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Inverse Participation Ratios (IPRs) and
the related Participation Entropies quan-
tify the spread of a quantum state over a
selected basis of the Hilbert space, offer-
ing insights into the equilibrium and non-
equilibrium properties of the system. In
this work, we propose three quantum al-
gorithms to estimate IPRs on multi-qubit
and multi-qudit quantum devices. The
first algorithm allows for the estimation of
IPRs in the computational basis by single-
qubit measurements, while the second one
enables measurement of IPR in the eigen-
basis of a selected Hamiltonian, without
the knowledge about the eigenstates of the
system. Next, we provide an algorithm
for IPR in the computational basis for a
multi-qudit system. We discuss resources
required by the algorithms and benchmark
them by investigating the one-axis twisting
protocol, the thermalization in a deformed
PXP model, and the ground state of a
spin-1 AKLT chain in a transverse field.

1 Introduction

Understanding equilibrium [1, 2, 3, 4] and non-
equilibrium [5, 6, 7, 8, 9, 10] properties of quan-
tum many-body systems is a significant challenge
in contemporary physics [11]. While investiga-
tions of many-body systems on classical comput-
ers are hindered by the exponential growth of the
Hilbert space dimension with the system size, the
recent experimental breakthroughs in realizing
and controlling synthetic matter platforms fulfill
the vision of quantum simulation [12, 13, 14, 15]
proposed by R. Feynman [16]. Moreover, quan-
tum computing has already reached a point in
which non-trivial computational tasks may be

performed in gate-based settings on quantum
processors [17, 18, 19] despite operating in the
presence of noise and errors and still belonging to
the Noisy Intermediate-Scale Quantum (NISQ)
era [20].

The research of quantum algorithms, whose
paradigmatic examples include algorithms for in-
teger factorization [21], unstructured database
search [22] or quantum phase estimation algo-
rithm [23], has been intensified due to the ad-
vancements of quantum processors during the
NISQ era, as reviewed in [24, 25]. Examples in-
clude quantum algorithmic solutions for quantum
dynamics [26, 27] allowing for simulation of time
evolution of many-body systems [28, 29], finding
the energy spectrum of a static Hamiltonian [30,
31], or approximating thermal states [32, 33, 34].
These explorations not only open the door for dis-
coveries in large-scale quantum many-body sys-
tems [35, 36, 37, 38, 39] but also provide ways of
benchmarking the quantum hardware [40]. Vari-
ational quantum algorithms that leverage classi-
cal optimization techniques to train parameter-
ized quantum circuits [41, 42, 43, 44] constitute
another group of methods aimed at addressing
the constraints of a limited number of qubits and
noise characteristic for quantum processors from
the NISQ era.

Among various types of quantum algorithms,
approaches aimed at quantifying the proper-
ties of the quantum state are of pivotal im-
portance for building, calibrating, and control-
ling quantum systems. Quantum state tomogra-
phy, i.e., a complete reconstruction of a quantum
state [45, 46] has limited applications in many-
body systems due to the exponential growth of
the Hilbert space dimension with qubit num-
ber. This lead to the development of approaches
such as shadow tomography [47] or randomized
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measurement toolbox [48] aimed at quantifying
specific properties of quantum states including
higher order correlation functions [49], entangle-
ment entropies [50, 51, 52, 53], out-of-time-order
correlations [54, 55] or stabilizer Renyi entropies
[56] which quantify the non-Clifford resources re-
quired to prepare the state [57].

In this work, we focus on the inverse partic-
ipation ratios (IPRs) and the related participa-
tion entropies, which quantify the spread of state
|ψ⟩ in a selected basis B of the Hilbert space of
quantum many-body system. We propose quan-
tum algorithms to estimate IPRs in the com-
putational basis and in the eigenbasis of a se-
lected Hamiltonian. The introduced algorithms
are benchmarked with exact numerical compu-
tations. This paper is organized as follows. In
Sec. 2, we introduce the notions of IPRs and
participation entropies, commenting on their rel-
evance for quantum many-body systems. Next,
in Sec. 3, we propose quantum algorithms to esti-
mate IPR in the computational basis and in the
eigenbasis of a Hamiltonian for qubits and qu-
dits. Relevant examples, numerical results, and
simulations on quantum processors are presented
in Sec. 4. In Sec. 5, we conclude and discuss the
utility of the introduced algorithms for near-term
quantum computing.

2 Inverse Participation Ratios
Let us consider the arbitrary many-body hermi-
tian operator Â and the complete many-body ba-
sis BA = {|i⟩} in which operator Â is diagonal.
Any pure quantum state |ψ⟩ can be decomposed
as |ψ⟩ =

∑
i ci|i⟩, where ci = ⟨i|ψ⟩. To quantify

properties of |ψ⟩, we consider the IPRs defined
as

IA
q =

N −1∑
i=0

|ci|2q, q = 2, 3, 4 · · · , (1)

where N = dL is the dimension of the Hilbert
space, d is local Hilbert space size, and the in-
teger q ≥ 2 is referred to as the Rényi in-
dex. The IPR IA

q takes values in the range
[N 1−q, 1]. The lower bound corresponds to the
case when |ψ⟩ uniformly populates all the basis
states, namely, |ci|2 = N −1. The upper bound
is admitted when |ψ⟩ is fully localized on a sin-
gle basis state |j⟩, i.e., ci = δi,j . The IPRs
have been one of the main tools in assessing
the localization properties of single particle wave

functions across the Anderson localization tran-
sition [58, 59, 60, 61, 62], including recent inves-
tigations of the Anderson model on hierarchical
graphs [63, 64, 65, 66, 67, 68, 69, 70].

For a system of L qubits, d = 2, the Hilbert
space dimension is N = 2L, which implies that
IA

q may be exponentially small in the system size
L, motivating introduction of the participation
entropies Sq, defined as Rényi entropies of the
probability distribution pi = |ci|2,

Sq = 1
1 − q

log2 I
A
q , q = 2, 3, 4 · · · . (2)

which constitute a related measure of the spread
of |ψ⟩ in the basis BA. The system size depen-
dence of the participation entropy can be pa-
rameterized, in a sufficiently narrow interval of
system sizes, as Sq = Dq log2 N + cq where Dq

is a fractal dimension [71], cq is a sub-leading
term. If the analyzed state |ψ⟩ is localized on
a fixed number of basis states, the participation
entropy Sq is independent of L, resulting in a
vanishing fractal dimension Dq = 0. In con-
trast, a multi-qubit state uniformly delocalized
over the basis BA, |ci|2 = N −1, is character-
ized by Dq = 1. Similarly, Haar-random states,
obtained as |ψ⟩ = U |ψ0⟩, where |ψ0⟩ is a fixed
state and U is a matrix drawn with Haar mea-
sure from the unitary group on L qubits, are fully
delocalized in the Hilbert space, with the frac-
tal dimension Dq = 1 (and a sub-leading term
cq < 0) [72]. Multifractality [73, 74] is the inter-
mediate case between the delocalization (Dq = 1)
and localization (Dq = 0) when the fractal di-
mension 0 < Dq < 1 depends non-trivially on
the Rényi index q.

The participation entropies of ground states
of quantum many-body systems have been em-
ployed to distinguish between various quantum
phases [75, 76, 77, 78, 79, 80, 81, 82, 83]. More-
over, participation entropies can be used as an
ergodicity breaking measure in quantum many-
body systems as proposed in [84]. Indeed,
while the properties eigenstates of thermaliz-
ing [85, 86, 87, 88, 89] many-body systems may
be modeled by the fully delocalized random Haar
states, ergodicity breaking due to many-body lo-
calization [90, 91, 8, 10] is manifested by the
multifractality of many-body states [92]. Simi-
larly, measurement-induced phase transitions in
unitary dynamics of random circuits [9] inter-
spersed with local measurements can be inves-
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tigated through the lens of participation en-
tropies [93, 94]. The IPRs and participation en-
tropies can be also used to probe time dynamics
of quantum circuits [95] and are related to the
relative entropies of coherence [96] important for
the resource theory of quantum coherence [97],
and stabilizer Renyi entropies [98]. Finally, the
IPR I2 coincides with a collision probability de-
scribing the anticoncentration properties of the
many-body wave function, relevant for the formal
arguments of classical hardness of the sampling
problems [99, 100, 101, 102].

The broad relevance of the IPRs and partici-
pation entropies to quantum many-body systems
motivates us to consider quantum algorithms for
their measurement. For concreteness, since IPRs
and participation entropies are functionally de-
pendent, c.f. (2), we focus on measuring the
IPRs (1).

3 Quantum algorithms for IPR estima-
tion

In this section, we introduce the primary algo-
rithm developed within this paper. Subsection
3.1 details the algorithm for computing the In-
verse Participation Ratio in the computational
basis. Subsequently, in Subsection 3.2, we extend
this algorithm to calculate the IPR in the eigen-
basis of a chosen Hamiltonian for qubits. Finally,
in Subsection 3.3, we generalize the computation
of the IPR in the computational basis for qudits.

3.1 IPR in the computational basis for qubits

We consider a multi-qubit state |ψ⟩ and fix the
basis of interest as the computational basis, i.e.
the eigenbasis of Pauli-Z operators, BZ = {|σi⟩},
where σi = 0, 1. A naive experimental proce-
dure for measuring IPRs in the computational
basis could consist of performing the measure-
ments of the Ẑ operators, recording the result-
ing bitstrings associated with the basis states
|σi⟩, estimating the probabilities |ci|2 = |⟨σi |ψ⟩ |2
and calculating the IPRs using their definition
Eq.(1). While the procedure of such a sampling
of the state is experimentally realized on quan-
tum processors [17] and forms a basis of the cross-
entropy benchmarking [103], it requires estima-
tion of exponentially many probabilities |ci|2 as-
sociated with each of the states of BZ .

|0⟩ H H

|ψ⟩
Πq

|ψ⟩⊗q−1

|0⟩⊗n×(q−1)

Figure 1: Quantum circuit for estimating IPR IZ
q of

Rényi index q ≥ 2 in the computational basis BZ . The
quantum circuit comprises n× (q− 1) CNOT gates and
a controlled-Πq gate. The value of IZ

q is determined as
an expectation value of the Pauli-Z operator on the an-
cillary qubit.

In the following, we propose a quantum algo-
rithm that allows the measurement of IPR in a
computational basis, denoted as IZ

q , as an expec-
tation value of a single-qubit measurement.

The algorithm requires q copies of the state
|ψ⟩ =

∑
i ci |i⟩ (where the index i runs over the

states of the computational basis BZ) and ad-
ditional n-qubit quantum registers, so that the
input state reads

|Ψ0⟩ =|0⟩ ⊗ |ψ⟩ ⊗ |ψ⟩⊗q−1 ⊗ |0⟩⊗n(q−1),

=
∑

i0,··· ,iq−1

ci1 · · · ciq−1 |0⟩ ⊗ |i0, · · · , iq−1⟩ ⊗ |0⟩⊗n(q−1).

(3)

The algorithm generates entanglement between
the (q−1) copies of |ψ⟩ and the n-qubit quantum
registers using the CNOT gates

U
⊗n(q−1)
CNOT |Ψ0⟩ =

∑
i0,··· ,iq−1

ci0 · · · ciq−1 |0⟩ ⊗ |i0⟩

⊗ |i1, · · · , iq−1⟩ ⊗ |i1, · · · , iq−1⟩.
(4)

Subsequently, one ancillary qubit controls a
cyclic permutation, denoted as a controlled-Πq

gate in Figure 1. Πq acts on the q systems as

Πq|v0⟩⊗|v1⟩ · · ·⊗|vq−1⟩ = |vq−1⟩⊗|v0⟩ · · ·⊗|vq−2⟩.
(5)

Two Hadamard gates H and the controlled-Πq

create a superposition of the permuted and non-
permuted states, leading to the following output
state

|Ψf ⟩ = 1√
2

(|+⟩ ⊗ |ϕI⟩ + |−⟩ ⊗ |ϕC⟩) , (6)
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where |±⟩ = 1√
2(|1⟩ ± |0⟩),

|ϕI⟩ =
∑

ci0 · · · ciq−1 |i0, i1, · · · , iq−1⟩⊗|i1, · · · , iq−1⟩,

|ϕC⟩ =
∑

ci0 · · · ciq−1 |iq−1, i0, · · · , iq−2⟩⊗|i1, · · · , iq−1⟩,

and the sums in |ϕI,C⟩ extend over all the in-
dices i0, · · · , iq−1. Observing that ⟨ϕC |ϕC⟩ = 1 =
⟨ϕI |ϕI⟩ due to the normalization of |ψ⟩, while
⟨ϕC |ϕI⟩ =

∑
i |ci|2q, we find the probability P0

to find the ancilla qubit in state |0⟩, given as
⟨Ψf | (|0⟩⟨0| ⊗ 1) |Ψf ⟩ reads

P0 = 1
2 +

∑
i |ci|2q

2 = 1
2 + 1

2I
Z
q . (7)

Hence, the IPR IZ
q can be directly obtained

from the single-qubit measurements. Repeating
the measurement of the Pauli-Z operator on the
ancillary qubit Ns times, the average of the re-
sults approaches the value of P1 up to a statisti-

cal uncertainty scaling as ϵ ∼ N
−1/2
s . To enhance

accuracy and reduce statistical errors, one avail-
able approach is the implementation of quantum
amplitude estimation [104]. Our quantum algo-
rithm can also be extended to an arbitrary ba-
sis {|bi⟩}. In that case, an additional unitary
transform V =

∑
j e

−iϕj |j ⟩⟨ bj | between compu-
tational basis and {|bi⟩} is implemented before
the UCNOT gates in Eq.(4).

We note that for the specific choice of q = 2,
the controlled-Π2 is equivalent to a controlled-
SWAP gate. Then, the ancillary qubit imple-
ments the SWAP test protocol [105], returning
fidelity between |ψ⟩ and reduced quantum state
ρ =

∑
i |ci|2|i⟩⟨i|.

Finally, we comment on the resources required
by our algorithm. In comparison to the require-
ment of L measurements required to estimate
the probabilities |ci|2 = |⟨i |ψ⟩ |2 in the compu-
tational basis BZ , our algorithm requires only a
single qubit measurement.

However, in general, the IPRs may be expo-
nentially small in system size L. In such cases,
exponentially small statistical error ϵ, and con-
sequently, an exponentially large Ns, may be re-
quired to achieve an accurate estimation of the
IPRs. To illustrate this, we consider the follow-
ing examples

• a basis state |σi⟩ in the computational basis,
for which IZ

q = 1. In that case, statistical
error σ ≈ O(1) is sufficient to reach a small
relative error of IZ

q ;

• a GHZ state |GHZ⟩ = 1√
2

(
|1⟩⊗L + |0⟩⊗L

)
,

for which IZ
q = 21−q. In spite of the non-

trivial entanglement structure of this state,
a statistical error of σ ≈ O(1) is sufficient
for any q ≥ 2;

• a product state

|θ⟩ = (cos(θ) |0⟩ + sin(θ) |1⟩))⊗L ; (8)

for which IZ
q =

(
cos2q(θ) + sin2q(θ)

)L
. For a

generic value of θ, the IPR is exponentially
small in the system size L. To resolve such
a quantity, an exponentially large Ns is re-
quired;

• random Haar state, for which IZ
q ∝ 2(1−q)L.

In that case, Ns scaling exponentially with
L is required for an accurate estimation of
the IPRs.

These considerations show the practical difficul-
ties encountered when estimating the IPRs, as-
sociated with the possible exponential smallness
of the estimated quantity. This property reflects
the fact the IPRs, by their construction, quan-
tify the properties of many-body wave functions
in the full many-body Hilbert space. As shown
by the example of the product state, local rota-
tions of the basis (e.g. fixing θ = 0) may dra-
matically decrease the resources needed for the
estimation of IPRs. For certain tasks associated
with assessing the dynamical properties of many-
body systems, the eigenbasis of the Hamiltonian
is distinguished, motivating the considerations of
the following section.

3.2 IPR in eigenbasis of a selected Hamiltonian
for qubits

In this section, we introduce a quantum algo-
rithm for the calculation of IPR, denoted as IH

2
in an eigenbasis BH of a selected Hamiltonian
Ĥ. When a many-body system is initially pre-
pared in a state |ψ0⟩, a survival probability de-

fined as |⟨ψ0 |ψ(t)⟩ |2, where |ψ(t)⟩ = e−iĤt |ψ0⟩,
provides means of assessing ergodicity and ergod-
icity breaking in the system [106, 107, 108, 109,
110, 111, 112, 113, 114]. Using the eigendecom-
position of the Hamiltonian, Ĥ |εi⟩ = εi |εi⟩, and
assuming the lack of degeneracy of the eigenval-
ues εi, we find that the long-time average of the
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...

. . .

. . .

|0⟩ H

QFT
|0⟩ H

|0⟩ H

|ψ⟩ U20
U21

U2m−1

|ψ⟩ U †20
U †21

U †2m−1

1 2 3

Figure 2: Quantum circuit for estimating the IPR IH
2

in the eigenbasis BH of Hamiltonian Ĥ. The quantum
circuit operates on two copies of the considered state
|ψ⟩ and m ancillary qubits, and involves the action of
the evolution operator U and QFT. Measurement of the
ancillary qubits allows us to estimate the value of IH

2 .

survival probability,

lim
τ→∞

1
τ

∫ τ

0
dt|⟨ψ(t)|ψ0⟩|2 =

∑
i

|⟨εi |ψ0⟩ |4 = IH
2 ,

(9)
is equal to the IPR with Rényi index q = 2 of the
initial state |ψ0⟩ in the eigenbasis BH = {|εi⟩} of
the Hamiltonian Ĥ. This motivates us to intro-
duce the following quantum algorithm to calcu-
late IH

2 in the basis BH.
Without prior knowledge of the eigenbasis

BH of Ĥ, estimation of IH
2 may be imple-

mented via the quantum algorithm shown in Fig-
ure 2. The initial state is prepared as |Ψ0⟩ =
|0⟩⊗m|ψ⟩⊗2, where m denotes the number of an-
cillary qubits. The algorithm commences by ap-
plication of Hadamard gates onto the m ancil-
lary qubits, followed by the controlled-U and
controlled-U † operations on the two copies of the

states |ψ⟩ with the evolution operator U = e−iĤt

raised to successive powers of two. In result,
the evolution of |ψ⟩⊗2 is controlled by the ancil-
lary qubits |x⟩ and involves operators Ux ⊗ U †x

,
where x ∈ {0, · · · , 2m − 1} denotes the number
of the m-th bit string. Subsequently, the quan-
tum Fourier transform (QFT) [115, 116] module
implements discrete Fourier transform over the
ancillary qubits,

|x⟩ QFT−−−→ 1√
2m

2m−1∑
k=0

ei
2πxk
2m |k⟩. (10)

At the end of the circuit, measurements on the
product of Pauli-Z strings Ẑ⊗m are implemented.

More concretely, the input state undergoes the
following evolution (see Figure 2)

|Ψ0⟩ 1−→ 1√
2m

2m−1∑
x=0

|x⟩ ⊗ |φ⟩ ⊗ |φ⟩,

2−→ 1√
2m

2m−1∑
x=0

|x⟩ ⊗ Ux
∑

i

ci|εi⟩ ⊗ U−x
∑

j

cj |εj⟩,

=
∑
i,j

cicj√
2m

2m−1∑
x=0

|x⟩ ⊗ e−iε̃ijtx|εi⟩|εj⟩,

3−→
∑
i,j

cicj

2m

2m−1∑
x=0

(2m−1∑
k=0

ei
2πxk
2m |k⟩

)
⊗ e−iε̃ijxt|εi⟩|εj⟩,

(11)

where the energy difference (εi − εj) is abbrevi-
ated as ε̃ij . The probability to measure {0}m on
the ancillary qubits on the output state Ψout is
given by

P0,m = ⟨Ψout| (|0⟩ ⟨0|⊗m ⊗ 1) |Ψout⟩ = IH
2 + ϵr,

(12)

where IH
2 is the IPR of |ψ⟩ in the eigenbasis BH

and 0 ≤ ϵr ≤ 4−m π2

2∆2t2 with ∆ denoting the

minimum gap in the energy spectrum of Ĥ.
Notably, the upper bound of the error de-

creases exponentially with the number m of an-
cillary qubits, which is a result of deploying an
exponentially large in m power of the operator U .
The detailed proof of Eq. (12) and error analysis
of ϵr are provided in Appendix A.

The realization of the controlled-U operation is
a crucial step in the proposed quantum algorithm
as it allows for encoding of the information about
the eigenstates and the corresponding phase fac-
tors into the phases of ancilla qubit states.

The evolution operator U may be implemented
via Suzuki-Trotter decomposition [117, 118]. The
involved approximation results in a discrepancy

between the exact time-evolution operator e−iĤt

and its approximation Ut, which can be quanti-
fied via ϵt =∥ Ut − e−iHt ∥. It can be shown that

ϵt ≤ ∥H∥2t2

2nT
for the first-order Trotterization, with

nT referring to the trotter steps [119]. Assuming
that the number of gates in first-order Trotter-
ization is Nt, the total number of gates for the
algorithm in Figure 2 is O(2m+1Nt +m2).

3.3 IPR in computational basis for qudits
Qudit-based quantum simulators, particularly
those utilizing trapped ions [120] and supercon-
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|0⟩ H H

|ψ⟩
Πq

|ψ⟩⊗q−1 S
U
M|0⟩⊗n×(q−1)

Figure 3: Generalized quantum circuit for estimating IPR
IZ

q in the computational basis BZ on a d−dimensional
qudit system. The quantum circuit comprises n×(q−1)
SUMd gates and a controlled-Πq gate. The generalized
quantum circuit kept the first system as a qubit, while
the rest of the line represents qudit systems. The value
of IZ

q is determined as an expectation value of the Pauli-
Z operator on the first qubit.

ducting circuits [121], hold great promise for
achieving quantum advantage in the near future
[122]. Qudits also offer a valuable approach for
simulating physical systems that are not inher-
ently formulated in a qubit basis. Although ev-
ery qudit system can theoretically be mapped
to qubit systems, the associated technical com-
plexities may make their simulation impracti-
cal. For instance, lattice gauge theory models
are naturally expressed in qudit language once
the continuous variable truncation is executed
[123, 124, 125].

Extension of our algorithms to the case of qu-
dits with local Hilbert space dimension d > 2
is possible. In the following, we generalize our
algorithm in Figure 3 to estimate IZ

q in the com-
putational basis of qudit systems.

We denote the computational basis of a
d−dimensional qudit system as BZ = {|σi⟩},
where σi = 0, 1, 2, · · · , d − 1. Then, the CNOT
gate can be generalized to SUMd gate [126]

SUMd |σi⟩⊗|σj⟩ = |σi⟩⊗|σi + σj(mod d)⟩ . (13)

To measure the value of IZ
q , we replace the CNOT

gates in Figure 1 by the SUMd gates for qudit
systems, while the ancillary system, i.e. the top
qubit in Figure 1 is still kept as a binary system.
Finally, the two Hadamard gates in the first line
remain intact as well. Application of the SUMd

gate on the state |σj⟩ ⊗ |0⟩ yields

SUMd |σj⟩ ⊗ |0⟩ = |σj⟩ ⊗ |σj⟩ . (14)

This allows us to generate the entanglement be-
tween the (q − 1) copies of |ψ⟩ and the n-qudit

quantum registers by the SUMd gates,

SUM
⊗n(q−1)
d |Ψ0⟩ =

∑
i0,··· ,iq−1

ci0 · · · ciq−1 |0⟩ ⊗ |i0⟩

⊗ |i1, · · · , iq−1⟩ ⊗ |i1, · · · , iq−1⟩,
(15)

in accordance with the Eq. (4). The rest of the
quantum algorithm follows closely the qubit case,
leading to the same result as in Eq. (7).

4 Applications and Examples

In this section, we give numerical results demon-
strating the applicability of the algorithms devel-
oped in 3, i.e. we compare exact diagonalization
(ED) results with the quantum algorithms simu-
lations. First two examples are for qubit systes,
i.e. the one-axis twisting dynamics in spin-1/2
systems, Sec.4.1, and the ergodicity in the ex-
tended PXP model, Sec.4.2. In the last subsec-
tion Sec.4.3 we consider qudit systems and probe
the ground state of the spin-1 AKLT model.

4.1 Simulate one-axis twisting dynamics

In the following, we employ the quantum algo-
rithm in Figure 1 to simulate one-axis twist-
ing (OAT) in spin systems [127, 128]. OAT
has been studied extensively in theory and ex-
periments, showing its applications in quantum
information science and high-precision metrol-
ogy [129, 130, 128, 131]. The OAT protocol dy-
namically generates non-trivial quantum correla-

tions via time evolution |ψ(t)⟩ = e−itĤOAT(t)|ψ0⟩,
where ĤOAT = 1

4
∑L

i,j=1 ẐiẐj , with the initial
spin coherent state, i.e. state with all spins po-
larized along x-direction, |ψ0⟩ = |0⟩⊗L

x . The
OAT protocol generates spin-squeezed, many-
body entangled, and many-body Bell-correlated
states [132, 133, 134, 135, 136, 137, 138, 139,
140, 141, 142, 143, 144, 145]. In partic-
ular, at time t = π/4, the generation of
the L-body GHZ (Greenberg-Horne-Zeilinger)
state is created along x-direction, |GHZ⟩ =

1√
2

(
|1⟩⊗L

x + |0⟩⊗L
x

)
. The system’s dynamics can

be investigated by measuring the IPR IX
2 in the

eigenbasis BX of Pauli-X X̂i operators, obtained
by a local rotation of the computational basis
BZ . The OAT evolution interpolates between
the BX basis spin coherent state |1⟩⊗N

x , for which
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Figure 4: Time-evolution of the IPR IX
2 during the one-

axis twisting protocol for L = 4 spins-1/2. At time t = 0
the system is prepared with all spins polarized along x-
direction having IPR is IX

2 = 1. At t = π
4 the GHZ

state along x-direction is generated, and IX
2 = 1

2 . The
black-solid line ED represents the exact diagonalization
results, while the red dashed line corresponds to the re-
sults obtained from simulating the quantum algorithm
presented in Figure 1.

IX
2 = 1, and the |GHZ⟩ state for which the IX

2
admits value 1

2 .

In Figure 4, we present the OAT dynamics for
the case of L = 4 qubits. In accordance with
Eq. (7), the numerical simulation of the quantum
algorithm of Figure 1 accurately reproduces the
ED curve.

4.2 Probing ergodicity in the extended PXP
model

To exemplify the practical utilities of the pro-
posed algorithms, we first implement the algo-
rithm in Figure 2 to investigate the thermaliza-
tion in a PXP model with Zeeman magnetic field,
with Hamiltonian given as:

Ĥ =
L∑

i=1

(
P̂i−1X̂iP̂i+1 − hẐi

)
, (16)

where X̂i, Ẑi denotes Pauli-X,Z operators acting
on the i-th spin, P̂i is the projector on the |0⟩
state of the i-th spin, and h ∈ [0, 1] is the ampli-
tude of the external transverse field. We assume
periodic boundary conditions. In the absence of
the external field, for h = 0, the PXP model
is known as a paradigmatic model of quantum
many-body scars [146]. The presence of the scar
states is manifested as a lack of thermalization

when the system is initialized in particular states,
for instance in the Néel state |0101 · · · ⟩ [147].
In contrast, for generic initial conditions, the
system thermalizes similarly to other interact-
ing non-integrable many-body systems [87]. The
quantum many-body scars states form a lad-
der of highly excited eigenstates extending over
the whole spectrum of Ĥ [148]. The ground
state of the model Eq.(16) undergoes a quan-
tum phase transition of Ising universality class
at hc ≈ 0.655 [149].

The properties of the system in the vicinity
of the quantum phase transition in the ground
states are linked with the behavior of the quan-
tum many-body scars in [149]. The thermaliza-
tion of the Néel state under the time evolution
generated by Eq.(16) was probed with δσz repre-
senting the difference between the long-term av-
erage of the operator Ẑ and the thermal equilib-
rium expectation value Zth:

δσz = ⟨Ẑ⟩ − Zth. (17)

The behavior of δσz at fixed system size L may
be summarized as follows [149]: below the transi-
tion, at h < hc, lack of thermalization due to the
presence of scar states is observed, at the criti-
cality h ≈ hc the system thermalizes, while for
h > hc lack of thermalization of the system oc-
curs due to a high overlap of the Néel state with
the ground state of the system.

The thermalization of the system may be also
probed by the value of IPR IH

2 of the initial state
|ψ0⟩ = |0101 · · · ⟩ in the eigenbasis BH of the PXP
Hamiltonian Eq. (16), equal to the long-time
average of the survival probability |⟨ψ0 |ψ(t)⟩ |2.
The results of the algorithm of Figure 2 are pre-
sented in Figure 5. We fix t = 1 and set the
number of the Trotter steps as Nt = 10, and
compare the obtained value of IH

2 with the ex-
act value of IPR calculated with the exact diago-
nalization of Ĥ. As it is expected from Eq. (12),
with the increasing number m = 3, 4, 5 of the em-
ployed ancillary qubits, the results approach the
exact diagonalization value [150]. Moreover, the
value of IPR decreases monotonically with h in
the whole interval h ≲ hc, showing that the ther-
malization of the system is more effective as the
critical regime h ≈ hc is approached. At h ≈ hc,
the IPR IH

2 admits a minimal value, and increase
at larger h, consistently with the behavior of δσz.

These results show that the proposed algo-
rithm can be useful in probing thermalization

7
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Figure 5: Thermalization and ergodicity breaking in PXP
model in the presence of a transverse field h, Eq.(16).
Left y-axis: The IPR IH

2 in the eigenbasis BH of the
Hamiltonian is calculated with the algorithm of Fig-
ure 2. Simulations are conducted for system size L = 8,
with a fixed t = 1, and with the number of Trotter
steps Nt = 10. The constituent lines (from top to
bottom): dotted-blue, dashed-green, dash-dotted-pink,
correspond to outcomes obtained by estimation with
m = 3, 4, 5 ancillary qubits, respectively. The black
solid line corresponds to ED results. Rigth red color
y-axis: long-dashed-red line presents the difference δσz

between the long-time average and the thermal value of
the Pauli-Z operator as a function of the transverse field
strength for L = 8 spins; vertical line corresponds to
critical hc ≈ 0.655 [149].

and ergodicity breaking in quantum many-body
systems.

4.3 IPR for AKLT model

Here, we present an algorithm for obtaining IZ
2

for the qudit system, with on-site Hilbert space
dimension d = 3. We consider the spin-1 chain
described by the AKLT (Affleck-Kennedy-Lieb-
Tasaki) model [151, 152] with the transverse field
and with the open boundary conditions:

Ĥ=
L−1∑
i=1

[1
2 Ŝi · Ŝi+1+ 1

6
(
Ŝi · Ŝi+1

)2+ 1
3

]
−h

L

L∑
i=1

Ŝz
i .

(18)
For h = 0, the ground state of the Hamilto-
nian is a valence bond solid where each neighbor-
ing site pair is linked by a single valence bond.
With open boundary conditions, the edge spins-1
have only one neighbor, leaving one of their con-
stituent spin-1/2 unpaired (for review see [153]).

The AKLT state is a paradigmatic example
of a symmetry-protected topological (SPT) order

0 2 4 6 8 10
transverse field amplitude h

0.25

0.5

0.75

1

IZ 2

ED
simulation

Figure 6: The IPR IZ
2 of the AKLT ground state,

Eq.(18), for L = 4 spins-1, as a function of the trans-
verse field h. The black solid line corresponds to ED
results, while the red dashed line corresponds to the re-
sults of the quantum algorithm in Figure 3.

[154]. AKLT states play a role in a measurement-
based quantum computation [155, 156, 157],
where the computation begins in an appropri-
ately entangled state, such as a g ground state
of quantum spin chains with symmetry-protected
topological order [158, 159, 160], followed by a set
of proper single particle measurements. Recently,
it has been shown that the AKLT ground state
can be effectively prepared on a quantum circuit
[161].

In Figure 6 we present the estimation of IZ
2

for the ground state of the AKLT model as a
function of the transverse field h for a chain of
L = 4 spins-1. The results obtained via ED are in
perfect agreement with the proposed algorithm,
Figure 3. The ground state is perfectly localized
IZ

2 → 1 on a single state of BZ for h ≫ 1, and
spreads over an increasing number of states IZ

2 <
1 of BZ for smaller values of the transverse field.

5 Conclusion

In this work, we have introduced three quantum
algorithms to estimate IPRs and participation
entropies of a state of multi-qubit and multi-
qudit system. We first focused on a case of a
fixed known basis, such the as computational al-
lowing for the estimation of IPRs on quantum de-
vices. The introduced algorithms enable the es-
timation of IPRs with just single-qubit measure-
ments. We exemplified the utility of the intro-
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duced algorithms for non-equilibrium quantum
many-body problems by investigating the OAT
dynamics. Motivated by the relation of the IPR
in the eigenbasis of a given Hamiltonian to the
long-time average of survival probability, we in-
troduced a quantum algorithm allowing estima-
tion of the IPR in the Hamiltonian’s eigenbasis
without the necessity of the full diagonalization
of the Hamiltonian. We have shown that the es-
timation error diminshes exponentially with the
addition of ancillary qubits paralleled by deploy-
ment of high powers of the evolution operator.
To validate the efficacy of this approach, we con-
ducted simulations of a deformed PXP model.
As the number of ancillary qubits increases, the
estimated IPR closely aligns with exact diagonal-
ization results, effectively capturing the system’s
thermalization properties. Finally, we presented
the utilization of our algorithm for multiqudit
systems analyzing the ground state of the spin-1
AKLT model in the transverse field, showing the
perfect agreement between exact results and the
proposed algorithm.

In future research, exploring applications of
our algorithms in diverse areas such as quantum
chemistry, condensed matter physics, and quan-
tum computing optimization tasks could uncover
new insights and further validate the effectiveness
of quantum simulations in the NISQ era.
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entanglement entropy via randomized mea-
surements”. Science 364, 260–263 (2019).
arXiv:https://www.science.org/doi/pdf/10.1126/science.aau4963.

[53] Youle Wang, Benchi Zhao, and Xin Wang.
“Quantum algorithms for estimating quan-
tum entropies”. Physical Review Applied
19, 044041 (2023).
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G. Lemarié. “Critical properties of the
Anderson transition on random graphs:
Two-parameter scaling theory, Kosterlitz-
Thouless type flow, and many-body local-
ization”. Phys. Rev. B 106, 214202 (2022).

[69] Piotr Sierant, Maciej Lewenstein, and An-
tonello Scardicchio. “Universality in An-
derson localization on random graphs with
varying connectivity”. SciPost Phys. 15,
045 (2023).

[70] Carlo Vanoni and Vittorio Vitale. “An
analysis of localization transitions us-
ing non-parametric unsupervised learn-
ing” (2024). arXiv:2311.16050.

[71] Thomas C Halsey, Mogens H Jensen, Leo P
Kadanoff, Itamar Procaccia, and Boris I
Shraiman. “Fractal measures and their sin-
gularities: The characterization of strange
sets”. Physical review A 33, 1141 (1986).
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berto Rodŕıguez, and Andreas Buchleitner.
“Chaos and ergodicity across the energy
spectrum of interacting bosons”. Phys.
Rev. Lett. 126, 150601 (2021).

[83] Philipp Frey, David Mikhail, Stephan
Rachel, and Lucas Hackl. “Probing hilbert
space fragmentation and the block inverse
participation ratio”. Phys. Rev. B 109,
064302 (2024).

[84] A De Luca and A Scardicchio. “Ergodicity
breaking in a model showing many-body
localization”. EPL (Europhysics Letters)
101, 37003 (2013).

[85] Mark Srednicki. “Chaos and quantum
thermalization”. Phys. Rev. E 50, 888–
901 (1994).

[86] J. M. Deutsch. “Quantum statistical me-
chanics in a closed system”. Phys. Rev. A
43, 2046–2049 (1991).

[87] Marcos Rigol, Vanja Dunjko, and
Maxim Olshanii. “Thermalization
and its mechanism for generic iso-
lated quantum systems”. Nature
452, 854 EP – (2008). url: https:
//doi.org/10.1038/nature06838.

[88] Silvia Pappalardi, Laura Foini, and Jorge
Kurchan. “Eigenstate thermalization hy-
pothesis and free probability”. Phys. Rev.
Lett. 129, 170603 (2022).

[89] Michele Fava, Jorge Kurchan, and Silvia
Pappalardi. “Designs via free probabil-
ity” (2023). arXiv:2308.06200.

[90] Rahul Nandkishore and David A. Huse.
“Many-Body Localization and Thermal-
ization in Quantum Statistical Mechan-
ics”. Annual Review of Condensed Matter
Physics 6, 15–38 (2015).

[91] Fabien Alet and Nicolas Laflorencie.
“Many-body localization: An introduction
and selected topics”. Comptes Rendus
Physique 19, 498–525 (2018).
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nonlinear many-body bell inequalities from
average two-body correlations: Systematic
approach for arbitrary spin-j ensembles”.
PRX Quantum 2, 030329 (2021).

[137] Artur Niezgoda, Mi losz Panfil, and Jan
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A Error analysis for εr in Sec.3.2

Here we will prove that the error ϵr is bounded by 0 ≤ ϵr ≤ 4−m W 2

∆2 . The probability P0,m takes:

P0,m = ⟨Ψout|(|0⟩
〈
0|⊗m ⊗ 1)|Ψout

〉
= 1

4m

∑
i,i′ ,j,j′

cicjc
∗
i′c∗

j′

2m−1∑
x,x′=0

ei(ε̃ijx−ε̃i′j′ x′)t⟨εj′ |εj⟩⟨εi′ |εi⟩

= 1
4m

∑
i,j

|ci|2|cj |2
2m−1∑
x,x′=0

eiε̃ij(x−x′)t

=
∑

i

|ci|4 + 1
4m

∑
i ̸=j

|ci|2|cj |2
2m−1∑
x,x′=0

eiε̃ij(x−x′)t,

here the first term is IH
2 , and the second term is ϵr in Eq. (12). Further simplification leads to:

ϵr = 1
4m

∑
i ̸=j

|ci|2|cj |2
2m−1∑
x,x′=0

eiε̃ij(x−x′)t

= 1
4m

∑
i ̸=j

|ci|2|cj |2
2m−1∑
x=0

eiε̃ijxt
2m−1∑
x′=0

eiε̃ijx′t

= 1
4m

∑
i ̸=j

|ci|2|cj |2
(1 − eiε̃ij2mt

1 − eiε̃ijt

)(1 − e−iε̃ij2mt

1 − e−iε̃ijt

)
= 1

4m

∑
i ̸=j

|ci|2|cj |2 1 − cos (2mε̃ijt)
1 − cos (ε̃ijt)

.

For any real θ, 1 − cos θ ≤ 2, so ϵr ≤ 1
4m

∑
i ̸=j |ci|2|cj |2 2

1 − cos (ε̃ijt)
. The inequality above can be

further bounded when |ε̃ijt| ∈ (0, π],∀i ̸= j since 1 − cos θ ≥ 2θ2

π2 for θ ∈ [−π, π]:

ϵr ≤ 1
4m

∑
ij

|ci|2|cj |2 π2

ε̃2
ijt

2 ≤ 1
4m

∑
ij

|ci|2|cj |2 π2

(εi − εj)2t2

≤ 1
4m

∑
ij

|ci|2|cj |2 π2

∆2t2
≤ 4−m π2

∆2t2
.

Apparently, ϵr ≥ 0, then we finish the proof of 0 ≤ ϵr ≤ 4−m π2

∆2t2 .

B OAT experiment on IBM quantum machine
Here, we present an experimental realization of a quantum algorithm, as shown in Figure 1, conducted
on an IBM quantum machine. This involves measuring the IPR IX

z for the one-axis twisting protocol,
detailed in Section 4.1.

In Figure 7, the blue markers with error bars represent the estimated values of IX
2 . These estimations

qualitatively align with the exact diagonalization (ED) results, depicted by the black solid line, and
with the numerical simulations of the algorithm, indicated by the red dashed line. The experiment
was conducted on IBM’s ibm torino platform, with each data point derived from 2048 measurement
shots per time step. We implemented noise mitigation strategies, including dynamical decoupling, and
optimized the circuit transpilation as described in [162].
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Figure 7: Time evolution of the IPR IX
2 for the OAT model, Sec.4.1. The blue markers with error bars present

the experiments run on ibm torino backend at IBM quantum platform, [162], by executing the quantum algorithm
Figure 1 after averaging over 5 runs at each time-stamp.

Transpiling the quantum algorithm from Figure 1 into native quantum gates notably increases the
circuit depth. The individual outliers observed in Figure 7 are linked to instances where transpilation
at certain time splits (t) produced circuits significantly deeper than others, thereby heightening their
susceptibility to noise. At t = 0, where the evolution is not executed, the overhead from gates is
equivalent to that of an idle gate, which results in a more precise measurement outcome. For further
details on the numerical implementation, please refer to the GitHub repository cited in [150].

The experimentally obtained value of IX
2 ≈ 1

2 at t ≈ π/4 substantiates the efficacy of the introduced
quantum algorithm for exploring many-body dynamics on future fault-tolerant quantum computers.
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