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Exploring anisotropic pressure and spatial correlations in strongly confined hard-disk fluids.
Exact results
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This study examines the transverse and longitudinal properties of hard disks confined in narrow
channels. We employ an exact mapping of the system onto a one-dimensional polydisperse, non-
additive mixture of hard rods with equal chemical potentials. We compute various thermodynamic
properties, including the transverse and longitudinal equations of state, along with their behaviors at
both low and high densities. Structural properties are analyzed using the two-body correlation func-
tion and the radial distribution function, tailored for the highly anisotropic geometry of this system.
The results are corroborated by computer simulations.

Introduction. The investigation of fluids under ex-
treme confinement has garnered considerable attention
over the years, playing a pivotal role in comprehen-
sively understanding liquid behavior. Among the var-
ious confined geometries in which liquids can be situ-
ated, quasi-one-dimensional (q1D) channels hold par-
ticular significance. In these configurations, the avail-
able space along one dimension (the parallel axis) vastly
exceeds that along the perpendicular, confined axes.
This disparity in dimensions characterizes the highly
anisotropic nature of q1D confinement. Thus, these q1D
systems lie halfway between purely one-dimensional
(1D) systems, which are known to have analytical so-
lutions under certain circumstances [1-7], and bulk
two- or three-dimensional systems, whose properties
are generally addressed through approximations, nu-
merical solutions, or simulations [8-11].

In addition to their inherent theoretical interest, these
systems have gained even greater relevance with the
advancement of nanofluidics [12], nanopores [13-15],
and various experimental techniques capable of repli-
cating such conditions [16-19]. These experimental se-
tups have provided invaluable insights into the behav-
ior of fluids under extreme confinement, further moti-
vating theoretical investigations into the properties of
fluids in q1D channels.

The task of deriving exact, analytical expressions for
the thermodynamic and structural properties of q1D
systems has been a focal point of research over the
years and has been approached from various perspec-
tives [20-27]. Exact results for the longitudinal thermo-
dynamic properties of these systems are known, and
more recently, exact results for their structural proper-
ties have also been obtained, although numerical inte-
gration is ultimately required [28-30]. Purely analytical
expressions found in the literature are typically obtained
through approximations [23, 28, 31, 32]. Despite some
advances in understanding transverse properties, to the
best of our knowledge, a comprehensive study in this

area is lacking, and a unified methodology for studying
these systems remains elusive.

In this article, we investigate a q1D confined system
characterized by one longitudinal dimension of length
L =L and one transverse dimension of length L, =
€ < L. The particles in the system interact via a hard-
core pairwise additive potential, with each particle hav-
ing a hard-core diameter of d = 1 (henceforth defining
the unit of length), so that the separation between the
two confining walls is 1 + €. The smallness of the trans-
verse dimension prevents particles from bypassing each
other, compelling them to arrange in a single-file forma-
tion along the longitudinal dimension. Moreover, we

impose € < @ to ensure that a disk cannot have more
than two contacts simultaneously.

In these circumstances, it can be demonstrated that
the confined qlD system is formally equivalent to a
1D polydisperse mixture with equal chemical poten-
tial [28, 29]. Here, particles are categorized into differ-
ent species based on the transverse coordinates y (with
—€/2 <y < €/2) of the disks in the original system,
and they interact via an effective hard-core distance of

Ay, = \/1—y2,, where y2, = (y1 — y2)* [33]. Since

Ayyy, 7 % (Ayyyy + dyay, ), the 1D mixture is indeed a non-
additive one. The mole fraction distribution function,
475, of the 1D polydisperse system coincides with the
transverse density profile of the equivalent hard-disk
confined fluid.

The 1D polydisperse system. Typically, the ex-
act solution for 1D fluids is derived within the
isothermal-isobaric ensemble [34]. In particu-
lar, the nearest-neighbor probability distribu-
tion function of the 1D polydisperse fluid is
Py(llﬁz(x) = (4’yz/4)y1)AylAyze_ﬁpHx@(x — ay,y,), where
O(+) is the Heaviside step function and g = 1/kgT (kg
and T being the Boltzmann constant and the absolute
temperature, respectively). Given a mole fraction
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distribution gb§, the function Ay is the solution to [29, 34]

Ay, /edyzeiﬁp”a“” Ay, Py, = Bp)Py,- 1

(1)

Successive convolutions of Py,,,(x) yield the pair cor-
relation function gy,,,(x). Its Laplace transform,
Gyys (s) = [y dxe™*gyy, (x), follows the integral equa-
tion [29, 30]

. o~ (5TBP)ayys
A—WGWZ(S) = /€ d}/3¢y3Gw3(S)Ay3Tm

Ayl e*(5+ﬁpu)ay1y2
/\¢y1 s+ :BPH

Here, the linear density A = N/L (where N is the num-
ber of particles) is given by [28, 29]

@ =1+ /edyl /edyZ 4’y1¢y2Ay1 Ayzaywze ﬁp”aylyz'
®)
It can be demonstrated that the parameter Ay is di-
rectly proportional to the square root of the fugacity of
‘species’ y [29]. Contact with the original monocompo-
nent q1D fluid necessitates the condition of equal chem-
ical potential, ie, Ay, = (Bp|/ )12 = const. In that
case, Eq. (1) reduces to the eigenvalue/eigenfunction
problem obtained from the transfer-matrix method [20].
Moreover, the excess Gibbs free energy per particle
of the equal-chemical-potential 1D polydisperse system
becomes [29]

@

14 ,
Bs™(Bp|.€) = —1nm- 4)

€

When tackling the numerical solution of the equations
for the 1D polydisperse system, our approach initially
involved discrete M-component mixtures. We noted
a linear correlation with M~! and subsequently per-
formed an extrapolation to M — oo [30]. Specifically,
within the discretized rendition of Eq. (2), the evalua-
tion of Gy, y,(s) can be directly achieved through matrix
inversion

Thermodynamic properties. Due to the pronounced
anisotropy of the q1D fluid, the pressures along the lon-
gitudinal and transverse directions exhibit distinct be-
haviors. In the mapped 1D polydisperse system, only
the longitudinal pressure, p|, possesses physical signif-
icance (with its conjugate volume-like thermodynamic
variable being the length L), and € simply represents the
interval over which the ‘species’ label runs. On the other
hand, upon reverting to the original q1D system, we can
still utilize Eq. (4) by interpreting g (Bp|,€) as the ther-
modynamic potential in a hybrid ensemble: isothermal-
isobaric in the longitudinal direction and canonical in
the transverse one. Consequently, the independent ther-
modynamic variables are the longitudinal pressure p|

and the transverse length €, with their conjugate vari-
ables being the longitudinal length L and the transverse
pressure p |, respectively. We can denote this ensemble
with the set {N,p|, L ,T}. It is indeed noteworthy that
the mapping from q1D to 1D systems not only yields the
longitudinal properties of the original system but also
its transverse ones.

The longitudinal compressibility factor, Z = pp) /A,
and the transverse compressibility factor, Z; =
Bp./(N/€), can be obtained from the thermody-
namic relations Z =1+ Bp9g®™/dfpand Z, =1 —
€9dg® /de. Using the notation a = ||, L, the result is

Zo=1+ @ /dy1 / dy2 ‘Pyl‘Pyzw;lyze_ﬁp”aylyz’ (5)
€ JE

; | L2 ;
with w‘ym = ay,y, and wy,,, = Y1,/ dy,y,. Equation (5)
with & = || coincides with Eq. (3) after setting A, =

(Bp)/ ¢)!/2 = const in the latter. Moreover, it can be
proved that Eq. (5) with « =1 is equivalent to the
contact-theorem expression Z| = e¢? /2 [35].

Low-pressure behavior.  Virial expansions stand out as
one of the most common approaches for characteriz-
ing fluids under low-density conditions. Obtaining the
exact virial coefficients, particularly those of lower or-
der, remains essential to understand the behavior of
the system, as well as to validate the precision of ap-
proximate methodologies. In our q1D fluid, the virial
coefficients for each component of the compressibility
factor, denoted as By,, are traditionally defined based
on the exgansion in powers of density, i.e, Z, =1+
Y5, BiuA* 1. However, for practical convenience, it
is far more advantageous to employ coefficients By in
the expansion expressed in terms of the longitudinal
pressure [28, 32], namely Z, =1+ Y;2, B,’m(ﬁpu)k’l.
Both sets of coefficients are simply related: By, = B},
B3y = BZHBZ:x + B;/),,x/ Byy = B%ﬂBZa + 2Bz\|B§,x + BéHBZIX +
By, ... Coefficients BI’(H, with k = 2,3,4, are al-
ready known [28, 31]. To obtain B, it is only nec-
essary to take into account the thermodynamic rela-
tion Bp|0Z, /9Bp| = —€dZ| /¢, yielding By | = —(k —
1)’168BI’(H /0¢€. The final results are

e\ 1 2 .
B fg(l_k 2) 1 € 1+Sln 1(€) (6a)
2= 3 ) c
21— (1—¢2)3/2
N
B/31x = 382H82a —2Way + Cop, (6C)

1

— By (8Wan — Cau) + Cau, (6d)
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where G =% ~ 1 G = =%, Gy = 52—

2—(1— 2 o .
and C3| = % are exact coefficients, while

1
Wao = - [ dyyly, (7a)

W3 = % /edyl /e dy, lp}UI {Z‘Zylyzlp;‘z + w;‘lyzlpﬂz} ’
(7b)
with gy = L[fa(y) +ge(y)] and uly) =
sinT!(S+y) £ (§+y)\/1- (5 —|—y)2, are numeri-
cal integrals.
High-pressure behavior.  In the limit fp| — oo, the lin-
ear density tends to its close-packing value Aep = (1 —
€%) /2. The corresponding asymptotic behaviors of ¢,

and / in that limit were derived in Ref. [28]. Application
of the limit in Eq. (5) yields

2A,

Z —_—,
T A A

Aj=1, A =A% —-1. (8
When examining the behaviors of the compressibility
factor’s components under both low and high densities,
a notable observation emerges: while Z, < Z; consis-
tently holds in the low-density range, this relation be-
comes true in the high-density regime only if Ap < v/2.
Consequently, when € > 1/+/2 >~ 0.707, at least one
crossing point between both components arises. This
crossing is distinctly singular, as depicted in Fig. 1, while
lower values of the width parameter € exhibit no such
crossing. Figure 1 additionally demonstrates that both
the low- and high-pressure approximations exhibit ex-
cellent performance across a broad spectrum of densi-
ties, extending beyond just the limiting scenarios. How-
ever, it is worth noting that the validity range decreases
as the channel width parameter, €, grows.

Behavior under maximum confinement. At a fixed lin-
ear density A, the excess pore width € can be made
arbitrarily small only if A < 1. Assuming A < 1 and
considering € < 1 in the eigenvalue equation for ¢,

and ¢, one derives ¢, — e~ 1/2 {1 I @ (y2 B %)} and

0 — e PPie (1 + Bp) f—;) Substituting these expressions
into Eq. (5), we obtain

62 62
Zy— 1+ Bp| (1——), ZL_>1+,BPng (A<1),

12
©)
implying Z, — (1—A) ' and Z, — 1 in the limite — 0
if A < 1. If, on the other hand, A > 1, the smallest value of
€ is V1 — A2, As one approaches this minimum value,
we can use Eq. (8) to obtain

7, s 2 (e V- A—z)*l, (A>1),  (10)
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FIG. 1. Plot of Z and Z, as functions of the linear density
for (a) e = 0.5 and (b) € = v/3/2. Dash-dotted lines represent
the truncated expansions Z, = 1+ Y{_, By, (Bp)) !, while

dashed lines represent the high-pressure behavior given by
Eq. (8).

with .Ah =1/VA%2—1, A =V A2 — 1. The borderline

case A = 1 necessitates special consideration. In this sce-
nario, after some algebra, one finds

Zy~e?, Zp—3, (A=1). (11)

Pair distribution functions. In liquid-state theory, the
radial distribution function (RDF) stands as a pivotal
structural characteristic, elucidating the variation of lo-
cal density concerning distance from a reference par-
ticle. However, in confined liquids, defining a global
RDE, g(r), proves less straightforward compared to bulk
systems due to the loss of rotational invariance in the
fluid. In general, if ny(r) is the local number den-
sity and n;(ry, 1) is the two-body configurational dis-
tribution function, the pair correlation function g(r, 1)
is defined by ny(ry,12) = n1(r1)n1(r2)g(r1,12). In the
q1D fluid, nq(r) = /\475 and g(r1,12) = gy, 4, (x12), where
x12 = |x1 — x2|. The function gy, ,,(x) can be identified
with the interspecies RDF of the 1D polydisperse sys-
tem, which is given by Eq. (2) in Laplace space. The
transverse-averaged longitudinal correlation function is
expressed as g (x) = [.dy1 [.dy> 4’;1 ¢§23y1,yz (x).

As an alternative to Eq. (5), it is feasible to express
the compressibility factors in terms of A and integrals in-
volving g|(x). Specifically, Z| = (1 —1Ip)/[1 = A(1—Ip +
[F)]and Z, = Z [M1—Ip+I;) = 1] +2+ I, where

Ir= /\f\l/mdxxi"gn (x).

Let us now define the radial pair distribution func-
tion, 71(r), such 71(r)dr is the average number of particles
at a distance between r and r + dr from any other parti-
cle. As a marginal distribution, 7 is obtained from 7, as

A(r)=N"1[dr [drany(r,12)6 (r — /%3, —|—y%2). Af-
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FIG. 2. Plot of (a) Z and (b) Z, as functions of the lin-
ear density for different values of the excess pore width e.
The symbols in panel (a) represent data for Z obtained from

{N,p”,LJ_,T} MC simulations.

ter some algebra, and assuming r < L, one finds

) gt S (72— ¥
A(r) =2Ar /e dy, /e dy2 ¢y, ¢y, ( )

2_ .2
=Y

(12)
where the dagger symbolizes the constraint y3, < r?
imposed on the integrals. In the regime 1 < r < L,
where correlations are negligible, there exist two stripes
of height € and width dr at a distance r from a cer-
tain reference particle. As a consequence, 71(r) ~ 2\ in
that regime. In an ideal gas, the absence of interactions
yields qbﬁ — e !and gy,y,(x) — 1, resulting in

ﬁld(]’)ﬂ{%_é, VSG/
€ (&) —1-1 +sin~! (€), r> e(. |
13

Interestingly, 7!9(r) is not constant due to the pro-
nounced anisotropy of the system. Returning to the
interacting fluid, neglecting spatial correlations would
yield 7"(r) by setting g,, (x) — 1in Eq. (12), while re-
taining the actual density profile ¢j. However, deriving
a simple closed expression for 71"(r) appears unfeasible.
Nevertheless, the RDF of the q1D fluid can be defined as
the ratio g(r) =7 (r) /A"°(r), which differs from the aver-

age function g(r) = [ dy1 J. dy2 95, 97,8y (/1> = ¥1)-

Validating theory through simulations. To validate the
theoretical predictions derived within the 1D frame-
work, Monte Carlo (MC) simulations were conducted
on the original q1D fluid. For obtaining the longitudinal
compressibility factor Z, simulations were performed
in the {N,pH,LJ_,T} ensemble, while the {N,pJ_,LH,T}
ensemble was utilized for determining Z , . Conversely,
the spatial correlation functions were assessed within
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FIG. 3. Plot of (a) Z) and (b) Z, as functions of the excess pore
width for different values of the linear density A. The symbols
in panel (b) represent data for Z | obtained from {N,p_,L|, T}
MC simulations.

the canonical {N,L|,L,,T} ensemble. In general, 102

particles were used and 10”7 samples were collected af-
ter a sufficiently large equilibration process.

Figure 2 illustrates the density-dependence of the
compressibility factors for various width parameter val-
ues. Both quantities exhibit divergence at the close-
packing density A¢p = (1 — €2) /2. Remarkably, there
is an excellent agreement between the theoretical Z
and its corresponding MC values obtained in the
{N P L 1, T} ensemble. The latter ensemble is not ap-
propriate to measure the transverse compressibility fac-
tor in simulations. Thus, Fig. 2 is complemented by
Fig. 3, where the e-dependence of Z| and Z, is shown
for various densities. Again, an excellent agreement be-
tween theoretical and MC values of Z | is observed. Fig-
ure 3 also shows that, as discussed before, Z I and Z |
for A > 1 diverge as € approaches its minimum value
V1 —A~2, while both compressibility factors reach fi-
nite values in the limit e — 0 if A < 1. In the special
case A =1, Z; diverges in that limit but Z, — 3. Inter-
estingly, Z | ~3 at A =1 for practically any value of €, as
Figs. 2(b) and 3(b) show.

Now, let us examine the spatial correlation func-
tions. Figure 4 presents both the longitudinal corre-
lation function, g|/(x), and the radial pair distribution

function, 7(r)/2A, for € = v/3/2 and two characteris-
tic densities (A = 1.0 and A = 1.6). As expected, the
MC simulations data confirm the theoretical predictions
for these correlation functions. It is evident that the
structural characteristics of the q1D fluid exhibit con-
siderably more complexity when transitioning from A =
1.0 to A =16. At A =16, g(x) displays evident os-
cillatory behavior, featuring local maxima positioned
at x ~0.58,1.21,1.81,2.44,3.07,3.67,4.30,4.90, ..., consis-
tent with the asymptotic wavelength of 0.63 ~ A~! de-



FIG. 4. Plot of (a, b) g)(x) and (c, d) #(r)/2A for € = V3/2
and two density values: (a, c) A =1.0 and (b, d) A = 1.6. The
symbols represent data obtained from {N,L,L, T} MC sim-

ulations. Panels (¢, d) also include the functions A™(r)/2A
(dashed lines) and 714 (r) /2A (dash-dotted lines).

rived from the dominant pole in Laplace space [29].
Conversely, the oscillations of 71(r) at A = 1.6 exhibit
much less regularity, with local maxima at r = 1 and
r~1.19,1.99,2.42,3.17,3.66,4.38,4.87,.... Significantly,
the positions of the first, third, fifth, seventh, ... maxima
of 71(r) and g (x) exhibit a correlation: r ~ v/x? +€2.
Conversely, the locations of the second, fourth, sixth,
eighth, ...maxima align with r ~ x. These relations
reveal a zigzag-like arrangement of the disks. Fig-
ure 4(c, d) additionally features the ideal-gas radial
function, 79(r) /2, and the one in the absence of corre-
lations, 1"¢(r) /2A. Both exhibit nonzero values and dis-
play a peak within the forbidden region r < 1, swiftly
approaching 1 as r > 1. Consequently, both ratios
(r)/7A9(r) and g(r) = 71(r)/A"(r) are scarcely distin-
guishable from the plotted quantity 7(r)/2A.
Conclusions. Our investigation delved into the nu-
anced properties of strongly confined hard-disk fluids
within q1D channels, shedding light on both transverse
and longitudinal behaviors. By leveraging an exact
mapping onto a 1D polydisperse mixture of hard rods
with equal chemical potentials, we unraveled various
thermodynamic and structural characteristics across the
whole spectrum of densities, thus providing a robust
theoretical framework for our exploration. This equiv-
alence, previously exploited only for longitudinal prop-
erties [28, 29], underscores the nontrivial nature of the

confined system, characterized by a delicate balance be-
tween transverse confinement and inter-particle interac-
tions. Supported by computer simulations, our find-
ings offer valuable insights into the intricate proper-
ties of fluids in narrow channels, with implications for
nanofluidics and experimental setups emulating such
conditions. Moving forward, we hope that our work
paves the way for further investigations into the trans-
verse properties of such systems, bridging the gap be-
tween purely one-dimensional and bulk two- or three-
dimensional systems. By elucidating the intricate inter-
play of confinement and interactions in q1D fluids, this
work may contribute to the ongoing quest for a unified
methodology to analyze and understand these complex
systems.
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