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Abstract

Understanding the nature of irradiation damage often requires a multi-scale and

multi-physics approach, i.e. it requires a significant amount of information from ex-

periments, simulations and phenomenological models. This paper focuses on the ini-

tial stages of irradiation damage, namely neutron-induced displacement cascades in

zirconium, as nuclear-grade zirconium alloys are widely used in fuel assemblies. We

provide results of large-scale molecular dynamics (MD) simulations based on existing

inter-atomic potentials and the two-temperature model to include the effect of electron-

phonon coupling. Our data can be used directly in higher scale methods. Furthermore,

we analysed summary statistics associated with defect production, such as the number

of defects produced, their distribution and the size of clusters. As a result, we have

developed a generative model of collision cascades. The model is hierarchical, as well

as stochastic, i.e. it includes the variance of the considered features. This development

had three main objectives: to establish a sufficient descriptor of a cascade, to develop
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an interpolator of data obtained from high-fidelity simulations, and to demonstrate that

the statistical model of the data can generate representative distributions of primary

irradiation defects. The results can be used to generate synthetic inputs for longer

length- and time-scale models, as well as to build fast approximations relating dose,

damage and irradiation conditions.

1 Introduction

One of the biggest challenges in the safe and efficient design and operation of nuclear reactors,

is achieving a deep understanding of changes in materials properties under the extreme

conditions of the reactor core.

The subject of our investigation is zirconium. Nuclear grade Zr alloys are widely used in

fuel assemblies due to their low thermal neutron absorption and good corrosion resistance.

However, they exhibit irradiation-induced growth (anisotropic and near-volume conserving

changes of shape) and creep [1]. This can pose significant problems for structural engineers

even under the assumption of normal operational conditions.

Our research focuses on the initial stages of neutron radiation damage, namely neutron-

induced displacement cascades in zirconium. We use existing empirical potentials to perform

large scale simulations and quantify the distribution of resulting defect populations.

The phenomenon in question can be briefly summarised as follows. A portion of the

energy of the incident neutron is transferred in the form of kinetic energy to one of the

atoms constituting the solid. This is the primary knock-on atom (PKA). This atom initiates

a series of collisions cascade, generating a localised region of high energy atoms (with effective

temperature of a several thousand Kelvin) leaving behind a cluster of point defects consisting

of dozens of pairs of vacancies and self-interstitial atoms (Frenkel pairs). While a single

cascade last for tens of ps, there are billions or trillions of cascades per cm3, depending on the

neutron energy and type of the reactor, happening each second. Some of the resulting defects

will be annealed-out, but others might give rise to the formation of clusters, dislocation loops

or voids.

The dynamics of these defects will be responsible for changes in mechanical properties

after prolonged exposures. This creates a truly multiscale problem that involves scales from

nm to m and time scales from ps to years.

Since the primary stages of radiation damage are inaccessible for experimentalists, there
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are many examples of simulation-based studies in the literature. Something that could

be referred to as a modern approach, that involves explicit simulation of the phenomenon

at the atomistic scale can be dated back to the classical works of Bacon et al. [2, 3, 4].

The primary focus was then on a deeper understanding and realistic quantification of the

defect production process that goes beyond the simple NRT model [5] or the binary collision

approximation [6, 7].

In the context of Zr, further developments include, among others, consideration of a

wider range of simulation parameters and methods to summarise outcomes, including various

temperatures and PKA energies [8], strain effects [9, 10], simulations of high energy PKAs

[11], inclusion of electron-phonon coupling [12], etc.

While there are many others examples of such studies in the literature, there are reasons

to undertake further numerical experiments. Firstly, ever-increasing computational power

allowed us to obtain large, high-quality data sets, designed with a carefully selected sample

of the primary knock-on atom initial momenta. At the same time, we were able to extend

the range of phenomena accounted for in the simulations to include the electronic stopping

and electron-ion interactions via the two-temperature MD model (TTM, [13, 14]).

We adopt the argument made by Bacon and Rubia [2], that a deep understanding requires

not only recognition of phenomena, but also quantitative assessment. This is particularly

important for smaller space and time scales that inform other methods. We argue that this

must go beyond simple point estimates. Most researchers focus on reporting best estimates

e.g. for the number of point defects produced in a cascade. However, we argue that for a

predictive framework (quantitive predictions) the description of a phenomenon must include

information about associated probability distributions.

Hence, we focus here on the development of a generative model for collision cascades. We

will present a framework that takes the momentum of a primary knock-on atom as input and

produces a statistically representative set of characteristics of the resulting cascade damage,

namely the number and spatial distribution of defects produced.

Such a model can be used directly to generate defects for higher scale methods, such

as kinetic/object Monte Carlo – kMC/oMC ([15]) or to support other methods which rely

on introduction of defects to the system such as, the creation-relaxation algorithm – CRA

[16, 17], or random displacement approximation – RDA [18] . In other words, our model

can be used to interpolate databases of collision cascades. Our approach also provides

insights into which characteristics of cascades affect the damage produced and how those
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characteristics should be reported.

Finally, we will address how predicted damage can be linked with results from other

studies with scales that could reach to measurable quantities.

1.1 Benefits a generative model for collision cascades

In this section, we will elaborate on the arguments presented in the introduction. Each

collision cascade can be considered as essentially unique, given the huge range of potential

outcomes. At elevated temperatures, nominally equivalent PKA’s, with the same momen-

tum, can produce significantly different collections of Frenkel pairs.

To pass information about defect production to a higher time and length scale method

we could simply use direct simulation to generate a large sample of possible outcomes.

However, the predictive value of a higher scale method (e.g. kMC, RDA/CRA) will improve

if it takes into account realistic PKA energy spectra representing reactor core conditions.

Valid representation of a full PKA spectrum might require a large and expensively acquired

simulation database Throughout, we make the assumption that local spatial correlations in

positions of defects, rather than just defect numbers, are important.

The key factors in comparing a generative model with a direct sampling from a simulation

database are as follows.

1. Appropriate direct sampling of the energy and momentum spectrum for the PKA will

require a database consisting of hundreds or even thousands of simulations. We need

to also consider that such a database will require a dense sampling of a wide range of

energies to be applicable in a wide range of cases. With more accurate implementations

of interatomic potentials, such as Gaussian approximation potential (GAP, [19]) or

other machine-learning (ML) potentials, the construction of a comprehensive database

can be even more computationally demanding.

2. Another advantage of a generative model is that it can highlight which characteristics

of collision cascades, e.g., size, density etc., suffice for an appropriate description. In

other words, we can compare defects generated using the model with the results of

explicit MD simulations to verify and optimise features selected to be inputs.

3. A database of MD simulations will have a limited coverage and will be generated

for specific conditions like temperature or PKA spectra. Some situations require an
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increase of the sampling density within a certain range of conditions (interpolation)

or an expansion of this range (extrapolation). When the software used to generate

the data is unavailable, or we are missing some essential information about the data-

generating process, it might be impossible. On the other hand, the parameters of

generative models can be extrapolated and interpolated. For example, we can use

discrete data of defect production efficiency as a function of hydrostatic strain (e.g.

[10]) and adjust the generating algorithm to provide a continuous approximation.

4. Generative models can be used to build simple simulations which could serve as base-

line/initial approximations of important phenomena that would be extremely expen-

sive to simulate explicitly. For example, in a simplified experiment where defects are

created according to estimated sampling distributions, and existing defects are an-

nealed when they overlap with later cascades, we can relate the number of defects

introduced into a material to the number of incidents. This can be used e.g. to build a

simple approximation to a mapping between dose (energy transferred) and canonical

dpa (i.e. number of defects produced, used e.g. in [17]). However, such a mapping

will depend on the PKA spectrum. We will present such an experiment

5. More generally, with a statistical model that can generate representative defect pop-

ulations we can use a network of conditional probabilities to inform experiments and

higher-scale methods. For example, we could infer the dose from the defect density and

PKA spectrum. When we think about the flow of information, this is an inverse of the

case 4 considered above. However, this specific example points towards an even more

general challenge, namely the implementation of Bayesian modelling in the context of

multi-scale and multi-physics frameworks.

6. Treating the results of simulations and experiments as distributions allows us to link

information gathered from many diverse sources of information. Even more generally,

we think that summarising results using generative models brings us one step closer

to combining multiple studies into a quantitive predictive framework.

The following sections will consider the methodology for building a database that will

underlie the statistical model, followed by our approach to building a fit-for-purpose descrip-

tor and associated predictive distributions. Together they will form the generative model of

defect populations produced in a collision cascade.
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2 Methods and techniques

To summarise our methodology in a few sentences, we use molecular dynamics (MD) to

simulate explicitly the process of forming defects as a result of collision cascades. We repeat

this for a variety of initial conditions. The resulting populations of point defects will be

summarised as statistical distributions, which will be used to generate representative results

without the need for further simulations. These distributions will be conditioned on the

characteristics of the primary-knock on atoms (PKA’s) and environmental conditions.

We use LAMMPS (stable release 3 March 2020, [20]) for MD simulations and the follow-

ing Python packages for pre- and post-processing: ASE [21], Atomman [22], NumPy [23],

Pandas [24, 25], Matplotlib [26], Seaborn [27] and Ovito [28].

There are two main aspects of the creation of data for the generative model: a sampling

of the PKA phase space and the underlying physical model of the simulations. First, we

address the sampling.

In “classical” simulations, where quantum-mechanical interactions are approximated by

an interatomic potential, the complete information about the system, a perfect hcp Zr

lattice in our case, consists of positions and momenta of all atoms. We aim to maximise

the efficiency and minimise the number of simulations used to estimate the properties of the

distributions. Hence, we introduce a sampling strategy inspired by importance sampling for

a uniform distribution.

Simulations of cascades consisted of two stages. The first one we call the geometry-

optimisation stage in which we introduced atomic velocities (with average kinetic energy

that corresponds to 1200K, Gaussian distribution), thermalise the system using the NVT

ensemble to 600K (Nose-Hover style equations of motion, [29, 30]), optimised the geometry

using the NPH ensemble to zero pressure and 600K (same equations of motion as before

only with the Langevin thermostat, [31, 32]) and normalised the distribution using NVE

ensemble. The resulting state we regard as a good and universal starting point for the

following simulations.

Prior to introducing excess PKA momentum, the system was again thermalised to a

temperature of 600 K using the NVT assemble. This temperature is representative of the

realistic operating conditions of a pressurised water reactor (PWR) core. Since we optimised

the shape of the computational cell in the previous stage, the pressure oscillated near zero.

Each thermalisation was conducted using different random seeds of the thermostat. This

6



way, each simulation starts with a unique configuration of all atoms, but in a equivalent

thermodynamic state.

Next, the centre atom, designated as the primary knock-on atom (PKA), was given an

initial momentum from a predefined set. The set was prepared in two stages. First, we

randomly and uniformly generate the required number points on the surface of a unit sphere

[33]. Next, we solve the Thomson problem, i.e. we optimise positions on the surface by

minimising an arbitrary inverse-distance potential. From the position we extract directions

of the momenta. The magnitude is obtained from uniform sampling of the kinetic energy,

hence the sampling will be more concentrated for higher momenta.

To set the sampling range, we analysed PWR PKA spectra (we used the spectrum for

Zr as reported in [34]) and decided to focus on the lower half, i.e. the maximum energy

considered corresponds to the median of the distribution – approx 40 keV . The reasoning is

that higher energy cascades tend to break into sub-cascades. This is a common assumption

justifying the focus on lower energy cascades. However, as reported by Zhou et al. in [11],

in reality high-energy cascades will branch-out, although a significant portion of them will

form connected cascades. On the other hand, Zhou et al. also found that for PKAs above

40 keV only a small portion of cascades could be classified as unfragmented.

To summarise, our simulations, involve approximately 2 million Zr atoms at 600 K. We

use optimised uniform sampling of PKA direction and uniform sampling of its kinetic energy.

Such sampling allows us to easily propagate results (e.g the number of defects created per

cascade) for any distribution/spectrum using an inverse probability integral transform. The

resulting set of PKA directions and velocities is presented in Figure 1.

Now we consider the simulation method in greater detail. As mentioned before, we

employ classical molecular dynamics. This means complex quantum-mechanical interac-

tions between electrons and nuclei are abstracted into a numerical or closed-form potential

that depends on the description of the local chemical environment (relative coordinates of

surrounding atoms). We use the embedded atom method (EAM, [35]), where the chemical

environment for each atom consists of a set of pair-wise distances to atoms within a specified

radius and a local electronic density to which nearby atoms contribute.

We adopt Mendelev and Ackland’s parametrisation often designated as the potential

MA#2 [36]. The most commonly used is potential MA#3, mainly due to better-fitted va-

cancy and interstitial formation energies. However, unlike the MA#3, the selected MA#2

potential predicts a non-decreasing relationship between temperature and lattice parameter
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Figure 1: The sample of 256 initial directions of PKAs (n⃗, top row) and their velocities (v⃗,
bottom row) given in Å/ps.

(under constant c/a ratio), which is a desirable characteristic in high temperature simula-

tions.

All MA potentials are consistent with the Ziegler-Biersack-Littmark (ZBL) potential

[37, 38]. The latter is considered a very good description of close collisions that will dominate

the ballistic phase of the system evolution.

In our studies we placed a significant emphasis on the management of the heat transfer.

Since molecular dynamics simulations do not explicitly consider electrons we employ the two-

temperature model (TTM) developed by D. M. Duffy and A. M. Rutherford [13, 14]. This

model incorporates redistribution of heat by electrons and transfer between electronic and

atomic subsystems. This phenomenon can be also referred to as electron-phonon coupling. It

is an essential part of the model as defects are formed during recovery after a heat spike that

raises local temperature above the melting point. As demonstrated in [14], coupling effects

can reduce the number of defects created due to enhanced energy/heat transfer through the
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electronic subsystem. Electronic heat transfer dominates phonon propagation which occurs

only at the speed of sound within the material.

Each subsystem is divided into fixed sub-volumes of the computational cell (12×12×12

subdivisions in our case) between which the heat transfer occurs. In a typical simulation, part

of the excess energy locally introduced by the PKA would be transferred to the electronic

subsystem and distributed to the surrounding atoms through electron-phonon coupling.

This can heat-up atoms in advance of the pressure wave, but results in lower peaks of the

temperature.

In our studies we use the default TTM implementation [39] that also includes electronic

stopping, the effect of energy loss of fast moving atoms due to collisions with electrons.

However, this implementation assumes constant electronic heat capacity, which we choose

to be representative of an electronic temperature of 600K.

To provide a clearer explanation of parameters used in our simulations we will address

some details of the two-temperature model as they are given in ref. [13, 14] and [39]. The

approach can be refereed to as an inhomogeneous Langevin thermostat

mi
∂v⃗i
∂t

= −∂U

∂r⃗i
− γiv⃗i +

˜⃗
F, (1)

where mi is the mass of the i-th ion in the system, r⃗ and v⃗ are its position and velocity

respectively, while t is the time coordinate. The first term on the right-hand side (RHS)

represents the force due to the interatomic potential U , and the second represents a friction

term with coefficient γi. This coefficient can be expressed as γi = mi/D, where D is

a damping factor taken as an input by LAMMPS. This parameter will be particularity

important later on as we explain management of the excessive heat introduced by the PKA.

The last term is equation 1 is the random force responsible for the temperature control. The

heat transfer is governed by

Ceρe
∂Te

∂t
= ∇ · (κe∇Te)− gp(Te − Ta) + gsT

′
a, (2)

where Te and Ta are temperatures of the electronic and the atomic subsystems respectively.

Furthermore, ρe is the electron density, Ce is the electronic specific heat and κe the electronic

thermal conductivity. Finally gp is the coupling parameter for electron-ion interactions while

gs is responsible for the electronic stopping. Parameter T ′
a, given in units of temperature,
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corresponds to the kinetic energy of atoms with velocities higher than the cut-off for elec-

tronic stopping (equations 7-13 in [13]). In simulations we define friction coefficients γp and

γs that are related to gp and gs parameters via equations 5 and 6 in ref. [14]. The final

parameter used in simulations is the critical velocity vc above which electronic stopping is

applied. The values used in simulations are based on literature and are summarised in Table

1.

Table 1: Parameters for the TTM used in this work including references that the values are
based on. The damping coefficient D is calculated from other parameters assuming a single
point TTM model. Critical velocity corresponds to a kinetic energy that is two times the
cohesive energy of Zr (6.469eV). Values are given in both SI and LAMMPS “metal” units.

value (SI) unit (SI) value ("metal") unit ("metal") ref.

Ce 4.170e-01 J/(Kmol) 4.322e-06 eV/K [40]

ρe 1.696e+29 m−3 1.696e-01 Å−3 [41]

κe 1.860e+01 J/(Kms) 1.161e-02 eV/(ÅKps) [42]

γp 1.797e+11 kg/(mol s) 1.797e+02 g/(mol ps) [41]

D 5.077e-13 s 5.077e-01 ps –

γs 3.842e+10 kg/(mol s) 3.842e+01 g/(mol ps) [43]

vc 5.231e+03 m/s 5.231e+01 Å/ps –

The limitation of the TTM, as implemented in LAMMPS, is that it prevents us from

using a thermostat that would dissipate the excessive heat introduced by the PKA. This

means that recovery would proceed at an elevated temperature (around 20 − 30K above

600K for higher energy PKA’s). To avoid this issue we use the fact that after several ps the

distribution of the electronic temperature is fairly uniform as illustrated in Figure 2. Since

the TTM may be considered a spatially inhomogeneous Langevin thermostat, once we are

certain that the temperature distribution is uniform, we can replace it with a homogeneous

Langevin thermostat. Hence, beyond this point, we can switch off the TTM and introduce an

appropriate thermostat that has a damping coefficient calculated from the TTM parameters

(Table 1). However, this can result in overly rapid cooling, since the thermostat implicitly

treats the boundaries of our simulations as a perfect heat sink. To avoid this, we introduce

a controlled cooling schedule based on an assumption of isotropic heat dissipation from

the boundaries of the simulation and the progressive adjustments of the thermostat target

temperature. Function that was estimating this temperature was implemented as a Python
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(a) Initially concentrated temperature distribution.

(b) Subsequent uniform distribution of the temperature.

Figure 2: The distribution of “electronic” and “atomic” subsystem temperatures of the TTM
during the evolution of the system after PKA was introduced – (a) thermal spike phase,
(b) beginning of recovery. Phases of the collision cascade will be discussed in the next
section. What we show is the maximum temperature (marginal) on the axis perpendicular
to the plotting coordinates. In other words, given that the distribution is defined as three
dimensional matrix, we plot the maximum from columns that otherwise would be obscured
by the “top” layer. Additionally, we plot the defects estimated using Wigner-Seitz analysis
with colours that correspond to the coordinate perpendicular to the screen.

function that can be run from within the LAMMPS script. The script is an integral part of

the associated database.

The process for determining the cooling schedule is as follows. The computational cell,

which is assumed to be surrounded by an infinite medium, has excess heat that needs to be

dissipated at an appropriate rate. We assume that this cell is well represented by a sphere

of equal volume. In spherical coordinates, for an isotropic material, such a problem reduces

to solving a one-dimensional heat diffusion equation. Now, consider a time interval for the
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MD simulation tn → tn+1 = tn+∆t. We determine the target temperature T (tn+1) for this

interval by setting up a temperature distribution in which there is a uniform temperature

of T (tn) in the region representing the simulation cell. Likewise, the region outside initially

has a uniform temperature equal to the final target. We then solve the diffusion equation for

this distribution over the period ∆t. The target temperature T (tn+1) is given by the average

of the evolved temperature distribution over the region representing the simulation cell. The

new state of the system becomes a starting point for the next iteration. We repeat the same

procedure several times until all excess heat is dissipated. The procedure is illustrated in

Figure 3.

Figure 3: The concept of estimating the cooling schedule (setting the desired temperature
for the thermostat at each sub-iteration). The new target temperature is an average over
the surrogate of the computational cell. Each estimates begins with a uniform distribution
of temperature at the current temp. of the computational cell.

This solution is not perfect, but we believe it improved the realism of our simulations

without the necessity of rewriting the TTM module in LAMMPS.
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3 Cascades simulations – results and discussion

In this section, we will present the results of the simulations and some key summary statistics

that characterise collision cascades. This will provide a foundation for the generative model

(GM) and is a key section for readers interested only in the results of the MD simulations.

In the classical picture given by Bacon et al. [4] the evolution of collision cascades can

be divided into two major phases: ballistic and thermal-spike. A cascade begins with the

primary knock-on atom (PKA) colliding with other atoms of the lattice, initiating secondary

knock-on atoms, tertiary knock-on atoms and so on. The PKA’s kinetic energy is distributed

to surrounding atoms displacing them from their equilibrium sites and giving rise to the

overall potential energy of the system. This stage can be considered as the ballistic phase.

Subsequently, the systems start to evolve towards equilibrium between the potential and

kinetic energy of the crystal, resulting in the thermal spike. At this stage, the average

kinetic energy can exceed melting temperatures. Subsequently, the heat is dissipated through

phonons and electronic transport, and a stable crystal lattice forms again. However, in this

process, not all atoms are able to create a perfect lattice. As a result, defects are created,

namely pairs of vacancies (VAC) and self-interstitial atoms (SIA). A good visualisation of

this process can by found in Figure 1 in [44] and in Figure 4 of this work. Here, we decided

to use macroscopic quantities, the average (over atoms) kinetic and the potential energy

of the crystal, to illustrate the process. These two coordinates are essentially averaged-

out coordinates of the phase space. Figure 4 (a) illustrates that the initial spike of the

kinetic energy (bottom green line), due to the interaction of PKA with the neutron field, is

transformed into the distortion of the crystal, represented by the rise of the system’s potential

energy (right side of the green triangle). This effect results from subsequent collisions and

atomic displacements that accumulate on time scales lower than the thermal vibrations of

atoms. The sharp drop in the potential energy indicates the end of the ballistic phase and

transition into the thermal spike, followed by the recovery shortly after. It is a more nuanced

picture of defect generation than one assumed by Monte-Carlo simulation within the binary

collision approximation (BCA).

Figure 4 b) shows the positions of vacancies and self-interstitial atoms at the peak of

the cascade and the final configuration of stable defects. Here, we used Wigner-Seitz (WS)

analysis to determine nodes (equilibrium atom positions) with zero occupancy (VAC) and

greater than one (SIA). Finally, in Figure 4 c), we exemplify on high-fidelity data the
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Figure 4: Selected quantities that represent evolution of a ≈ 36 keV collision cascade in Zr
with initial temperature 600K. Starting from the left (a), evolution of the average kinetic
and potential energy of the system. Green arrows indicate the direction of the evolution. In
the middle (b), positions of vacancies (VAC) and self interstitial atoms (SIA), determined
using Wigner-Seitz analysis. Here, we used something we call the “hot-count”, which means
we did not quench the system before calculating the occupancy numbers associated with the
equilibrium positions of the crystal. On the right (c), displaced atoms. These atoms changed
their nominal positions as a result of a cascade. However, the new position is an equilibrium
one in most of the cases. This plot is overlapped with positions of actual stable defects. In
this plot shades of grey represent z coordinates. In sub-figures b) and c) coordinates are
given in relation to the initial PKA position.

difference between displaced atoms (or atom replacements) and actual defect production.

These quantities are often conflated when employing the NRT-dpa model [44].

We now describe key features of the defect distribution resulting from the collision cas-

cades. First, we consider the number of defects produced. Figure 5 illustrates the count of

Frenkel pairs during early stages as well as the number of surviving defects as a function of

the PKA energy. By comparing values in both sub-figures, again, we clearly see that the

relatively small number of surviving defects is a result of a recovery from a highly distorted

lattice. However, for the long-term irradiation damage, only the number of surviving defects,

presented in Figure 5 b), matters.

We compare our results with estimates of the expected number of Frenkel pairs (FP) as a

function of the PKA energy. When we consider that many simulation parameters can affect

the results, e.g. applied potential, effects of temperature, different mechanisms of heat dissi-

pation, presence of the TTM refinement or different values of associated parameters, we can
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Figure 5: Number of Frenkel pairs (NFP) as estimated using Wigner-Seitz method. On the
left (a), evolution during the first 30 ps as a function of time and the PKA energy. On the
right (b), comparison across the literature of the number of surviving defects as a function
of the PKA energy. The regression lines represent the expected number of defects produced,
as evaluated by cited researchers: D. J. Bacon et al. – [4], Z. Zhou et al. – [11], W. Zhou
et al. – [12]. For illustration purposes we include the measure of “dose” expressed in terms
of the NRT model as a number of displacements per atom. In the latter case we assume
40 keV displacement threshold energy.

consider that our results are consistent with the literature. This gives us fair confidence in

selected potential, parameters controlling the PKA and the thermodynamics of the system.

From the perspective of damage production and accumulation, the number of defects is

only one part of the story. We need to also consider the size of the cluster of defects as well

as at least a basic consideration of the distribution. To do this we introduce the following

description illustrated in Figure 6. Note, that this description is designed to also provide

a minimal specification of our generative model which will be further explained in Section

4.2.

The result of each collision cascade, in the form of positions of vacancies (VAC) and

self-interstitial atoms (SIA), is considered a cloud of points. To these points, we apply

the principal component analysis (PCA), where each one of the components, multiplied by

2, defines an enclosing ellipsoid. The ellipsoid corresponds roughly to the 95% confidence

interval (probability of finding a defect within a volume) and defines the size of a cascade,

its shape, as well as position and orientation with respect to the crystal lattice.

At the same time, a new Cartesian coordinate system is defined by the components of

the PCA. In our analysis, defect positions are transformed into this system, normalised with

respect to the size and shape of the cascade, with associated standard deviation as the unit,
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Figure 6: Illustration of the description of the defect distribution and size of a defect
cluster. From left to right: principal component analysis (PCA) and definition of the size,
transformation to normalised, and then to spherical, coordinates, analysis of the distribution.
Here, the spherical coordinate is normalised by the standard deviation, not the size of the
cascade, of all defects.

and then transformed into spherical coordinates. Transformed points contain information

about the relative distance from the cluster centre and concentration in a specific direction

(in local PCA coordinates). We quantify these features using the average distance from

the centre and parameters of the von Mises-Fisher distribution: concentration κ and the

expectation µ, i.e preferred direction of the angular random variable. In correlation analysis

we will use the angle between expectation and the first principal component θµ.

Figure 7: Dimensions of ellipsoids (ordered with respect to size) a, b and c enclosing defect
clusters (a), Frenkel-pair density (b), and distribution distances from the cluster centre r
within “local” PCA coordinates (c). Scatter plots include linear regression with 95% con-
fidence intervals. Note, that this is not the best estimate of the quantity of interest, only
an illustration of the trend. Density is estimated from all data using the Kernel Density
Estimation (KDE). Within the PCA coordinates each component quantity is normalised
independently by the standard deviations of all defects. Hence, the coverage does not cor-
respond to a sample from a multivariate normal distribution with unit covariance.
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With the main features of cascades in place, we can have a closer look at some of the

relationships. Figure 7 consists of three plots. Starting from the left, in sub-figure (a) we

show the dimensions of the cluster. Naturally, the size and particular dimensions increase

with the PKA energy. However, the ratio between the principal axes of the enclosing ellipsoid

does not correlate with the energy. In other words, we have no evidence that the overall shape

of a cascade depends on this quantity. For example, high-energy PKAs do not necessarily

result in elongated shapes. Secondly, the increase in size exceeds the increase in the number

of defects produced (sub-figure (b)). Therefore, the defect density is lower for higher energy

cascades. It is important to remember that the ellipsoid is a very simple representation

of shape. As such, branching cascades might not be well represented, and the associated

volume may be inaccurately estimated. On the other hand, later analysis suggests that this

simplification was sufficient in the sense that in most cases we did not find any irregularities

in the estimates. Finally, as expected, vacancies tend to be concentrated closer to the cluster

centre than interstitials (sub-figure (c)).

While qualitative assessment can provide indispensable insights into the nature of irra-

diation damage, we need quantitative analysis to objectivise our conclusions and provide a

basis for the development of a regression model. Figure 8 shows the correlations between all

the quantities discussed in the above. The coefficients are estimated separately for VAC and

SIA. In addition, we include the direction of the PKA momentum, defined by the azimuthal

angle ϕ and the polar angle θ. These angles are defined by the standard transformation from

the global Cartesian coordinates of the lattice (the “z” axis is aligned with the “c” direction of

the hcp crystal) to spherical coordinates. Here, we do not consider the relationship between

the direction of the principal component and the direction of the PKA momentum. In our

analysis, the former did not correlate with any other quantity of interest.

It immediately transpires that the directionality of the PKA is not meaningfully correlated

with any other quantity. This can be easily explained. At the temperature of 600K atoms

are significantly displaced from their nominal positions. As a result, there is no well-defined

channelling or close-packing direction from a PKA point of view. Therefore, we can ignore

the direction of the PKA with respect to the lattice. Furthermore, the expected direction

of the defect concentration in the local PCA coordinates, i.e. the parameter µ⃗ from the von

Mises-Fisher distribution, is not correlated with any other quantity either. However, the

concentration parameter itself seems to be weakly related to the dimensions of the ellipsoid.

In summary, we have shown that at 600K we can exclude most of the directional statis-
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Figure 8: Symmetric matrix of correlations between key quantities. Here ϕ and θ are
the PKA azimuthal and polar angles (in radians), respectively (‘z is parallel to the hcp c
axis). The PKA energy in eV is represented by ϵPKA. Furthermore, the dimensions, starting
from the largest, in Å are labelled a, b and c. The number of Frenkel pairs is nFP. The
parameters of the von Mises-Fisher distribution fitted with the maximum likelihood method
to the normalised local coordinates are µ⃗ (mean direction) and κ (concentration parameter).
However, here we provide angles (θµVAC and θµSIA) between the first-principle direction of
the cluster and the estimated mean direction. These estimates are in local coordinates, so it
is essentially an angle between µ⃗ and the local [100] direction. Finally, the expected distance
of a defect from the cluster centre is given by rVAC and rSIA.

tics that may be important for cascades occurring at much lower temperatures. A more

detailed analysis of these relationships will be undertaken using partial correlation analysis

and appropriate regression models, and will form part of the following section where we

discuss how to build a hierarchical generative model.
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4 Generative model

4.1 Fundamental concepts

In a broad sense a generative model is one that can “generate” representative data. If the

model is trained on empirical data, we can use it to interpolate and extrapolate the training

set. More formally, we are looking for a joint distribution of causes and outcomes.

In the context of machine learning, generative models are often based on so-called deep-

learning and sometimes coupled with a discriminator in adversarial training. However, in

this work we will introduce explicit relationships between observable/measurable features.

We will try to answer the question what is the most likely position of stable defects after

a collision cascade of given energy? We will have to consider a hierarchy of features. As

a result, we will also try to pin-point key characteristics (size, shape, number of defects)

of the produced defects and provide an empirical relationship with the PKA energy. In

other words, we propose to generate directly, instead of from simulation, a representative

population of n defects.

The stating point will be the formal definition of the generative model as a joint density

of the cause and effect

p
(
Xvac,Xsia, x⃗PKA, ˙⃗xPKA

)
= p

(
Xvac,Xsia | x⃗PKA, ˙⃗xPKA

)
× p

(
x⃗PKA, ˙⃗xPKA

)
. (3)

In the above, Xvac/sia ∈ Rn ×R3 are coordinates of defects – vacancies and self-interstitials

respectively, and the density is expanded using the probability chain rule.

We will focus on the first distribution on the right-hand side (RHS), conditioned on the

position and momentum of the PKA (x⃗PKA, ˙⃗xPKA). The prior distribution (second term

on the RHS) should represent a specific PKA spectrum. In our simulations it is set to be

uniform with respect to the PKA kinetic energy and, as such, it can be considered as a

constant. In our derivation the conditional will be expressed in terms of this quantity rather

than ˙⃗xPKA.

In general, the result will also depend on the type of the alloy, phase and temperature.

However, we are focusing on hcp Zr at 600K here.

Now we will address a series of simplifying assumptions. This will allow us to express

the model in terms that can be explicitly written.

We are using classical molecular dynamics to perform our simulations. The system is
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deterministic and the result depends only on the generalised positions and momenta of all

atoms in the initial configuration. Given the high temperature, different seed during ther-

malisation, and the exponential instability (Lyapunov) of MD trajectories, we are only ever

interested in quantities that do not depend on details of the initial phase space coordinate

of the system. Hence, the “cause” in the distribution (equation 3) is limited only to the

information about the PKA. The complete information implicitly will be reflected in the

spread of the final distribution.

Note, that the initial momenta of the PKAs are under our explicit control, and are

“random” by design (Section 2).

Furthermore, we demonstrated in the previous section that at the temperature of 600K

the direction of the PKA is irrelevant. The key point here is that we can replace the tuple

(x⃗PKA, ˙⃗xPKA) with the kinetic energy of the PKA – ϵPKA.

Up to this point we have been quite casual in writing down the probabilities. As discussed

earlier, each simulation starts with a different state and the number of defects will vary from

simulation to simulation, even if the initial PKA momentum remains the same. As a result,

the event space consists essentially of a collection of vectors (representing positions of defects)

of various sizes (alternatively n× 3 matrices as used before). This prevents us from creating

a straightforward statistical model.

Instead, we propose simply to sample position vectors n times. In such case, correlations

between the number of defects and their spatial features will be taken into account through

appropriate hierarchical modelling and sequential sampling.

Taking this into account we can write the generative model as a tuple of two distributions

p
(
x⃗vac, x⃗sia | β⃗ (ϵ)

)
, p
(
n | β⃗ (ϵ)

)
, (4)

where n is the number of defects, and the coordinates of defects x⃗vac/sia are dependent on a

feature vector β⃗, which further is a function of the PKA energy ϵ.

At this moment the exact features and their numerical representation are not important.

We will discuss them in the following subsection. For now, we would like to illustrate that if

we follow our logic thoroughly, a key characteristic of our approach emerges almost naturally.

Namely, a generative model should be also a hierarchical model.

Consider a simplified example, in which the probability of finding defects is controlled

by a set of some attributes A of a cascade (β⃗ in 4). This could be e.g. a measure of spread
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and/or expected distance from the initial PKA position. These attributes can be directly

related to the incident (PKA) energy E as well as the cascade size S, which is set apart

from A in this example. Furthermore, the expected cascade size will also depend on the

PKA energy directly. For example, the resulting cascade size can indicate the character of

branching and as such, will affect A. Finally, let’s assume that all the quantities should be

treated as random variables as each result of a simulation can be treated as unique due to

thermal fluctuations in atoms’ momenta and positions.

In summary, we have three random variables that we need to select before generating

positions of the defects, i.e. we need to sample first from a family of distributions. This can

be done by sampling from the joint distribution p(A,S,E) that further can be expanded

using the probabilistic chain rule

p (A,S,E) = p (A | S,E) p (S,E) = p (A | S,E) p (S | E) p (E) . (5)

The order of expansion is arbitrary in general. However, we can explore the dataset,

analyse relationships between A, S and E and decide on it. Here we will prefer a more

hand-crafted approach rather than analysis of variance common in statistical analysis of

experiments. The reason for making the expansion in the first place is to be able to express

all correlations as a collection of closed-form parametric estimations.

The final point is that p(E) is essentially the PKA spectrum, set to be uniform in our

dataset, and acts as a normalising factor that does not influence parameters representing the

position, shape and scale of other densities. After estimating all of them, we can replace the

p(E) with any PKA spectrum we wish. For example, we can write a routine that introduces

in higher-scale simulations a cluster of defects with a realistic probability of being a result

of a high or low energy irradiating particle. In the next subsection, we will demonstrate how

we can apply those concepts in practice.

4.2 Building a description of a cascade

In this section we will propese a set of features that provide a sufficient description of desired

characteristics. In this paper we are trying to keep things as simple as possible. Hence, for

now, we relay on heuristics.

The analysis needs to begin with the selection of features we will include in the model.

Naturally, we will take into account the number of defects generated. However, we would
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like to add information about the spatial distribution of defects. It is an essential part

as changes in mechanical properties arising from irradiation damage are a result of point

defect accumulation and evolution (e.g. assisted diffusion, dislocation loop clusters and void

formation). Furthermore, the diffusion happens on much larger time scales than collision

cascades. Hence, the initial spread of point defects may assist this evolution in a significant

way.

For that reason, the next feature on the list is the size of a cascade. We use the same

method as described in the previous section. We employ the principal component analysis

(PCA) to the cloud of point defects. Associated principal components are used to estimate

an approximately 95% confidence interval for the probability of finding a defect. This interval

is assumed to take the shape of an ellipsoid. Scaled principal components become principal

axes of an ellipsoid that define 3 parameters describing the size and shape of a cascade.

Further refinement of the description is again a reiteration of statistics introduced in

Section 3. There, we demonstrated that defects tend to concentrate at certain distances

from the initial position of the PKA. Hence, we want to go beyond simple uniform sampling

from within the enclosing ellipsoid. In the analysis, we transform the population of defects

to the local PCA coordinate system and then to spherical coordinates (r, θ, ϕ). This concept

was illustrated in Figure 6. The measure of how far from the enclosing ellipsoid defects tend

to be will be the average distance from the centre of the ellipsoid. This distance will be

calculated separately for vacancies and SIAs. The information about θ and ϕ we summarise

using parameters of the von Mises-Fisher distribution – average direction and concentration.

4.3 The model hierarchy

In summary, we propose a description of a collision cascade that consist of: number of

Frenkel pairs – nFP, size of the cascade expressed as the length of three principal axes (a,

b and c) of an ellipsoid that corresponds to the 95% confidence interval (prob. of finding a

defect), the average distance from the cluster centre rsia/vac for self interstitial atoms and

vacancies respectively, expected direction of concentration (within transformed PCA coordi-

nates) represented by unit vectors µ⃗vac/sia and concentration κvac/sia, both being parameters

of the von Mises-Fisher distribution.

In this section, we will investigate relationships between these quantities to establish the

hierarchy of the model, as well as the form of the population distribution. In other words,

we will decide which characteristics to consider and how to establish a relationship between
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them. A complete methodology can be summarised in the following steps:

MDresults → description vector → associated distributions

→ ”generative” distributions → samples of defects, (6)

At the end of the process, we want to be able to generate a representative sample of defects

that we can test against MD simulations. To do this, we need what we call generative

distributions, which are a concept very similar to generative models in machine learning.

These distributions will depend on the characteristics of the cascades, which are themselves

variable in nature. Therefore, they will also be defined by statistical distributions, which

combined will form a distribution of the description/feature vector.

While correlation might be a sufficient measure (Figure 8, Section 3) to ignore certain

quantities, hierarchical models require a more thorough approach. To avoid issues where

two quantities seem to be related to each other, only because they depend on a third, we

use partial correlation analysis. Partial correlations measure correlations between residuals

resulting from a linear regression. Figure 9 demonstrates this quantity for selected features,

as well as a proposed hierarchy, based on the analysis.

Figure 9: Sub-figure a) – Correlation analysis of selected quantities. Sub-figure b) – model
hierarchy based on this information.

As mentioned before, we use a heuristic approach here. For example, we can observe

that the size of a cascade (a, b, c) is related to the PKA energy (ϵ) and the expected distance

from the defect cluster rsia. However, the latter does not correspond to ϵ. It seems that ϵ

is related only to the cluster size and the number of Frenkel pairs (n) – which is dependent

only on ϵ. Therefore we can infer that in the first level of hierarchy we should have the
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size (a, b, c) and population size (n). Next, we could observe that rsia weakly depends on

a, b and c as well as rvac. On the other hand, rvac depends mainly on rsia. After analysis

of dominant partial correlations we found that we can recreate them using the hierarchy

presented in Figure 9 b). In our analysis we also used pair plots, omitted here for the

sake of brevity, to assess whether the relationship can be approximated by a closed-form

solution or whether the correlation is simply a result of incorrectly assigned scales. Finally,

since we have a concentration parameter for the von Mises-Fisher distribution, we also need

expectations. However, we have discussed earlier that this quantity is not correlated with

any other. Hence, it will be sampled as a uniform sampling over the SO3 group (a “random”

direction).

Next, we will demonstrate how to apply these relationships in a closed form statistical

model. In general, the sampling of the feature vector will be done using the joint distribution

p(κvac, rvac, κsia, rsia, d⃗, ϵ) with the following expansion (using probability chain rule)

p
(
κvac, rvac, κsia, rsia, d⃗, n, ϵ

)
= p

(
κvac | rvac, κsia, rsia, d⃗, ϵ

)
p
(
rvac, κsia, rsia, d⃗, ϵ

)
= . . .

= p
(
κvac | rvac, κsia, rsia, d⃗, ϵ

)
× p

(
rvac | κsia, rsia, d⃗, ϵ

)
× p

(
κsia | rsia, d⃗, ϵ

)
× p

(
rsia | d⃗, ϵ

)
× p

(
d⃗ | n, ϵ

)
p (n | ϵ) p (ϵ) , (7)

where d⃗ stands for dimension and d⃗ = (a, b, c). As we already mentioned, in general, the

order of expansion is arbitrary. We select it on the basis of partial correlations so that we

drop most of the conditionals. We might say that (7) is a fully connected model. If we apply

the hierarchy from Figure 9 b), we get

p
(
κvac, rvac, κsia, rsia, d⃗, ϵ

)
=

p (κvac | κsia) p (rvac | rsia) p
(
κsia | d⃗, ϵ

)
p
(
rsia | d⃗, ϵ

)
p
(
d⃗ | ϵ

)
p (n | ϵ) p (ϵ) .

(8)

Another way to look at this is that we take an arbitrary expansion using the probability chain

rule and remove from conditionals those quantities that do not correlate. In the process, we
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select an expansion that is simplest and informed by the associated physics.

4.4 Explicit form of distributions

One of the best features of using the expansion 8 is the fact that we can express a complex

multivariate distribution as a product of simpler ones. While our approach is somewhat

related to building sophisticated Bayesian hierarchical models, we adopt a simpler view, in

the hope that this will make the model more accessible to the wider community and lay

foundations for developing phenomenological relationships between features of cascades.

In general, we regard the problem as a sequence of non-linear regression sub-problems.

However, with the right data transformation we will be able to linearise them and also

assume a constant variance/covariance of the transformed data. Furthermore, we will make

a simplifying assumption that the variability is normally distributed in the transformed

coordinates. As a result, most of the time the expectation can be simply estimated with

ordinary least squares using

w =
(
X⊤X

)−1
X⊤y, (9)

where X is the design matrix and data-values y are approximated by y = Xw. Results of

the regression will serve as a model of expectation in the distribution we will assume for our

model. Likewise, the variance will be estimated using the estimator

s2 =
ε̂⊤ε̂

n− p
(10)

where ϵ̂ is the vector of residuals, n is number of data-points and p is the dimensionality of

the data.

This brings us to the final step of more general considerations – selecting a parametric

family for each distribution. Since the process is extensive, we will follow steps thoroughly

only at the beginning of the hierarchy. The goal here is to introduce all the concepts that

are necessary to recreate the results. The complete set will be summarised at the end of the

section in table 2. We also would like to reiterate some basic concepts from statistics and

give this section some characteristics of a tutorial.

Selecting the distribution for ϵ (PKA energy) is trivial, as it was set to be uniform in

the data-set. Hence, p (ϵ) ∝ const.. This distribution can be adjusted according to need.

However, we are focusing on the estimation of all parameters based on generated data.
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It is well established that the number of Frenkel-Pairs can be represented by a power-law

[3],

n (ϵ) = wnϵ
kn . (11)

Hence, it is a linear relationship in the log-log domain. We make a leap of faith and assume

that in this domain, the variance is also well represented by the normal distribution. This

is a common assumption in the linear regression. Then the (probability of generating a

data-point will have the form

p (lnn | ln ϵ) = 1√
2πσ2

n

exp

(
−
(
lnn− µlnn|ln ϵ

)2
2σ2

n

)
, (12)

where the expectation is given by

µlnn|ln ϵ = ln
(
wnϵ

kn
)
= kn ln ϵ+ lnwn. (13)

In the above, we explicitly wrote the argument as a logarithm of the quantity of interest,

but it should be here regarded as a variable in transformed coordinates.

Here we can see that the transformation introduces a linear relationship between the

logarithm of PKA energy and the logarithm of the number of defects generated. To evaluate

the parameters of this relationship we will use the least squares method. This is equivalent

to selecting a maximum likelihood estimate and assuming uniform Gaussian “noise”. During

the sampling, we will use these estimates as parameters of the distribution. Such a procedure

corresponds to sampling from a posterior predictive with a prior distribution set as a Dirac

delta function. In other words, we make a simplifying assumption that our estimates are

exact, i.e. there is no associated uncertainty. This theme will be recurrent throughout the

procedure.

Nevertheless, we are interested in the distribution p (n | ϵ). Although in practice, we will

generate data in the log-log domain and transform them accordingly. Consider a textbook

example of two random variables X and Y . Let Y = f (X), and f is a bijective (as it is in

this case, a “complete” one-to-one map). Then

pY (y) = pX
(
f−1 (y)

) ∣∣∣∣df−1 (y)

dy

∣∣∣∣ . (14)

This is a well known example of the change of variables formula. In this form it is applicable
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to monotonic functions. It is also appropriate to conditional probabilities. For example, If we

assume that the relationship between the number of FP pairs n and the PKA energy ϵ is well

approximated by a power law, then from the regression we can easily estimate expectation of

lnn. As we are interested in the distribution of n, we take f (·) = exp (·) =⇒ f−1 (·) = ln (·).
Therefore

p (n | ϵ) = 1√
2πσ2

n

exp

(
−
(
lnn− µlnn|ln ϵ

)2
2σ2

n

)
×
∣∣∣∣ 1n
∣∣∣∣ . (15)

It is no surprise that we obtained the log-normal distribution. This distribution will represent

the variability in the number of Frenkel pairs with the given PKA energy. In the above,

the variance is a single parameter, which is an assumption of the transformation. Having

established the distribution we can assess the quality of our assumptions by examining the

distribution and the data. The results are presented in Figure 10. It immediately transpires
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Figure 10: The number of defects produced in a collision cascade as a function of the
PKA energy. Figures include the results of MD simulations (the data), “predicted” expected
number of defects and approximated 95% confidence interval. In the latter case we used the
1.96 expansion coefficient. Note, that the confidence interval represents the spread of the
data very well across the whole domain of the data.

that the power law is not only a great way to represent the expectations, but also that the

predicted confidence interval corresponds to the spread of data very well.

According to our earlier propositions, at the same level of hierarchy we have the size of

a cascade. This relationship is a bit more complicated as the size is represented by a vector

d⃗ = (a, b, c) or (d1, d2, d3). In this case we will also take advantage of the flexibility of the

power law and assume that each component di of the vector d⃗ is given by

di = wdi
ϵkdi =⇒ ln di = kdi

ln ϵ+ lnwdi
. (16)
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Regarding the distribution we follow a similar reasoning as before, but this time we will us

a multivariate Gaussian distribution

p
(
ln d⃗ | ln ϵ

)
=
(
(2π)

3 |σ|
)−1/2

exp

(
−1

2

(
ln d⃗− µ⃗ln d

)⊤
σ−1

(
ln d⃗− µ⃗ln d

))
, (17)

where |·| is a determinant. For many variables the change of variables is factored by a

Jacobian J , i.e.

pY (y) = pX

(
f⃗−1 (y)

)
|J | , (18)

where

Jij =
∂f−1

i (y)

∂xj
. (19)

The transformation f⃗ (x⃗) and associated Jacobian are defined as

fi (x⃗) = exp (xi) =⇒ Jij =
∂f−1

i

(
d⃗
)

∂dj
=

1/di i = j

0 i ̸= j

. (20)

Finally the transformed density will take form

p
(
d⃗ | ϵ

)
=

(
(2π)

k |σ|
)−1/2

(
3∏

i=1

1

di

)

× exp

(
−1

2

(
ln d⃗− µ⃗ln d

)⊤
σ−1

(
ln d⃗− µ⃗ln d

))
. (21)

Results in Figure 11 illustrate that our statistical model represents data from MD simulation

quite well. Furthermore, we can see that the proportions between principal axes, at least in

terms of expectations, are preserved.

Subsequently, we would like to make the estimates for rsia, namely the average distance of

a self interstitial atom from the cluster centre in local PCA coordinates, as a function of the

cluster dimensions. This time we will skip an explicit derivation of densities as the procedure

will be quite similar. However, the model for the data will require more explanation. To be

able to use a simple transformation that will linearise the relationship we need to introduce

an additional bias. This time the power law is not an appropriate model. Instead we will

use a simple exponential function of a form

rsia = exp
(
−w⃗sia · d⃗+ bd

)
+ r∞ =⇒ ln (rsia − r∞) = −w⃗sia · d⃗+ b′d (22)
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(Å

)

0.95 CI
data
expectation

Figure 11: Simulated and predicted sizes (defined via an enclosing ellipsoid) of collision
cascades as a function of the PKA energy. The primary focus here is on how well the
distribution represents the data. Hence, axes scales are chosen with visibility in mind.
However, note that the first and largest principal axis is significantly larger. CI refers to the
confidence interval.

where we have introduced a baseline parameter r∞. This quantity can be regarded as the

average radius in the limit of an infinitely large cascade. In the course of our analysis, we

noticed that rvac and rsia seem to converge to this value. In the first case (r⃗vac) it approaches

the value from below, and in the other (r⃗sia) from above as it decreases. Note, that we are

speaking here about relative/normalised PCA coordinates. To estimate r∞ we simply fitted

two exponential functions (with a negative exponent) at the same time assuming that they

share the same bias (value at the infinity). Having done that, we used this result as a fixed

value of r∞. This allowed us to calculate the differences rsia/vac − r∞ from (11), before

applying the logarithmic transformation and estimation of w⃗sia and bd.

The resulting distribution again will be the univariate log-normal, as we made the same

assumption about the normality of the noise. The difference here is that the linear, or rather

linearised, model for the expectation will not depend on the logarithmic transformation only

on the direct scalar product of the size d⃗, associated weights w⃗sia and bias bd.

The results of this estimation (in the case of SIA) are illustrated in Figure 12. As we move

up in the hierarchy of the model, we need to consider that some variations in the observed

data are a consequence of variations in multidimensional arguments. For this reason, a

simple visual assessment of the confidence interval might be insufficient. Our approach is to

assess the goodness of fit by simply plotting resampled data. However, the procedure is not

straightforward anymore. More information will be provided in Section 4.5. For now, it is

sufficient to say that we are using the Markov chain Monte Carlo method and the PyMC3
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Figure 12: Regression of the average distance of self-interstitial atoms (SIA) as a function
of the cascade dimensions. The regression line (reg.) is in four-dimensional space of d⃗× rsia.
The expectation, bounds of confidence interval (CI) (scaled 2× variance) and the data are
plotted as a planar projection on a given plane. The resampled/simulated data (sim.)
illustrate a successful regression.

python package [45]. Each quantity of interest, from each stage of the hierarchy, is sampled

subsequently, and each time it defines the distributions in the following stage.

Further derivations of features of our model (Figure 9 b) are deduced using very similar

logic and do not require additional comment. Therefore, we will omit explicit illustrations

of further derivations in order to provide a more concise narrative. Needless to say, the

performance of the resampling is similar in other cases.

A complete list of all components of the hierarchical model 7 is summarised in Table 2.
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i.v. q.o.i. model µ / µ⃗ f−1 (·) p (·)
I ϵ n wnϵ

kn kn ln ϵ+ lnwn ln (·) Φ (lnn, µ, σn)
1
n

I ϵ d⃗ wdi
ϵkdi k⃗d⃗ ln ϵ+ ln w⃗d⃗ ln (·) ΦMV

(
ln d⃗, µ⃗,σ(d⃗)

)( 3∏
i=1

1
di

)
II d⃗ rsia − r∞ exp

(
−w⃗rsia · d⃗+ brsia

)
−w⃗rsia · d⃗+ brsia ln (·) Φ (ln (rsia − r∞) , µ, σrsia)

1
rsia−r∞

II d⃗ κsia exp
(
−w⃗κsia

· d⃗+ bκsia

)
−w⃗κsia

· d⃗+ bκsia
ln (·) Φ (lnκsia, µ, σκsia

) 1
κsia

III rsia rvac (wrvacrsia + brvac)
1/3

wrvacrsia + brvac (·)3 Φ (rsia, µ, σrvac) 3r
2
sia

III κsia κvac exp (wκsiaκvac + bκsia) wκsiaκvac + bκsia ln (·) Φ (κsia, µ, σκvac)
1

κsia

Table 2: The list of distributions for the hierarchical model defined in equation (7). The
first column indicates the layer in the hierarchy (figure 9). The independent variable (i.v.)
from one layer is the quantity of interest (q.o.i.) of the previous one. Column “model”
refers to the equations that define the relationships, while µ is the associated model of the
expectation. We also provide the inverse transformation f−1 that is used to derive (via
equation 18) the form of the distribution in the last column. The function Φ represents the
normal distribution, while the label MV indicates that in fact, it is the multivariate normal
distribution. Dummy variable µ is a placeholder for what comes out of the model

4.5 Results of the regression and evaluation of the sampling pro-

cedure

While previously we defined all components for the hierarchical model, here we will address

details of the sampling procedure, present estimated values of all parameters and asses its

usefulness.

We emphasized deriving an explicit form for the distributions of cascade features. How-

ever, in practice, all the features of the cascades are sampled in the transformed coordinates.

This way, we can limit ourselves to using Gaussian distributions most of the time. For ex-

ample, we would sample log nFP from the Gaussian distribution rather than nFP from the

log-normal.

In practice we use the standard Model class from PyMC3 library to define the distribution

and sample using the Markov Chain Monte Carlo method. The logical order of the procedure

can be described as follows. After sampling a feature (e.g. PKA energy), we apply an

appropriate transformation (using a deterministic function f that can be inferred from Table

2) and proceed further to the next stage of the hierarchy. There, we use this transformed

sample to evaluate the expectation of the quantity from the next stage of the hierarchy.

We continue this process until all features have been sampled. The concept is illustrated in

Figure 13.

All the parameters necessary to evaluate distributions in the hierarchy (equation 7 and

Table 2) are presented in Table 3. We have estimated them using the procedure described

31



Figure 13: The concept of sampling in hierarchical modelling of collision cascades.

in Section 4.4.

Here we would like to emphasise that one of the advantages of our simplified approach

is that a single table makes for a fairly sophisticated descriptor of a cascade. Such compact-

ness of representation would be rather difficult to achieve using non-parametric methods.

For example, Gaussian process regression (GPR) or a deep neural network would result in

matrices that are large and not easily transferable. An interesting side note is that in our

attempts to use GPR we lost most of the correlations between features that we choose to

assess.

We begin our assessment of the model with comparison of partial correlations. We

compare cascades, or rather populations of defects, from explicit atomistic MD simulations

and ones that were generated using the generative model. Results are presented in Figure

14. We were able to accurately recreate most of the correlations. However, because we

impose dependencies before fitting, any unspecified correlations are lost, resulting in an

overestimation of the remaining ones.

One might ask why we did not estimate a whole covariance matrix, of all parameters,

from the data. The first reason is that the aim was to construct a relatively uncomplicated

parametric model. Furthermore, when we tested a non-parametric method, namely the

Gaussian Process Regression, even fewer partial correlations were recreated. For this reason,

we decided that the optimal way forward was to develop the hierarchical model.
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quantity expectation standard deviation / covariance

n
lnwn kn σn

1.523 0.823 0.142

d⃗

lnwd1 lnwd2 lnwd3 σ(d⃗ ) σ
(d⃗ )
:1 σ

(d⃗ )
:2 σ

(d⃗ )
:3

2.334 1.853 1.590 σ
(d⃗ )
1: 0.076 0.000 -0.009

kd1
kd2

kd3
σ
(d⃗ )
2: 0.000 0.041 0.005

0.503 0.441 0.379 σ
(d⃗ )
3: -0.009 0.005 0.026

r∞
r∞

1.620

rsia

wrsia,1 wrsia,2 wrsia,3 σrsia

-0.005 -0.016 -0.034 0.242
brsia

-0.246

κsia

wκsia,1 wκsia,2 wκsia,3 σκsia

-0.008 -0.005 -0.025 0.490
bκsia

-0.494

rvac

wrvac σrvac

12.944 0.279
brvac

-5.588

κvac

wκvac
σκvac

-1.299 0.516
bκvac

1.446

Table 3: Parameters defining the generative model of point defects generated by PKAs
in hcp Zr. It is assumed that the quantities are expressed in keV and Å. The associated
expectations, probabilities and transformation definitions are given in the table 2. The
parameters are provided in a form that can be used directly in the evaluation of the linear
model of expectation µ (table 2). Recall that in the domain where µ is a linear model,
samples can be generated using Gaussian distributions and transformed "back" according
to the mapping f .
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Figure 14: Comparison between partial correlations of features of cascades from explicit
MD simulations (a) and populations of defects obtained using the generative model (b).
The quantities of interest are labelled in the same way as in figure 8 and are as follows: ϵ
– the PKA energy, a, b, c the dimensions of the cascade, nFP – the number of Frenkel pairs,
rSIA/VAC – average distance from the cluster centre for self interstitial atoms and vacancies,
κSIA/VAC – concentration parameter for the von Mises-Fisher distribution.

Having features of the cascade and the hierarchy of distributions, we can generate actual

positions of defects. Strictly speaking, we will be sampling their approximate positions, as

we use a continuous approximation. To obtain actual coordinates we need to shift them to

the closest lattice point. However, for simplicty we ignore this requirement for now.

Before evaluating the performance of the model, we need to consider some final details.

So far we have considered the average distance from the cluster centre, although we haven’t

said anything about the actual distribution. Analysis of the distances using kernel density

estimation revealed that in many cases the distribution resembles a Gaussian distribution.

This means that, in addition to the location parameter (e.g. the average), we also need a

scale parameter. Because a Gaussian distribution is not appropriate for modelling distances

that are strictly non-negative, and we also have a fairly large variance compared to the

expectation, we decided that the best selection will be the truncated-normal distribution.

Furthermore, we found close to no correlation between location and scale parameters. Note

that we use a standard parametrisation where location µ and scale σ correspond to expecta-

tion and standard deviation of the parent normal distribution. For that reason, we assume

a constant parameter σ, estimated from the data set, to be 0.619 for SIA and 0.519 for

vacancies. Recall that, because we are working with PCA coordinates the actual spread will

vary with the PKA energy.
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In summary, we have defined a way to sample expected distances (local coordinates) of

defects from the cluster centre as well as concentration parameters for associated von Mises

distributions (separately defined for VAC and SIA). The hierarchical model also provides

us with principle axes of the enclosing ellipsoid that define the shape of the cascade. These

axes are used to transform samples from local coordinates to the space of a crystal. Based

on the previous argument, the expected direction of concentration and the orientation of

the enclosing ellipsoid are sampled uniformly over all orientations.

To test the performance of our model we introduce a method inspired by the topologi-

cal data analysis (TDA). We will count the number of connected pairs with an increasing

"search" radius. However, instead of the actual number of connected defects, we will use

fractions, Hence, we will get an analogue of a cumulative distribution function. This concept

is somewhat related to barcodes in TDA. We have focused on distances between pairs as

the key impact of the defect distribution in its role as the starting point for microstructural

evolution via influencing chances of annihilating defects or forming clusters of vacancies or

interstitials. This can be an important factor as diffusion happens on much longer time-

scales than cascade evolution. The results are presented in Figure 15. We can see that
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Figure 15: Fraction of Frenkel pairs as a function of the search radius originating from the
centre of the cluster of defects. The first row represents generated results, while the second
– MD simulations. Columns correspond to the type of a pair.

the defects generated using the model correspond reasonably well to data generated using
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MD. The main difference is that some MD simulations have clearly much more complex

structure. High-fidelity MD data contains some bimodal histograms of distances between

pairs. This suggests some level of branching that our model is unable to recreate due to our

consideration of a fixed number of features.

To make a more objective and numerical assessment, to each estimated curve we fit a

cumulative distribution function of the Weibull distribution

F (x) = 1− e−(
x
λ )

k

. (23)

This gives us a simplified representation of a curve that consists of two parameters: char-

acteristic scale λ and exponent k. The distribution will enforce some properties (e.g. uni-

modality), however, it will still give us a fair representation of the considered relationship.

The results presented in Figure 16 demonstrate that almost all aspects of the distances be-
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Figure 16: Parameters of the Weibull distribution fitted to data from figure 15 (gen. – data
generated by the model, sim. – results from MD simulations). The last column demonstrates
sensitivity of the cumulative distribution function to the scale parameter λ and the exponent
k (shape parameter). Each line of a given colour represents a scaled version λ or k with the
base value being the average for the whole set..

tween pairs are consistent between the model and the MD simulations. The key parameter
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here is λ, which defines the scale of the distribution. We have good agreement between

estimates for pairs of SIAs and for vacancies and SIAs. However, the distances between

vacancies seem to be overestimated. On the other hand, due to the volatile nature of defect

production, the final results may be difficult to distinguish. Which we find satisfactory.

We believe that the main issue is that we selected the truncated normal to represent

the distance. Most likely a distribution that has zero probability density at zero distance

(e.g. log-normal) would be better in this particular case. However, at the moment we found

the truncated-normal distribution the best compromise between reliability, complexity of

implementation and representativeness.

5 Baseline approximations

In this section we will demonstrate the utility of the generative model in a case study.

We have mentioned before that complete molecular dynamic simulations can be extremely

expensive if we wish to reach out to experimental scales. However, we can use the generative

model to construct a low-fidelity approximation that can provide some insights into the

nature of radiation damage without making extremely extensive, and expensive simulations.

In the considered case study, we will demonstrate the use of the generative model to

construct a baseline approximation - one that is sufficiently accurate to investigate the scale

of an effect (e.g. influence of the spectra on damage accumulation), assist in planning large-

scale and multi-physics simulations (e.g. estimating the number of simulations necessary

to find the damage saturation point) or provide a starting point for higher-scale methods

(e.g. by populating a crystal with defects that are representative of a given dose for a given

spectrum).

Our example can be considered as complementary to other low-fidelity approximations

such as the binary collision approximation (BCA) or empirical relationships like NRT, ARC

or RPA damage predictions [44]. Compared to these, our approach includes additional

information about the spatial distribution of defects and the influence of temperature.

Consider the common practice of reporting results of experiments and simulations using

some variation of the dpa unit (displacement per atom). This sometimes leads to confusion

and interpretation of this measure of dose as a measure of damage. However, this is necessary

to make experiments and simulations comparable across different materials and irradiation

types. Some researchers choose to use simple scaling using the NRT model. More often
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the measure of dose is obtained via BCA simulations, usually implemented in SRIM [43].

Nevertheless, the information is reduced to dose, i.e. energy transferred to a specific material.

It has been demonstrated by explicit MD simulations of build-up radiation (e.g. [46]) that

dose and the type of material might be insufficient information to recreate the conditions

of an experiment or a simulation. The complete information should also consist of some

information about the PKAs spectrum.

Here, we would like to demonstrate that our generative model can be used to predict, at

least qualitatively, the effect of the build-up without the extreme cost of running subsequent

MD simulations. We choose to conduct three independent simulations with different PKA

energies – 10keV, 20keV and 30keV. In each simulation, we introduce a “cascade” to a

finite volume. Here, a “cascade” is a collection of point defects, vacancies and self-interstitial

atoms, defined by their coordinates in the Cartesian space and generated using our model.

This collection simulates the result of said collision “cascade”. The centre of the cluster is

sampled uniformly. Whenever a cascade is generated, we sample from its features, that then

are used to simulate the positions of the point defects. Here, we use the same hierarchy,

parameters and distributions that we selected and estimated in previous sections. The key

assumption is that whenever a cascade is introduced, all preexisting defects are removed

within the volume of the new cascade. This volume of space is defined by the principal

axes. The mechanism is based on the consideration that collision cascades involve a thermal

spike that will initiate a recovery. On the other hand, we are aware that this is just a crude

approximation of a complex mechanism.

The results are presented in Figure 17. It immediately transpires that we can observe a

saturation of defects that is a direct consequence of introducing the annealing effect. While

this is something we expected, it is not the main point of this simple experiment. In the limit

of high dose delivered on a time-scale that allows us to ignore diffusion, we can observe that

there is a significant difference between damage induced by PKAs with different energies.

Even though in each case we used the same dose (defined as the PKA energy per atom in

the simulation cell). A similar conclusion can be derived directly from the evaluation of the

model parameters, which suggest that higher energy cascades result in lower defect density

(no. of defects per unit volume, Figure 7). The conclusion is that the spectra of radiation

will influence the nature of damage in a meaningful way. Therefore, the information about

the dose alone is insufficient to infer the damage accurately, i.e. dose does not have a simple

relationship to damage.
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Figure 17: Vacancy concentration (population size/number of atoms in the volume) as a
function of dose. Predictions are made using an approximation based on the generative
model. To provide a visual guide, the results are interpolated using the function: a(1 −
exp(bxc)), where a, b and c are adjustable parameters. The threshold displacement energy
for the NRT model was set to 40 eV.

The above results are consistent with explicit MD simulation conducted by Tian et

al. in [46]. However, quantitative comparison reveals the limit of this approach. In the

simple model of damage saturation happens at a much slower rate (although the order of

magnitude is correct) and accumulation of damage is overestimated at least by a factor of 2.

We could adjust the rate if we chose a smaller interaction volume proportional to the size of

a cascade, but this would increase the predicted limit of the damage. We could also remove

only a fraction of defects under the new cascade and improve the agreement with explicit

simulations. However, this is not the point we are trying to make.

The above case study shows that, even with very simple assumptions, the generative

model can be used to draw important conclusions. We can build frameworks that can have

an interpretable driving mechanism, such as the number of defects annealed due to the

overlap of cascades, or it can provide an additional investigation tool.

For example, with some improvements to the presented framework, we can assess if

changes in the spectra, like in the case of comparing samples from different reactors, should

be taken into account. With the right parametrisation, it is just a matter of tweaking the

first distribution in the model hierarchy. Furthermore, note that the BCA method does

not involve the annealing effect and purely empirical models (like NRT) do not provide any

spatial information.
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Furthermore, the generative models, most likely including the simple model of damage

accumulation, can also be used to introduce initial damage in simulations that investigate

diffusion and/or formation of higher-order defects (e.g. dislocation loops). This would be

more realistic than a random sample from a uniform distribution as multiple cascades will

generate local concentration points even without the diffusion.

Furthermore, the generative model may enable us to establish a link between the number

of defects introduced and the actual energy delivered to the system. This would allow direct

comparison of results from simulations that rely on explicit insertion of defects, such as

CRA/RDA [16, 17, 18], with experiments, assuming we know the PKA spectrum. In other

words, by becoming a part of a larger multi-scale, multi-method framework, the generative

model may become an essential step in connecting damage and the dose.

How this could work in practice? As mentioned before, from Figure 17 we see that

depending on the PKA energy, the same number of defects (volume is the same in each

case) corresponds to a different dose. We could use regression analysis to find the number

of defects associated with a given dose and define this relationship to be dependent on

the parameters of the PKA sanctum. Alternatively, we could evaluate this relationship

analytically. For example, we can approximate dose, as the energy delivered to the system,

by writing a posterior predictive distribution

pV (E | N) =

∫
θ⃗

p
(
E | θ⃗

)
p
(
θ⃗ | N

)
dθ, (24)

where N is the number of defects introduced to the system and E is the amount of energy

delivered. The vector θ⃗ represents parameters of the generative model, as well as parameters

of the PKA spectrum. In the case of our generative model, the prior distributions of model

parameters were taken as the Dirac delta (no ambiguity). However, we can include infor-

mation about the degree of certainty we have in these parameters. The term p(E | θ⃗) will

be essentially the spectrum, while p(θ⃗ | N) is factoring the particular form of the spectrum

depending on the number of defects. The latter can be transformed using Bayes’ theorem

to a term that will include some form of the generative model.
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6 Summary and conclusions

For clarity, this section will summarise previously considered conclusions. The following are

considered, in our view, to be the main contributions:

• We provide a database of collision cascades simulated with MD and the previously

discussed TTM. This database can be used as a direct input to other methods, such as

kMC, thanks to the well-designed sampling of PKA momenta. The database is accom-

panied by pre- and post-processing Python code showing how to access all the data

behind the results presented in this paper. This allows them to be easily reproduced

or to further the analysis.

• We developed a generative model for collision cascades. This model can be used

to substitute/interpolate the associated database, i.e. it can be used to generate

representative populations of Frenkel pairs.

These key contributions are supplemented by the following:

• The key feature of the generative model is its low complexity. Given that it proved to

be sufficiently representative, we believe that we have found a close-to-optimal method

and family of distributions for interpolating databases of collision cascades.

• We were able to overcome the problem of excessive heat in simulations with TTM using

a simple Python extension of the input script. This was done by solving a simplified

heat transfer equation and replacing TTM with a "single point" Langevin thermostat

in the later stages of a cascade evolution.

• We offer a practical parametrisation of the two-temperature model (TTM) for Zr,

which can be efficiently incorporated into LAMMPS input files. Upon a reasonable

request, we can provide the code we used to evaluate all quantities.

• We have demonstrated how the generative model can facilitate a deeper understanding

of radiation damage by providing a fast way to generate defects. This can be used

to build baseline approximations that allow us to qualitatively evaluate expensive to

explicitly simulate phenomena, such as radiation damage build-up and its relationship

to the PKA spectrum, or the role of annealing due to cascade overlap.

• As a result, we also developed a language of description, i.e. a set of numerically

representable and physically relevant features that can be easily published and shared.
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The usefulness of this descriptor is confirmed by a fairly successful comparison with

actual simulated results of collision cascades.

• We have developed a technique to represent and compare clouds of point defects. We

use cumulative distributions that represent the fraction of defects within a specific

radius. This representation has a direct relationship with minimum diffusion paths

between pairs of defects. This approach can be applied to analyse other characteristics

in a manner similar to techniques used in the topological data analysis.

The methodology we have presented has a potential for further development. For exam-

ple, we can use the Bayesian framework to improve the comparability of different studies

in the domain of radiation damage and to build a network of conditional probabilities.

Note that the generative model essentially represents the relationship between the quanta

of the radiation spectrum and the defects introduced by collision cascades. We are therefore

opening up the possibility of relating the damage to the dose, using the information about

the spectra. The Bayesian framework may allow us to propagate the information in both

directions in a multi-scale, multi-method framework.

There are, nevertheless, a number of ways in which this study could be improved. For

example, we might extend the descriptor of a cascade by including some information about

the spread of defects within the local coordinates (currently it is a fixed value). We could

also take advantage of non-parametric modelling and discover more nuanced relationships

between features. We believe that heteroscedastic Gaussian process regression with imposed

hierarchy could be an alternative to the proposed model. However, we would lose the

advantages of an explicit model.

The model we have developed is also not complete. By design it is based on collision

cascades up to 40 keV. Hence we use only half of the PKA spectrum for Zr (n0 flux) in

representative reactor conditions. It is expected that higher energy cascades will branch

out. While the replacement of high energy cascades by multiple lower energy cascades may

be acceptable, it should be considered as a very simple approximation. The real picture is

more complicated. Although it has been shown that they do indeed tend to branch out,

these events may involve interconnected cascades [11]. Even in the range of PKA energies

we considered, we observed bimodal distributions of pairwise distances, suggesting the pres-

ence of branch-out cascades. Therefore, future improvements should take into account the

emergence of such structures.
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The last point we want to address is that we did not consider the directions of PKAs

because we focused on high temperature simulations (600K). Our analysis suggests that

this is not an issue at these temperatures. However, at temperatures close to 0K it could

be an important factor.

7 Data and code availability

The database of pre- and post-processing scripts, input files and results from molecular

dynamics simulations used in this study will be publicly available on the Zenodo platform

[47]. This includes examples of Python code demonstrating how to access and interpret the

data. Furthermore, a code example that implements the generative model from this paper

will also be published in an open-access format.
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