Secure Semantic Communication over Wiretap Channel

Denis Kozlov, Mahtab Mirmohseni and Rahim Tafazolli
5/6GIC, Institute for Communication Systems (ICS), University of Surrey, Guildford, United Kingdom

Abstract

Semantic communication is an emerging feature for future networks like 6G, which emphasizes the meaning of the message in contrast to the traditional approach where the meaning of the message is irrelevant. Yet, the open nature of a wireless channel poses security risks for semantic communications. In this paper, we derive information-theoretic limits for the secure transmission of semantic source over wiretap channel. Under separate equivocation and distortion conditions for semantics and observed data, we present the general outer and inner bounds on the rate-distortion-equivocation region. We also reduce the general region to a case of Gaussian source and channel and provide numerical evaluations.

Index Terms-Semantic Communications, Wiretap Channel, Rate-Distortion-Equivocation Region.

I. Introduction

Semantic communications represents a promising approach for the next generation of wireless networks, particularly within the realm of 6 G technology. In this paradigm, the semantic content of messages is given significant consideration, marking a departure from traditional communication methods [1]-[3].

Despite its potential, wireless semantic communication still faces substantial security challenges due to the inherent openness of communication channels, leaving them susceptible to eavesdropping. In addition, semantics can carry more sensitive information. Thus, the security requirement could be different for the semantics compared with the observed source. This makes the problem challenging and novel, requiring attention and exploration by researchers [3], [4].

In this work, we derive the information-theoretic limits governing the secrecy of semantic communication. To achieve this, we model a source as the intrinsic (semantic) part and extrinsic (observed) part, building upon previous work that introduced this source model [5], [6]. To illustrate this model with a concrete example, a semantic part may be represented by a textual description of an image, coupled with an observed part generated by a neural network in response to the text prompt.

Our research centers on a wiretap channel scenario, wherein we consider a passive eavesdropper as the adversary. Within the model of wiretap channel and general semantic source (which is modeled as two correlated random variables (r.v.s) with joint distribution), we analyze the trade-off between equivocation and distortion for the semantic and observed

[^0]components separately, particularly in the context of joint source-channel coding (JSCC). Specifically, we derive inner and outer bounds for rate, equivocations, and distortions pairs.

Related works. Wyner's work in 1975 laid the groundwork for secure communication over wiretap channels [7], while subsequent advancements generalized this model to broadcast channels with common and confidential messages [8]. In [9], the wiretap model is extended to incorporate JSCC and the one-time pad technique, bringing an important result that a separation principle holds: first a rate-distortion achieving code can be applied, then one-time pad can be applied for a given key-rate, and it is finished by using a wiretap code. Further extensions to the JSCC model, including scenarios with side information at the decoders, have been explored in [10], [11]. The lossy compression aspect of semantic sources was covered in [5].

Challenges of secure semantic communications from a machine learning (ML) perspective were covered in [12], [13]. Authors of [14] proposed a way for encrypting semantic data in a deep learning JSCC scenario. Also, encryption and obfuscation algorithm for semantic communication was presented in [15].

To the best of our knowledge, there is no work on secure JSCC of semantic sources over wiretap channel with passive eavesdroppers under separate equivocation and distortion conditions for semantics and observed source.

II. Problem statement

Consider a model shown in Fig. 1, where a transmitter wishes to send the semantic and observed data to a receiver (Bob), subject to some distortion constraints while keeping them hidden from an eavesdropper (Eve) with some equivocation constraints. Thus, the source consists of intrinsic (semantics) state and extrinsic observation which are modeled as a sequence of i.i.d. r.v.s S^{k} and U^{k}, respectively. They are correlated through joint distribution $p_{S, U}(s, u)$ defined on product alphabet $\mathcal{S} \times \mathcal{U}$.

Main (Bob's) and wiretap (Eve's) channels are modeled as a discrete memoryless channel (DMC) with input X on \mathcal{X} and outputs Y on \mathcal{Y} and Z on \mathcal{Z} given transition probability $p_{Y, Z \mid X}$. In this work, we consider a degraded channel model: $p_{Y, Z \mid X}=p_{Y \mid X} p_{Z \mid X}$.

There are two cases for encoder input. In the first case, the encoder has access to both semantics s^{k} and observation u^{k}, while in the second case, the encoder is only given u^{k} and has no access to a semantic sample s^{k}.

Fig. 1. System Model

The case 1 encoder $f_{1}: S^{k} \times U^{k} \times K \rightarrow X^{n}$ maps the semantic and observed sequence and a key to a channel input sequence X^{n}. The case 2 encoder $f_{2}: U^{k} \times K \rightarrow X^{n}$, acts only on the observed sequence and key.

The transmitter and receiver have access to a shared key which is modeled as random variable K with alphabet \mathcal{K}. This key is used to secure part of the data with a one-time pad technique.

We define decoding function as $\hat{f}: Y^{n} \times K \rightarrow\left(\hat{S}^{k}, \hat{U}^{k}\right)$ which maps Bob's received signal Y^{n} and the shared key to estimated semantic and observed sources \hat{S}^{k} and \hat{U}^{k} defined on alphabets $\hat{\mathcal{S}}, \hat{\mathcal{U}}$.

From the decoder function definition we have:

$$
\begin{equation*}
H\left(\hat{S}^{k}, \hat{U}^{k} \mid Y^{n}, K\right)=0 \tag{1}
\end{equation*}
$$

Additionally, we set distortion measure for semantics d_{S} : $\mathcal{S} \times \hat{\mathcal{S}} \rightarrow \mathbb{R}^{+}$and for observation $d_{U}: \mathcal{U} \times \hat{\mathcal{U}} \rightarrow \mathbb{R}^{+}$. We follow the same naming for the block average distortion: $d_{S}\left(s^{k}, \hat{s}^{k}\right)=\frac{1}{k} \sum_{i=1}^{k} d_{S}\left(s_{i}, \hat{s}_{i}\right)$ and $d_{U}\left(u^{k}, \hat{u}^{k}\right)=$ $\frac{1}{k} \sum_{i=1}^{k} d_{U}\left(u_{i}, \hat{u}_{i}\right)$.

The goal of this work is to characterize the following region:

$$
\mathcal{R} \doteq\left\{\left(R, R_{k}, D_{S}, D_{U}, \Delta_{S}, \Delta_{U}, \Delta_{S U}\right) \text { is achievable }\right\}
$$

where a tuple $\left(R, R_{k}, D_{S}, D_{U}, \Delta_{S}, \Delta_{U}, \Delta_{S U}\right)$ is achievable if there exist source-channel (k, n)-code $\left(f_{1}, \hat{f}\right)$ (or $\left(f_{2}, \hat{f}\right)$ for the second encoder input type) s.t.:

$$
\begin{align*}
n / k & \leq R+\epsilon, \tag{2}\\
\frac{1}{k} \log |\mathcal{K}| & \leq R_{k}+\epsilon, \tag{3}\\
\mathbb{E} d_{S}\left(S^{k}, \hat{S}^{k}\right) & \leq D_{S}+\epsilon, \tag{4}\\
\mathbb{E} d_{U}\left(U^{k}, \hat{U}^{k}\right) & \leq D_{U}+\epsilon, \tag{5}\\
\frac{1}{k} H\left(S^{k} \mid Z^{n}\right) & \geq \Delta_{S}-\epsilon, \tag{6}\\
\frac{1}{k} H\left(U^{k} \mid Z^{n}\right) & \geq \Delta_{U}-\epsilon, \tag{7}\\
\frac{1}{k} H\left(S^{k}, U^{k} \mid Z^{n}\right) & \geq \Delta_{S U}-\epsilon, \tag{8}
\end{align*}
$$

are satisfied for any $\epsilon>0$. Condition (2) restricts channel expansion ratio (inverse of rate), that is channel uses per source symbol. Equation (3) restricts the rate of the key which is used to protect data with the one-time pad technique. Average distortion for semantics and observation is restricted
by conditions (4) and (5). Equivocation for semantics and observation as well as joint one, restricted by conditions (6), (7) and (8), respectively.

III. Preliminaries

In this section, we provide some useful lemmas.
Lemma 1 ([16. Theorem 3.5]): The rate-distortion function for discrete memoryless source (DMS) U has the following form:

$$
R_{U}\left(D_{U}\right)=\inf _{\substack{p_{U} \mid U \\ \mathbb{E} d_{U}(U, \hat{U}) \leq D_{U}}} I(U ; \hat{U})
$$

To meet distortion conditions optimally in terms of rate for both semantics and observation, we can employ the multipledescription rate-distortion function.

Definition 1: The multiple-description rate-distortion function:

$$
R\left(D_{S}, D_{U}\right) \doteq \inf \left\{R:\left(R, D_{S}, D_{U}\right) \text { is achievable }\right\}
$$

where tuple $\left(R, D_{S}, D_{U}\right)$ is considered to be achievable if there exists a code such that (2), (4) and (5) are satisfied for any $\epsilon>0$.

Lemma 2 ([17, Theorem 2]):

$$
R\left(D_{S}, D_{U}\right)=\inf _{\substack{p_{\hat{S}, \hat{U} \mid S, U} \\ \\ \mathbb{E} d_{U}(U, \hat{U}) \leq D_{U} \\ \mathbb{E} d_{S}(S, \hat{S}) \leq D_{S}}} I(S, U ; \hat{S}, \hat{U})
$$

Lemma 3 ([5] Theorem 1]): The case 2 of the encoder input rate-distortion function can be rewritten as follows:

$$
R\left(D_{S}, D_{U}\right)=\inf _{\substack{p_{\hat{S}, \hat{U} \mid U} \\ \\ \mathbb{E} d_{U}(U, \hat{U}) \leq D_{U} \\ \mathbb{E} d_{S}(U, \hat{S}) \leq D_{S}}} I(U ; \hat{S}, \hat{U})
$$

where $\hat{d}_{S}(U, \hat{S})=\sum_{s \in S} p_{S \mid U}(s \mid U) d_{S}(s, \hat{S})$ is a modified distortion metric.

IV. Main Result

In this section, we present the general outer and inner bound for a system model defined in Section Π.

Theorem 1: (Converse). For both cases of encoder input, any achievable tuple $\left(R, R_{k}, D_{S}, D_{U}, \Delta_{S}, \Delta_{U}, \Delta_{S U}\right)$ must satisfy:

$$
\left\{\begin{array}{l}
R_{U}\left(D_{U}\right) \leq R I(X ; Y) \tag{9}\\
R_{S}\left(D_{S}\right) \leq R I(X ; Y) \\
R\left(D_{S}, D_{U}\right) \leq R I(X ; Y) \\
\Delta_{U} \leq R_{k}+R[I(X ; Y)-I(X ; Z)] \\
\quad-R_{U}\left(D_{U}\right)+H(U) \\
\Delta_{S} \leq R_{k}+R[I(X ; Y)-I(X ; Z)] \\
\quad-R_{S}\left(D_{S}\right)+H(S) \\
\Delta_{S U} \leq R_{k}+R[I(X ; Y)-I(X ; Z)] \\
\quad-R\left(D_{S}, D_{U}\right)+H(S, U)
\end{array}\right.
$$

The proof of Theorem 1 is provided in the Appendix.
One can see that the equivocation in the converse region consists of three basic terms. The first one, R_{k}, shows how
much equivocation we achieve using the one-time pad technique with a key rate R_{k}. The second one is the secrecy capacity $(R[I(X ; Y)-I(X ; Z)])$. And the last one (i.e. $\left.H(U)-R_{U}\left(D_{U}\right)\right)$, describes the part of equivocation due to loss in source encoding.

Theorem 2: (Inner bound). When the transmitter has access to both semantics and observation (case 1 of encoder input), a tuple $\left(R, D_{S}, D_{U}, \Delta_{S}, \Delta_{U}, \Delta_{S U}\right)$ is achievable if there exist auxiliary r.v.s $A_{c}, A_{p}, B_{c}, B_{p}, Q_{c}, Q_{p}, W_{c}, X$ with joint distribution $p\left(a_{c}, a_{p}, b_{c}, b_{p}, q_{c}, q_{p}, w_{c}, x\right)$ and functions $\tilde{S}: A_{c}^{k} \times A_{p}^{k} \rightarrow \hat{S}^{k}$ and $\tilde{U}: A_{c}^{k} \times A_{p}^{k} \times B_{c}^{k} \times B_{p}^{k} \rightarrow \hat{U}^{k}$ such that the following inequalities hold:

Achievability proof outline. Consider a codebook with source, channel, and wiretap codes. Wiretap code is embedded in the channel encoder and introduces additional random noise to cover private parts of the data from the eavesdropper. We introduce source encoder auxiliary r.v.s $A_{c}, A_{p}, B_{c}, B_{p}$, and channel encoder auxiliary r.v.s Q_{c}, Q_{p}, W_{c} for codebook generation. The r.v.s A_{c} and A_{p} reflect the distribution of i.i.d. codewords (denoted by a_{c}^{k} and a_{p}^{k}) for the common and private parts of semantics, while B_{c} and B_{p} are used for the common and private parts of the observation, for codewords denoted as b_{c}^{k} and b_{p}^{k}, correspondingly.

Then we use a technique similar to superposition coding: for each sequence a_{c}^{k} we generate a_{p}^{k} and b_{c}^{k}, then for each $a_{c}^{k}, a_{p}^{k}, b_{c}^{k}$ we generate b_{p}^{k}. All of these sequences are selected from typical sets.

The channel encoder codebook has a layered structure related to the source encoder. That is, we generate sequence q_{c}^{n} from Q_{c} distribution, for each q_{c}^{n} we generate q_{p}^{n} and w_{c}^{n} using Q_{p} and W_{c}, given $q_{c}^{n}, q_{p}^{n}, w_{c}^{n}$ we generate x^{n} according to X. Sequences q_{p}^{n} and x^{n} additionally covered with noise.

To encode data, we choose source encoder sequences that are jointly typical with encoder input. Then using the mapping, we obtain the channel code sequences and transmit x^{n}. The
decoding is based on the joint typically with channel output y^{n}.

For this codebook and encoding/decoding procedure, we show that the probability of encoding/decoding errors goes to zero under some rate conditions with $k \rightarrow \infty$.

Finally, we bound the average distortion and equivocations.
For the complete proof of achievability see Appendix.

V. Gaussian Case

In this section, we consider the Gaussian source and channel with quadratic distortion measure.

A. System model.

Let source be distributed according to normal distribution $(S, U) \sim \mathcal{N}(0, K)$ with covariance matrix,

$$
K=\left(\begin{array}{cc}
P_{S} & \sigma_{S U} \\
\sigma_{S U} & P_{U}
\end{array}\right)
$$

We set distortion measure $d_{s}(x, y)=d_{u}(x, y)=(x-y)^{2}$, and we model the channel as,

$$
\begin{aligned}
& \mathbb{E}\left(X^{2}\right) \leq P, \\
& Y=X+N_{1}, \quad N_{1}, \sim \mathcal{N}\left(0, P_{N_{1}}\right), \\
& Z=Y+N_{2}, \quad N_{2}, \sim \mathcal{N}\left(0, P_{N_{2}}\right)
\end{aligned}
$$

where P is the power constraint for channel input, $P_{N_{1}}$ is the noise power for the main channel, and $P_{N_{2}}$ is the noise power for the eavesdropper channel, we define $P_{N}=P_{N_{1}}+P_{N_{2}}$.

B. Rate-equivocation-distortion region

For the Gaussian system model, we derive the following outer bound from Theorem 1

Proposition 1: (Converse). In the case when the encoder has access only to observation u^{k} (case 2 of encoder input), for the Gaussian source and channel, to fulfill conditions (2)-(8) any code must satisfy:

$$
\left\{\begin{array}{l}
D_{S} \geq \eta \\
D_{U} \geq P_{U}\left(\frac{P_{N_{1}}}{P+P_{N_{1}}}\right)^{R} \\
D_{S} \geq P_{S}\left(\frac{P_{N_{1}}}{P+P_{N_{1}}}\right)^{R} \\
\max \left[\frac{P_{U}}{D_{U}}, \frac{\sigma_{S U}^{2}}{P_{U}\left(D_{S}-\eta\right)}\right] \leq\left(1+\frac{P}{P_{N_{1}}}\right)^{R} \\
\Delta_{U} \leq R_{k}+R C_{s}+\frac{1}{2} \log \left(2 \pi e D_{U}\right) \\
\Delta_{S} \leq R_{k}+R C_{s}+\frac{1}{2} \log \left(2 \pi e D_{S}\right) \\
\Delta_{S U} \leq R_{k}+R C_{s}+\frac{1}{2} \log \left[(2 \pi e)^{2}|K|\right]- \\
\quad-\frac{1}{2} \max \left[\log \frac{P_{U}}{D_{U}}, \log \frac{\sigma_{S U}^{2}}{P_{U}\left(D_{S}-\eta\right)}\right]
\end{array}\right.
$$

where $\eta=P_{S}-\frac{\sigma_{S U}^{2}}{P_{U}}$, and $C_{s}=\frac{1}{2} \log \frac{P_{N}\left(P+P_{N_{1}}\right)}{P_{N_{1}}\left(P+P_{N}\right)}$ is the secrecy channel capacity.

Proposition 2: (Inner bound). When the encoder has access to both u^{k} and s^{k} (case 1 of encoder input), for the Gaussian
source and channel, the tuple $\left(R, D_{S}, D_{U}, \Delta_{S}, \Delta_{U}, \Delta_{S U}\right)$ is achievable if:

$$
\begin{aligned}
& \left(\left(1+\frac{\alpha_{1}^{2} P_{s}}{\beta_{1}^{2} P_{\tilde{A}_{p}}}\right) \leq\left(1+\frac{P_{Q_{c}}+P_{\tilde{Q}_{p}}}{P_{\tilde{W}_{c}}+P_{\tilde{X}+P_{N_{1}}}}\right)^{R},\right. \\
& \left(1+\frac{\alpha_{2}^{2} P_{U}}{\beta_{2}^{2} P_{\tilde{B}_{p}}}\right) \leq\left(1+\frac{P_{\tilde{W}_{c}}}{P_{\tilde{X}}+P_{\tilde{Q}_{p}}+P_{N_{1}}}\right)^{R}\left(1+\frac{P_{\tilde{X}}}{P_{N_{1}}}\right)^{R}, \\
& D_{S} \geq P_{S}-\frac{\alpha_{1}^{2} P_{S}}{\left(\alpha_{1}^{2} P_{S}+\beta_{1}^{2} P_{\tilde{A}_{p}}\right)^{2}}, \\
& D_{U} \geq P_{U}-\frac{\left(\alpha_{2}^{2} P_{U}+\gamma \sigma_{S U}\right)^{2}}{P_{U}\left(\alpha_{2}^{2} P_{U}+\gamma^{2} P_{S}+2 \alpha_{2} \gamma \sigma_{S U}\right)^{2}}, \\
& \Delta_{S} \leq \frac{R}{2} \log \left(\frac{P+P_{N_{1}}}{P_{\tilde{W}_{c}}+P_{\tilde{X}}+P_{N_{1}}} \frac{P_{N}}{P-P_{Q_{c}}+P_{N}}\right) \\
& +\frac{1}{2} \log \left(2 \pi e \frac{\beta_{1}^{2} P_{S} P_{\tilde{A}_{p}}}{\alpha_{1}^{2} P_{S}+\beta_{1}^{2} P_{\tilde{A}_{p}}}\right), \\
& \Delta_{U} \leq \frac{1}{2} \log \left(\frac{\beta_{2}^{2} P_{U}}{\beta_{1}^{2} P_{S}} \frac{P_{\tilde{B}_{p}}}{P_{\tilde{A}_{p}}} \frac{\alpha_{1}^{2} P_{S}+\beta_{1}^{2} P_{\tilde{A}_{p}}}{\alpha_{2}^{2} P_{U}+\beta_{2}^{2} P_{\tilde{B}_{p}}}\right) \\
& +\frac{R}{2} \log \left(\frac{P_{N_{1}}+P_{N_{2}}}{P_{\tilde{Q}_{p}+P_{\tilde{X}}+P_{N_{1}}+P_{N 2}}} \frac{P+P_{N_{1}}}{P_{\tilde{W}_{c}}+P_{\tilde{X}}+P_{N_{1}}} \frac{P_{\tilde{X}}+P_{N_{1}}}{P_{N_{1}}}\right), \\
& \Delta_{S U} \leq \frac{1}{2} \log \left((2 \pi e)^{2}|K| \frac{\beta_{1}^{2} P_{\tilde{A}_{p}}}{\alpha_{1}^{2} P_{S}+\beta_{1}^{2} P_{\tilde{A}_{p}}} \frac{\beta_{2}^{2} P_{\tilde{B}_{p}}}{\alpha_{2}^{2} P_{U}+\beta_{2}^{2} P_{\tilde{B}_{p}}}\right) \\
& +\frac{R}{2} \log \left(\frac{P_{N}}{P_{\tilde{Q}_{p}+P_{\tilde{X}}+P_{N}}}\left(1+\frac{P_{\tilde{Q}_{p}}}{P_{\tilde{W}_{c}}+P_{\tilde{X}}+P_{N_{1}}}\right)\left(1+\frac{P_{\tilde{X}}}{P_{N_{1}}}\right)\right) .
\end{aligned}
$$

The inner bound is derived from Theorem 2 by choosing the following auxiliary r.v.s. The source encoder variables: $A_{c}=$ $\emptyset, \quad B_{c}=\emptyset, A_{p}=\alpha_{1} S+\beta_{1} \tilde{A}_{p}$, where $\tilde{A}_{p} \sim \mathcal{N}\left(0, P_{\tilde{A}_{p}}\right)$ and $B_{p}=\alpha_{2} U+\beta_{2} \tilde{B}_{p}+\gamma S$, given $\tilde{B}_{p} \sim \mathcal{N}\left(0, P_{\tilde{B}_{p}}\right)$.

The channel encoder variables:

$$
\begin{aligned}
& Q_{c} \sim \mathcal{N}\left(0, P_{Q c}\right), \\
& Q_{p}=Q_{c}+\tilde{Q}_{p}, \quad \tilde{Q}_{p} \sim \mathcal{N}\left(0, P_{\tilde{Q}_{p}}\right) \\
& W_{c}=Q_{c}+\tilde{W}_{c}, \quad \tilde{W}_{c} \sim \mathcal{N}\left(0, P_{\tilde{W}_{c}}\right) \\
& X=Q_{c}+\tilde{W}_{c}+\tilde{Q}_{p}+\tilde{X}, \quad \tilde{X} \sim \mathcal{N}\left(0, P_{\tilde{X}}\right),
\end{aligned}
$$

where $P=P_{\tilde{X}}+P_{Q c}+P_{\tilde{W}_{c}}+P_{\tilde{Q}_{p}}$.
Function \tilde{S} defined as minimum mean square error (MMSE) estimator of S from A_{c} and A_{p}, and \tilde{U} is the MMSE estimator of U from B_{c}, B_{p}.

C. Numerical evaluation

Fig. 2 shows outer bound obtained numerically from Proposition 1 for the case of $\Delta_{S}=H(S)$ and $\Delta_{U}=H(U)$. Fig. 3 shows the inner bound (Proposition 23 for the same parameters but for case 1 encoder input. The other parameters are: $P_{S}=0.3, P_{U}=1, \sigma_{S U}=0.8, P=1, P_{N_{1}}=0.10$, $P_{N_{2}}=0.40$.

VI. Conclusion

This paper presents an information-theoretic framework for the secure transmission of semantic sources over wiretap channel. We characterize the rate-distortion-equivocation region to see the theoretically possible trade-off between distortion and secrecy requirements for semantic communications. We present bounds on a general inner and outer rate-distortionequivocation region and reduce them to the Gaussian source and channel model to bring closer a general model to a practical wireless communication setup.

Fig. 2. Outer bound for Gaussian case and case 2 encoder input

Fig. 3. Inner bound (every point above plane is achievable) for Gaussian case and case 1 encoder input

APPENDIX
 Proof of Theorem 1

The following set of inequalities will be used in our proof:

$$
\begin{align*}
& I\left(X^{n} ; Y^{n}\right) \leq \sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right) \leq n I(X ; Y) \tag{15}\\
& \frac{1}{k} I\left(U^{k} ; \hat{U}^{k}\right) \geq \frac{1}{k} \sum_{i=1}^{k} I\left(U_{i} ; \hat{U}_{i}\right) \geq R_{U}\left(D_{U}+\epsilon\right) \tag{16}\\
& \frac{1}{k} I\left(S^{k} ; \hat{S}^{k}\right) \geq \frac{1}{k} \sum_{i=1}^{k} I\left(S_{i} ; \hat{S}_{i}\right) \geq R_{S}\left(D_{S}+\epsilon\right) \tag{17}\\
& \sum_{i=1}^{k} I\left(S_{i} ; \hat{S}_{i}\right) \leq \sum_{i=1}^{k} I\left(U_{i} ; \hat{U}_{i}\right) \leq \sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right) \tag{18}
\end{align*}
$$

where $\epsilon>0$.
First, we proof inequality in (9) as:

$$
\begin{align*}
R_{U}\left(D_{U}+\epsilon\right) & \leq \frac{1}{k} \sum_{i=1}^{k} I\left(U_{i} ; \hat{U}_{i}\right) \leq \frac{1}{k} \sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right) \\
& \leq 15 \frac{n}{k} I(X ; Y) \leq 2(R+\epsilon) I(X ; Y) . \tag{19}
\end{align*}
$$

To obtain (10), we follow the same steps as in the proof of (9) with (17) instead of (16).

The proof of $\sqrt{12}$ is as follows:

$$
\begin{align*}
& k\left(R_{k}+\epsilon\right) \geq 3 \\
& \geq H\left(K \mid Y^{n}\right)-H\left(K \mid Y^{n} \hat{U}^{k}\right) \\
&= H\left(K, Y^{n}\right)-H\left(Y^{n}\right) \\
&-H\left(K, Y^{n}, \hat{U}^{k}\right)+H\left(Y^{n}, \hat{U}^{k}\right) \\
&=\left.H\left(\hat{U}^{k} \mid Y^{n}\right)-H\left(\hat{U}^{k} \mid Y^{n} K\right)=Y^{n}\right) H\left(\hat{U}^{k} \mid Y^{n}\right) \\
& \geq \mid 7\left(\hat{U}^{k} \mid Y^{n}\right)-\left[H\left(U^{k} \mid Z^{n}\right)-k\left(\Delta_{U}-\epsilon\right)\right] \\
&= H\left(\hat{U}^{k}, Y^{n}\right)-H\left(Y^{n}\right)-H\left(U^{k}, Z^{n}\right) \\
&+H\left(Z^{n}\right)+k\left(\Delta_{U}-\epsilon\right) \\
&= H\left(Y^{n} \mid \hat{U}^{k}\right)+H\left(\hat{U}^{k}\right)-H\left(Y^{n}\right) \\
&-H\left(Z^{n} \mid U^{k}\right)-H\left(U^{k}\right)+H\left(Z^{n}\right) \\
&+k\left(\Delta_{U}-\epsilon\right) \\
&= I\left(U^{k} ; Z^{n}\right)-I\left(\hat{U}^{k} ; Y^{n}\right)+H\left(\hat{U}^{k} \mid U^{k}\right) \\
&-H\left(U^{k}\right)+I\left(U^{k} ; \hat{U}^{k}\right)+k\left(\Delta_{U}-\epsilon\right) . \tag{20}
\end{align*}
$$

The first three terms in (20) can be rewritten as follows:

$$
\begin{aligned}
& I\left(U^{k} ; Z^{n}\right)-I\left(\hat{U}^{k} ; Y^{n}\right)+H\left(\hat{U}^{k} \mid U^{k}\right)= \\
& =I\left(U^{k} ; Z^{n}\right)-H\left(Y^{n}\right)+H\left(Y^{n} \mid \hat{U}^{k}\right)+H\left(\hat{U}^{k} \mid U^{k}\right) \\
& \geq I\left(U^{k} ; Z^{n}\right)-H\left(Y^{n}\right)+H\left(Y^{n} \mid \hat{U}^{k} U^{k}\right) \\
& \quad+H\left(\hat{U}^{k} \mid U^{k}\right) \\
& =I\left(U^{k} ; Z^{n}\right)-H\left(Y^{n}\right)+H\left(Y^{n}, \hat{U}^{k} \mid U^{k}\right) \\
& \geq I\left(U^{k} ; Z^{n}\right)-I\left(U^{k} ; Y^{n}\right) .
\end{aligned}
$$

With the help of Lemma 1 (see Appendix), we have:

$$
\begin{equation*}
I\left(U^{k} ; Z^{n}\right)-I\left(U^{k} ; Y^{n}\right) \geq n[I(X ; Z)-I(X ; Y)] \tag{21}
\end{equation*}
$$

Substituting 21) to 20) we obtain:

$$
\begin{align*}
& \left.k\left(R_{k}+\epsilon\right) \geq 20\right] n[I(X ; Z)-I(X ; Y)]-k H(U)+ \\
& \quad+k R_{U}\left(D_{U}+\epsilon\right)+k\left(\Delta_{U}-\epsilon\right) \tag{22}\\
& R_{k}+2 \epsilon \geq \frac{n}{k}[I(X ; Z)-I(X ; Y)]-H(U)+ \\
& \quad+R_{U}\left(D_{U}+\epsilon\right)+\Delta_{U} \\
& \geq 2(R+\epsilon)[I(X ; Z)-I(X ; Y)]-H(U)+ \\
& \quad+R_{U}\left(D_{U}+\epsilon\right)+\Delta_{U} . \tag{23}
\end{align*}
$$

To prove (13), we skip some steps due to its similarity with steps in proof of 12 (we use S^{k} instead of U^{k}).

$$
\begin{align*}
& k\left(R_{k}+\epsilon\right) \geq \ldots \geq H\left(\hat{S}^{k} \mid Y^{n}\right)-H\left(\hat{S}^{k} \mid Y^{n} K\right) \\
& \geq{ }^{6} \quad H\left(\hat{S}^{k} \mid Y^{n}\right)-\left[H\left(S^{k} \mid Z^{n}\right)-k\left(\Delta_{S}-\epsilon\right)\right] \\
& =I\left(S^{k} ; Z^{n}\right)-I\left(\hat{S}^{k} ; Y^{n}\right)-H\left(S^{k}\right)+ \\
& \quad+I\left(S^{k} ; \hat{S}^{k}\right)+H\left(\hat{S}^{k} \mid S^{k}\right)+k\left(\Delta_{S}-\epsilon\right) \\
& \geq \ldots \geq n[I(X ; Z)-I(X ; Y)]-k H(S)+ \\
& \quad+I\left(S^{k} ; \hat{S}^{k}\right)+k\left(\Delta_{S}-\epsilon\right) \tag{24}\\
& \geq \text { 17 } n[I(X ; Z)-I(X ; Y)]-k H(S)+ \\
& \quad+k R_{S}\left(D_{S}+\epsilon\right)+k\left(\Delta_{S}-\epsilon\right) . \tag{25}
\end{align*}
$$

Now we proceed with the proof of 11 . Our proof will rely on the following inequality:

$$
\begin{equation*}
\frac{1}{k} I\left(S^{k}, U^{k} ; \hat{S}^{k}, \hat{U}^{k}\right) \geq \frac{1}{k} \sum_{i=1}^{k} I\left(S_{i}, U_{i} ; \hat{S}_{i}, \hat{U}_{i}\right) \geq R\left(D_{S}, D_{U}\right) \tag{26}
\end{equation*}
$$

Thus, 11):

$$
\begin{align*}
& R\left(D_{S}+\epsilon, D_{U}+\epsilon\right) \leq \frac{1}{k} \sum_{i=1}^{k} I\left(S_{i}, U_{i} ; \hat{S}_{i}, \hat{U}_{i}\right) \\
& \leq^{(a)} \frac{1}{k} \sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right) \leq \frac{n}{k} I(X ; Y) \\
& \leq \sqrt{26}(R+\epsilon) I(X ; Y), \tag{27}
\end{align*}
$$

where (a) is due to the data processing inequality.
Finally, the proof of $\sqrt[14]{ }$ is,

$$
\begin{align*}
& k\left(R_{k}+\epsilon\right) \geq \ldots \geq H\left(K \mid Y^{n}\right)-H\left(K \mid Y^{n}, \hat{S}^{k}, \hat{U}^{k}\right) \\
&= H\left(\hat{S}^{k}, \hat{U}^{k} \mid Y^{n}\right)-H\left(\hat{S}^{k}, \hat{U}^{k} \mid Y^{n} K\right)=H\left(\hat{S}^{k}, \hat{U}^{k} \mid Y^{n}\right) \\
& \geq H\left(\hat{S}^{k}, \hat{U}^{k} \mid Y^{n}\right)-\left[H\left(S^{k}, U^{k} \mid Z^{n}\right)-k\left(\Delta_{S U}-\epsilon\right)\right] \\
&= H\left(\hat{S}^{k}, \hat{U}^{k}, Y^{n}\right)-H\left(Y^{n}\right)-H\left(S^{k}, U^{k}, Z^{n}\right) \\
&+H\left(Z^{n}\right)+k\left(\Delta_{S U}-\epsilon\right) \\
&= H\left(Y^{n} \mid \hat{S}^{k}, \hat{U}^{k}\right)+H\left(\hat{S}^{k}, \hat{U}^{k}\right)-H\left(Y^{n}\right) \\
&-H\left(Z^{n} \mid S^{k}, U^{k}\right)-H\left(S^{k}, U^{k}\right)+H\left(Z^{n}\right) \\
&+k\left(\Delta_{S U}-\epsilon\right) \\
&= I\left(S^{k}, U^{k} ; Z^{n}\right)-I\left(\hat{S}^{k}, \hat{U}^{k} ; Y^{n}\right)+H\left(\hat{S}^{k}, \hat{U}^{k} \mid S^{k}, U^{k}\right) \\
&-H\left(S^{k}, U^{k}\right)+I\left(S^{k}, U^{k} ; \hat{S}^{k}, \hat{U}^{k}\right)+k\left(\Delta_{S U}-\epsilon\right) . \tag{28}
\end{align*}
$$

The first three terms in (28) are,

$$
\begin{aligned}
& I\left(S^{k}, U^{k} ; Z^{n}\right)-I\left(\hat{S}^{k}, \hat{U}^{k} ; Y^{n}\right)+H\left(\hat{S}^{k}, \hat{U}^{k} \mid S^{k}, U^{k}\right) \\
& \geq n[I(X ; Z)-I(X ; Y)]
\end{aligned}
$$

Substituting in 28, we have:

$$
\begin{aligned}
& k\left(R_{k}+\epsilon\right) \geq 26 n[I(X ; Z)-I(X ; Y)]-k H(S, U) \\
& \quad+k R\left(D_{S}, D_{U}\right)+k\left(\Delta_{S U}-\epsilon\right) \\
& \quad \\
& R_{k}+2 \epsilon \geq(R+\epsilon)[I(X ; Z)-I(X ; Y)]-H(S, U) \\
& \quad+R\left(D_{S}, D_{U}\right)+\Delta_{S U}
\end{aligned}
$$

Letting $\epsilon \rightarrow 0$ completes the converse proof.

Appendix
 Proof of Theorem 2

Now we consider achievability proof for case 1 of encoder input (encoder has access to both u^{k} and s^{k}).

Source codebook:

We introduce 4 r.v.s A_{c}, A_{p} and B_{c}, B_{p} defined on alphabets $\mathcal{A}_{c}, \mathcal{A}_{p}$ and $\mathcal{B}_{c}, \mathcal{B}_{p}$. Random variables A_{c} and B_{c} correspond to a codebook distribution of a common message part for semantics and source. While A_{p} and B_{p} represent private a part of semantics and source. Let $R_{a c}, R_{a p}, R_{b c}, R_{b p}$ be positive rates.

To construct a source codebook, we start by randomly and independently picking $2^{k R_{a c}}$ typical $\mathcal{T}_{\delta}^{k}\left(A_{c}\right)$ sequences from A_{c} distribution. We call such sequence $a_{c}^{k}\left(s_{a c}\right)$, where $s_{a c} \in$ $\left[1,2, \ldots, 2^{k R_{a c}}\right]$

For each sequence $a_{c}^{k}\left(s_{a c}\right)$ we pick $2^{k R_{a p}}$ typical $\mathcal{T}_{\delta}^{k}\left(A_{p} \mid a_{c}^{k}\left(s_{a c}\right)\right)$ sequences from A_{p} distribution and name it $a_{p}^{k}\left(s_{a c}, s_{a p}\right), s_{a p} \in\left[1,2, \ldots, 2^{k R_{a p}}\right]$.

For each $a_{c}^{k}\left(s_{a c}\right)$ we pick $2^{k R_{b c}}$ sequences $b_{c}^{k}\left(s_{a c}, s_{b c}\right) \in$ $\mathcal{T}_{\delta}^{k}\left(B_{c} \mid a_{c}^{k}\left(s_{a c}\right)\right), s_{b c} \in\left[1,2, \ldots, 2^{k R_{b c}}\right]$.

We finish codebook by picking for each previous sequences, $2^{k R_{b p}} \quad$ sequences $\quad b_{p}^{k}\left(s_{a c}, s_{a p}, s_{b c}, s_{b p}\right) \quad \in$ $\mathcal{T}_{\delta}^{k}\left(B_{p} \mid a_{c}^{k}\left(s_{a c}\right), a_{p}^{k}\left(s_{a c}, s_{a p}\right), b_{c}^{k}\left(s_{a c}, s_{b c}\right)\right), \quad s_{b p} \quad \in$ $\left[1,2, \ldots, 2^{k R_{b p}}\right]$.

This codebook is revealed to Bob and Eve.

Channel codebook:

Let Q_{c}, Q_{p} and W_{c} be r.v. for channel codebook generation defined on $\mathcal{Q}_{c}, \mathcal{Q}_{p}, \mathcal{W}_{c}$. Let $R_{q c}, R_{q p}, R_{w c}, R_{w p}, R_{1}, R_{2}$ be positive rates s.t:

$$
\begin{aligned}
R_{1} & <(R+\epsilon) I\left(Q_{p} ; Z \mid Q_{c}\right), \\
R_{2} & <(R+\epsilon) I\left(X ; Z \mid W_{c}\right) .
\end{aligned}
$$

From $\mathcal{T}_{\delta}^{n}\left(Q_{c}\right)$ we pick $2^{k R_{q c}}$ sequences named $q_{c}^{n}\left(r_{q c}\right)$, where $r_{q c} \in\left[1,2, \ldots, 2^{k R_{q c}}\right]$ is a index of a sequence.

For each $q_{c}^{n}\left(r_{q c}\right)$ we pick $2^{k\left(R_{q p}+R_{1}\right)}$ sequences $q_{p}^{n}\left(r_{q c}, r_{q p}, r_{1}\right) \in \mathcal{T}_{\delta}^{n}\left(Q_{p} \mid q_{c}^{n}\left(r_{q c}\right)\right)$.

Also for each $q_{c}^{n}\left(r_{q c}\right)$ we randomly pick $2^{k R_{w c}}$ sequences $w_{c}^{n}\left(r_{q c}, r_{w c}\right) \in \mathcal{T}_{\delta}^{n}\left(W_{c} \mid q_{c}^{n}\left(r_{q c}\right)\right)$.

And, finally, for each $q_{c}^{n}\left(r_{q c}\right), q_{p}^{n}\left(r_{q c}, r_{q p}, r_{1}\right), w_{c}^{n}\left(r_{q c}, r_{w c}\right)$ we pick $2^{k\left(R_{w p}+R_{2}\right)}$ sequences $x^{n}\left(r_{q c}, r_{q p}, r_{1}, r_{w c}, r_{w p}, r_{2}\right) \in$ $\mathcal{T}_{\delta}^{n}\left(X \mid q_{c}^{n}\left(r_{q c}\right), q_{p}^{n}\left(r_{q c}, r_{q p}, r_{1}\right), w_{c}^{n}\left(r_{q c}, r_{w c}\right)\right)$.

This codebook is revealed to Bob and Eve. Further to shorten notations we will skip indices in sequence names.

Source encoding:

We have $\left(s^{k}, u^{k}\right)$ as encoder input. We search for the first jointly typical sequence a_{c}^{k} s.t. $\left(a_{c}^{k}, s^{k}\right) \in \mathcal{T}_{\delta}^{k}\left(A_{c}, S\right)$.

Then, given a_{c}^{k}, we find first a_{p}^{k} sequence s.t. $\left(a_{p}^{k}, s^{k}\right) \in$ $\mathcal{T}_{\delta}^{k}\left(A_{p}, S \mid a_{c}^{k}\right)$.

Also, given codeword a_{c}^{k}, we proceed by finding first codeword b_{c}^{k} s.t. $\left(b_{c}^{k}, u^{k}\right) \in \mathcal{T}_{\delta}^{k}\left(B_{c}, U \mid S, a_{c}^{k}\right)$.

And, given all previous codewords a_{c}^{k}, a_{p}^{k} and b_{c}^{k}, we finish source encoding by finding first $\left(b_{p}^{k}, u^{k}\right) \in$ $\mathcal{T}_{\delta}^{k}\left(B_{p}, U \mid S, a_{c}^{k}, a_{p}^{k}, b_{c}^{k}\right)$.

Channel encoding:

We choose arbitrary one-to-one mapping $\left(r_{q c}, r_{q p}, r_{w c}, r_{w p}\right)=g\left(s_{a c}, s_{a p}, s_{b c}, s_{b p}\right)$ which is used to map source indices to channel indices. We assume that there exist mappings $\left(r_{q c}, r_{q p}\right)=g_{1}\left(s_{a c}, s_{a p}\right)$ and $\left(r_{w c}, r_{w p}\right)=g_{2}\left(s_{b c}, s_{b p}\right)$.
Now, given channel indexes $\left(r_{q c}, r_{q p}, r_{w c}, r_{w p}\right)$ as a result of mapping g, we sequentially select $q_{c}^{n}, q_{p}^{n}, w_{c}^{n}, x^{n}$, from channel codebook. Alice transmit sequence $x^{n} \doteq$ $x^{n}\left(r_{q c}, r_{q p}, r_{1}, r_{w c}, r_{w p}, r_{2}\right)$, where r_{1} and r_{2} selected at random with uniform distribution.

Decoding:

Bob receives y^{n}. He sequentially searches in his codebook for a codewords s.t.:

1) $\left(q_{c}^{n}, y^{n}\right) \in \mathcal{T}_{\delta}^{n}\left(Q_{c}, Y\right)$,
2) $\left(q_{p}^{n}, y^{n}\right) \in \mathcal{T}_{\delta}^{n}\left(Q_{p}, Y \mid q_{c}^{n}\right)$,
3) $\left(w_{c}^{n}, y^{n}\right) \in \mathcal{T}_{\delta}^{n}\left(W_{c}, Y \mid q_{c}^{n}\right)$,
4) $\left(x^{n}, y^{n}\right) \in \mathcal{T}_{\delta}^{n}\left(X, Y \mid q_{c}^{n}, q_{p}^{n}, w_{c}^{n}\right)$.

Then, given channel indexes ($r_{q c}, r_{q p}, r_{w c}, r_{w p}$), Bob using inverse mapping g^{-1} gets source decoder indexes $\left(s_{a c}, s_{a p}, s_{b c}, s_{b p}\right)$ and decodes:

$$
\begin{aligned}
\hat{s}^{k} & =\tilde{S}\left(a_{c}^{k}, a_{p}^{k}\right), \\
\hat{u}^{k} & =\tilde{U}\left(a_{c}^{k}, a_{p}^{k}, b_{c}^{k}, b_{p}^{k}\right),
\end{aligned}
$$

where $\tilde{S}: A_{c}^{k} \times A_{p}^{k} \rightarrow \hat{S}^{k}$ and $\tilde{U}: A_{c}^{k} \times A_{p}^{k} \times B_{c}^{k} \times B_{p}^{k} \rightarrow \hat{U}^{k}$ are functions.

Errors at encoding and decoding:

We consider the following events which correspond to errors at the encoding or decoding stages.
Encoder errors:

$$
\begin{aligned}
& \mathcal{E}_{1} \doteq\left\{\nexists a_{c}^{k}:\left(a_{c}^{k}, s^{k}\right) \in \mathcal{T}_{\delta}^{k}\left(A_{c}, S\right)\right\} \\
& \mathcal{E}_{2} \doteq\left\{\nexists a_{p}^{k}:\left(a_{p}^{k}, s^{k}\right) \in \mathcal{T}_{\delta}^{k}\left(A_{p}, S \mid a_{c}^{k}\right)\right\} \\
& \mathcal{E}_{3} \doteq\left\{\nexists b_{c}^{k}:\left(b_{c}^{k}, u^{k}\right) \in \mathcal{T}_{\delta}^{k}\left(B_{c}, U \mid S, a_{c}^{k}\right)\right\} \\
& \mathcal{E}_{4} \doteq\left\{\nexists b_{p}^{k}:\left(b_{p}^{k}, u^{k}\right) \in \mathcal{T}_{\delta}^{k}\left(B_{p}, U \mid S, a_{c}^{k}, a_{p}^{k}, b_{c}^{k}\right)\right\} .
\end{aligned}
$$

Decoder errors:

$$
\begin{aligned}
& \mathcal{E}_{5} \doteq\left\{\exists \hat{q}_{c}^{n} \neq q_{c}^{n}: \hat{q}_{c}^{n}, q_{c}^{n} \in \mathcal{T}_{\delta}^{n}\left(Q_{c}, Y\right)\right\}, \\
& \mathcal{E}_{6} \doteq\left\{\exists \hat{q}_{p}^{n} \neq q_{p}^{n}: \hat{q}_{p}^{n}, q_{p}^{n} \in \mathcal{T}_{\delta}^{n}\left(Q_{p}, Y \mid q_{c}^{n}\right)\right\}, \\
& \mathcal{E}_{7} \doteq\left\{\exists \hat{w}_{c}^{n} \neq w_{c}^{n}: \hat{w}_{c}^{n}, w_{c}^{n} \in \mathcal{T}_{\delta}^{n}\left(W_{c}, Y \mid q_{c}^{n}\right)\right\}, \\
& \mathcal{E}_{8} \doteq\left\{\exists \hat{x}^{n} \neq x^{n}: \hat{x}^{n}, x^{n} \in \mathcal{T}_{\delta}^{n}\left(X, Y \mid q_{c}^{n}, q_{p}^{n}, w_{c}^{n}\right)\right\} .
\end{aligned}
$$

We upper bound probability of an "error" event as follows:

$$
\operatorname{Pr}\{\mathcal{E}\}=P_{\mathcal{E}} \leq \sum_{i=1}^{8} P_{\mathcal{E}_{i}}
$$

where $P_{\mathcal{E}_{i}}=\operatorname{Pr}\left\{\mathcal{E}_{i}\right\}$.
Given $k \rightarrow \infty$, it can be shown that:

1) if $R_{a c}>I\left(A_{c} ; S\right)$
then $P_{\mathcal{E}_{1}} \rightarrow 0$,
2) if $R_{a p}>I\left(A_{p} ; S \mid A_{c}\right)$
then $P_{\mathcal{E}_{2}} \rightarrow 0$,
3) if $R_{b c}>I\left(B_{c} ; U \mid S, A_{c}\right)$
then $P_{\mathcal{E}_{3}} \rightarrow 0$,
4) if $R_{b p}>I\left(B_{p} ; U \mid S, A_{c}, A_{p}, B_{c}\right)$
then $P_{\mathcal{E}_{4}} \rightarrow 0$,
5) if $R_{q c}<(R+\epsilon) I\left(Q_{c} ; Y\right)$
then $P_{\mathcal{E}_{5}} \rightarrow 0$
6) if $R_{q p}+R_{1}<(R+\epsilon) I\left(Q_{p} ; Y \mid Q_{c}\right)$
then $P_{\mathcal{E}_{6}} \rightarrow 0$,
7) if $R_{w c}<(R+\epsilon) I\left(W_{c} ; Y \mid Q_{c}\right)$
then $P_{\mathcal{E}_{7}} \rightarrow 0$,
8) if $R_{w p}+R_{2}<(R+\epsilon) I\left(X ; Y \mid Q_{c}, Q_{p}, W_{c}\right)$ then $P_{\mathcal{E}_{8}} \rightarrow 0$.
Analysis of expected distortion for semantics:

$$
\begin{aligned}
& \mathbb{E} d_{s}\left(S^{k}, \hat{S}^{k}\right)=\mathbb{E} d_{s}\left(S^{k}, \hat{f}_{s}\left(Y^{n}\right)\right) \\
& ={ }^{(a)} P_{\mathcal{E}} \mathbb{E}\left\{d_{s}\left(S^{k}, \hat{f}_{s}\left(Y^{n}\right)\right) \mid \mathcal{E}\right\} \\
& \quad+P_{\overline{\mathcal{E}}} \mathbb{E}\left\{d_{s}\left(S^{k}, \hat{f}_{s}\left(Y^{n}\right)\right) \mid \overline{\mathcal{E}}\right\} \\
& \leq P_{\mathcal{E}} d_{S, m}+P_{\overline{\mathcal{E}}} \mathbb{E}\left\{d_{s}\left(S^{k}, \hat{f}_{s}\left(Y^{n}\right)\right) \mid \overline{\mathcal{E}}\right\} \\
& ={ }^{(b)} P_{\mathcal{E}} d_{S, m}+P_{\overline{\mathcal{E}}} \mathbb{E}\left\{d_{s}\left(S^{k}, \tilde{S}\left(A_{c}^{k}, A_{p}^{k}\right)\right) \mid \overline{\mathcal{E}}\right\} \\
& \leq \leq^{(c)} P_{\mathcal{E}} d_{S, m}+P_{\overline{\mathcal{E}}}\left(1+\epsilon_{1}\right) \mathbb{E}\left\{d_{s}\left(S, \tilde{S}\left(A_{c}, A_{p}\right)\right) \mid \overline{\mathcal{E}}\right\} \\
& \leq \leq^{(d)} P_{\mathcal{E}} d_{S, m}+\left(1+\epsilon_{1}\right) \mathbb{E} d_{s}\left(S, \tilde{S}\left(A_{c}, A_{p}\right)\right),
\end{aligned}
$$

where $d_{S, m}=\max _{\mathcal{C}, S^{k}, Y^{n}} d_{s}\left(S^{k}, \hat{f}_{S}\left(Y^{n}\right)\right)$, (a) due to law of total expectation, (b) because $\hat{f}_{s}\left(Y^{n}\right)=\tilde{S}\left(A_{c}^{k}, A_{p}^{k}\right)$ given no error occurs $\overline{\mathcal{E}}$, (c) due to typical average lemma and $\left(s^{k}, a_{c}^{k}, a_{p}^{k}\right) \in \mathcal{T}_{\delta}^{k}\left(S, A_{c}, A_{p}\right)$, (d) due to $\mathbb{E}(X \mid A) \leq \frac{\mathbb{E} X}{P_{A}}$.

We conclude that the following is sufficient to satisfy distortion condition (4) for semantics:

$$
D_{S} \geq \mathbb{E} d_{s}\left(S, \tilde{S}\left(A_{c}, A_{p}\right)\right)
$$

given $k \rightarrow \infty$
Analysis of expected distortion for observation:

$$
\begin{aligned}
& \mathbb{E} d_{u}\left(U^{k}, \hat{U}^{k}\right)=\mathbb{E} d_{u}\left(U^{k}, \hat{f}_{u}\left(Y^{n}\right)\right) \\
& ={ }^{(a)} P_{\mathcal{E}} \mathbb{E}\left\{d_{u}\left(S^{k}, \hat{f}_{s}\left(Y^{n}\right)\right) \mid \mathcal{E}\right\} \\
& \quad+P_{\overline{\mathcal{E}}} \mathbb{E}\left\{d_{u}\left(U^{k}, \hat{f}_{u}\left(Y^{n}\right)\right) \mid \overline{\mathcal{E}}\right\} \\
& \leq P_{\mathcal{E}} d_{U, m}+P_{\overline{\mathcal{E}}} \mathbb{E}\left\{d_{u}\left(U^{k}, \hat{f}_{u}\left(Y^{n}\right)\right) \mid \overline{\mathcal{E}}\right\} \\
& ={ }^{(b)} P_{\mathcal{E}} d_{U, m}+P_{\overline{\mathcal{E}}} \mathbb{E}\left\{d_{u}\left(U^{k}, \tilde{U}\left(A_{c}^{k}, A_{p}^{k}, B_{c}^{k}, B_{p}^{k}\right)\right) \mid \overline{\mathcal{E}}\right\} \\
& \leq \leq^{(c)} P_{\overline{\mathcal{E}}}\left(1+\epsilon_{1}\right) \mathbb{E}\left\{d_{u}\left(S, \tilde{U}\left(A_{c}^{k}, A_{p}^{k}, B_{c}^{k}, B_{p}^{k}\right)\right) \mid \overline{\mathcal{E}}\right\} \\
& \quad+P_{\mathcal{E}} d_{U, m} \\
& \leq \leq^{(d)} P_{\mathcal{E}} d_{U, m}+\left(1+\epsilon_{1}\right) \mathbb{E} d_{u}\left(U, \tilde{U}\left(A_{c}, A_{p}, B_{c}, B_{p}\right)\right)
\end{aligned}
$$

where $d_{U, m}=\max _{\mathcal{C}, U^{k}, Y^{n}} d_{u}\left(U^{k}, \hat{f}_{u}\left(Y^{n}\right)\right)$, (a) due to law of total expectation, (b) because $\hat{f}_{u}\left(Y^{n}\right)=$ $\tilde{U}\left(A_{c}^{k}, A_{p}^{k}, B_{c}^{k}, B_{p}^{k}\right)$ given $\overline{\mathcal{E}}$, (c) due to typical average lemma and $\left(u^{k}, a_{c}^{k}, a_{p}^{k}, b_{c}^{k}, b_{p}^{k}\right) \in \mathcal{T}_{\delta}^{k}\left(U, A_{c}, A_{p}, B_{c}, B_{p}\right)$, (d) due to $\mathbb{E}(X \mid A) \leq \frac{\mathbb{E} X}{P_{A}}$.

Thus, to satisfy distortion condition (5) it is sufficient to have:

$$
D_{U} \geq \mathbb{E} d_{u}\left(U \tilde{U}\left(A_{c}, A_{p}, B_{c}, B_{p}\right)\right)
$$

given $k \rightarrow \infty$

Equivocation analysis for observation:

Here we treat sequence indices $s_{* *}$ and $r_{* *}$ as random variables. We start by analyzing equivocation for observation U^{k} :

$$
\begin{align*}
& H\left(U^{k} \mid Z^{n}\right)=H\left(U^{k} \mid M_{u}, Z^{n}\right)+I\left(U^{k} ; M_{u} \mid Z^{n}\right) \\
& =H\left(U^{k} \mid M_{u}\right)+H\left(M_{u} \mid Z^{n}\right)-H\left(M_{u} \mid U^{k}, Z^{n}\right) \\
& \quad-I\left(U^{k} ; Z^{n} \mid M_{u}\right) \tag{29}
\end{align*}
$$

where $M_{u} \doteq\left(s_{b c}, s_{b p}\right)$ is an encoded (by source encoder) message for observation.

First term of 29):

$$
\begin{align*}
& H\left(U^{k} \mid M_{u}\right)=H\left(U^{k} \mid s_{b c}, s_{b p}\right)=H\left(S^{k}, U^{k}\right) \\
& \quad-I\left(s_{b c}, s_{b p} ; S^{k}, U^{k}\right)-H\left(S^{k} \mid U^{k}, s_{b c}, s_{b p}\right) \\
& ={ }^{(a)} H\left(S^{k}, U^{k}\right)-H\left(s_{b c}, s_{b p}\right)-H\left(S^{k} \mid U^{k}, s_{b c}, s_{b p}\right) \\
& =H\left(S^{k}, U^{k}\right)-H\left(s_{b c}\right)-H\left(s_{b p}\right)+I\left(s_{b c} ; s_{b p}\right) \\
& \quad-H\left(S^{k} \mid U^{k}, s_{b c}, s_{b p}\right) \tag{30}
\end{align*}
$$

where (a) because $\left(s_{b c}, s_{b p}\right)$ is a function of $\left(s^{k}, u^{k}\right)$
For second term (29) we have:

$$
\begin{align*}
& H\left(M_{u} \mid Z^{n}\right)=H\left(s_{b c}, s_{b p} \mid Z^{n}\right)={ }^{(a)} H\left(r_{w c}, r_{w p} \mid Z^{n}\right) \\
& \geq^{(b)} H\left(X^{n} \mid r_{w c}\right)+H\left(Z^{n} \mid X^{n}\right)-H\left(X^{n} \mid r_{w c}, r_{w p}, Z^{n}\right) \\
& \quad-H\left(Z^{n} \mid r_{w c}\right) \\
& =H\left(X^{n} \mid r_{w c}\right)+H\left(Z^{n} \mid X^{n}\right)-H\left(X^{n} \mid r_{w c}, r_{w p}, Z^{n}\right) \\
& \quad-H\left(Z^{n} \mid r_{q c}, r_{w c}\right)-I\left(Z^{n} ; r_{q c} \mid r_{w c}\right) \tag{31}
\end{align*}
$$

where (a) due to g_{2} mapping, (b) for same reasons as in 18 , eq. 2.38]. Substituting 30 and 31 into 29 we have:

$$
\begin{align*}
& H\left(U^{k} \mid Z^{n}\right) \geq H\left(S^{k}, U^{k}\right)-H\left(s_{b c}\right)-H\left(s_{b p}\right)+I\left(s_{b c} ; s_{b p}\right) \\
& \quad-H\left(S^{k} \mid U^{k}, s_{b c}, s_{b p}\right)+H\left(X^{n} \mid r_{w c}\right)+H\left(Z^{n} \mid X^{n}\right) \\
& \quad-H\left(X^{n} \mid r_{w c}, r_{w p}, Z^{n}\right)-H\left(Z^{n} \mid r_{q c}, r_{w c}\right)-I\left(Z^{n} ; r_{q c} \mid r_{w c}\right) \\
& \quad-H\left(s_{b c}, s_{b p} \mid U^{k}, Z^{n}\right)-I\left(U^{k} ; Z^{n} \mid s_{b c}, s_{b p}\right) \tag{32}
\end{align*}
$$

Now we reduce some terms in (32).

$$
\begin{align*}
& H\left(S^{k}, U^{k}\right)-H\left(S^{k} \mid U^{k}, s_{b c}, s_{b p}\right)-H\left(s_{b c}, s_{b p} \mid U^{k}, Z^{n}\right) \\
& =^{(a)} H\left(U^{k}\right)+I\left(S^{k} ; s_{b c}, s_{b p} ; Z^{n} \mid U^{k}\right), \tag{33}
\end{align*}
$$

where (a) because $\left(s_{b c}, s_{b p}\right)$ is a function of $\left(s^{k}, u^{k}\right)$.

$$
\begin{align*}
& H\left(X^{n} \mid r_{w c}, r_{w p}, Z^{n}\right)+I\left(U^{k} ; Z^{n} \mid s_{b c}, s_{b p}\right) \\
& \leq^{(a)} H\left(X^{n} \mid r_{w c}, r_{w p}, Z^{n}\right)+I\left(X^{n} ; Z^{n} \mid r_{w c}, r_{w p}\right) \\
& =H\left(X^{n} \mid r_{w c}, r_{w p}\right) \tag{34}
\end{align*}
$$

where (a) due to data processing inequality and g_{2} mapping.

$$
\begin{equation*}
I\left(Z^{n} ; r_{q c} \mid r_{w c}\right) \leq H\left(r_{q c} \mid r_{w c}\right)=H\left(r_{q c}\right)-I\left(r_{q c} ; r_{w c}\right) \tag{35}
\end{equation*}
$$

Returning to (32) with (33), (34) and (35):

$$
\begin{align*}
& H\left(U^{k} \mid Z^{n}\right) \geq H\left(U^{k}\right)-H\left(s_{b c}\right)-H\left(s_{b p}\right)+I\left(s_{b c} ; s_{b p}\right) \\
& \quad+H\left(X^{n} \mid r_{w c}\right)+H\left(Z^{n} \mid X^{n}\right)-H\left(Z^{n} \mid r_{q c}, r_{w c}\right) \\
& \quad-H\left(r_{q c}\right)+I\left(r_{q c} ; r_{w c}\right)-H\left(X^{n} \mid r_{w c}, r_{w p}\right) \\
& \quad+I\left(S^{k} ; s_{b c}, s_{b p} ; Z^{n} \mid U^{k}\right) \tag{36}
\end{align*}
$$

Now we bound each term of 36:

1) $H\left(U^{k}\right)=k H(U)\left(U^{k}\right.$ is i.i.d. $)$,
2) $H\left(s_{b c}\right) \leq k R_{b c}$,
3) $H\left(s_{b p}\right) \leq k R_{b p}$,
4) $H\left(X^{n} \mid r_{w c}\right) \geq k\left(R_{q c}+R_{q p}+R_{1}+R_{w p}+R_{2}\right)-1-\epsilon_{1}$
(X^{n} is nearly uniform and [18, Lemma 2.5]),
5) $H\left(Z^{n} \mid X^{n}\right)=n H(Z \mid X)$
(channel is memoryless),
6) $H\left(Z^{n} \mid r_{q c}, r_{w c}\right) \leq n H\left(Z \mid Q_{c}, W_{c}\right)+n \epsilon_{2}$ (see [18, eq. 2.50-2.52]),
7) $H\left(r_{q c}\right) \leq k R_{q c}$,
8) $H\left(X^{n} \mid r_{w c}, r_{w p}\right) \leq k\left(R_{q c}+R_{q p}+R_{1}+R_{2}\right)$,
9) $I\left(s_{b c} ; s_{b p}\right)+I\left(r_{q c} ; r_{w c}\right)+I\left(S^{k} ; s_{b c}, s_{b p} ; Z^{n} \mid U^{k}\right) \geq 0$.

Collecting all terms we have:

$$
\begin{aligned}
& H\left(U^{k} \mid Z^{n}\right) \geq k H(U)-k R_{b c}-k R_{b p}+k R_{q c}+k R_{q p}+k R_{1} \\
& \quad+k R_{w p}+k R_{2}-1-\epsilon_{1}+n H(Z \mid X)-n H\left(Z \mid Q_{c}, W_{c}\right) \\
& \quad-n \epsilon_{2}-k R_{q c}-k\left(R_{q c}+R_{q p}+R_{1}+R_{2}\right) \\
&= k H(U)-k R_{b c}-k R_{b p}+k R_{w p}-k R_{q c}+n H(Z \mid X) \\
&-n H\left(Z \mid Q_{c}, W_{c}\right)-n \epsilon_{3}-1 .
\end{aligned}
$$

Thus, to satisfy equivocation for source, it is sufficient to have:

$$
\begin{aligned}
& \Delta_{U} \leq H(U)-R_{b c}-R_{b p}+R_{w p}-R_{q c} \\
& \quad+(R+\epsilon)\left(H(Z \mid X)-H\left(Z \mid Q_{c}, W_{c}\right)\right)-\epsilon
\end{aligned}
$$

given $k \rightarrow \infty$.
Equivocation analysis for semantics:
For semantic equivocation, we have:

$$
\begin{align*}
& H\left(S^{k} \mid Z^{n}\right)=H\left(S^{k} \mid M_{s}, Z^{n}\right)+I\left(S^{k} ; M_{s} \mid Z^{n}\right) \\
& =H\left(S^{k} \mid M_{s}\right)+H\left(M_{s} \mid Z^{n}\right)-H\left(M_{s} \mid S^{k}, Z^{n}\right) \\
& \quad-I\left(S^{k} ; Z^{n} \mid M_{s}\right) \tag{37}
\end{align*}
$$

where $M_{s} \doteq\left(s_{a c}, s_{a p}\right)$ is an encoded (by source encoder) message for semantics. First term of 37):

$$
\begin{align*}
& H\left(S^{k} \mid M_{s}\right)=H\left(S^{k} \mid s_{a c}, s_{a p}\right) \\
& =H\left(S^{k}, U^{k}\right)-I\left(s_{a c}, s_{a p} ; S^{k}, U^{k}\right)-H\left(U^{k} \mid S^{k}, s_{a c}, s_{a p}\right) \\
& ={ }^{(a)} H\left(S^{k}, U^{k}\right)-H\left(s_{a c}, s_{a p}\right)-H\left(U^{k} \mid S^{k}, s_{a c}, s_{a p}\right) \\
& =H\left(S^{k}, U^{k}\right)-H\left(s_{a c}\right)-H\left(s_{a p}\right)+I\left(s_{a c} ; s_{a p}\right) \\
& \quad-H\left(U^{k} \mid S^{k}, s_{a c}, s_{a p}\right) \tag{38}
\end{align*}
$$

where (a) because $\left(s_{a c}, s_{a p}\right)$ is a function of $\left(s^{k}, u^{k}\right)$. Second term of 37:

$$
\begin{align*}
& H\left(M_{s} \mid Z^{n}\right)=H\left(s_{a c}, s_{a p} \mid Z^{n}\right)=^{(a)} H\left(r_{q c}, r_{q p} \mid Z^{n}\right) \\
& \geq{ }^{(b)} H\left(X^{n} \mid r_{q c}\right)+H\left(Z^{n} \mid X^{n}\right) \\
& \quad-H\left(X^{n} \mid r_{q c}, r_{q p}, Z^{n}\right)-H\left(Z^{n} \mid r_{q c}\right) \tag{39}
\end{align*}
$$

where (a) due to g_{1} mapping, (b) see [18, eq. 2.38]. Gathering all terms, we have:

$$
\begin{align*}
& H\left(S^{k} \mid Z^{n}\right) \geq H\left(S^{k}, U^{k}\right)-H\left(s_{a c}\right)-H\left(s_{a p}\right)+I\left(s_{a c} ; s_{a p}\right) \\
& \quad-H\left(U^{k} \mid S^{k}, s_{a c}, s_{a p}\right)+H\left(X^{n} \mid r_{q c}\right)+H\left(Z^{n} \mid X^{n}\right) \\
& \quad-H\left(X^{n} \mid r_{q c}, r_{q p}, Z^{n}\right)-H\left(Z^{n} \mid r_{q c}\right) \\
& \quad-H\left(s_{a c}, s_{a p} \mid S^{k}, Z^{n}\right)-I\left(S^{k} ; Z^{n} \mid s_{a c}, s_{a p}\right) \tag{40}
\end{align*}
$$

We reduce some terms in 40).

$$
\begin{align*}
& H\left(S^{k}, U^{k}\right)-H\left(U^{k} \mid S^{k}, s_{a c}, s_{a p}\right)-H\left(s_{a c}, s_{a p} \mid S^{k}, Z^{n}\right) \\
& =^{(a)} H\left(S^{k}\right)+I\left(U^{k} ; s_{a c}, s_{a p} ; Z^{n} \mid S^{k}\right) \tag{41}
\end{align*}
$$

where (a) because $\left(s_{a c}, s_{a p}\right)$ is a function of $\left(s^{k}, u^{k}\right)$.

$$
\begin{align*}
& H\left(X^{n} \mid r_{q c}, r_{q p}, Z^{n}\right)+I\left(S^{k} ; Z^{n} \mid s_{a c}, s_{a p}\right) \\
& \leq^{(a)} H\left(X^{n} \mid r_{q c}, r_{q p}, Z^{n}\right)+I\left(X^{n} ; Z^{n} \mid r_{q c}, r_{q p}\right) \\
& =H\left(X^{n} \mid r_{q c}, r_{q p}\right) \tag{42}
\end{align*}
$$

where (a) due to data processing inequality and g_{1} mapping. Substituting (41) and (42) into (40) we obtain:

$$
\begin{align*}
& H\left(S^{k} \mid Z^{n}\right) \geq H\left(S^{k}\right)-H\left(s_{a c}\right)-H\left(s_{a p}\right)+I\left(s_{a c} ; s_{a p}\right) \\
& \quad+H\left(X^{n} \mid r_{q c}\right)+H\left(Z^{n} \mid X^{n}\right)-H\left(Z^{n} \mid r_{q c}\right) \\
& \quad-H\left(X^{n} \mid r_{q c}, r_{q p}\right)+I\left(U^{k} ; s_{a c}, s_{a p} ; Z^{n} \mid S^{k}\right) \tag{43}
\end{align*}
$$

Now we bound each term of (43):

1) $H\left(S^{k}\right)=k H(S)\left(S^{k}\right.$ is i.i.d.),
2) $H\left(s_{a c}\right) \leq k R_{a c}$,
3) $H\left(s_{a p}\right) \leq k R_{a p}$,
4) $H\left(X^{n} \mid r_{q c}\right) \geq k\left(R_{w c}+R_{q p}+R_{1}+R_{w p}+R_{2}\right)-1-\epsilon_{1}$
(X^{n} is nearly uniform and [18, Lemma 2.5]),
5) $H\left(Z^{n} \mid X^{n}\right)=n H(Z \mid X)$
(channel is memoryless),
6) $H\left(Z^{n} \mid r_{q c}\right) \leq n H\left(Z \mid Q_{c}\right)+n \epsilon_{2}$
(see [18. eq. (2.50-2.52)]),
7) $H\left(X^{n} \mid r_{q c}, r_{q p}\right) \leq k\left(R_{w c}+R_{w p}+R_{1}+R_{2}\right)$,
8) $I\left(U^{k} ; s_{a c}, s_{a p} ; Z^{n} \mid S^{k}\right) \geq 0$,
9) $I\left(s_{a c} ; s_{a p}\right) \geq 0$.

Returning to 43 we have:

$$
\begin{aligned}
& H\left(S^{k} \mid Z^{n}\right) \geq k H(S)-k R_{a c}-k R_{a p} \\
& \quad+k\left(R_{w c}+R_{q p}+R_{1}+R_{w p}+R_{2}\right)-1-\epsilon_{1} \\
& \quad+n H(Z \mid X)-n H\left(Z \mid Q_{c}\right)-n \epsilon_{2} \\
& \quad-k\left(R_{w c}+R_{w p}+R_{1}+R_{2}\right) \\
& =k H(S)-k R_{a c}-k R_{a p}+k R_{q p} \\
& \quad+n H(Z \mid X)-n H\left(Z \mid Q_{c}\right)-n \epsilon_{3}-1 .
\end{aligned}
$$

Thus, to satisfy equivocation for semantics, it is sufficient to have:

$$
\begin{aligned}
& \Delta_{S} \leq H(S)-R_{a c}-R_{a p}+R_{q p} \\
& \quad+(R+\epsilon)\left(H(Z \mid X)-H\left(Z \mid Q_{c}\right)\right)-\epsilon
\end{aligned}
$$

given $k \rightarrow \infty$.
Joint equivocation analysis:

$$
\begin{align*}
& H\left(S^{k}, U^{k} \mid Z^{n}\right)=H\left(S^{k}, U^{k} \mid M\right)+H\left(M \mid Z^{n}\right) \\
& \quad-I\left(S^{k}, U^{k} ; Z^{n} \mid M\right) \\
& ={ }^{(a)} H\left(S^{k}, U^{k} \mid M\right)+H\left(M \mid Z^{n}\right) \tag{44}
\end{align*}
$$

where $M=\left(s_{a c}, s_{b c}, s_{a p}, s_{b p}\right)$ and (a) due to $\left(S^{k}, U^{k}\right) \rightarrow$ $M \rightarrow Z^{n}$.

First term of 44):

$$
H\left(S^{k}, U^{k} \mid M\right)={ }^{(a)} H\left(S^{k}, U^{k}\right)-H(M)
$$

where (a) because M is a function of $\left(S^{k}, U^{k}\right)$.
Second term of 44):

$$
\begin{aligned}
& H\left(M \mid Z^{n}\right) \geq^{(a)} H\left(X^{n} \mid r_{c}\right)+H\left(Z^{n} \mid X^{n}\right)-H\left(X^{n} \mid r_{c}, r_{p}, Z^{n}\right) \\
& \quad-H\left(Z^{n} \mid r_{c}\right)
\end{aligned}
$$

where $r_{c}=\left(r_{q c}, r_{w c}\right), r_{p}=\left(r_{q p}, r_{w p}\right)$, (a) due to g mapping, the fact that $H\left(r_{c}, r_{p} \mid X^{n}\right)=0$ and $X^{n} \rightarrow Y^{n} \rightarrow Z^{n}$.

Returning to (44) we have:

$$
\begin{align*}
& H\left(S^{k}, U^{k} \mid Z^{n}\right) \geq H\left(S^{k}, U^{k}\right)-H(M)+H\left(X^{n} \mid r_{c}\right) \\
& \quad+H\left(Z^{n} \mid X^{n}\right)-H\left(X^{n} \mid r_{c}, r_{p}, Z^{n}\right)-H\left(Z^{n} \mid r_{c}\right) \tag{45}
\end{align*}
$$

Now we bound each term of 45):

1) $H\left(S^{k}, U^{k}\right)=k H(S, U)\left(S^{k}\right.$ and U^{k} are i.i.d),
2) $H(M) \leq k\left(R_{a c}+R_{b c}+R_{a p}+R_{b p}\right)$,
3) $H\left(X^{n} \mid r_{c}\right) \geq k\left(R_{q p}+R_{w p}+R_{1}+R_{2}\right)-1-\epsilon_{1}$ (X^{n} is nearly uniform, [18, Lemma 2.5]),
4) $H\left(Z^{n} \mid X^{n}\right)=n H(Z \mid X)$,
5) $H\left(X^{n} \mid r_{c}, r_{p}, Z^{n}\right) \leq \epsilon_{2}$
(due to Fano's inequality, see [18, eq. (2.49)]),
6) $H\left(Z^{n} \mid r_{c}\right) \leq n H\left(Z \mid Q_{c}, W_{c}\right)+n \epsilon_{3}$
(see [18, eq. (2.50-2.52)]).

Finally, we obtain:

$$
\begin{aligned}
& \frac{1}{k} H\left(S^{k}, U^{k} \mid Z^{n}\right) \geq H(S, U)-R_{a c}-R_{b c}-R_{a p}-R_{b p} \\
& \quad+(R+\epsilon)\left(H(Z \mid X)-H\left(Z \mid Q_{c}, W_{c}\right)\right)+\epsilon \\
& \quad+R_{q p}+R_{w p}+R_{1}+R_{2}
\end{aligned}
$$

Thus, to satisfy joint equivocation, it is sufficient to have:

$$
\begin{aligned}
& \Delta_{S U} \leq H(S, U)-R_{a c}-R_{b c}-R_{a p}-R_{b p}+R_{q p}+R_{w p} \\
& \quad+R_{1}+R_{2}+(R+\epsilon)\left(H(Z \mid X)-H\left(Z \mid Q_{c}, W_{c}\right)\right)-\epsilon
\end{aligned}
$$

Summary of conditions:

$$
\left\{\begin{array}{l}
R_{* *}, R_{1}, R_{2}>0 \\
R_{a c}+R_{a p}=R_{q c}+R_{q p} \\
R_{b c}+R_{b p}=R_{w c}+R_{w p} \\
R_{a c}<R_{q c} \\
R_{b c}<R_{w c} \\
R_{a c}>I\left(A_{c} ; S\right) \\
R_{a p}>I\left(A_{p} ; S \mid A_{c}\right) \\
R_{b c}>I\left(B_{c} ; U \mid S, A_{c}\right) \\
R_{b p}>I\left(B_{p} ; U \mid S, A_{c}, A_{p}, B_{c}\right) \\
R_{q c}<R I\left(Q_{c} ; Y\right) \\
R_{q p}+R_{1}<R I\left(Q_{p} ; Y \mid Q_{c}\right) \\
R_{w c}<R I\left(W_{c} ; Y \mid Q_{c}\right) \\
R_{w p}+R_{2}<R I\left(X ; Y \mid Q_{c}, Q_{p}, W_{c}\right) \\
R_{1}<R I\left(Q_{p} ; Z \mid Q_{c}\right) \\
R_{2}<R I\left(X ; Z \mid W_{c}\right) \\
D_{S} \geq \mathbb{E} d_{S}\left(S, \tilde{S}\left(A_{c}, A_{p}\right)\right) \\
D_{U} \geq \mathbb{E} d_{U}\left(U, \tilde{U}\left(A_{c}, A_{p}, B_{c}, B_{p}\right)\right) \\
\Delta_{S} \leq H(S)-R_{a c}-R_{a p}+R_{q p} \\
\quad+(R+\epsilon)\left(H(Z \mid X)-H\left(Z \mid Q_{c}\right)\right)-\epsilon \\
\Delta_{U} \leq H(U)-R_{b c}-R_{b p}+R_{w p}-R_{q c} \\
\quad+(R+\epsilon)\left(H(Z \mid X)-H\left(Z \mid Q_{c}, W_{c}\right)\right)-\epsilon \\
\Delta_{S U} \leq H(S, U)-R_{a c}-R_{b c}-R_{a p}-R_{b p}+R_{q p}+R_{w p} \\
\quad+R_{1}+R_{2}+(R+\epsilon)\left(H(Z \mid X)-H\left(Z \mid Q_{c}, W_{c}\right)\right)-\epsilon
\end{array}\right.
$$

The above system of inequalities can be reduced to the following system:

$$
\begin{aligned}
& \left\{\begin{array}{l}
I\left(S ; A_{c}\right)<R I\left(Q_{c} ; Y\right), \\
I\left(S ; A_{c}, A_{p}\right)<R I\left(Y ; Q_{c}, Q_{p}\right),
\end{array}\right. \\
& I\left(U ; B_{c} \mid S, A_{c}\right)<R I\left(W_{c} ; Y \mid Q_{c}\right), \\
& I\left(U ; B_{c} \mid S, A_{c}\right)+I\left(U ; B_{p} \mid S, A_{c}, A_{p}, B_{c}\right)< \\
& <R\left[I\left(W_{c} ; Y \mid Q_{c}\right)+I\left(X ; Y \mid Q_{c}, Q_{p}, W_{c}\right)\right] \\
& D_{S} \geq \mathbb{E} d_{S}\left(S, \tilde{S}\left(A_{c}, A_{p}\right)\right), \\
& D_{U} \geq \mathbb{E} d_{U}\left(U, \tilde{U}\left(A_{c}, A_{p}, B_{c}, B_{p}\right)\right), \\
& \Delta_{S} \leq H(S \mid A c, A p)+R(H(Z \mid X)-H(Z \mid Q c)) \\
& +R I(Q p ; Y \mid Q c), \\
& \Delta_{U} \leq H(U)-I\left(A_{c}, A_{p} ; S\right)-I\left(B_{c} ; U \mid A_{c}\right) \\
& -I\left(B_{p} ; U \mid S, A_{c}, A_{p}, B_{c}\right)+R H(Z \mid X) \\
& -R H\left(Z \mid Q_{c}, W_{c}\right)+R I\left(Q_{p} ; Y \mid Q_{c}\right) \\
& +R I\left(X ; Y \mid Q_{c}, Q_{p}, W_{c}\right), \\
& \Delta_{S U} \leq H(S, U)-I\left(S ; A_{c}, A_{p}\right)-I\left(U ; B_{p} \mid S, A_{c}, A_{p}, B_{c}\right) \\
& -I\left(U ; B_{c} \mid S, A_{c}\right)+R(H(Z \mid X)-H(Z \mid Q c, W c)) \\
& +R I\left(Q_{p} ; Y \mid Q_{c}\right)+R I\left(X ; Y \mid Q_{c}, Q_{p}, W_{c}\right) .
\end{aligned}
$$

Appendix

Lemma 4

Lemma 4: For $U^{k} \rightarrow X^{n} \rightarrow Y^{n} \rightarrow Z^{n}$ Markov chain the following holds [8]:

$$
\begin{equation*}
I\left(U^{k} ; Z^{n}\right)-I\left(U^{k} ; Y^{n}\right) \geq n[I(X ; Z)-I(X ; Y)] \tag{46}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
& I\left(U^{k} ; Y^{n}\right)=\sum_{i=1}^{n} I\left(U^{k} ; Y_{i} \mid Y^{i-1}\right) \\
& I\left(U^{k} ; Y_{i} \mid Y^{i-1}\right)=I\left(U^{k}, \tilde{Z}^{i+1} ; Y_{i} \mid Y^{i-1}\right) \\
& \quad-I\left(\tilde{Z}^{i+1} ; Y_{i} \mid Y^{i-1}, U^{k}\right) \\
& =I\left(U^{k} ; Y_{i} \mid Y^{i-1}, \tilde{Z}^{i+1}\right) \\
& \quad+I\left(\tilde{Z}^{i+1} ; Y_{i} \mid Y^{i-1}\right)-I\left(\tilde{Z}^{i+1} ; Y_{i} \mid U^{k}, Y^{i-1}\right)
\end{aligned}
$$

where $\tilde{Z}^{i}=\left(Z_{i}, Z_{i+1}, \ldots, Z_{n}\right)$. Following the same steps for $I\left(U^{k} ; Z^{n}\right)$ we have:

$$
\begin{aligned}
& I\left(U^{k} ; Y^{n}\right)=\sum_{i=1}^{n} A+\sum_{i=1}^{n} B-\sum_{i=1}^{n} C, \\
& I\left(U^{k} ; Z^{n}\right)=\sum_{i=1}^{n} D+\sum_{i=1}^{n} F-\sum_{i=1}^{n} G
\end{aligned}
$$

where:

$$
\begin{aligned}
& A=I\left(U^{k} ; Y_{i} \mid Y^{i-1}, \tilde{Z}^{i+1}\right), \\
& B=I\left(\tilde{Z}^{i+1} ; Y_{i} \mid Y^{i-1}\right), \\
& C=I\left(\tilde{Z}^{i+1} ; Y_{i} \mid U^{k}, Y^{i-1}\right), \\
& D=I\left(U^{k} ; Z_{i} \mid Y^{i-1}, \tilde{Z}^{i+1}\right), \\
& F=I\left(Y^{i-1} ; Z_{i} \mid \tilde{Z}^{i+1}\right), \\
& G=I\left(Y^{i-1} ; Z_{i} \mid \tilde{Z}^{i+1} U^{k}\right) .
\end{aligned}
$$

Due to Csiszár Sum Identity [16] we have:

$$
\begin{aligned}
& \sum_{i=1}^{n} B=\sum_{i=1}^{n} F, \\
& \sum_{i=1}^{n} C=\sum_{i=1}^{n} G .
\end{aligned}
$$

Then:

$$
\begin{align*}
& I\left(U^{k} ; Z^{n}\right)-I\left(U^{k} ; Y^{n}\right)=\sum_{i=1}^{n} I\left(U^{k} ; Z_{i} \mid Y^{i-1}, \tilde{Z}^{i+1}\right)- \\
& \quad-\sum_{i=1}^{n} I\left(U^{k} ; Y_{i} \mid Y^{i-1}, \tilde{Z}^{i+1}\right) \\
& =n I\left(U^{k} ; Z \mid V\right)-n I\left(U^{k} ; Y \mid V\right) \tag{47}
\end{align*}
$$

where J is uniform r.v. with alphabet $\mathcal{J}=\{1, \ldots, n\}, Z=Z_{J}$, and $V=\left(Y^{i-1}, \tilde{Z}^{i+1}, J\right)$.

Due to $V \rightarrow W \rightarrow X \rightarrow Y \rightarrow Z$ Markov chain, where $W=\left(V, U^{k}\right)$, we can rewrite 47) as,

$$
\begin{aligned}
& n I(W ; Z \mid V)-n I(W ; Y \mid V)=n[I(W ; Z)-I(V ; Z)- \\
& \quad-I(W ; Y)+I(V ; Y)] \\
& =n[I(X ; Z)-I(X ; Z \mid W)-I(V ; Z)- \\
& \quad-I(X ; Y)+I(X ; Y \mid W)+I(V ; Y)] \\
& \geq \\
& \quad \text { 48] } n[I(X ; Z)-I(X ; Y)]
\end{aligned}
$$

where the last inequality holds since the channel is less noisy:

$$
\begin{equation*}
I(V ; Y) \geq I(W ; Z) \text { and } I\left(X ; Y \mid U^{k}\right) \geq I\left(X ; Z \mid U^{k}\right) \tag{48}
\end{equation*}
$$

The proof is complete.

REFERENCES

[1] Z. Qin, X. Tao, J. Lu, W. Tong, and G. Y. Li, "Semantic communications: Principles and challenges," 2022.
[2] D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, "Beyond transmitting bits: Context, semantics, and task-oriented communications," IEEE Journal on Selected Areas in Communications, vol. 41, no. 1, pp. 5-41, 2023.
[3] T. M. Getu, G. Kaddoum, and M. Bennis, "A survey on goal-oriented semantic communication: Techniques, challenges, and future directions," IEEE Access, vol. 12, pp. $51223-51274,2024$.
[4] Z. Yang, M. Chen, G. Li, Y. Yang, and Z. Zhang, "Secure semantic communications: Fundamentals and challenges," 2023.
[5] J. Liu, S. Shao, W. Zhang, and H. V. Poor, "An indirect rate-distortion characterization for semantic sources: General model and the case of gaussian observation," 2022.
[6] J. Liu, W. Zhang, and H. V. Poor, "A rate-distortion framework for characterizing semantic information," in 2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 2894-2899.
[7] A. D. Wyner, "The wire-tap channel," The Bell System Technical Journal, vol. 54, no. 8, pp. 1355-1387, 1975.
[8] I. Csiszar and J. Korner, "Broadcast channels with confidential messages," IEEE Transactions on Information Theory, vol. 24, no. 3, pp. 339-348, 1978.
[9] H. Yamamoto, "Rate-distortion theory for the shannon cipher system," IEEE Transactions on Information Theory, vol. 43, no. 3, pp. 827-835, 1997.
[10] N. Merhav, "Shannon's secrecy system with informed receivers and its application to systematic coding for wiretapped channels," in 2007 IEEE International Symposium on Information Theory, 2007, pp. 2481-2485.
[11] J. Villard, P. Piantanida, and S. Shamai, "Secure transmission of sources over noisy channels with side information at the receivers," IEEE Transactions on Information Theory, vol. 60, no. 1, pp. 713-739, 2014.
[12] Y. E. Sagduyu, T. Erpek, S. Ulukus, and A. Yener, "Is semantic communication secure? a tale of multi-domain adversarial attacks," IEEE Communications Magazine, vol. 61, no. 11, pp. 50-55, 2023.
[13] M. Shen, J. Wang, H. Du, D. Niyato, X. Tang, J. Kang, Y. Ding, and L. Zhu, "Secure semantic communications: Challenges, approaches, and opportunities," IEEE Network, pp. 1-1, 2023.
[14] T.-Y. Tung and D. Gündüz, "Deep joint source-channel and encryption coding: Secure semantic communications," in ICC 2023 - IEEE International Conference on Communications, 2023, pp. 5620-5625.
[15] Q. Qin, Y. Rong, G. Nan, S. Wu, X. Zhang, Q. Cui, and X. Tao, "Securing semantic communications with physical-layer semantic encryption and obfuscation," 2023.
[16] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge University Press, 2011.
[17] A. Gamal and T. Cover, "Achievable rates for multiple descriptions," IEEE Transactions on Information Theory, vol. 28, no. 6, pp. 851-857, 1982.
[18] Y. Liang, H. V. Poor, and S. S. (Shitz), "Information theoretic security," Foundations and Trends ${ }^{\circledR}$ in Communications and Information Theory, vol. 5, no. 4-5, pp. 355-580, 2009. [Online]. Available: http://dx.doi.org/10.1561/0100000036

[^0]: This research was supported by the $5 / 6 \mathrm{GIC}$, Institute for Communication Systems (ICS), University of Surrey.

