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Abstract—Semantic communication is an emerging feature for
future networks like 6G, which emphasizes the meaning of the
message in contrast to the traditional approach where the mean-
ing of the message is irrelevant. Yet, the open nature of a wireless
channel poses security risks for semantic communications. In
this paper, we derive information-theoretic limits for the secure
transmission of semantic source over wiretap channel. Under
separate equivocation and distortion conditions for semantics and
observed data, we present the general outer and inner bounds
on the rate-distortion-equivocation region. We also reduce the
general region to a case of Gaussian source and channel and
provide numerical evaluations.

Index Terms—Semantic Communications, Wiretap Channel,
Rate-Distortion-Equivocation Region.

I. INTRODUCTION

Semantic communications represents a promising approach
for the next generation of wireless networks, particularly
within the realm of 6G technology. In this paradigm, the se-
mantic content of messages is given significant consideration,
marking a departure from traditional communication methods
[1]–[3].

Despite its potential, wireless semantic communication still
faces substantial security challenges due to the inherent open-
ness of communication channels, leaving them susceptible to
eavesdropping. In addition, semantics can carry more sensitive
information. Thus, the security requirement could be different
for the semantics compared with the observed source. This
makes the problem challenging and novel, requiring attention
and exploration by researchers [3], [4].

In this work, we derive the information-theoretic limits
governing the secrecy of semantic communication. To achieve
this, we model a source as the intrinsic (semantic) part and
extrinsic (observed) part, building upon previous work that
introduced this source model [5], [6]. To illustrate this model
with a concrete example, a semantic part may be represented
by a textual description of an image, coupled with an observed
part generated by a neural network in response to the text
prompt.

Our research centers on a wiretap channel scenario, wherein
we consider a passive eavesdropper as the adversary. Within
the model of wiretap channel and general semantic source
(which is modeled as two correlated random variables (r.v.s)
with joint distribution), we analyze the trade-off between
equivocation and distortion for the semantic and observed
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components separately, particularly in the context of joint
source-channel coding (JSCC). Specifically, we derive inner
and outer bounds for rate, equivocations, and distortions pairs.

Related works. Wyner’s work in 1975 laid the groundwork
for secure communication over wiretap channels [7], while
subsequent advancements generalized this model to broadcast
channels with common and confidential messages [8]. In [9],
the wiretap model is extended to incorporate JSCC and the
one-time pad technique, bringing an important result that a
separation principle holds: first a rate-distortion achieving code
can be applied, then one-time pad can be applied for a given
key-rate, and it is finished by using a wiretap code. Further
extensions to the JSCC model, including scenarios with side
information at the decoders, have been explored in [10], [11].
The lossy compression aspect of semantic sources was covered
in [5].

Challenges of secure semantic communications from a
machine learning (ML) perspective were covered in [12],
[13]. Authors of [14] proposed a way for encrypting semantic
data in a deep learning JSCC scenario. Also, encryption
and obfuscation algorithm for semantic communication was
presented in [15].

To the best of our knowledge, there is no work on secure
JSCC of semantic sources over wiretap channel with passive
eavesdroppers under separate equivocation and distortion con-
ditions for semantics and observed source.

II. PROBLEM STATEMENT

Consider a model shown in Fig. 1, where a transmitter
wishes to send the semantic and observed data to a receiver
(Bob), subject to some distortion constraints while keeping
them hidden from an eavesdropper (Eve) with some equiv-
ocation constraints. Thus, the source consists of intrinsic
(semantics) state and extrinsic observation which are modeled
as a sequence of i.i.d. r.v.s Sk and Uk, respectively. They
are correlated through joint distribution pS,U (s, u) defined on
product alphabet S × U .

Main (Bob’s) and wiretap (Eve’s) channels are modeled as
a discrete memoryless channel (DMC) with input X on X
and outputs Y on Y and Z on Z given transition probability
pY,Z|X . In this work, we consider a degraded channel model:
pY,Z|X = pY |XpZ|X .

There are two cases for encoder input. In the first case, the
encoder has access to both semantics sk and observation uk,
while in the second case, the encoder is only given uk and
has no access to a semantic sample sk.
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Fig. 1. System Model

The case 1 encoder f1 : Sk × Uk × K → Xn maps the
semantic and observed sequence and a key to a channel input
sequence Xn. The case 2 encoder f2 : Uk ×K → Xn, acts
only on the observed sequence and key.

The transmitter and receiver have access to a shared key
which is modeled as random variable K with alphabet K.
This key is used to secure part of the data with a one-time
pad technique.

We define decoding function as f̂ : Y n × K → (Ŝk, Ûk)
which maps Bob’s received signal Y n and the shared key to
estimated semantic and observed sources Ŝk and Ûk defined
on alphabets Ŝ, Û .

From the decoder function definition we have:

H(Ŝk, Ûk|Y n,K) = 0. (1)

Additionally, we set distortion measure for semantics dS :
S × Ŝ → R+ and for observation dU : U × Û → R+.
We follow the same naming for the block average distor-
tion: dS(s

k, ŝk) = 1
k

∑k
i=1 dS(si, ŝi) and dU (u

k, ûk) =
1
k

∑k
i=1 dU (ui, ûi).

The goal of this work is to characterize the following region:

R .
= {(R,Rk, DS , DU ,∆S ,∆U ,∆SU ) is achievable},

where a tuple (R,Rk, DS , DU ,∆S ,∆U ,∆SU ) is achievable
if there exist source-channel (k, n)-code (f1, f̂) (or (f2, f̂) for
the second encoder input type) s.t.:

n/k ≤ R+ ϵ, (2)
1

k
log |K| ≤ Rk + ϵ, (3)

E dS(S
k, Ŝk) ≤ DS + ϵ, (4)

E dU (U
k, Ûk) ≤ DU + ϵ, (5)

1

k
H(Sk|Zn) ≥ ∆S − ϵ, (6)

1

k
H(Uk|Zn) ≥ ∆U − ϵ, (7)

1

k
H(Sk, Uk|Zn) ≥ ∆SU − ϵ, (8)

are satisfied for any ϵ > 0. Condition (2) restricts channel
expansion ratio (inverse of rate), that is channel uses per
source symbol. Equation (3) restricts the rate of the key
which is used to protect data with the one-time pad technique.
Average distortion for semantics and observation is restricted

by conditions (4) and (5). Equivocation for semantics and
observation as well as joint one, restricted by conditions (6),
(7) and (8), respectively.

III. PRELIMINARIES

In this section, we provide some useful lemmas.
Lemma 1 ( [16, Theorem 3.5]): The rate-distortion function

for discrete memoryless source (DMS) U has the following
form:

RU (DU ) = inf
pÛ|U

E dU (U,Û)≤DU

I(U ; Û).

To meet distortion conditions optimally in terms of rate for
both semantics and observation, we can employ the multiple-
description rate-distortion function.

Definition 1: The multiple-description rate-distortion func-
tion:

R(DS , DU )
.
= inf{R : (R,DS , DU ) is achievable},

where tuple (R,DS , DU ) is considered to be achievable if
there exists a code such that (2), (4) and (5) are satisfied for
any ϵ > 0.

Lemma 2 ( [17, Theorem 2]):

R(DS , DU ) = inf
pŜ,Û|S,U

E dU (U,Û)≤DU

E dS(S,Ŝ)≤DS

I(S,U ; Ŝ, Û),

Lemma 3 ( [5, Theorem 1]): The case 2 of the encoder input
rate-distortion function can be rewritten as follows:

R(DS , DU ) = inf
pŜ,Û|U

E dU (U,Û)≤DU

E d̂S(U,Ŝ)≤DS

I(U ; Ŝ, Û),

where d̂S(U, Ŝ) =
∑

s∈S pS|U (s|U)dS(s, Ŝ) is a modified
distortion metric.

IV. MAIN RESULT

In this section, we present the general outer and inner bound
for a system model defined in Section II.

Theorem 1: (Converse). For both cases of encoder input,
any achievable tuple (R,Rk, DS , DU ,∆S ,∆U ,∆SU ) must
satisfy: 

RU (DU ) ≤ RI(X;Y ), (9)
RS(DS) ≤ RI(X;Y ), (10)
R(DS , DU ) ≤ RI(X;Y ), (11)
∆U ≤ Rk +R[I(X;Y )− I(X;Z)]

−RU (DU ) +H(U), (12)
∆S ≤ Rk +R[I(X;Y )− I(X;Z)]

−RS(DS) +H(S), (13)
∆SU ≤ Rk +R[I(X;Y )− I(X;Z)]

−R(DS , DU ) +H(S,U). (14)

The proof of Theorem 1 is provided in the Appendix.
One can see that the equivocation in the converse region

consists of three basic terms. The first one, Rk, shows how



much equivocation we achieve using the one-time pad tech-
nique with a key rate Rk. The second one is the secrecy
capacity (R[I(X;Y ) − I(X;Z)]). And the last one (i.e.
H(U)− RU (DU )), describes the part of equivocation due to
loss in source encoding.

Theorem 2: (Inner bound). When the transmitter has ac-
cess to both semantics and observation (case 1 of encoder
input), a tuple (R,DS , DU ,∆S ,∆U ,∆SU ) is achievable if
there exist auxiliary r.v.s Ac, Ap, Bc, Bp, Qc, Qp,Wc, X with
joint distribution p(ac, ap, bc, bp, qc, qp, wc, x) and functions
S̃ : Ak

c × Ak
p → Ŝk and Ũ : Ak

c × Ak
p × Bk

c × Bk
p → Ûk

such that the following inequalities hold:

I(S;Ac) < RI(Qc;Y ),

I(S;Ac, Ap) < RI(Y ;Qc, Qp),

I(U ;Bc|S,Ac) < RI(Wc;Y |Qc),

I(U ;Bc|S,Ac) + I(U ;Bp|S,Ac, Ap, Bc) <

< R[I(Wc;Y |Qc) + I(X;Y |Qc, Qp,Wc)]

DS ≥ E dS(S, S̃(Ac, Ap)),

DU ≥ E dU (U, Ũ(Ac, Ap, Bc, Bp)),

∆S ≤ H(S|Ac,Ap) +R(H(Z|X)−H(Z|Qc))

+RI(Qp;Y |Qc),

∆U ≤ H(U)− I(Ac, Ap;S)− I(Bc;U |Ac)

−I(Bp;U |S,Ac, Ap, Bc) +RH(Z|X)

−RH(Z|Qc,Wc) +RI(Qp;Y |Qc)

+RI(X;Y |Qc, Qp,Wc),

∆SU ≤ H(S,U)− I(S;Ac, Ap)− I(U ;Bp|S,Ac, Ap, Bc)

−I(U ;Bc|S,Ac) +R(H(Z|X)−H(Z|Qc,Wc))

+RI(Qp;Y |Qc) +RI(X;Y |Qc, Qp,Wc).

Achievability proof outline. Consider a codebook with
source, channel, and wiretap codes. Wiretap code is embedded
in the channel encoder and introduces additional random noise
to cover private parts of the data from the eavesdropper. We
introduce source encoder auxiliary r.v.s Ac, Ap, Bc, Bp, and
channel encoder auxiliary r.v.s Qc, Qp, Wc for codebook
generation. The r.v.s Ac and Ap reflect the distribution of i.i.d.
codewords (denoted by akc and akp) for the common and private
parts of semantics, while Bc and Bp are used for the common
and private parts of the observation, for codewords denoted as
bkc and bkp , correspondingly.

Then we use a technique similar to superposition coding:
for each sequence akc we generate akp and bkc , then for each
akc , akp , bkc we generate bkp . All of these sequences are selected
from typical sets.

The channel encoder codebook has a layered structure
related to the source encoder. That is, we generate sequence
qnc from Qc distribution, for each qnc we generate qnp and wn

c

using Qp and Wc, given qnc , qnp , wn
c we generate xn according

to X . Sequences qnp and xn additionally covered with noise.
To encode data, we choose source encoder sequences that

are jointly typical with encoder input. Then using the mapping,
we obtain the channel code sequences and transmit xn. The

decoding is based on the joint typically with channel output
yn.

For this codebook and encoding/decoding procedure, we
show that the probability of encoding/decoding errors goes
to zero under some rate conditions with k → ∞.

Finally, we bound the average distortion and equivocations.
For the complete proof of achievability see Appendix.

V. GAUSSIAN CASE

In this section, we consider the Gaussian source and channel
with quadratic distortion measure.

A. System model.

Let source be distributed according to normal distribution
(S,U) ∼ N (0,K) with covariance matrix,

K =

(
PS σSU

σSU PU

)
.

We set distortion measure ds(x, y) = du(x, y) = (x − y)2,
and we model the channel as,

E(X2) ≤ P,

Y = X +N1, N1,∼ N (0, PN1
),

Z = Y +N2, N2,∼ N (0, PN2
),

where P is the power constraint for channel input, PN1
is the

noise power for the main channel, and PN2
is the noise power

for the eavesdropper channel, we define PN = PN1
+ PN2

.

B. Rate-equivocation-distortion region

For the Gaussian system model, we derive the following
outer bound from Theorem 1.

Proposition 1: (Converse). In the case when the encoder has
access only to observation uk (case 2 of encoder input), for
the Gaussian source and channel, to fulfill conditions (2)-(8)
any code must satisfy:

DS ≥ η,

DU ≥ PU

(
PN1

P+PN1

)R

,

DS ≥ PS

(
PN1

P+PN1

)R

,

max
[
PU

DU
,

σ2
SU

PU (DS−η)

]
≤

(
1 + P

PN1

)R

,

∆U ≤ Rk +RCs +
1
2 log(2πeDU ),

∆S ≤ Rk +RCs +
1
2 log(2πeDS),

∆SU ≤ Rk +RCs +
1
2 log

[
(2πe)2|K|

]
−

− 1
2 max

[
log PU

DU
, log

σ2
SU

PU (DS−η)

]
,

where η = PS − σ2
SU

PU
, and Cs = 1

2 log
PN (P+PN1

)

PN1
(P+PN ) is the

secrecy channel capacity.
Proposition 2: (Inner bound). When the encoder has access

to both uk and sk (case 1 of encoder input), for the Gaussian



source and channel, the tuple (R,DS , DU ,∆S ,∆U ,∆SU ) is
achievable if:

(
1 +

α2
1Ps

β2
1PÃp

)
≤

(
1 +

PQc+PQ̃p

PW̃c
+PX̃+PN1

)R

,(
1 +

α2
2PU

β2
2PB̃p

)
≤

(
1 +

PW̃c

PX̃+PQ̃p
+PN1

)R (
1 +

PX̃

PN1

)R

,

DS ≥ PS − α2
1PS

(α2
1PS+β2

1PÃp
)2
,

DU ≥ PU − (α2
2PU+γσSU )2

PU (α2
2PU+γ2PS+2α2γσSU )2

,

∆S ≤ R
2 log

(
P+PN1

PW̃c
+PX̃+PN1

PN

P−PQc+PN

)
+ 1

2 log

(
2πe

β2
1PSPÃp

α2
1PS+β2

1PÃp

)
,

∆U ≤ 1
2 log

(
β2
2PU

β2
1PS

PB̃p

PÃp

α2
1PS+β2

1PÃp

α2
2PU+β2

2PB̃p

)
+R

2 log

(
PN1

+PN2

PQ̃p+P
X̃

+PN1
+PN2

P+PN1

PW̃c
+PX̃+PN1

PX̃+PN1

PN1

)
,

∆SU ≤ 1
2 log

(
(2πe)2|K|

β2
1PÃp

α2
1PS+β2

1PÃp

β2
2PB̃p

α2
2PU+β2

2PB̃p

)
+R

2 log

(
PN

PQ̃p+P
X̃

+PN

(
1 +

PQ̃p

PW̃c
+PX̃+PN1

)(
1 +

PX̃

PN1

))
.

The inner bound is derived from Theorem 2 by choosing the
following auxiliary r.v.s. The source encoder variables: Ac =
∅, Bc = ∅, Ap = α1S+β1Ãp, where Ãp ∼ N (0, PÃp

) and
Bp = α2U + β2B̃p + γS, given B̃p ∼ N (0, PB̃p

).
The channel encoder variables:

Qc ∼ N (0, PQc),

Qp = Qc + Q̃p, Q̃p ∼ N (0, PQ̃p
),

Wc = Qc + W̃c, W̃c ∼ N (0, PW̃c
),

X = Qc + W̃c + Q̃p + X̃, X̃ ∼ N (0, PX̃),

where P = PX̃ + PQc + PW̃c
+ PQ̃p

.
Function S̃ defined as minimum mean square error (MMSE)

estimator of S from Ac and Ap, and Ũ is the MMSE estimator
of U from Bc, Bp.

C. Numerical evaluation

Fig. 2 shows outer bound obtained numerically from Propo-
sition 1 for the case of ∆S = H(S) and ∆U = H(U).
Fig. 3 shows the inner bound (Proposition 2) for the same
parameters but for case 1 encoder input. The other parameters
are: PS = 0.3, PU = 1, σSU = 0.8, P = 1, PN1 = 0.10,
PN2

= 0.40.

VI. CONCLUSION

This paper presents an information-theoretic framework for
the secure transmission of semantic sources over wiretap chan-
nel. We characterize the rate-distortion-equivocation region
to see the theoretically possible trade-off between distortion
and secrecy requirements for semantic communications. We
present bounds on a general inner and outer rate-distortion-
equivocation region and reduce them to the Gaussian source
and channel model to bring closer a general model to a
practical wireless communication setup.
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APPENDIX
PROOF OF THEOREM 1

The following set of inequalities will be used in our proof:

I(Xn;Y n) ≤
n∑

i=1

I(Xi;Yi) ≤ nI(X;Y ), (15)

1

k
I(Uk; Ûk) ≥ 1

k

k∑
i=1

I(Ui; Ûi) ≥ RU (DU + ϵ), (16)

1

k
I(Sk; Ŝk) ≥ 1

k

k∑
i=1

I(Si; Ŝi) ≥ RS(DS + ϵ), (17)

k∑
i=1

I(Si; Ŝi) ≤
k∑

i=1

I(Ui; Ûi) ≤
n∑

i=1

I(Xi;Yi), (18)

where ϵ > 0.
First, we proof inequality in (9) as:

RU (DU + ϵ) ≤(16) 1

k

k∑
i=1

I(Ui; Ûi) ≤(18) 1

k

n∑
i=1

I(Xi;Yi)

≤(15) n

k
I(X;Y ) ≤(2) (R+ ϵ)I(X;Y ). (19)



To obtain (10), we follow the same steps as in the proof of
(9) with (17) instead of (16).

The proof of (12) is as follows:

k(Rk + ϵ) ≥(3) log |K| ≥ H(K) ≥ H(K|Y n)

≥ H(K|Y n)−H(K|Y nÛk)

= H(K,Y n)−H(Y n)

−H(K,Y n, Ûk) +H(Y n, Ûk)

= H(Ûk|Y n)−H(Ûk|Y nK) =(1) H(Ûk|Y n)

≥(7) H(Ûk|Y n)− [H(Uk|Zn)− k(∆U − ϵ)]

= H(Ûk, Y n)−H(Y n)−H(Uk, Zn)

+H(Zn) + k(∆U − ϵ)

= H(Y n|Ûk) +H(Ûk)−H(Y n)

−H(Zn|Uk)−H(Uk) +H(Zn)

+ k(∆U − ϵ)

= I(Uk;Zn)− I(Ûk;Y n) +H(Ûk|Uk)

−H(Uk) + I(Uk; Ûk) + k(∆U − ϵ). (20)

The first three terms in (20) can be rewritten as follows:

I(Uk;Zn)− I(Ûk;Y n) +H(Ûk|Uk) =

= I(Uk;Zn)−H(Y n) +H(Y n|Ûk) +H(Ûk|Uk)

≥ I(Uk;Zn)−H(Y n) +H(Y n|ÛkUk)

+H(Ûk|Uk)

= I(Uk;Zn)−H(Y n) +H(Y n, Ûk|Uk)

≥ I(Uk;Zn)− I(Uk;Y n).

With the help of Lemma 1 (see Appendix), we have:

I(Uk;Zn)− I(Uk;Y n) ≥ n[I(X;Z)− I(X;Y )]. (21)

Substituting (21) to (20) we obtain:

k(Rk + ϵ) ≥(20,16) n[I(X;Z)− I(X;Y )]− kH(U)+

+ kRU (DU + ϵ) + k(∆U − ϵ) (22)

Rk + 2ϵ ≥ n

k
[I(X;Z)− I(X;Y )]−H(U)+

+RU (DU + ϵ) + ∆U

≥(2) (R+ ϵ)[I(X;Z)− I(X;Y )]−H(U)+

+RU (DU + ϵ) + ∆U . (23)

To prove (13), we skip some steps due to its similarity with
steps in proof of (12) (we use Sk instead of Uk).

k(Rk + ϵ) ≥ ... ≥ H(Ŝk|Y n)−H(Ŝk|Y nK)

≥(6) H(Ŝk|Y n)− [H(Sk|Zn)− k(∆S − ϵ)]

= I(Sk;Zn)− I(Ŝk;Y n)−H(Sk)+

+ I(Sk; Ŝk) +H(Ŝk|Sk) + k(∆S − ϵ)

≥ ... ≥ n[I(X;Z)− I(X;Y )]− kH(S)+

+ I(Sk; Ŝk) + k(∆S − ϵ) (24)

≥(17) n[I(X;Z)− I(X;Y )]− kH(S)+

+ kRS(DS + ϵ) + k(∆S − ϵ). (25)

Now we proceed with the proof of (11). Our proof will rely
on the following inequality:

1

k
I(Sk, Uk; Ŝk, Ûk) ≥ 1

k

k∑
i=1

I(Si, Ui; Ŝi, Ûi) ≥ R(DS , DU ).

(26)

Thus, (11):

R(DS + ϵ,DU + ϵ) ≤(26) 1

k

k∑
i=1

I(Si, Ui; Ŝi, Ûi)

≤(a) 1

k

n∑
i=1

I(Xi;Yi) ≤(15) n

k
I(X;Y )

≤(2) (R+ ϵ)I(X;Y ), (27)

where (a) is due to the data processing inequality.
Finally, the proof of (14) is,

k(Rk + ϵ) ≥ ... ≥ H(K|Y n)−H(K|Y n, Ŝk, Ûk)

= H(Ŝk, Ûk|Y n)−H(Ŝk, Ûk|Y nK) =(1) H(Ŝk, Ûk|Y n)

≥(8) H(Ŝk, Ûk|Y n)− [H(Sk, Uk|Zn)− k(∆SU − ϵ)]

= H(Ŝk, Ûk, Y n)−H(Y n)−H(Sk, Uk, Zn)

+H(Zn) + k(∆SU − ϵ)

= H(Y n|Ŝk, Ûk) +H(Ŝk, Ûk)−H(Y n)

−H(Zn|Sk, Uk)−H(Sk, Uk) +H(Zn)

+ k(∆SU − ϵ)

= I(Sk, Uk;Zn)− I(Ŝk, Ûk;Y n) +H(Ŝk, Ûk|Sk, Uk)

−H(Sk, Uk) + I(Sk, Uk; Ŝk, Ûk) + k(∆SU − ϵ). (28)

The first three terms in (28) are,

I(Sk, Uk;Zn)− I(Ŝk, Ûk;Y n) +H(Ŝk, Ûk|Sk, Uk)

≥ n[I(X;Z)− I(X;Y )].

Substituting in (28), we have:

k(Rk + ϵ) ≥(26) n[I(X;Z)− I(X;Y )]− kH(S,U)

+ kR(DS , DU ) + k(∆SU − ϵ),

Rk + 2ϵ ≥ (R+ ϵ)[I(X;Z)− I(X;Y )]−H(S,U)

+R(DS , DU ) + ∆SU .

Letting ϵ → 0 completes the converse proof.

APPENDIX
PROOF OF THEOREM 2

Now we consider achievability proof for case 1 of encoder
input (encoder has access to both uk and sk).

Source codebook:
We introduce 4 r.v.s Ac, Ap and Bc, Bp defined on alphabets

Ac, Ap and Bc, Bp. Random variables Ac and Bc correspond
to a codebook distribution of a common message part for
semantics and source. While Ap and Bp represent private
a part of semantics and source. Let Rac, Rap, Rbc, Rbp be
positive rates.



To construct a source codebook, we start by randomly and
independently picking 2kRac typical T k

δ (Ac) sequences from
Ac distribution. We call such sequence akc (sac), where sac ∈
[1, 2, ..., 2kRac ]

For each sequence akc (sac) we pick 2kRap typical
T k
δ (Ap|akc (sac)) sequences from Ap distribution and name it

akp(sac, sap), sap ∈ [1, 2, ..., 2kRap ].
For each akc (sac) we pick 2kRbc sequences bkc (sac, sbc) ∈

T k
δ (Bc|akc (sac)), sbc ∈ [1, 2, ..., 2kRbc ].
We finish codebook by picking for each previous

sequences, 2kRbp sequences bkp(sac, sap, sbc, sbp) ∈
T k
δ (Bp|akc (sac), akp(sac, sap), bkc (sac, sbc)), sbp ∈

[1, 2, ..., 2kRbp ].
This codebook is revealed to Bob and Eve.
Channel codebook:
Let Qc, Qp and Wc be r.v. for channel codebook generation

defined on Qc, Qp, Wc. Let Rqc, Rqp, Rwc, Rwp, R1, R2 be
positive rates s.t:

R1 < (R+ ϵ)I(Qp;Z|Qc),

R2 < (R+ ϵ)I(X;Z|Wc).

From T n
δ (Qc) we pick 2kRqc sequences named qnc (rqc), where

rqc ∈ [1, 2, ..., 2kRqc ] is a index of a sequence.
For each qnc (rqc) we pick 2k(Rqp+R1) sequences

qnp (rqc, rqp, r1) ∈ T n
δ (Qp|qnc (rqc)).

Also for each qnc (rqc) we randomly pick 2kRwc sequences
wn

c (rqc, rwc) ∈ T n
δ (Wc|qnc (rqc)).

And, finally, for each qnc (rqc), q
n
p (rqc, rqp, r1), w

n
c (rqc, rwc)

we pick 2k(Rwp+R2) sequences xn(rqc, rqp, r1, rwc, rwp, r2) ∈
T n
δ (X|qnc (rqc), qnp (rqc, rqp, r1), wn

c (rqc, rwc)).
This codebook is revealed to Bob and Eve. Further to

shorten notations we will skip indices in sequence names.
Source encoding:
We have (sk, uk) as encoder input. We search for the first

jointly typical sequence akc s.t. (akc , s
k) ∈ T k

δ (Ac, S).
Then, given akc , we find first akp sequence s.t. (akp, s

k) ∈
T k
δ (Ap, S|akc ).
Also, given codeword akc , we proceed by finding first

codeword bkc s.t. (bkc , u
k) ∈ T k

δ (Bc, U |S, akc ).
And, given all previous codewords akc , akp and bkc ,

we finish source encoding by finding first (bkp, u
k) ∈

T k
δ (Bp, U |S, akc , akp, bkc ).
Channel encoding:
We choose arbitrary one-to-one mapping

(rqc, rqp, rwc, rwp) = g(sac, sap, sbc, sbp) which is used
to map source indices to channel indices. We assume
that there exist mappings (rqc, rqp) = g1(sac, sap) and
(rwc, rwp) = g2(sbc, sbp).

Now, given channel indexes (rqc, rqp, rwc, rwp) as a re-
sult of mapping g, we sequentially select qnc , q

n
p , w

n
c , x

n,
from channel codebook. Alice transmit sequence xn .

=
xn(rqc, rqp, r1, rwc, rwp, r2), where r1 and r2 selected at ran-
dom with uniform distribution.

Decoding:
Bob receives yn. He sequentially searches in his codebook

for a codewords s.t.:

1) (qnc , y
n) ∈ T n

δ (Qc, Y ),
2) (qnp , y

n) ∈ T n
δ (Qp, Y |qnc ),

3) (wn
c , y

n) ∈ T n
δ (Wc, Y |qnc ),

4) (xn, yn) ∈ T n
δ (X,Y |qnc , qnp , wn

c ).
Then, given channel indexes (rqc, rqp, rwc, rwp), Bob us-
ing inverse mapping g−1 gets source decoder indexes
(sac, sap, sbc, sbp) and decodes:

ŝk = S̃(akc , a
k
p),

ûk = Ũ(akc , a
k
p, b

k
c , b

k
p),

where S̃ : Ak
c ×Ak

p → Ŝk and Ũ : Ak
c ×Ak

p×Bk
c ×Bk

p → Ûk

are functions.
Errors at encoding and decoding:
We consider the following events which correspond to errors

at the encoding or decoding stages.
Encoder errors:

E1
.
= {̸ ∃akc : (akc , s

k) ∈ T k
δ (Ac, S)},

E2
.
= {̸ ∃akp : (akp, s

k) ∈ T k
δ (Ap, S|akc )},

E3
.
= {̸ ∃bkc : (bkc , u

k) ∈ T k
δ (Bc, U |S, akc )},

E4
.
= {̸ ∃bkp : (bkp, u

k) ∈ T k
δ (Bp, U |S, akc , akp, bkc )}.

Decoder errors:

E5
.
= {∃q̂nc ̸= qnc : q̂nc , q

n
c ∈ T n

δ (Qc, Y )},
E6

.
= {∃q̂np ̸= qnp : q̂np , q

n
p ∈ T n

δ (Qp, Y |qnc )},
E7

.
= {∃ŵn

c ̸= wn
c : ŵn

c , w
n
c ∈ T n

δ (Wc, Y |qnc )},
E8

.
= {∃x̂n ̸= xn : x̂n, xn ∈ T n

δ (X,Y |qnc , qnp , wn
c )}.

We upper bound probability of an “error” event as follows:

Pr{E} = PE ≤
8∑

i=1

PEi
,

where PEi = Pr{Ei}.
Given k → ∞, it can be shown that:
1) if Rac > I(Ac;S)

then PE1 → 0,
2) if Rap > I(Ap;S|Ac)

then PE2
→ 0,

3) if Rbc > I(Bc;U |S,Ac)
then PE3

→ 0,
4) if Rbp > I(Bp;U |S,Ac, Ap, Bc)

then PE4 → 0,
5) if Rqc < (R+ ϵ)I(Qc;Y )

then PE5
→ 0,

6) if Rqp +R1 < (R+ ϵ)I(Qp;Y |Qc)
then PE6 → 0,

7) if Rwc < (R+ ϵ)I(Wc;Y |Qc)
then PE7

→ 0,
8) if Rwp +R2 < (R+ ϵ)I(X;Y |Qc, Qp,Wc)

then PE8
→ 0.

Analysis of expected distortion for semantics:



E ds

(
Sk, Ŝk

)
= E ds

(
Sk, f̂s(Y

n)
)

=(a) PE E
{
ds

(
Sk, f̂s(Y

n)
)
|E
}

+ PĒ E
{
ds

(
Sk, f̂s(Y

n)
)
|Ē
}

≤ PEdS,m + PĒ E
{
ds

(
Sk, f̂s(Y

n)
)
|Ē
}

=(b) PEdS,m + PĒ E
{
ds

(
Sk, S̃(Ak

c , A
k
p)
)
|Ē
}

≤(c) PEdS,m + PĒ(1 + ϵ1)E
{
ds

(
S, S̃(Ac, Ap)

)
|Ē
}

≤(d) PEdS,m + (1 + ϵ1)E ds

(
S, S̃(Ac, Ap)

)
,

where dS,m = maxC,Sk,Y n ds

(
Sk, f̂s(Y

n)
)

, (a) due to law

of total expectation, (b) because f̂s(Y
n) = S̃(Ak

c , A
k
p) given

no error occurs Ē , (c) due to typical average lemma and
(sk, akc , a

k
p) ∈ T k

δ (S,Ac, Ap), (d) due to E(X|A) ≤ EX
PA

.
We conclude that the following is sufficient to satisfy

distortion condition (4) for semantics:

DS ≥ E ds

(
S, S̃(Ac, Ap)

)
,

given k → ∞
Analysis of expected distortion for observation:

E du

(
Uk, Ûk

)
= E du

(
Uk, f̂u(Y

n)
)

=(a) PE E
{
du

(
Sk, f̂s(Y

n)
)
|E
}

+ PĒ E
{
du

(
Uk, f̂u(Y

n)
)
|Ē
}

≤ PEdU,m + PĒ E
{
du

(
Uk, f̂u(Y

n)
)
|Ē
}

=(b) PEdU,m + PĒ E
{
du

(
Uk, Ũ(Ak

c , A
k
p, B

k
c , B

k
p )
)
|Ē
}

≤(c) PĒ(1 + ϵ1)E
{
du

(
S, Ũ(Ak

c , A
k
p, B

k
c , B

k
p )
)
|Ē
}

+ PEdU,m

≤(d) PEdU,m + (1 + ϵ1)E du

(
U, Ũ(Ac, Ap, Bc, Bp)

)
,

where dU,m = maxC,Uk,Y n du

(
Uk, f̂u(Y

n)
)

, (a) due

to law of total expectation, (b) because f̂u(Y
n) =

Ũ(Ak
c , A

k
p, B

k
c , B

k
p ) given Ē , (c) due to typical average lemma

and (uk, akc , a
k
p, b

k
c , b

k
p) ∈ T k

δ (U,Ac, Ap, Bc, Bp), (d) due to
E(X|A) ≤ EX

PA
.

Thus, to satisfy distortion condition (5) it is sufficient to
have:

DU ≥ E du

(
U, Ũ(Ac, Ap, Bc, Bp)

)
,

given k → ∞
Equivocation analysis for observation:

Here we treat sequence indices s∗∗ and r∗∗ as random
variables. We start by analyzing equivocation for observation
Uk:

H(Uk|Zn) = H(Uk|Mu, Z
n) + I(Uk;Mu|Zn)

= H(Uk|Mu) +H(Mu|Zn)−H(Mu|Uk, Zn)

− I(Uk;Zn|Mu), (29)

where Mu
.
= (sbc, sbp) is an encoded (by source encoder)

message for observation.
First term of (29):

H(Uk|Mu) = H(Uk|sbc, sbp) = H(Sk, Uk)

− I(sbc, sbp;S
k, Uk)−H(Sk|Uk, sbc, sbp)

=(a) H(Sk, Uk)−H(sbc, sbp)−H(Sk|Uk, sbc, sbp)

= H(Sk, Uk)−H(sbc)−H(sbp) + I(sbc; sbp)

−H(Sk|Uk, sbc, sbp), (30)

where (a) because (sbc, sbp) is a function of (sk, uk)
For second term (29) we have:

H(Mu|Zn) = H(sbc, sbp|Zn) =(a) H(rwc, rwp|Zn)

≥(b) H(Xn|rwc) +H(Zn|Xn)−H(Xn|rwc, rwp, Z
n)

−H(Zn|rwc)

= H(Xn|rwc) +H(Zn|Xn)−H(Xn|rwc, rwp, Z
n)

−H(Zn|rqc, rwc)− I(Zn; rqc|rwc), (31)

where (a) due to g2 mapping, (b) for same reasons as in [18,
eq. 2.38]. Substituting (30) and (31) into (29) we have:

H(Uk|Zn) ≥ H(Sk, Uk)−H(sbc)−H(sbp) + I(sbc; sbp)

−H(Sk|Uk, sbc, sbp) +H(Xn|rwc) +H(Zn|Xn)

−H(Xn|rwc, rwp, Z
n)−H(Zn|rqc, rwc)− I(Zn; rqc|rwc)

−H(sbc, sbp|Uk, Zn)− I(Uk;Zn|sbc, sbp). (32)

Now we reduce some terms in (32).

H(Sk, Uk)−H(Sk|Uk, sbc, sbp)−H(sbc, sbp|Uk, Zn)

=(a) H(Uk) + I(Sk; sbc, sbp;Z
n|Uk), (33)

where (a) because (sbc, sbp) is a function of (sk, uk).

H(Xn|rwc, rwp, Z
n) + I(Uk;Zn|sbc, sbp)

≤(a) H(Xn|rwc, rwp, Z
n) + I(Xn;Zn|rwc, rwp)

= H(Xn|rwc, rwp), (34)

where (a) due to data processing inequality and g2 mapping.

I(Zn; rqc|rwc) ≤ H(rqc|rwc) = H(rqc)− I(rqc; rwc). (35)

Returning to (32) with (33), (34) and (35):

H(Uk|Zn) ≥ H(Uk)−H(sbc)−H(sbp) + I(sbc; sbp)

+H(Xn|rwc) +H(Zn|Xn)−H(Zn|rqc, rwc)

−H(rqc) + I(rqc; rwc)−H(Xn|rwc, rwp)

+ I(Sk; sbc, sbp;Z
n|Uk). (36)



Now we bound each term of (36):
1) H(Uk) = kH(U) (Uk is i.i.d.),
2) H(sbc) ≤ kRbc,
3) H(sbp) ≤ kRbp,
4) H(Xn|rwc) ≥ k(Rqc+Rqp+R1+Rwp+R2)− 1− ϵ1

(Xn is nearly uniform and [18, Lemma 2.5]),
5) H(Zn|Xn) = nH(Z|X)

(channel is memoryless),
6) H(Zn|rqc, rwc) ≤ nH(Z|Qc,Wc) + nϵ2

(see [18, eq. 2.50-2.52]),
7) H(rqc) ≤ kRqc,
8) H(Xn|rwc, rwp) ≤ k(Rqc +Rqp +R1 +R2),
9) I(sbc; sbp) + I(rqc; rwc) + I(Sk; sbc, sbp;Z

n|Uk) ≥ 0.
Collecting all terms we have:

H(Uk|Zn) ≥ kH(U)− kRbc − kRbp + kRqc + kRqp + kR1

+ kRwp + kR2 − 1− ϵ1 + nH(Z|X)− nH(Z|Qc,Wc)

− nϵ2 − kRqc − k(Rqc +Rqp +R1 +R2)

= kH(U)− kRbc − kRbp + kRwp − kRqc + nH(Z|X)

− nH(Z|Qc,Wc)− nϵ3 − 1.

Thus, to satisfy equivocation for source, it is sufficient to have:

∆U ≤ H(U)−Rbc −Rbp +Rwp −Rqc

+ (R+ ϵ)(H(Z|X)−H(Z|Qc,Wc))− ϵ,

given k → ∞.
Equivocation analysis for semantics:
For semantic equivocation, we have:

H(Sk|Zn) = H(Sk|Ms, Z
n) + I(Sk;Ms|Zn)

= H(Sk|Ms) +H(Ms|Zn)−H(Ms|Sk, Zn)

− I(Sk;Zn|Ms), (37)

where Ms
.
= (sac, sap) is an encoded (by source encoder)

message for semantics. First term of (37):

H(Sk|Ms) = H(Sk|sac, sap)
= H(Sk, Uk)− I(sac, sap;S

k, Uk)−H(Uk|Sk, sac, sap)

=(a) H(Sk, Uk)−H(sac, sap)−H(Uk|Sk, sac, sap)

= H(Sk, Uk)−H(sac)−H(sap) + I(sac; sap)

−H(Uk|Sk, sac, sap), (38)

where (a) because (sac, sap) is a function of (sk, uk). Second
term of (37):

H(Ms|Zn) = H(sac, sap|Zn) =(a) H(rqc, rqp|Zn)

≥(b) H(Xn|rqc) +H(Zn|Xn)

−H(Xn|rqc, rqp, Zn)−H(Zn|rqc), (39)

where (a) due to g1 mapping, (b) see [18, eq. 2.38]. Gathering
all terms, we have:

H(Sk|Zn) ≥ H(Sk, Uk)−H(sac)−H(sap) + I(sac; sap)

−H(Uk|Sk, sac, sap) +H(Xn|rqc) +H(Zn|Xn)

−H(Xn|rqc, rqp, Zn)−H(Zn|rqc)
−H(sac, sap|Sk, Zn)− I(Sk;Zn|sac, sap). (40)

We reduce some terms in (40).

H(Sk, Uk)−H(Uk|Sk, sac, sap)−H(sac, sap|Sk, Zn)

=(a) H(Sk) + I(Uk; sac, sap;Z
n|Sk), (41)

where (a) because (sac, sap) is a function of (sk, uk).

H(Xn|rqc, rqp, Zn) + I(Sk;Zn|sac, sap)
≤(a) H(Xn|rqc, rqp, Zn) + I(Xn;Zn|rqc, rqp)
= H(Xn|rqc, rqp), (42)

where (a) due to data processing inequality and g1 mapping.
Substituting (41) and (42) into (40) we obtain:

H(Sk|Zn) ≥ H(Sk)−H(sac)−H(sap) + I(sac; sap)

+H(Xn|rqc) +H(Zn|Xn)−H(Zn|rqc)
−H(Xn|rqc, rqp) + I(Uk; sac, sap;Z

n|Sk). (43)

Now we bound each term of (43):
1) H(Sk) = kH(S) (Sk is i.i.d.),
2) H(sac) ≤ kRac,
3) H(sap) ≤ kRap,
4) H(Xn|rqc) ≥ k(Rwc+Rqp+R1+Rwp+R2)− 1− ϵ1

(Xn is nearly uniform and [18, Lemma 2.5]),
5) H(Zn|Xn) = nH(Z|X)

(channel is memoryless),
6) H(Zn|rqc) ≤ nH(Z|Qc) + nϵ2

(see [18, eq. (2.50-2.52)]),
7) H(Xn|rqc, rqp) ≤ k(Rwc +Rwp +R1 +R2),
8) I(Uk; sac, sap;Z

n|Sk) ≥ 0,
9) I(sac; sap) ≥ 0.
Returning to (43) we have:

H(Sk|Zn) ≥ kH(S)− kRac − kRap

+ k(Rwc +Rqp +R1 +Rwp +R2)− 1− ϵ1

+ nH(Z|X)− nH(Z|Qc)− nϵ2

− k(Rwc +Rwp +R1 +R2)

= kH(S)− kRac − kRap + kRqp

+ nH(Z|X)− nH(Z|Qc)− nϵ3 − 1.

Thus, to satisfy equivocation for semantics, it is sufficient
to have:

∆S ≤ H(S)−Rac −Rap +Rqp

+ (R+ ϵ)(H(Z|X)−H(Z|Qc))− ϵ,

given k → ∞.
Joint equivocation analysis:

H(Sk, Uk|Zn) = H(Sk, Uk|M) +H(M |Zn)

− I(Sk, Uk;Zn|M)

=(a) H(Sk, Uk|M) +H(M |Zn), (44)

where M = (sac, sbc, sap, sbp) and (a) due to (Sk, Uk) →
M → Zn.

First term of (44):

H(Sk, Uk|M) =(a) H(Sk, Uk)−H(M),



where (a) because M is a function of (Sk, Uk).

Second term of (44):

H(M |Zn) ≥(a) H(Xn|rc) +H(Zn|Xn)−H(Xn|rc, rp, Zn)

−H(Zn|rc),

where rc = (rqc, rwc), rp = (rqp, rwp), (a) due to g mapping,
the fact that H(rc, rp|Xn) = 0 and Xn → Y n → Zn.

Returning to (44) we have:

H(Sk, Uk|Zn) ≥ H(Sk, Uk)−H(M) +H(Xn|rc)
+H(Zn|Xn)−H(Xn|rc, rp, Zn)−H(Zn|rc). (45)

Now we bound each term of (45):

1) H(Sk, Uk) = kH(S,U) (Sk and Uk are i.i.d),
2) H(M) ≤ k(Rac +Rbc +Rap +Rbp),
3) H(Xn|rc) ≥ k(Rqp +Rwp +R1 +R2)− 1− ϵ1

(Xn is nearly uniform, [18, Lemma 2.5]),
4) H(Zn|Xn) = nH(Z|X),
5) H(Xn|rc, rp, Zn) ≤ ϵ2

(due to Fano’s inequality, see [18, eq. (2.49)]),
6) H(Zn|rc) ≤ nH(Z|Qc,Wc) + nϵ3

(see [18, eq. (2.50-2.52)]).

Finally, we obtain:

1

k
H(Sk, Uk|Zn) ≥ H(S,U)−Rac −Rbc −Rap −Rbp

+ (R+ ϵ) (H(Z|X)−H(Z|Qc,Wc)) + ϵ

+Rqp +Rwp +R1 +R2.

Thus, to satisfy joint equivocation, it is sufficient to have:

∆SU ≤ H(S,U)−Rac −Rbc −Rap −Rbp +Rqp +Rwp

+R1 +R2 + (R+ ϵ) (H(Z|X)−H(Z|Qc,Wc))− ϵ.

Summary of conditions:



R∗∗, R1, R2 > 0

Rac +Rap = Rqc +Rqp

Rbc +Rbp = Rwc +Rwp

Rac < Rqc

Rbc < Rwc

Rac > I(Ac;S)

Rap > I(Ap;S|Ac)

Rbc > I(Bc;U |S,Ac)

Rbp > I(Bp;U |S,Ac, Ap, Bc)

Rqc < RI(Qc;Y )

Rqp +R1 < RI(Qp;Y |Qc)

Rwc < RI(Wc;Y |Qc)

Rwp +R2 < RI(X;Y |Qc, Qp,Wc)

R1 < RI(Qp;Z|Qc)

R2 < RI(X;Z|Wc)

DS ≥ E dS(S, S̃(Ac, Ap))

DU ≥ E dU (U, Ũ(Ac, Ap, Bc, Bp))

∆S ≤ H(S)−Rac −Rap +Rqp

+(R+ ϵ)(H(Z|X)−H(Z|Qc))− ϵ

∆U ≤ H(U)−Rbc −Rbp +Rwp −Rqc

+(R+ ϵ)(H(Z|X)−H(Z|Qc,Wc))− ϵ

∆SU ≤ H(S,U)−Rac −Rbc −Rap −Rbp +Rqp +Rwp

+R1 +R2 + (R+ ϵ) (H(Z|X)−H(Z|Qc,Wc))− ϵ.

The above system of inequalities can be reduced to the
following system:



I(S;Ac) < RI(Qc;Y ),

I(S;Ac, Ap) < RI(Y ;Qc, Qp),

I(U ;Bc|S,Ac) < RI(Wc;Y |Qc),

I(U ;Bc|S,Ac) + I(U ;Bp|S,Ac, Ap, Bc) <

< R[I(Wc;Y |Qc) + I(X;Y |Qc, Qp,Wc)]

DS ≥ E dS(S, S̃(Ac, Ap)),

DU ≥ E dU (U, Ũ(Ac, Ap, Bc, Bp)),

∆S ≤ H(S|Ac,Ap) +R(H(Z|X)−H(Z|Qc))

+RI(Qp;Y |Qc),

∆U ≤ H(U)− I(Ac, Ap;S)− I(Bc;U |Ac)

−I(Bp;U |S,Ac, Ap, Bc) +RH(Z|X)

−RH(Z|Qc,Wc) +RI(Qp;Y |Qc)

+RI(X;Y |Qc, Qp,Wc),

∆SU ≤ H(S,U)− I(S;Ac, Ap)− I(U ;Bp|S,Ac, Ap, Bc)

−I(U ;Bc|S,Ac) +R(H(Z|X)−H(Z|Qc,Wc))

+RI(Qp;Y |Qc) +RI(X;Y |Qc, Qp,Wc).



APPENDIX
LEMMA 4

Lemma 4: For Uk → Xn → Y n → Zn Markov chain the
following holds [8]:

I(Uk;Zn)− I(Uk;Y n) ≥ n[I(X;Z)− I(X;Y )]. (46)

Proof:

I(Uk;Y n) =

n∑
i=1

I(Uk;Yi|Y i−1),

I(Uk;Yi|Y i−1) = I(Uk, Z̃i+1;Yi|Y i−1)

− I(Z̃i+1;Yi|Y i−1, Uk)

= I(Uk;Yi|Y i−1, Z̃i+1)

+ I(Z̃i+1;Yi|Y i−1)− I(Z̃i+1;Yi|Uk, Y i−1),

where Z̃i = (Zi, Zi+1, ..., Zn). Following the same steps for
I(Uk;Zn) we have:

I(Uk;Y n) =

n∑
i=1

A+

n∑
i=1

B −
n∑

i=1

C,

I(Uk;Zn) =

n∑
i=1

D +

n∑
i=1

F −
n∑

i=1

G,

where:

A = I(Uk;Yi|Y i−1, Z̃i+1),

B = I(Z̃i+1;Yi|Y i−1),

C = I(Z̃i+1;Yi|Uk, Y i−1),

D = I(Uk;Zi|Y i−1, Z̃i+1),

F = I(Y i−1;Zi|Z̃i+1),

G = I(Y i−1;Zi|Z̃i+1Uk).

Due to Csiszár Sum Identity [16] we have:

n∑
i=1

B =

n∑
i=1

F,

n∑
i=1

C =

n∑
i=1

G.

Then:

I(Uk;Zn)− I(Uk;Y n) =

n∑
i=1

I(Uk;Zi|Y i−1, Z̃i+1)−

−
n∑

i=1

I(Uk;Yi|Y i−1, Z̃i+1)

= nI(Uk;Z|V )− nI(Uk;Y |V ), (47)

where J is uniform r.v. with alphabet J = {1, ..., n}, Z = ZJ ,
and V = (Y i−1, Z̃i+1, J).

Due to V → W → X → Y → Z Markov chain, where
W = (V,Uk), we can rewrite (47) as,

nI(W ;Z|V )− nI(W ;Y |V ) = n[I(W ;Z)− I(V ;Z)−
− I(W ;Y ) + I(V ;Y )]

= n[I(X;Z)− I(X;Z|W )− I(V ;Z)−
− I(X;Y ) + I(X;Y |W ) + I(V ;Y )]

≥(48) n[I(X;Z)− I(X;Y )]

where the last inequality holds since the channel is less noisy:

I(V ;Y ) ≥ I(W ;Z) and I(X;Y |Uk) ≥ I(X;Z|Uk) (48)

The proof is complete.
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[14] T.-Y. Tung and D. Gündüz, “Deep joint source-channel and encryption
coding: Secure semantic communications,” in ICC 2023 - IEEE Inter-
national Conference on Communications, 2023, pp. 5620–5625.

[15] Q. Qin, Y. Rong, G. Nan, S. Wu, X. Zhang, Q. Cui, and X. Tao, “Secur-
ing semantic communications with physical-layer semantic encryption
and obfuscation,” 2023.

[16] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge
University Press, 2011.

[17] A. Gamal and T. Cover, “Achievable rates for multiple descriptions,”
IEEE Transactions on Information Theory, vol. 28, no. 6, pp. 851–857,
1982.

[18] Y. Liang, H. V. Poor, and S. S. (Shitz), “Information theoretic security,”
Foundations and Trends® in Communications and Information
Theory, vol. 5, no. 4–5, pp. 355–580, 2009. [Online]. Available:
http://dx.doi.org/10.1561/0100000036

http://dx.doi.org/10.1561/0100000036

	Introduction
	Problem statement
	Preliminaries
	Main Result
	Gaussian Case
	System model.
	Rate-equivocation-distortion region
	Numerical evaluation

	Conclusion
	Appendix: Proof of Theorem 1
	Appendix: Proof of Theorem 2
	Appendix: Lemma 4
	References

