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Brownian motion is of central importance for understanding diffusive transport in biology, chemistry, and
physics. For spherical particles, the theory was developed by Einstein, whereas a theoretical description of the
motion of spheroids was given by F. Perrin. Here, we report the systematic verification of Perrin’s theory 90
years after its publication. To this end, we synthesized oblate and prolate core-shell spheroids with different
aspect ratios and tracked their three-dimensional diffusive motion in high dilution using confocal fluorescence
microscopy. The experimental data for the dependence of translational and rotational diffusion on aspect
ratio are in excellent agreement with the theoretical predictions. The crossover dynamics from anisotropic to
isotropic diffusion as a hallmark for translation rotation coupling are also found as predicted. This verifies
Perrin’s theory as a cornerstone for understanding diffusive transport and underlines the excellent suitability
of the particle system for testing more detailed theory.

At the beginning of the 19th century, Robert Brown
published his observation of the random motion of pollen
particles in water1. The phenomenon he described and
that is now known as as Brownian or diffusive motion,
received little interest before the end of the century. In
1905 Einstein and shortly afterwards Smoluchowski and
Langevin2–4 developed theoretical approaches explaining
the observed motion of particles as a result of the ther-
mal agitation of the solvent molecules. The quantitative
measurements of J.B. Perrin that confirmed the theory
were a cornerstone of the proof of the particle nature of
matter5. For decades, numerous experiments in which
the translational motion of spherical particles was di-
rectly monitored have left no doubt about the validity
of the theoretical description and Brownian motion con-
tinues to play an important role for the understanding of
numerous processes in biology, chemistry, and physics6.
To allow predictions about the diffusion behavior of

molecules and particles of more complex shape, F. Per-
rin extended the theory originally developed for spherical
particles to spheroids as a more general model7–9. Due
to the anisotropic shape, their diffusion is not described
by a single diffusion coefficient as for spherical particles,
but by two diffusion tensors, one for translational dif-
fusion and one for rotational diffusion. Moreover, the
tensors are simple only in the particle-frame moving and
rotating with the colloid. Their determination required
the solution of Stokes flow about ellipsoidal bodies10–12.
Consequently, the theoretical description of this problem
is significantly more intricate than that of the spherical
case. Also experiments directly monitoring position and
orientation of individual particles in solution proved to be
much more challenging and only the development of new
optical observation methods as well as of approaches to
the synthesis of suitable spheroidal particles during the
last two decades made experiments of this type possi-
ble. Using wide-field microscopy, Han et al. studied the
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translational and rotational diffusion of individual pro-
late spheroidal colloids in two dimensions13,14. A special
emphasis of this study was the experimental observation
and theoretical description of the coupling between trans-
lational and rotational degrees of freedom caused by the
anisotropic particle shape. Similar 2D experiments have
since then been performed with colloidal dumbbells, clus-
ters of spherical particles, and L-shaped particles15–19.
To capture details of translational and rotational cou-
pling of colloidal dumbbells in 2D, the general angle- and
position-dependent self intermediate scattering function
was obtained theoretically15.

To follow the diffusion of individual prolate ellipoids
with two different aspect ratios in a high viscosity sol-
vent in three dimensions, Mukhija and Solomon used
confocal fluorescence microscopy20. The same approach
was used to image the diffusion of clusters of spherical
particles21,22, whereas holographic microscopy served to
monitor the 3D diffusion of colloidal rods and cylinders23,
and depolarized dynamic light scattering gave infor-
mation on colloids with partially crystalline internal
structure24. Since these 3D measurements were limited
to determining the diffusion coefficients in the laboratory
frame, no coupling between translation and rotation was
observed. In 3D, the observation of the crossover from
anisotropic to isotropic diffusion in the particle-frame as
a hallmark of this coupling was reported only recently for
the diffusion of Au nanorods that was monitored using
darkfield microscopy25.

Despite its great importance for understanding trans-
port phenomena in general, an experimental verification
of F. Perrin’s theory for the diffusion of spheroids is still
missing. The main aspects of such a confirmation are ex-
perimental data on the dependence of translational and
rotational diffusion on the particles’ aspect ratios and
the experimental observation of translation-rotation cou-
pling. In 2D, a few experimental data on different aspect
ratios are available13, whereas in 3D only results of one
study with measurements of two aspect ratios is avail-
able. Data on oblate spheroids so far are missing alto-
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FIG. 1: Particle system. (a-c) Scanning electron microscopy (SEM) images of oblate ellipsoids with aspect ratios b/a=2.1 (a) and
b/a=2.4 (b), spherical precursor particles (c) and prolate ellipsoids with aspect ratios a/b=2.0 (d) and a/b=9.4 (e). Scale bars: 10 µm.
(f) Schematic representation of the thermomechanical pressing (left side) and stretching (right side) procedure to produce oblate and

prolate spheroids. Confocal fluorescence images of oblate spheroids with aspect ratio b/a = 2.1 (g), spherical precursors (h) and prolate
spheroids with the aspect ratio a/b = 6.6 (i). Core signals in green, shell signals in red.

gether. Here, we report results of confocal fluorescence
microscopy experiments of the diffusion of spheroidal col-
loids diffusing in 3D. Apart from measurements of spher-
ical particles, our data comprise diffusion measurements
of particles with eight different aspect ratios, four of
oblate and four of prolate shape. The temporal reso-
lution of our measurements is high enough to allow for
monitoring the crossover from anisotropic to isotropic
translational diffusion. For the analysis of the latter, we
recapitulate the most important aspects of the recent the-
oretical description of 2D diffusion15 for 3D and perform
Brownian dynamics calculations.

Advances in controlled particle synthesis gives ac-
cess to a variety of well-defined particle geometries like
rods26,27, dumbells28, bananas29, discs30, cubes31. Based
on a method developed by Ho et al., also spheroids
with prolate and oblate shape can be prepared by
controlled stretching or squeezing of spherical precur-
sor particles32,33. The colloidal particles used in our
study possess a core-/shell-geometry with crosslinked
poly(methyl methacrylate) (PMMA) cores and non-
crosslinked PMMA shells. The particle synthesis is based
on a method first published by Antl et al.34. We modi-
fied this method to obtain particles in which both, cores
and shells, are labelled with different fluorescent dyes.
This allows the simultaneous detection of the position
and the orientation of spheroidal particles in two differ-
ent detection channels. We obtained spherical PMMA-
core/PMMA-shell particles with a diameter of 4.69 µm
with a polydispersity of 2.3 %. The particles were ster-
ically stabilized by covalent binding of the graft copoly-
mer polyhydroxystearic acid-g-PMMA35 to achieve hard

potentials. To ensure that the particles investigated pos-
sessed the same volume, all spheroidal particles with dif-
ferent aspect ratios were produced from this batch of
particles using a thermomechanical method (Fig.1). Pro-
late spheroidal particles were obtained by stretching36,37,
whereas oblate particles were synthesized by pressing33.

For the diffusion measurements, the particles were sus-
pended in a mixture of cyclohexylbromide (CHB) and
cis-decalin to achieve density and refractive index match-
ing of particles and solvent38. Tetrabutylammonium bro-
mide (TBAB) was added to screen charges and to min-
imize electrostatic interactions between particles. The
amount of solvent was chosen as such that volume frac-
tions ϕ were below 2%. Fluorescence images of the dif-
fusing particles were acquired using a commercial confo-
cal microscope (TCS SP5 Leica Microsystems). For the
diffusion measurements, 3D image stacks were recorded
with lag times of 4 s. From the imaging data, spatio-
temporal trajectories of individual particles were ob-
tained and analysed using a home-written software39.
While the detection of the core signal served to deter-
mine the particles’ positions, their orientation was de-
rived from the shell signals.

The trajectories serve as the basis for the analysis of
the particles’ translational and rotational diffusion. Fit-
ting the mean squared displacement (MSD) ⟨∆r2(t)⟩ to
⟨∆r2(t)⟩ = 6Dtt+6ε2t and the mean squared angular dis-
placement (MSAD) ⟨∆ϑ2(t)⟩ to ⟨∆ϑ2(t)⟩ = 4Drt + 2ε2r,
we obtain the translational diffusion coefficients Dt of
spheres, prolate and oblate ellipsoids and the rotational
diffusion coefficients Dr of prolate and oblate ellipsoids.
The curve fittings also yield the translational and ro-
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tational measurement uncertainties εt and εr that are
reported for each sample in the supplemental material40.

For the low particle concentrations used in the exper-
iments, the translational diffusive motion of the parti-
cles is expected to follow D = µkBT with the particles’
mobility µ, Boltzmann’s constant kB , and temperature
T2,3,41. For low Reynolds numbers, the drag coefficient
γt = 1/µ and Dt = kBT

γt
. For spherical particles with

a hydrodynamic radius r in viscous fluids with the dy-
namic viscosity η, γt = 6πηr which yields the well known
Stokes-Einstein equation. In contrast to spherical parti-
cles, where friction and diffusion coefficients are isotropic
scalars, the diffusion tensor of spheroidal particles in the
particle-frame contains a coefficient

Dt,∥ =
kBT (2− p2)g(p)− 1

8πηa(1− p2)
, (1)

for motion parallel to their major semi-axis42,43, whereas
for motions perpendicular to their major semi-axis the
coefficient reads

Dt,⊥ =
kBT (2− 3p2)g(p) + 1

16πηa(1− p2)
. (2)

In the last expressions,

g(p) =
log

1+
√

1−p2

p√
1− p2

(3)

for p < 1 and

g(p) =
arctan

√
p2 − 1√

p2 − 1
(4)

for p > 1. Here, p = b
a is the aspect ratio defined as

the length ratio of the minor semi-axis b and the major
semi-axis a. From these expressions, the translational
diffusion coefficient for spheroids in the laboratory frame
is calculated to be

Dt =
Dt,∥ + 2Dt,⊥

3
. (5)

The diffusion coefficient for rotations of rigid spheroids
about their minor semi-axis b as derived by Perrin7,9 is
given by42,43

Dr =
3kBT (2− p2)g(p)− 1

16πηa3(1− p4)
. (6)

On basis of the recorded trajectories, we first analyzed
MSDs and MSADs of prolate and oblated spheroids with
different aspect ratios (Fig. 2). Linear dependence on
time, as expected for free diffusion, is found in all cases.
Since the friction coefficients increase with aspect ratio,
theory predicts the observed decrease of both the trans-
lation and the rotation diffusion coefficients with aspect
ratio. By fitting the MSD and MSAD data, we obtained

FIG. 2: Mean squared displacement curves of prolate (a) and
oblate (b) spheroids. Mean squared angular displacement curves
of prolate (c) and oblate (d) spheroids. The dot-dashed with

slope 1 line serves as a guide to the eye.

translational and rotational diffusion coefficients. The
aspect ratio dependence of both, the translational and
rotational diffusion coefficients Dt and Dr thus deter-
mined, is in excellent agreement with the F. Perrin’s the-
ory as given by equations 1-6 (Fig. 4 a). One should note
that the determination of the rotational diffusion coeffi-
cients is less error prone than that of their translational
counterparts, since the latter suffer more strongly from
residual drift in the sample chamber.

In addition to the analysis of the particle motion in the
laboratory frame, imaging of individual particle trajecto-
ries allows for the determination of diffusion coefficients
in the body frame. To this end, the translational mo-
tion of every particle is divided up into a translational
displacement r∥ parallel to its major semi-axis a and a
translational displacement r⊥ perpendicular to its mi-
nor semi-axes b. Here, the initial orientation of each el-
lipsoidal particle is used as reference system. One thus
obtains ⟨∆r2∥(t)⟩ and ⟨∆r2⊥(t)⟩ from which the respec-
tive diffusion coefficients Dt,∥ and Dt,⊥ were derived by
linear regression (Fig. 4 c). Plotting the dependence of
Dt,∥/Dt,⊥ on aspect ratio, also in this case we find excel-
lent agreement between theory and experiment for oblate
as well as for prolate spheroids (see Fig. 4 c). An impor-
tant effect of the anisotropic diffusion of spheroidal parti-
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FIG. 3: Comparison between experimentally determined diffusion coefficients and theoretical predictions for different spheroidal
particle aspect ratios. (a) Experimentally determined translational diffusion coefficients Dt for prolate (purple, aspect ratio a/b) and for

oblate (green, aspect ratio b/a) spheroids. Solid lines: theoretical prediction using equations 1-5. The equations were fitted to the
experimentally determined translational diffusion coefficients of both prolate and oblate ellipsoids using the length of the major semi-axis
as free parameter. (b) Experimentally determined rotational diffusion coefficients Dr for prolate (purple, aspect ratio a/b) and oblate

spheroids (green, aspect ratio b/a). Solid lines: theoretical predictions using equations 1-4 and 6. (c) Experimentally determined ratio of
Dt,∥/Dt,⊥ for prolate (purple) and oblate (green) spheroids. Solid lines: Theoretical predictions using equations 1-4.

FIG. 4: Crossover of anisotropic to isotropic diffusion for prolate
(left column) and oblate (right column) spheroids. Red circles:

D∥,ϑ0
− ⟨∆r2⟩/6t; blue circles: D⊥,ϑ0

− ⟨∆r2⟩/6t. The ⟨∆r2⟩/6t
term was subtracted to account for residual drift. Solid lines are

fits to eq. 7, whereas dashed lines are fits to eq. 8.

cles is the coupling between translational and rotational
diffusion. This can be tested by examining the short time
behavior of Dt,∥ and Dt,⊥. While initially, Dt,∥ > Dt,⊥,

rotational motion leads to a crossover from anisotropic
to isotropic diffusion approaching Dt at long times. F.
Perrin found

⟨r2∥,ϑ0
(t)⟩ = 2Dtt+

2

9

∆D

Dr
(1− e−6Drt) (7)

⟨r2⊥,ϑ0
(t)⟩ = 2Dtt−

1

9

∆D

Dr
(1− e−6Drt) (8)

with ∆D = D∥ − D⊥ and the initial angle ϑ0 aligned

with the major semi-axis8. We confirmed these expres-
sions using the methodology developed by Mayer et al.
for 2D systems (supplemental material). This crossover
has been reported previously for 2D diffusion of pro-
late spheroids13 and of dumbbells15, as well as for Au
nanorods with one aspect ratio in 3D25. Fig. 4 shows
the crossover for oblate and prolate spheroids with two
different aspect ratios. Again the experimental data co-
incide very well with theory. Translation-rotation cou-
pling is also expected to show up at intermediate times on
the crossover scale as a non-Gaussian distribution of the
laboratory-frame displacements parallel and perpendicu-
lar to an initial orientation vector of the spheroids. This
has been reported previously in 2D, where the strong con-
finement resulted in Dt,∥/Dt,⊥ ≈ 4. In our case, no signs
for non-Gaussian displacement distributions were found.
This can be explained by the fact that for 3D systems,
the maximum value for Dt,∥/Dt,⊥ = 2 for a/b → ∞.
For our particles with the highest aspect ratio but still
reasonably short rotational relaxation times, we calculate
Dt,∥/Dt,⊥ = 1.27 (a/b = 4.48). This ratio probably is too
small to lead to detectable deviations from Gaussian dis-
tributions. We also verified by Brownian dynamics sim-
ulations that finite density corrections can be neglected
in our experiments (see supplemental material).
In summary, we report measurements confirming

F. Perrin’s theory describing the Brownian motion of
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spheroidal particles that is of extraordinary importance
for the description of transport phenomena. After
synthesizing colloidal particles with identical volumes
and eight different aspect ratios we could use confocal
fluorescence microscopy to obtain trajectories of indi-
vidual particles. This allowed us to derive diffusion
coefficients in the laboratory and in the particles’ body
frame. These and data obtained on the dynamics of the
crossover from anisotropic to isotropic diffusion are in
excellent agreement with theory. This verifies Perrin’s
theoretical work 90 years after its publication and shows
that the theory correctly captures also subtle effects like
the coupling of translation and rotation. Our work also
shows that the particle system employed is an attractive
model for investigating complex 3D transport in fluids.
It promises to be well suited for testing more detailed
theory that is currently developed15.
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Supplemental Material

I. EXPERIMENTAL SECTION

A. Synthesis of core-/shell-particles

The colloidal particles used possessed a core-/shell-
geometry with crosslinked poly(methyl methacrylate)
(PMMA) cores and non-crosslinked PMMA shells. Our
particle synthesis is based on a method first published
by Antl et al.34. We modified this method to obtain
particles in which both, cores and shells, are labelled
with a fluorescent dye. In brief, first core particles
were synthesized via dispersion polymerisation. The dye,
a vinyl-functionalized derivative of Quasar 670 (LGC
Biosearch Technologies, USA), was copolymerized during
this reaction and the cores are crosslinked using ethylgly-
coldimethylacrylate. By using the core particles as seeds
in a seeded dispersion polymerisation, a PMMA shell
layer was grown onto the particles. In this step, the Bod-
ipy dye (4,4-difluoro-8-(4-methacrylatephenyl)-3,5-bis-
(4-methoxyphenyl)-4-bora-3a,4a-diaza-s-indacene), was
copolymerized to fluorescently label the shell of the
particles. The dye itself was synthesized according to
literature.44 The resulting particles tended to have a
rough surface structure. They were smoothed by dis-
persing and stirring them in a solvent mixture of decalin
and acetone for 1 hour45 which lead to spherical PMMA
core/PMMA shell particles with smooth surfaces.

B. Thermomechanical stretching procedure

The spherical PMMA-core/PMMA-shell particles were
then deformed by thermomechanical methods to yield
prolate or oblate ellipsoids. To get prolate parti-
cles, we used a stretching procedure that has first
been described by Keville and coworkers36. Ini-
tially, the particles were suspended in a mixture of
polydimethylsiloxane (PDMS), hexane, the crosslinker
(poly(dimethyl-siloxane-co-methylhydrosiloxane)), and
tin(II)2-ethylhexanoate as a catalyst. This suspension
was cast into a metal frame. After evaporation of hexane,
the mixture was heated to 120◦ C for 6 hours. The result-
ing crosslinked PDMS film was cut into stripes that are
clamped on both sides before being heated to 165◦ C. To
obtain particles with different aspect ratios, the stripes
were stretched with different stretching factors. After
cooling down, the PDMS matrix was degraded using a so-
lution of sodium methanolate and isopropanol in hexane.
The released particles were then washed with decaline
in several steps. Finally, the graft copolymer PHSA-g-
PMMA, that was synthesized according to literature35,
was covalently attached to the particle surfaces.

https://doi.org/10.1016/0021-9797(91)90242-z
https://doi.org/10.1021/ja108099r
https://doi.org/10.1021/ja108099r
https://doi.org/10.1038/nature01328
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https://doi.org/Artn 194109 10.1088/0953-8984/27/19/194109
https://doi.org/10.1080/14786440509463331
https://doi.org/10.1080/14786440509463331
https://doi.org/10.1021/nn900902b
https://doi.org/10.1021/nn900902b
https://doi.org/https://doi.org/10.1021/jo0503714
https://doi.org/10.1021/la5045046
https://doi.org/https://doi.org/10.1038/srep36702
https://doi.org/https://doi.org/10.1038/srep36702
https://doi.org/https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/https://doi.org/10.1063/1.4914322
https://doi.org/10.1063/1.4932062
https://doi.org/10.1063/1.4932062
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C. Thermomechanical pressing procedure

Oblate ellipsoids were generated by pressing the spher-
ical core-shell particles. This method has recently been
described in detail33. At the beginning, the spherical
core-shell-particles were embedded in a PDMS matrix
as described in the previous section. Thereafter, the
particle film was placed between two metal plates and
pressed with different pressing factors to obtain prolate
ellipsoidal particles with the desired aspect ratios. The
subsequent steps of degrading, washing, and covalent at-
tachment of the stabilizer on the particles surface were
the same as those described in the previous section.

D. Particle characterization

TABLE I: Polydispersity index (PDI) for the sahpes of the
synthesized particles. The values were derived from scanning

electron microscopy data.

aspect ratio spheroid type polydispersity a/b [%]

a/b = 2.04 prolate 5.6

a/b = 4.48 prolate 6.5

a/b = 6.62 prolate 6.8

a/b = 9.44 prolate 6.5

b/a = 2.13 oblate 10.2

b/a = 2.44 oblate 10.8

b/a = 3.23 oblate 12.5

b/a = 4.55 oblate 14.9

E. Sample preparation

For the diffusion measurements, the particles were sus-
pended in a mixture of 85wt-% cyclohexylbromide (CHB)
and 15wt-% of cis-decalin to achieve density and refrac-
tive index matching of particles and solvent mixture38.
Tetrabutylammonium bromide (TBAB) was added to the
mixture until saturation to screen charges and to mini-
mize electrostatic interactions between particles. Since
PMMA particles are known to swell in CHB, the par-
ticles were left in the mixture for 14 days to reach sat-
uration. Afterwards the particles were density matched
at the measurement temperature of 23◦ C by centrifu-
gation and the adjustment of the amount of decalin or
CHB, respectively. The amount of solvent was chosen
such that volume fractions were below 2 %. The glass
chambers had dimensions of 75x25x3mm3 with a cylin-
drical cavity (diameter 2.5mm, height 2.8mm) on one
side and a cylindrical cavity (diameter 0.5mm, height
8mm) on the other side. Both were connected in the
middle of the chamber. The sample chambers were sealed
with glass coverslides (18x18x0.17mm3, Marienfeld) at
least 12 hours before measurement using two-component
epoxy adhesive (UHU Plus Sofortfest).

F. Confocal imaging

Image were acquired with a confocal fluorescence laser
scanning microscope (TCS SP5, Leica Microsystems)
with a resonant scanner (8000Hz, bidirectional scanning
mode) and a glycerol immersion objective (63x magnifi-
cation, 1.3 NA). The microscope objective was covered
by a box which connected to a temperature stabiliza-
tion system (Ludin Cube 2, Life Imaging Services) which
held the temperature at 23± 0.05◦ C to ensure density
matched suspensions. A helium-neon laser (λ = 633 nm)
and an argon laser (λ = 514 nm) were used to excite the
fluorophores in the particle cores and shells and the fluo-
rescent light was simultaneously detected in two separate
detection channels. For the diffusion measurements, 3D
image stacks (1024x256x100 voxels) with pixel sizes of
dx=dy=141.3 nm and dz=210 nm resulting in 3D image
volumes of 144.7x36.2x21.0µm3 were recorded with lag
times of t=4 s. The image stacks were recorded with
distances of at least 25µm to the measurement chamber
walls. To allow equilibration, all samples are put onto
the objective 16 hours before the measurement starts.

G. Data processing

1. Tracking

For particle detection and tracking, we used an algo-
rithm that takes advantage of the particles’ core-shell
structure39. The software and all other data processing
scripts used for the calculation of diffusion parameters
is written Matlab R2019a (The MathWorks, Inc.). The
algorithm uses fluorescence imaging data of the cores to
derive the 3D positions. The anisotropic shape of the
shells, by contrast, serves for the detection of the 3D ori-
entation of the prolate and oblate ellipsoidal particles.
From the positions and orientations, the algorithm gen-
erates the respective single-particle trajectories.

2. Detection accuracies

The trajectories served as the basis for the analysis
of the particles’ translational and rotational diffusion.
Fitting the mean squared displacement (MSD) ⟨∆r2(t)⟩
and the mean squared angular displacement (MSAD)
⟨∆ϑ2(t)⟩ with equations (9) and (10), respectively, we
obtained the translational diffusion coefficients Dt of
spheres, prolate and oblate ellipsoids and the rotational
diffusion coefficients Dr of prolate and oblate ellipsoids.

⟨∆r2(t)⟩ = 6Dtt+ 6ε2t (9)

⟨∆ϑ2(t)⟩ = 4Drt+ 2ε2r (10)
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Here, εt and εr are the respective position and ori-
entation determination accuracies40. For the individual
aspect ratios, we found the following values:

TABLE II: Detection accuracies ε for the different particles.

aspect ratio εt [nm] εr [degrees]

a/b = 2.04 13 5.0

a/b = 4.48 39 4.1

a/b = 6.62 37 2.7

a/b = 9.44 67 2.1

b/a = 2.13 32 3.8

b/a = 2.44 40 5.4

b/a = 3.23 20 3.8

b/a = 4.55 37 3.0

II. PERRIN EQUATION

For reference, Perrin’s equations are derived for the
conditioned anisotropic mean squared displacements
(MSD) for various directions relative to the initial ori-
entation of the ellipsoidal colloid. This follows work in
two dimension15 with some techniques from three46 .

For an isotropic diffusor47, the pdf of displacements
r and orientations u (with u a unit vector pointing
along the main axis of the particle) shall be denoted as
P (r,u, t|ϑ0). It is conditioned that the initial orientation
has the angle ϑ0 to the laboratory ẑ-axis, thus:

P (r,u, t = 0|ϑ0) = δ3(r) δ(cosϑ− cosϑ0)
1

2π
. (11)

Any initial azimuthal angle φ0 is equally probable. The
Smoluchowski-Perrin equation gives the time evolution
of the pdf:

∂t P (r,u, t|ϑ0) =
[
Dr∆u +D⊥∂

2
r +∆D(∂r · u)2

]
P ,
(12)

where ∆u = ∂η(1 − η2)∂η + 1
1−η2 ∂

2
φ is the angular part

of the Laplacian, with abbreviation η = cosϑ. Dr is the
rotational diffusion coefficient, D⊥ the translational one
perpendicular to the main axis, and ∆D = D∥ −D⊥ the
anisotropy in the translational diffusivities. Later the
mean translational diffusivity D̄ = 1

3 (2D⊥+D∥) will ap-
pear. Note that the setup corresponds to a translational
diffusion tensor of the form D = D∥uu+D⊥(1− uu).

For the MSD, one requires the Legendre polynomi-
als Pn(η), which obey the ordinary differential equation
(ODE)

∆u Pn(η) = −n(n+ 1) Pn(η) , (13)

and form a complete set in one dimension according to

δ(η − η0) =
∑
n=0

2n+ 1

2
Pn(η)Pn(η0) . (14)

Their recursion relation will be useful, which is valid for
n ≥ 1:

η Pn(η) =
n+ 1

2n+ 1
Pn+1(η) +

n

2n+ 1
Pn−1(η) . (15)

Actually, we will need only the simple consequence
η2P0(η) =

2
3P2(η) +

1
3P0(η) obtained by iteration.

The generalized self intermediate scattering functions
Fn(k, t|ϑ0) shall be defined as they encode the rotational
and translational motion:

Fn(k, t|ϑ0) =

∫
d2uPn(η)

∫
d3r e−ik·r P (r,u, t|ϑ0) ,

(16)

where
∫
d2u =

∫ 2π

0
dφ

∫ 1

−1
dη. Their initial values are

Fn(k, t = 0|ϑ0) = Pn(η0). The angle averaged MSD
follow from (using P0(η) = 1):

(i
∂

∂ki
)2 F0(k, t|ϑ0)

∣∣
k=0

= δr2i (t)
∣∣
ϑ0

. (17)

They depend on the polar angle ϑ0 of the initial orienta-
tion u0 · ẑ = cosϑ0 = η0 in lab frame.
Performing the integrations given in Eq. (16),

the Perrin equation can be transformed into cou-
pled ODE for the scattering functions. Setting
P̃ (k,u, t|ϑ0) =

∫
d3r e−ik·rP (r,u, t|ϑ0) the scattering

functions Fn(k, t|ϑ0) obey:

∂tFn(k, t|ϑ0) =

∫
d2uPn(η)

[
Dr∆u +D⊥k

2 +∆D(k · u)2
]
P̃

= −
∫

d2uPn(η)
[
Drn(n+ 1) + k2(D⊥ +∆Dη2)

]
P̃ , (18)

where the wavevector lies along the lab-z-axis, k = kẑ.
Now, the recursion relation (5) is required to derive by
iteration:

η2 Pn(η) = α+
nPn+2(η) + α−

nPn−2(η) + αnPn(η) (19)

=
(n+ 1)(n+ 2)

(2n+ 1)(2n+ 3)
Pn+2 +

n(n− 1)

(2n+ 1)(2n− 1)
Pn−2

+

(
(n+ 1)2

(2n+ 1)(2n+ 3)
+

n2

(2n+ 1)(2n− 1)

)
Pn .

Setting this into Eq. (18) gives finally:

[∂t + n(n+ 1)Dr]Fn(k = kẑ, t|ϑ0) = (20)

−k2
{
[D⊥ +∆Dαn]Fn +∆D(α+

nFn+2 + α−
nFn−2]

}
.

Because of Eq. (17), the scattering functions are re-
quired only up to quadratic order in wavevector. Clearly,
from Eq. (20) and the initial value follows the decay of
the scattering function at k = 0:

Fn(k = 0, t|ϑ0) = Pn(η0) e
−n(n+1)Drt . (21)

Continuing with the MSD, again because of Eq. (7), only
Fn=0 is required, as F0(k = kẑ, t|ϑ0) − F0(0, t|ϑ0) =
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−k2

2 δr2i (t)
∣∣
ϑ0

+ . . .. From Eqs. (20) and (21) and with

α+
0 = 2

3 , α0 = 1
3 , and α−

0 = 0 (from Eq. 19) follows:

∂tδr
2
i (t)

∣∣
ϑ0

= 2D̄ + 2∆D(η20 −
1

3
)e−6Drt . (22)

The relaxation of the initial orientation encoded in η20 =
cosϑ0

2 needs to get forgotten by rotational diffusion, be-
fore isotropic diffusion can set in with the average diffu-
sion coefficient D̄. Note the different exponential decay

to 2D, where e−n2Drt appears with again n = 213,15.

III. BROWNIAN DYNAMICS SIMULATION

In order to test the theory and better understand the
experimental results, we carried out Brownian dynamics

simulations using LAMMPS48. The idea here is to use
the experimental diffusion tensors, both for translations
and rotations, as inputs for the Brownian simulation al-
gorithm in LAMMPS49,50 for ellipsoids at different aspect
ratios (prolate and oblate systems).

From Figs. 5, we can see that the short-time parallel
and perpendicular translation diffusions in simulations
agree with the theory for all the aspect ratios. The plots
of the simulations confirm the fact that the orientation
memory is lost with time. The parallel and perpen-
dicular translation diffusions are not identical at short
times (anisotropic diffusion), but they become identical
at large times (isotropic diffusion). This originates in the
translation-rotation coupling in Perrin’s equations. For
all aspect ratios tested, we may conclude that the exper-
imental data have been taken at such strong dilution as
to correspond to the single particle limit.
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FIG. 5: Simulations: The parallel and perpendicular translation diffusion coefficients obtained from Brownian dynamics simulations for
prolate and oblate ellipsoids at dilute densities. For prolate (oblate) case, the curve of Dsim

|| is higher (lower) than the curve of Dsim
⊥ at

short times.
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