy, critical temperature (but non-critical external
field) quartic 2-matrix problem [DHL23b; DHL23a]. The analysis of this problem and the large-parameter
asymptotics of the Riemann-Hilbert problem described in this paper will be the subject of a future work. We
also remark that it would be interesting to see if this degeneration can be identified using the Hamiltonian
formalism, in a similar manner to the t2 → 0 limit discussed in §2.

The partition function of the 2-matrix model is identified with the partition function of a particular theory
of minimal matter coupled to topological gravity [Kon92; Wit91; Wit92], which counts a class of intersection
numbers on the moduli space of Riemann surfaces. This implies that the Riemann-Hilbert problem discussed
above could be of use in enumeration of these intersection numbers; we hope to investigate this in the future.

In this work, we essentially gave no analysis of the solutions to the string equation. There are several
fundamental questions that should be addressed:

• Irreducibility of the string equation. Due to the similar nature of the Riemann-Hilbert problems of the
(4, 3) string equation and the Painlevé I Riemann-Hilbert problem, it is natural to conjecture that the
string equation admits no solutions in terms of classical functions, in the sense of [Oka99]). Indeed,
there is a procedure ([Ume88], see also [Ume90]) by which one can infer the irreducibility of solutions
of a given Hamiltonian system. This procedure applies in principle to the string equation; it would be
interesting to see if this method can be applied practically.

• The space of initial conditions & Stokes manifold. Aside from determining its generic dimension, we
provided essentially no analysis of the Stokes manifold associated to the string equation. The Stokes
manifolds of the classical Painlevé equations, in particular PI and PII, have a rich mathematical
structure, and carry their own Poisson tensor, as well as an association to certain cluster algebras
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[LR17; BT22]. A more complete analysis of this Stokes manifold, as well as an accompanying analysis
of the space of initial conditions (cf. [Oka99] for the equivalent analysis for PII) is certainly needed.

• Evaluation of constant factor in the τ -function. So far, we have only calculated the τ -differential, and
thus the free energy of the multi-critical matrix model up to a multiplicative constant. This problem
was first noticed in [Dou90], who believed the problem could be resolved by appealing to the general
theory of τ -functions. It would be interesting if one could apply the calculations in Section 5.3 of this
work to this end.

A. Singularity Analysis of the String Equation.

Here, we perform a rudimentary singularity analysis of the string equation (1.1). The main point of this
work is to provide familiarity with the (3, 4) string equation. Some, if not all, of what is written here can
be found in earlier physics literature, such as [Bré+90; FGZ95], and references therein. We record these
results here, for the convenience of the reader, and also to bring attention to these results to a potentially
new audience. Perhaps the only noteworthy observation here is that certain behaviors of the solution to the
ODE (1.1) can be eliminated by using the fact that solutions must also satisfy (2.24)–(2.27).

Proposition A.1. Let U, V be a solution to the ODE (1.1), meromorphic (and possibly multivalued) in a
neighborhood of x = x0. Further, let uk, vk denote the kth Laurent coefficient of U, V , respectively. Then,
one of the following holds:

1. U, V are holomorphic at x = x0, with expansion starting with{
U(t5, t2, x) = u0 + u1(x− x0) + u2(x− x0)

2 + u3(x− x0)
3 +O((x− x0)

4),

V (t5, t2, x) = v0 + v1(x− x0) +O((x− x0)
2),

(A.1)

and all subsequent entries determined as polynomials in u0, ..., u3, v0, v1, x0, t5, t2.

2. U, V have second and third order poles, respectively, with expansion starting with{
U(t5, t2, x) = 4

(x−x0)2
+ 5

3 t5 ∓ v0(x− x0)∓ v1(x− x0)
2 +O((x− x0)

3),

V (t5, t2, x) = ±4
(x−x0)3

+ v0 + v1(x− x0) +O((x− x0)
2),

(A.2)

and all subsequent entries are determined in as polynomials in v0, v1, v5, v6, x0, t5, t2.

3. U, V both have second-order poles, with expansion starting with{
U(t5, t2, x) = 2

(x−x0)2
+ 1

2v
2
−2 + u1(x− x0) + u2(x− x0)

2 +O((x− x0)
3),

V (t5, t2, x) = v−2

(x−x0)2
− 1

4v
3
−2 +

5
6 t5v−2 − 1

2v−2u1(x− x0) +O((x− x0)
2),

(A.3)

and all subsequent entries are determined as polynomials in v−2, v3, u1, u2, u6, x0, t5, t2.

4. U has a pole of order 2 and V is regular, with expansions starting with{
U(t5, t2, x) = 10

(x−x0)2
+ 20

21 t5 +
25
294 t

2
5(x− x0)

2 +O((x− x0)
3),

V (t5, t2, x) = t2
14 (x− x0)

2 + 5
588 t5t2(x− x0)

4 + v6(x− x0)
6 +O((x− x0)

7)
(A.4)

and all subsequent terms are determined as polynomials in v6, u6, u10, x0, t5, t2.

Proof. We follow the usual procedure of Painlevé-type analysis, cf. [ARS80], for example. By hypothesis,
U, V have expansions of the form U =

∑∞
k=0 uk(x−x0)k−α, V =

∑∞
k=0 vk(x−x0)k−β , for some α, β ∈ C. This

is not consistent with our indexing convention in the statement of the theorem, but it is a more convenient
choice of labelling for the proof; we will make note of where we must relabel indices later on. We assume,
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without loss of generality, that u0, v0 ̸= 0; otherwise, we could redefine α, β accordingly. The first part of
the string equation reads

0 =
1

2
V ′′ − 3

2
UV +

5

2
t5V + t2.

Note that the most singular terms in the above equation are 1
2V

′′ and − 3
2UV . Matching the most singular

terms, we see that

0 =
1
2v0β(β + 1)

(x− x0)β+2
−

3
2u0v0

(x− x0)α+β
+ [less singular terms],

and so, since u0, v0 ̸= 0, we see that β + 2 = α+ β ⇒ α = 2, and subsequently that

1

3
β(β + 1) = u0.

Now, the second part of the string equation reads

0 =
1

12
U (4) − 3

4
U ′′U − 3

8
(U ′)2 +

3

2
V 2 +

1

2
U3 − 5

12
t5
(
3U2 − U ′′)+ x

The first 6 terms are the most singular; inserting the U =
1
3β(β+1)

(x−x0)2
+ ..., V = v0(x − x0)

−β + ... into this

equation, we obtain that

0 =
2
9β(β − 5)(β − 2)(β + 1)(β + 3)(β + 6)

(x− x0)6
+

18v20
(x− x0)2β

+ [less singular terms].

Here, we see that there are several possibilities, some of which we can eliminate or identify as subcases of
one another immediately:

• (Case 0.) β = 0, implying V is locally holomorphic near x = x0, and we must try and match the
next-most singular terms in the second equation. Following through this calculation, one finds that U
must also be holomorphic near x = x0.

• (Case 1.) β = 3, and 18v20 = 288 =⇒ v0 = ±4.

• (Case 2.) β = 2, and we must try and match the next-most singular terms in the second equation, in
this case.

• (Case 3.) β = −1, in which case V is holomorphic near x = x0; following through with the analysis,
one finds that U must be holomorphic as well. Thus, we can identify this as a specialization of Case 0.

• (Case 4.) β = −3, for which a solution exists only if t2 = 0. We then find that V ≡ 0, and there is a
3-parameter family of solutions U , parameterized by the Laurent coefficients u1, u2, and u6; this is in
fact a specialization of Case 2.

• (Case 5.), β = −6, in which case V is holomorphic, and U = 10
(x−x0)2

+ ...

From the above, we see that the only independent cases are cases 0, 1, 2, and 5. One can verify case by case
that the cases we have described here are as are described in the statement of the Proposition, by calculating
the resonances in each case to determine where arbitrary constants may appear. Let us perform this analysis
case by case.

Case 1. This case contains two subcases, corresponding to v0 = ±4; we perform the analysis for v0 = +4
only, as the ‘−’ case is similar. Following [ARS80], to determine resonances, we substitute

U =
4

(x− x0)2
[1 + ϵ1(x− x0)

r] , V =
4

(x− x0)3
[1 + ϵ2(x− x0)

r] ,
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into the string equation, and retain only the most singular terms, to leading order in ϵ1, ϵ2. The resonance
matrix is

M(r) :=
(

−4r(r−7) 48

576 4r4−56r3+140r2+392r−67

)
.

Resonances are determined by the positive real solutions of detM(r) = 0; since detM(r) = −16(r − 3)(r −
4)(r − 8)(r − 9)(r + 2)(r + 1), we see that the possible resonances are r = 3, 4, 8, and 9. These resonances
can be resolved in terms of the coefficients v0, v1, v5, and v6, respectively (here, the indices differ from the
resonance indices by a factor of 3 due to our labelling convention).

Case 2. Here, we substitute

U =
2

(x− x0)2
[1 + ϵ1(x− x0)

r] , V =
v−2

(x− x0)2
[1 + ϵ2(x− x0)

r] ,

into the string equation, and retain only the most singular terms, to leading order in ϵ1, ϵ2. The determinant
of the resonance matrix is

detM(r) = det
(

v−2r(r−5) −6v−2

0 2(r−3)(r−4)(r−8)(r+1)

)
= 2v−2r(r − 3)(r − 4)(r − 5)(r − 8)(r + 1).

The presence of the roots r = 0,−1 indicate the arbitrariness of the location of the pole x0 and the coeffi-
cient v−2. The resonances r = 3, 4, 5, 8 correspond to the arbitrariness of the coefficients u1, u2, v3,and u6,
respectively (note that the indices of the coefficients differ from their corresponding resonances by a factor
of 2 due to our labelling convention).

Case 5. Here, we substitute

U =
10

(x− x0)2
[1 + ϵ1(x− x0)

r] , V =
t2
14

(x− x0)
2 [1 + ϵ2(x− x0)

r] ,

into the string equation, and retain only the most singular terms, to leading order in ϵ1, ϵ2. The determinant
of the resonance matrix is

detM(r) = det
(

− 15
7 t2

t2
14 (r+7)(r−4)

10(r+5)(r+1)(r−8)(r−12) 0

)
=

5t2
7

(r + 7)(r + 5)(r + 1)(r − 4)(r − 8)(r − 12).

The resonances r = 4, 8, 12 can be resolved in terms of the coefficients v6, u6, u10 respectively.

So far we have only considered part of the full string equation, namely, the ODE (1.1). However the space
of solutions of the ODE (1.1) is in general much large that the space of solutions to the string equation, which
includes the equations (2.24)–(2.27) in addition to equation (1.1). In fact, only two of the local expansions
described in Proposition A.1 can be made consistent with the other components of the string equation (2.24)–
(2.27), as we shall now demonstrate. Suppose U(t5, t2, x), V (t5, t2, x) is a meromorphic solution to the full
string equation. In other words, U, V solve (1.1) in addition to equations (2.24)–(2.27). If we fix t5, t2, then
in particular we have that U, V are a solution to the ODE (1.1). It follows that U, V must have one of the
expansions from Proposition A.1, where the undetermined coefficients of this expansion depending on t2, t5
meromorphically (for example, in Case (A.1), we would have that u0 = u0(t5, t2), · · · , u3 = u3(t5, t2), v0 =
v0(t5, t2), v1 = v1(t5, t2)). Suppose U, V indeed have one of the expansions (A.1)–(A.4). U and V must also
satisfy the equation

∂U

∂t2
= −2

∂V

∂x
;

differentiating the series (A.1)–(A.4) term by term with respect to x, t2 yields that (in cases (A.2),(A.3),
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(A.4) additionally allowing x0 = x0(t2)):

(A.1), (2.24) =⇒ 0 =
∂u0
∂t2

+ 2v1 +O(x− x0),

(A.2), (2.24) =⇒ 0 =
4

(x− x0)3
∂x0
∂t2

± 12

(x− x0)4
+O(1),

(A.3), (2.24) =⇒ 0 =
4∂x0

∂t2

(x− x0)3
+

4v2
(x− x0)3

+O(1),

(A.4), (2.24) =⇒ 0 = − 20

(x− x0)3
∂x0
∂t2

− 25

147

∂x0
∂t2

t25(x− x0)−
t2
7
(x− x0) +O((x− x0)

2).

We see that the first and third lines determine a consistent system of PDEs for the coefficients uk, vk,
whereas the second and last lines lead to a contradiction, whether or not ∂x0

∂t2
is nonzero. In other words,

the requirement that U, V additionally satisfy (2.24)–(2.27) implies that the behaviors (A.2), (A.4) cannot
appear in the solution to the string equation, as they lead to the above contradictions. One can readily check
that these expansions are also consistent with equations (2.26), (2.25), and (2.27).
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37 (2004), pp. 11149–11167 (p. 11, 29).

[Kap88] A.A. Kapaev. “Asymptotic behavior of the solutions of the Painlevé equation of the first kind”.
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