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Abstract

We consider a Bose gas at density ρ > 0, interacting through a repulsive potential
V ∈ L2(R3) with scattering length a > 0. We prove an upper bound for the free energy
of the system, valid at low temperature T . ρa. Combined with the recent lower bound
obtained in [19], our estimate resolves the free energy per unit volume up to and including
the Lee–Huang–Yang order aρ2(ρa3)1/2.

1 Introduction

1.1 Setting and main result

Consider a gas of n bosons, moving in a periodic box Ω and interacting through a non-negative,
radially symmetric and compactly supported potential V ∈ L2(R3) with scattering length a > 0.
The Hamiltonian of the system has the form

Hn =

n∑

i=1

−∆xi +
∑

16i<j6n

V (xi − xj) (1.1)

and, according to Bose statistics, it acts on the Hilbert space L2
s(Ω

n), the subspace of L2(Ωn)
consisting of functions that are symmetric with respect to permutations of the n particles. The
canonical free energy of the gas at temperature T > 0 is defined by

FΩ(n) = inf
Γ

[
TrHnΓ− TS(Γ)

]
, (1.2)

where the infimum is taken over all density matrices Γ on L2
s(Ω

n), i.e. all non-negative operators
Γ on L2

s(Ω
n) with TrΓ = 1. Moreover, S(Γ) = −TrΓ log Γ denotes the entropy of Γ. We

are interested in the thermodynamic free energy per unit volume at density ρ > 0 and at
temperature T , which is defined by the limit

f(ρ, T ) = lim
n,|Ω|→∞:
n/|Ω|=ρ

FΩ(n)

|Ω| , (1.3)

where |Ω| denotes the volume of the box Ω. The existence of the thermodynamic limit and its
convexity in ρ are well-known; see [25].
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At temperature T = 0, the free energy (1.2) is the ground state energy of the Hamiltonian
(1.1). In the thermodynamic limit, Lee–Huang–Yang predicted in [22] that the ground state
energy per unit volume is given by

e(ρ) = f(ρ, 0) = 4πaρ2
(
1 +

128

15
√
π
(ρa3)1/2 + . . .

)
(1.4)

up to contributions of lower order in ρ in the dilute limit ρa3 → 0. To leading order, the validity
of (1.4) was rigorously established in [16] and [23], as an upper and, respectively, lower bound.
A lower bound capturing the second order corrections on the right-hand side of (1.4) has been
shown in [17] (for integrable potentials) and in [18] (for potentials including a hard-core). The
matching upper bound was proved in [27] (for sufficiently regular V ); recently, a simpler proof
of the upper bound (for V ∈ L3(R3)) was obtained in [3] (see also [2]). For hard-core potentials,
the derivation of an upper bound confirming (1.4) to second order is still an open question;
in this setting, the best available estimate, matching (1.4) up to an error comparable with the
predicted second order term, has been recently derived in [4].

For T > 0, the free energy (1.2) is attained by the Gibbs state z−1e−Hn/T with the normal-
ization constant z = Tr e−Hn/T . In [22], it is predicted that in the dilute limit and at low energy,
Hn can be approximated by a linear combination of uncoupled harmonic oscillators, labeled by
the momentum p, with the dispersion ε(p) =

√
|p|4 + 16πρa p2. Under this assumption, a simple

ideal gas computation leads to the expectation that

f(ρ, T ) = 4πaρ2
(
1 +

128

15
√
π
(ρa3)1/2

)
+
T 5/2

(2π)3

ˆ

R3

log

(
1− e

−
√

|p|4+ 16πρa
T

p2
)
dp+ . . . (1.5)

as ρa3 → 0. Up to errors that are small with respect to ρ2a, the validity of (1.5) was established
in [26, 28], for temperatures T . Tc(ρ), with Tc(ρ) ∼ ρ2/3 denoting the critical temperature of
the free Bose gas. In the present paper, we aim at resolving (1.5) up to the Lee–Huang–Yang
order ρ2a(ρa3)1/2. To this end, we are going to consider temperatures T . ρa, for which the
thermal contribution is, at most, comparable with the Lee–Huang–Yang term.

As a lower bound, a rigorous derivation of (1.5) to the order ρ2a(ρa3)1/2 was recently obtained
in [19] for all T . ρa. The goal of the present work is to show an upper bound matching the
lower bound of [19] and therefore proving the formula (1.5) for all T . ρa.

Let us elaborate on the choice of the temperature. When T ≃ ρa, the typical momenta of
thermal excitations T 1/2 ≃ (ρa)1/2 = ℓ−1

GP is of the order of the inverse of the healing length,
also known as the Gross–Pitaevskii length, which is also the typical order of momenta of the
excitations responsible for the Lee-Huang-Yang correction at T = 0. In fact, as we will explain
in more detail later, the study of the thermodynamic limit (1.3) often relies on the analysis of
subsystems of fixed size. The Gross–Pitaevskii length ℓGP is also the shortest length on which
the systems exhibits the correct second order behavior. The free energy is then given by an
expansion similar to (1.5), as it has already been proven in [14, 13, 7, 11, 12].

For the proof of the lower bound of (1.5) in [19], it was sufficient to consider subsystems
of size slightly larger than ℓGP. For the upper bound, on the other hand, we need to work on
boxes with length of the order a(ρa3)−γ for some γ > 1, which is much larger than ℓGP. This
is a consequence of the fact that the effect of Dirichlet boundary conditions, which are relevant
to show upper bounds, on the free energy is substantially stronger than the effect of Neumann
boundary conditions (relevant for lower bounds). From this point of view the analysis is more
involved and consequently new techniques are required.

The following theorem is our main result.
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Theorem 1. Let V ∈ L2(R3) be non-negative, spherically symmetric and compactly supported.
Let 0 6 T 6 Cρa for some C > 0. Then there exist c, ǫ > 0 such that

f(ρ, T ) 6 4πaρ2
(
1 +

128

15
√
π
(ρa3)1/2 + c(ρa3)1/2+ǫ

)
+
T 5/2

(2π)3

ˆ

R3

log

(
1− e

−
√

|p|4+ 16πρa
T

p2
)
dp.

(1.6)

Similarly as for the result on the lower bound [19], our proof also allows to take slightly
larger temperatures, that is T 6 Cρa(ρa3)−ν for some ν > 0 small enough. For the sake of
simplicity we restrict our attention to T 6 Cρa.

1.2 Localization into small boxes and grand canonical ensemble

To show Theorem 1, it is convenient to consider a system confined in a smaller box ΛL =
[−L/2;L/2]3, with L = ρ−γ and with periodic boundary conditions, in the grand canonical
setting, where the number of particles is allowed to fluctuate. If γ > 1, we will show that an
upper bound on the small periodic box ΛL implies an upper bound in the thermodynamic limit
by patching small boxes together, see Fig. 1. To work in the grand canonical ensemble, we
introduce the bosonic Fock space

F(ΛL) =
⊕

k>0

L2(ΛL)
⊗sk

and consider the Hamiltonian

H =
∑

p∈ 2π
L
Z3

p2a∗pap +
1

2

∑

p,q,r∈ 2π
L
Z3

V̂ (r)a∗p+ra
∗
qaq+rap (1.7)

on F(ΛL). Here, for a momentum p ∈ 2π
L Z3, a∗p and ap are the usual creation and annihilation

operators satisfying canonical commutation relations.
Localization to the small periodic box ΛL is achieved through the following standard propo-

sition, which is proven similarly to [3, Prop. 1.2], see also Figure 1. For the sake of completeness,
we sketch the proof in Appendix B, stressing the changes due to the fact that we work at positive
temperature.

Proposition 2 (Comparison to small periodic boxes). Let 0 < R < ℓ < L such that V (x) = 0
for all |x| > R. Let ΓL be a density matrix on the Fock space F(ΛL), i.e. a non-negative operator
on F(ΛL) with Tr ΓL = 1, satisfying periodic boundary conditions and the bound TrNΓL <∞.
Let

ρ̃ :=
1

(L+ 2ℓ+R)3
Tr NΓL. (1.8)

Then there exists a constant c > 0 such that

f(ρ̃, T ) 6
1

(L+ 2ℓ+R)3

[
Tr HΓL − TS(ΓL)

]
+

c

Lℓ
ρ̃ (1.9)

for all T 6 Cρa.
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L+ 2ℓ+R

|Ω|1/3

L

Figure 1: We obtain a trial state on the thermodynamic box Ω by first taking the periodic state
ΓL on ΛL from Prop. 3 and placing it in a slightly bigger box of sidelength L+2ℓ. On this box,
we modify ΓL such that it satisfies Dirichlet boundary conditions, while also not changing its
free energy significantly. Finally, we copy this state into boxes of sidelength L+ 2ℓ+R, where
the slight increase of the box sidelength by R prevents interactions among them.

Taking into account Prop. 2, our main challenge is the construction of the trial state ΓL for
the free energy functional on the small periodic box ΛL with L = ρ−γ . As discussed above, to
make sure that the localization error on the right-hand side of (1.9) is smaller than the resolution
we want to achieve, we will need to choose γ > 1. In the next proposition, whose proof occupies
the bulk of the paper, we construct the trial state ΓL. Its particle density is slightly bigger than
the desired density ρ in order to compensate for the extension of the box ΛL that was needed
in Prop. 2 to switch to Dirichlet boundary conditions and to avoid interactions among boxes.

Proposition 3 (Trial state on small periodic boxes). For ρ > 0 and γ > 1 we set L = ρ−γ .
Then, if γ is small enough, there exists ǫ > 0 and a density matrix ΓL on F(ΛL), i.e. a non-
negative operator on F(ΛL) with Tr ΓL = 1, that satisfies periodic boundary conditions and is
such that

c1ρ
(γ+2)/2 6

1

L3
Tr NΓL − ρ 6 c2ρ

3/2 (1.10)

for some c1, c2 > 0, and

1

L3

[
Tr HΓL − TS(ΓL)

]
6 4πaρ2

(
1 +

128

15
√
π
(ρa3)1/2 + c(ρa3)1/2+ǫ

)

+
T 5/2

(2π)3

ˆ

R3

log

(
1− e

−
√

|p|4+ 16πρa
T

p2
)
dp

(1.11)

for some c > 0 and for all T 6 Cρa.

Combining Proposition 2 and 3 we are ready to prove Theorem 1.

1.3 Proof of Theorem 1

Let γ > 1 small enough. Putting L = ρ−γ , we conclude from Prop. 3 that there exists a density
matrix ΓL on F(ΓL), satisfying periodic boundary conditions and the above estimates (1.10)
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and (1.11). Setting now ℓ = Lα = ρ−γα for some α ∈ (0, 1) and defining ρ̃ as in (1.8), Prop. 2
implies that

f(ρ̃, T ) 6 4πaρ2
(
1 +

128

15
√
π
(ρa3)1/2

)
+

T 5/2

(2π)3

ˆ

R3

log

(
1− e

−

√
|p|4+

16πaρ
T p2

)
dp

+ C
[
ρ5/2+ǫ + ρ1+γ+αγ

]
.

Moreover, by (1.10) there exists c1 > 0 such that

ρ̃ =
TrNΓL

(L+ 2ℓ+R)3
> (ρ+ c1ρ

(γ+2)/2)(1 − Cργ−αγ) > ρ+ c1ρ
(γ+2)/2 − Cρ1+γ−αγ > ρ

for ρ small enough, if we assume α < 1/2. Here, we used that RL−1 6 ℓL−1 = ργ−αγ .
Using that r 7→ f(r, T ) is convex (see [25]), that f(0, T ) = 0 and that f(ρ̃, T ) > 0 for our

range of parameters (see [19]), we have f(ρ, T ) 6 f(ρ̃, T ). Taking into account that γ > 1 and
choosing α = 1/2− η for a sufficiently small η > 0, this concludes the proof of Theorem 1.

1.4 Strategy of the proof of Proposition 3

The remainder of the paper is devoted to the proof of Proposition 3. In order to show (1.11),
it is convenient to rescale variables xj 7→ xj/L. Particles then move in the unit torus Λ, i.e.
the unit box [−1/2, 1/2]3 with periodic boundary conditions. For convenience, we introduce
N := ρL3 = ρ1−3γ or, equivalently, L = N1−κ, with κ = (2γ − 1)/(3γ − 1). The constraint on
the temperature becomes T 6 CN−2+3κ. We conclude that the Hamilton operator (1.7), acting
on F(ΛL), is unitarily equivalent to L−2HN , with the new Hamiltonian

HN =
∑

p∈Λ∗

p2a∗pap +
1

2

∑

p,q,r∈Λ∗

V̂N (r)a∗p+ra
∗
qarap (1.12)

acting on F(Λ). Here, we introduced the notation V̂N (r) = N−1+κV̂ (r/N1−κ) and we denoted
by Λ∗ = 2πZ3 the set of momenta on the torus Λ. The condition γ > 1 is equivalent to κ > 1/2.

In the next sections, we will construct a density matrix ΓN on F(Λ) that has the correct
expected number of particles and the correct energy. That is, we have the bound

c1N
3κ/2−(κ−1/2) 6 TrNΓN −N 6 c2N

3κ/2, (1.13)

which is equivalent to (1.10) and also

TrHNΓN − TL2S(ΓN )

6 4πaN1+κ

(
1 +

128

15
√
π
(N−2+3κ

a
3)1/2

)

+ TN2−2κ
∑

Nκ/2−ε<|p|6Nκ/2+ε

log

[
1− exp

(
− 1

TN2−2κ

√
|p|4 + 16πaNκp2

)]
+ CN5κ/2−ε/2

(1.14)

for all T 6 CN−2+3κ and some fixed ε > 0. After rescaling and approximating the sum with an
integral, we will obtain the statement of Prop. 3. Note that, after rescaling to the unit torus,
the effective temperature is given by TL2 = TN2−2κ.

To construct the trial state ΓN , we will apply a strategy similar to the one used in [3] to
prove an upper bound for the ground state energy at temperature T = 0. The work [3] was
partly motivated by the results of [5, 6], establishing the validity of Bogoliubov theory in the
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Gross–Pitaevskii regime, where the Hamiltonian takes the form (1.12), with κ = 0 (see [20, 10]
for alternative approaches). The main observation is that (1.12) can be reduced, through a
series of unitary transformations, to a Hamilton operator that, on the range of our trial state,
can be approximated by a linear combination of decoupled harmonic oscillators.

Let us explain the procedure a bit more precisely; the mathematical details will follow in
the next section. First of all, since the temperatures under consideration are below the critical
temperature, we need to factor out the Bose–Einstein condensate. To this end, we conjugate
(1.12) with a Weyl operator WN0 , producing a condensate with N0 particles. The parameter
N0 ∈ R+ will be fixed later on; it will be chosen so that 0 6 N −N0 . N3κ/2. Let us introduce
the momentum sets

High momenta: H = {p ∈ Λ∗ : |p| > N1−κ−ε},
Shell momenta: S = {p ∈ Λ∗ : Nκ/2−ε < |p| 6 Nκ/2+ε}

(1.15)

with a parameter ε > 0 that is chosen so that the sets do not overlap, i.e. −2+3κ+4ε < 0. To
approximateW ∗

N0
HNWN0 with a quadratic Hamiltonian, we first remove the short-range correla-

tion structure. This renormalization is achieved by conjugating W ∗
N0

HNWN0 with a Bogoliubov

transformation eB1 , acting only on momenta |p| > Nκ/2+ε. Unfortunately, to reach the correct
energy, quasi-free states constructed by quadratic transformations are not enough. Therefore,
we conjugate the resulting renormalized excitation Hamiltonian with a unitary cubic operator
Tc; the choice of Tc is the crucial step in our analysis. The Hamiltonian T ∗

c e
−B1W ∗

N0
HNWN0e

B1Tc
is well approximated by a quadratic operator, which can be diagonalized by a second Bogoliubov
transformation eB2 , acting on momenta in the shell S. Up to error terms, that are negligible in
an appropriate sense, we find

e−B2T ∗
c e

−B1W ∗
N0

HNWN0e
B1Tce

B2

≃ 4πaN1+κ

(
1 +

128

15
√
π
(N−2+3κ

a
3)1/2

)
+
∑

p∈S

√
|p|4 + 16πaNκp2 a∗pap,

(1.16)

provided that κ > 1/2 is small enough. At temperature TN2−2κ, the Gibbs state associated
with the quadratic operator on the right hand side of (1.16) has the form

Γ0 = Z−1
1{NSc=0} exp

(
− 1

TN2−2κ

∑

p∈S

√
|p|4 + 16πaNκp2 a∗pap

)
(1.17)

with the normalization constant Z > 0 chosen so that Tr Γ0 = 1 and where, for any F ⊂ Λ∗,
we introduced the notation

NF =
∑

p∈F

a∗pap

for the operator measuring the number of particles with momentum in the set F . Therefore,
we use

ΓN = Z−1WN0e
B1Tce

B2Γ0e
−B2T ∗

c e
−B1W ∗

N0
(1.18)

as a trial state for the Hamiltonian (1.12). With the approximation (1.16), it is then not difficult
to check that this trial state has indeed the correct free energy, completing the proof of (1.14).

We now highlight the main novelties with respect to [3], where a trial state was constructed
to estimate the ground state energy of (1.12). Since we work at positive temperature, Γ0 must
be chosen as a mixed state that describes thermal excitations. In contrast, at zero temperature
it is sufficient to take Γ0 as the projection onto the vacuum vector in the Fock space F(Λ). The
analysis of [3] strongly relied on the fact that the cubic transformation that is needed to create
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the correct correlation structure acted directly on the vacuum. For this reason, it was possible
to implement this transformation through a non-unitary operator, given by the exponential of a
cubic expression involving only creation operators, and to compute its action almost explicitly.
Here, we follow a different strategy and implement a unitary transformation mainly for two
reasons. First, the action of the cubic transformation on Γ0 is more involved than its action on
the vacuum and explicit computations are the exception. Second, to estimate the entropy of ΓN

we need to compute the spectral distribution of the transformed state, which is considerably
simpler if Tc is unitary.

Let us briefly explain why it is challenging to control the action of a unitary cubic transfor-
mation in the current setting. The action of a unitary operator eB can be formally computed
via the commutator expansion

e−BXeB =
∑

n>0

(−1)n

n!
ad

(n)
B (X), (1.19)

with adB(X) = [B,X] and where ad
(n)
B denotes its n−fold iteration. For quadratic transforma-

tions, say B = 1
2

∑
k∈Λ∗ ηka

∗
ka

∗
−k − h.c. with some real numbers ηk = η−k, it is well known that

(1.19) converges. For example for X = a∗p, p ∈ Λ∗, it leads to the explicit formula

e−Ba∗pe
B = ch(ηp)a

∗
p + sh(ηp)ap.

Cubic transformations, however, do not enjoy the same algebraic structure. In the Gross–
Pitaevskii regime (κ = 0) considered in [5, 9, 24], or in slightly more singular regimes (κ > 0
small), as in [1, 8, 19], the kernel of the cubic transformation B =

∑
k,r∈Λ∗ ηra

∗
k+ra

∗
−rak − h.c.

can be taken to be small so that the expansion (1.19) converges and can be truncated after a few
iterations. In our case, since we consider κ > 1/2, the trial state Γ0 has too many excitations
and the expansion (1.19) is not convergent.

To deal with this problem, we implement the cubic renormalization as product of many
“smaller” unitary operators, constructed in such a way that the expansion (1.19) converges and
yields a closed formula, similar to the one obtained for quadratic transformations. To achieve
this goal, we introduce cutoff functions analogous to the ones used in [3], to make sure that for
a given momentum k in the shell S, we only create one pair (−r, k + r) of particles with high
momentum in H. For k ∈ S, we say that a pair (p, q) of momenta in H forms a k-connection if

p+ q = k. We define Bk = B♯
k − B◦

k, see (2.10) below, so that B♯
k only creates a k-connection if

it acts on a state with no k-connection, and it cannot create k′-connections, for k′ 6= k. Thanks
to these exclusion rules, we will show in Lemma 4.3 below that the unitary transformation eBk

is explicitly given by

eBk = cosXk + B♯
k

sinXk

Xk
− sinXk

Xk
B◦
k + B♯

k

cosXk − 1

X2
k

B◦
k,

where Xk = |B♯
k|. Using that Xk is small in average on the trial state, we will be able to

iteratively combine the action of eBk , for all momenta in the shell S. Additionally, we will
show that the cubic transformation preserves some properties of the trial state, which is used
to simplify computations.

Organization of the paper. In Section 2, we precisely define the previously discussed unitary
transformations and our trial state. In Lemma 5 and in Lemma 6, we describe the action of the
Bogoliubov transformation eB1 and of the cubic transformation Tc, respectively. Using these
lemmas, we may conclude the proof of Prop. 3. Section 3 is devoted to the proof of Lemma 5

7



and Section 4 to the proof of Lemma 6. Finally, in the appendix, we show properties of the
kernel of the transformations and we give a proof of Prop. 2.

Acknowledgements. B.S. would like to gratefully acknowledge support from the Swiss Na-
tional Science Foundation through the Grant “Dynamical and energetic properties of Bose-
Einstein condensates”, from the NCCR SwissMAP and from the European Research Council
through the ERC-AdG CLaQS. This work was partially funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – Project-ID 470903074 – TRR 352.

2 The trial state

In this section we make explicit our trial state ΓN given in (1.18). In particular, we con-
struct the unitarity transformations appearing in its definition and compute their actions on
the Hamiltonian.

2.1 The Weyl transformation WN0

To generate the Bose-Einstein condensate we use the Weyl operator

WN0 = exp
[√

N0(a
∗
0 − a0)

]
,

with a parameter N0 ∈ N, which will be specified later on, see (2.28). The Weyl operator leaves
ap, a

∗
p invariant for all p ∈ Λ∗ \ {0}. On a0, a

∗
0, it acts as a shift, i.e.

W ∗
N0
a0WN0 = a0 +

√
N0, W ∗

N0
a∗0WN0 = a∗0 +

√
N0. (2.1)

We obtain the excitation Hamiltonian

W ∗
N0

HNWN0 =
N2

0

2
V̂N (0) +Q1 +Q2 +Q3 +Q4 +

∑

p∈Λ∗

(
p2 +N0V̂N (0) +N0V̂N (p)

)
a∗pap (2.2)

with

Q1 = N
3/2
0 V̂N (0)a0 + h.c. Q2 =

N0

2

∑

p∈Λ∗

V̂N (p)a∗pa
∗
−p + h.c.

Q3 = N
1/2
0

∑

p,r∈Λ∗

V̂N (r)a∗−ra
∗
r+pap + h.c. Q4 =

1

2

∑

p,q,r∈Λ∗

V̂N (r)a∗p+ra
∗
qaq+rap

2.2 Quadratic transformation eB1 on momenta |p| > Nκ/2+ε

To factor out the short-range correlations, we conjugate W ∗
N0

HNWN0 with a Bogoliubov trans-
formation that acts on momenta that are higher than the shell momenta. For p ∈ Λ∗ \ {0}, we
define ϕp as the unique solution to the box scattering equation

p2ϕp +
1

2

∑

q 6=0

V̂N (p− q)ϕq = −1

2
V̂N (p), (2.3)

where we introduced the notation ”q 6= 0” for q ∈ Λ∗ \ {0}. The existence and the uniqueness
of a solution to this equation was established in [20]. For the sake of completeness we provide
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the proof in Appendix A. Next, we define the box scattering length aN , which appears more
naturally in our setting and, as we will show, is close to the full space scattering length a.

8πaN := V̂ (0) +N1−κ
∑

p 6=0

V̂N (p)ϕp. (2.4)

Important properties of the function ϕ : p 7→ ϕp with ϕ0 = 0 and of the box scattering length
aN are stated in the next lemma. Its proof is given in Appendix A, see also [20], [10, Appendix]
or [21, Appendix] for alternative proofs.

Lemma 4. For p ∈ Λ∗ \ {0}, we have the pointwise bound

ϕp . p−2N−1+κ.

Moreover, we have the estimates

‖ϕ‖1 . 1, ‖ϕ‖2 . N−1+κ, ‖ϕ‖∞ . N−1+κ, ‖pϕ‖22 . N−1+κ.

For ϕ
(α)
p = ϕp1|p|>Nα, α > 0, we obtain

‖ϕ(α)‖2 . N−1+κ−α/2, ‖ϕ(α)‖∞ . N−1+κ−2α.

Moreover,

|aN − a| . N−1+κ. (2.5)

Using the solution ϕp, we define the unitary Bogoliubov transformation eB1 , with the anti-
symmetric operator

B1 =
1

2

∑

|p|>Nκ/2+ε

sinh−1(N0ϕp)a
∗
pa

∗
−p − h.c.

Recall that the parameter ε > 0 was introduced in (1.15). For p ∈ Λ∗, the action of eB1 on an
annihilation operator is given by

e−B1ape
B1 = cpap + spa

∗
−p, (2.6)

where we denote

cp = cosh
(
sinh−1(N0ϕp)

)
=
√

1 +N2
0ϕ

2
p, sp = sinh

(
sinh−1(N0ϕp)

)
= N0ϕp (2.7)

for all |p| > Nκ/2+ε, while the transformation acts trivially otherwise, i.e. cp = 1 and sp = 0 for
|p| 6 Nκ/2+ε.

Conjugating (2.2) with the Bogoliubov transformation eB1 we obtain a new, renormalized
excitation Hamiltonian. Its form is described in the next lemma, whose proof is deferred to
Section 3. Here we introduce the orthogonal projection

Ξ := 1{N(S∪H)c=0}1{NH∈2N0}.

Since the state that we are going to use to estimate the free energy of e−B1W ∗
N0

HNWN0e
B1 will

be in the range of Ξ (because (1.17) is clearly in Ran Ξ and because Ξ commutes with Tc and
eB2), it is enough for us to estimate the error arising from conjugation with eB1 on this subspace.

9



Lemma 5. Suppose that 0 6 N −N0 6 CN3κ/2 for some constant C > 0. Then we have

e−B1W ∗
N0

HNWN0e
B1

= 4πaN1+κ − 8πaNκ(N −N0) +
∑

p∈S

(4πaNκ)2

p2

+
∑

p∈Λ∗

p2a∗pap + 2V̂ (0)NκN +
∑

p∈S

4πaNκ
(
a∗pa

∗
−p + h.c.

)
+Q3 +Q4 + E1,

(2.8)

where the error term E1 is bounded, on the range of the projection Ξ, by

E1 . N−3ε
∑

p∈Λ∗

p2a∗pap +N−5ε/2Q4 +N−κ/2−ε/2N 2 +N−3+7κ+4εN 2
H +N2−2κ−2εNH

+N5κ/2−ε/2

(2.9)

if 1/2 < κ < 8/15 − 2ε/3 and ε > 0 is chosen as in (1.15).

Remark. We will show that the trial state that we are going to use for the Hamiltonian
e−B1W ∗

N0
HNWN0e

B1 is such that, for j = 1, 2,

N j
H . N (−2+9κ/2+ε)j ; N j . N j3κ/2; Q4,

∑
p2a∗pap . N5κ/2

in expectation. This explains why, for 1/2 < κ < 14/27− ε, all terms on the right-hand side of
(2.9) are subleading, i.e. they are smaller than N5κ/2, which is the resolution we are trying to
achieve.

2.3 The cubic transformation Tc

Next, we conjugate the renormalized excitation Hamiltonian e−B1W ∗
N0

HNWN0e
B1 with cubic

transformations, annihilating a particle with shell momentum k ∈ S and creating a pair of
particles with high momenta −r, k + r ∈ H, or, vice versa, annihilating a pair of particles with
high momenta −r, k + r ∈ H and creating a particle with shell momentum k ∈ S. Instead
of a single cubic transformation, we consider a product of unitary operators, one for each low
momentum k ∈ S. More precisely, for k ∈ S, we define

B♯
k =

∑

r∈Hk

N1/2ϕra
∗
−ra

∗
r+kakΘk,r, B◦

k =
(
B♯
k

)∗
, Bk = B♯

k − B◦
k, (2.10)

with Hk = {r ∈ H | r + k ∈ H} and where the cutoff Θk, is defined, similarly as in [3], by

Θk,r = Θ
(1)
k ×Θ

(2)
k,r,

Θ
(1)
k =

∏

t∈H

(1− 1{N−t>0}1{Nt+k>0}), Θ
(2)
k,r =

∏

q∈S

(1− 1{Nr+q+N−(k+r)+q>0}).
(2.11)

Here and in the following we use the notation Nq = a∗qaq, q ∈ Λ∗, for the operator measuring

the number of particles with momentum q. Then we define the unitary operator Tk = eBk for
every k ∈ S, and the product

Tc =
∏

k∈S

Tk. (2.12)

In fact, since [Tk, Tk′ ] 6= 0, for k′ 6= k, we need to choose an order in the finite set S to define
Tc. However, our analysis will not depend on this choice.
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We say that a pair of high momenta (r, t) ∈ H2 is a k-connection if r + t = k. The cut-off

Θk,r has two roles. The first factor Θ
(1)
k,r ensures that B♯

k only creates a k-connection if there

is not already one. The second factor Θ
(2)
k,r ensures that B♯

k does not create any q-connection,
for q 6= k. This latter condition is implemented by asking that the shell-neighborhoods of r
and −(k + r) are empty, that is, that there is no occupied mode with momentum t ∈ r + S or
t ∈ −(k + r) + S.

In the next lemma we describe the action of Tc on the renormalized excitation Hamiltonian
e−B1W ∗

N0
HNWN0e

B1 . When applying the lemma, we will only be interested in controlling the
action of Tc on a specific trial state Γ. For this reason, we are going to restrict our attention
to states with certain additional properties, which will be satisfied by the Γ that we are going
to choose. First of all, we can restrict our attention to the range of the projection 1{NSc=0}

(because the trial state will not have particles with momentum outside S). Additionally, we can
focus on states that commute with the parity operator for the sum of the number of particles
with momentum ±k and the number of ±k-connections. For k ∈ S, consider

Mk = Nk +
1

2

∑

t∈Hk

N−tNt+k (2.13)

and the parity operators

Pk = 1{Mk+M−k∈2N0},

Qk = 1− Pk = 1{Mk+M−k∈2N0+1}.
(2.14)

In accordance with the intuition that B♯
k annihilates a particle with momentum k while creating

a k-connection, one readily checks that [B♯
q,Mk] = 0 for all q ∈ S. Therefore we find that

[Tc,Mk] = [Tc,Pk] = [Tc,Qk] = 0 for all k ∈ S. For this reason, restricting to Γ such that
[Γ,Pk] = [Γ,Qk] = 0 for all k ∈ S, we will be able to neglect all terms in the renormalized
excitation Hamiltonian e−B1W ∗

N0
HNWN0e

B1 that do not preserve parity.

Lemma 6. Let Γ be a normalized density matrix on F(Λ) with Γ = 1{NSc=0}Γ1{NSc=0} and

such that [Γ,Pk] = 0 for all k ∈ S. Assume 0 6 N −N0 . N3κ/2. Then we have

Tr T ∗
c e

−B1W ∗
N0

HNWN0e
B1TcΓ

6 4πaN1+κ − 8πaNκ(N −N0) +
∑

p∈S

(4πaNκ)2

p2

+Tr
[∑

p∈S

p2a∗pap + 16πaNκNS +
∑

p∈S

4πaNκ
(
a∗pa

∗
−p + h.c.

)]
Γ + δ(Γ)

(2.15)

where

δ(Γ) . N−1+κ+6εTr
(
NS +N3κ/2+3ε

) ∑

k∈S

N 2
k Γ

+
(
N−κ/2−ε/2 +N−7+13κ+6ε

)
Tr N 2

SΓ +N5κ/2−ε/2

(2.16)

if 1/2 < κ < 8/15 − 2ε/3 and ε > 0 is chosen as in (1.15).

This lemma is the main novelty of the paper. We defer its proof to Section 4.
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2.4 Quadratic transformation eB2 on shell momenta

Consider now the quadratic Hamiltonian in (2.15). Since we are going to choose N0 such that
N −N0 = TrNSΓ + o(N3κ/2), see (2.28) below, we are effectively left with a factor 8πaNκNS

in the last line of (2.15). With the aim of diagonalizing this quadratic operator, we implicitly
define the coefficients τp ∈ R, for p ∈ S, via

tanh(2τp) = − 8πaNκ

p2 + 8πaNκ
.

The action of the unitary Bogoliubov transformation eB2 , with the antisymmetric operator

B2 =
1

2

∑

p∈S

τpa
∗
pa

∗
−p − h.c.,

is given explicitly, similarly to (2.6), by

e−B2ape
B2 = γpap + σpa

∗
−p, e−B2a∗pe

B2 = γpa
∗
p + σpa−p (2.17)

with γp = cosh τp, σp = sinh τp, for all p ∈ S. A straightforward calculation shows that

e−B2

[∑

p∈S

p2a∗pap + 8πaNκNS +
∑

p∈S

4πaNκ
(
a∗pa

∗
−p + h.c.

)]
eB2

=
1

2

∑

p∈S

[√
|p|4 + 16πaNκp2 − p2 − 8πaNκ

]
+
∑

p∈S

√
|p|4 + 16πaNκp2 a∗pap.

(2.18)

We may now precisely define the trial state of the transformed Hamiltonian as the Gibbs state
of the diagonal quadratic Hamiltonian in (2.18). We set

Γ0 = Z−1
1{NSc=0} exp

(
− 1

TN2−2κ

∑

p∈S

√
|p|4 + 16πaNκp2 a∗pap

)
, (2.19)

with the normalization constant

Z = Tr 1{NSc=0} exp

(
− 1

TN2−2κ

∑

p∈S

√
|p|4 + 16πaNκp2 a∗pap

)
.

Furthermore, we define
Γ = eB2Γ0e

−B2 (2.20)

as the trial state for the Hamiltonian appearing in Lemma 6. Some important properties of Γ
are listed in the following lemma.

Lemma 7. Let Γ be defined as in (2.20). Then Γ > 0 with TrΓ = 1. Moreover, we have
Γ = 1{NSc=0}Γ1{NSc=0} and [Γ,Pk] = [Γ,Qk] = 0 for all k ∈ S and with the parity operators
Pk,Qk defined in (2.14). Furthermore, for j = 1, 2, there exist positive constants c < C such
that

cN3jκ/2 6 Tr N j
SΓ 6 CN3jκ/2

TrN j−1
S

∑

k∈S

N 2
kΓ 6 CN j(3κ/2+2ε). (2.21)
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Proof. The fact that Γ > 0, Tr Γ = 1, Γ = 1{NSc=0}Γ1{NSc=0} and [Γ,Pk] = [Γ,Qk] = 0 for all
k ∈ S follows readily from the definition of Γ. It remains to show the inequalities (2.21). We
begin with j = 1. From the definition of Γ0 a standard ideal gas computation gives

TrNpΓ0 =
1

exp
(

1
TN2−2κ

√
|p|4 + 16πaNκp2

)
− 1

TrN 2
p Γ0 =

2
[
exp

(
1

TN2−2κ

√
|p|4 + 16πaNκp2

)
− 1
]2 +

1

exp
(

1
TN2−2κ

√
|p|4 + 16πaNκp2

)
− 1

(2.22)

and, by symmetry,
Tr a∗pa

∗
−pΓ0 = Tr apa−pΓ0 = 0

for all p ∈ S. With (2.17), we find

TrNSΓ =
∑

p∈S

Tr (γpa
∗
p + σpa−p)(γpap + σpa

∗
−p)Γ0

=
∑

p∈S

p2 + 8πaNκ

√
|p|4 + 16πaNκp2

1

exp
(

1
TN2−2κ

√
|p|4 + 16πaNκp2

)
− 1

+
1

2

∑

p∈S

[ p2 + 8πaNκ

√
|p|4 + 16πaNκp2

− 1
]
.

(2.23)

Scaling p 7→ p/Nκ/2, interpreting the sums as Riemann sums, approximating them with integrals
over R3, and using the restriction TN2−3κ 6 C, we conclude that cN3κ/2 6 TrNSΓ 6 CN3κ/2

(both terms are positive, the second term is of order N3κ/2, independently of T and the first
term is at most of order N3κ/2, for TN2−3κ 6 C).

To prove the second bound in (2.21), we proceed similarly. Also here, we use the fact that
only observables preserving the number of particles have non-trivial expectation w.r.t. Γ0.

Tr
∑

p∈S

N 2
p Γ =

∑

p∈S

Tr (γpa
∗
p + σpa−p)(γpap + σpa

∗
−p)(γpa

∗
p + σpa−p)(γpap + σpa

∗
−p)Γ0

.
∑

p∈S

(γ2p + σ2p)
2 Tr (N 2

p +N 2
−p)Γ0 +

∑

p∈S

σ2p(γ
2
p + σ2p)

.
∑

p∈S

[
p2 + 8πaNκ

]2

|p|4 + 16πaNκp2
Tr N 2

pΓ0

+
1

2

∑

p∈S

[ p2 + 8πaNκ

√
|p|4 + 16πaNκp2

− 1
] p2 + 8πaNκ

√
|p|4 + 16πaNκp2

(2.24)

Inserting (2.22), we can again scale p 7→ p/Nκ/2 and we can approximate with an integral.
Compared with (2.23), however, the singularity at p/Nκ/2 ≃ 0 is more severe since there
TrN 2

pΓ0 ≃ (p/Nκ/2)−2. For this reason, in the region N−ε 6 |p|/Nκ/2 6 c, we estimate

TrN 2
pΓ0 . N2ε. We conclude that

∑
p∈S TrN 2

pΓ . N3κ/2+2ε.
Let us now consider the case j = 2. We have

TrN 2
SΓ =

∑

p,q∈S

Tr (γpa
∗
p + σpa−p)(γpap + σpa

∗
−p)(γqa

∗
q + σqa−q)(γqaq + σqa

∗
−q)Γ0 (2.25)

Since the Gibbs state Γ0 factorizes, we find that TrN 2
SΓ is the same as (TrNSΓ)

2, up to terms
that are associated with p = q on the right-hand side of (2.25) and that can be handled as we
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did in (2.24), producing errors of order N3κ/2+2ε ≪ N3κ. We conclude that cN3κ 6 TrN 2
SΓ 6

CN3κ. The second bound in (2.21) for j = 2 can be proven similarly; we leave the details to
the reader.

2.5 Definition of N0 and proof of Proposition 3

From (2.20), we are led to the definition

ΓN =WN0e
B1TcΓT

∗
c e

−B1W ∗
N0

=WN0e
B1Tce

B2 Γ0 e
−B2T ∗

c e
−B1W ∗

N0
(2.26)

as trial state for the Hamiltonian HN on the small, rescaled box Λ. In the next proposition, we
estimate the expected number of particles in the state ΓN . Its proof is deferred to Section 4.7,
because it makes use of some properties of Tc that will be discussed in Section 4.

Proposition 8. Let ΓN be given by (2.26). Then there exists a constant C > 0 such that for ε
chosen as in (1.15) we have

N0 +TrNSΓ 6 TrNΓN 6 N0 +TrNSΓ + CN3κ/2−ε. (2.27)

Prop. 8 motivates the following choice of N0 ∈ R+

N0 := N − TrNSΓ +N3κ/2−(κ−1/2). (2.28)

From Lemma 7, we conclude that cN3κ/2 6 N − N0 6 CN3κ/2 for all κ > 1/2 and N large
enough. The term N3κ/2−(κ−1/2), which is small compared with TrNSΓ for κ > 1/2, will be
used to make sure that the lower bound in (1.13) holds true. We are now set to show Prop. 3.

Proof of Prop. 3. Combining (2.28) with Prop. 8, we obtain constants c1, c2 > 0 such that

N + c1N
3κ/2−(κ−1/2) 6 TrNΓN 6 N + c2N

3κ/2−ε. (2.29)

Furthermore, we observe that with the definition (2.20) of the density matrix Γ and the choice
(2.28) of N0, all assumptions in Lemma 6 are satisfied. Thus, inserting (2.18) into Lemma 6 we
find

TrHNΓN − TN2−2κS(ΓN )

6 4πaN1+κ +
1

2

∑

p∈S

[√
|p|4 + 16πaNκp2 − p2 − 8πaNκ +

(8πaNκ)2

2p2
]

+Tr
∑

p∈S

√
|p|4 + 16πaNκp2 a∗papΓ0 − TN2−2κS(Γ0) + 8πaN5κ/2−(κ−1/2) + δ(Γ).

(2.30)

Combining (2.16) and Lemma 7, we conclude that

δ(Γ) . N5κ/2−ε/2

if 1/2 < κ < 14/27 and ε > 0 is small enough. As in the proof of Lemma 7, we scale p 7→ p/N−κ/2
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p 7→ q = p/Nκ/2 in the first sum on the r.h.s. of (2.30). We find

1

2

∑

p∈S

[√
|p|4 + 16πaNκp2 − p2 − 8πaNκ +

(8πaNκ)2

2p2
]

=
N5κ/2

(2π)3
(2π)3

N3κ/2

∑

q∈N−κ/22πZ3:
N−ε6|q|6Nε

[√
|q|4 + 16πaq2 − q2 − 8πa +

(8πa)2

2q2
]

6
N5κ/2

(2π)3

ˆ

R3

[√
|q|4 + 16πaq2 − q2 − 8πa+

(8πa)2

2q2
]
dq + CN5κ/2−ε

= 4πaN5κ/2 128a
3/2

15
√
π

+ CN5κ/2−ε.

(2.31)

Here, we approximated the Riemann sum with the corresponding integral over R3, which can
be computed explicitly, see, for example, [19, eq. (8.11)] for more details.

Next, we consider the term in the second line of (2.30). From the choice (2.19) of Γ0 we
conclude, by the Gibbs principle, that

Tr
∑

p∈S

√
|p|4 + 16πaNκp2 a∗papΓ0 − TN2−2κS(Γ0)

= −TN2−2κ logZ = TN2−2κ
∑

p∈S

log

[
1− exp

(
− 1

TN2−2κ

√
|p|4 + 16πaNκp2

)]
,

where the last equality is a standard ideal gas computation as in (2.22). As before we rescale
p 7→ p/Nκ/2 and replace the resulting Riemann sum by an integral, while keeping in mind the
condition TN2−3κ 6 C. We obtain

TN2−2κ
∑

p∈S

log
[
1− exp

(
− 1

TN2−2κ

√
|p|4 + 16πaNκp2

)]

6 T 5/2N5−5κ(2π)−3

ˆ

R3

log
[
1− exp

(
−
√

|q|4 + 16πaq2

TN2−3κ

)]
dq + CN5κ/2−ε, (2.32)

see [19, eq. (9.13)] for more details. Inserting (2.32) and (2.31) into (2.30), we arrive at

TrHNΓN − TN2−2κS(ΓN )

6 4πaN1+κ

(
1 +

128

15
√
π
(N−2+3κ

a
3)1/2

)

+ T 5/2N5−5κ(2π)−3

ˆ

R3

log
[
1− exp

(
−
√

|q|4 + 16πaq2

TN2−3κ

)]
dq + CN5κ/2−ε/2 .

(2.33)

Next, we scale back to the box ΛL = [−L/2, L/2]3, with L = ρ−γ , for some γ > 1. We
recall the choice N = ρL3 = ρ1−3γ which translates into L = N1−κ, with κ = (2γ− 1)/(3γ− 1).
We observe that the condition γ > 1 is equivalent to κ > 1/2. We define the unitary operator
UL : F(Λ) → F(ΛL), (ULψ)

(n)(x1, . . . , xn) = L−3n/2ψ(n)(x1/L, . . . , xn/L), for all n ∈ N and all
Ψ = {ψ(n)}n∈N ∈ F(Λ) and we remark that the Hamiltonian (1.12) satisfies L−2ULHNU∗

L = H.
Therefore, a good trial state for H is given by the density matrix ΓL = ULΓNU∗

L on F(ΛL).
Since TrNΓL = TrNΓN , it follows from (2.29) that

c1ρ
(γ+2)/2 6

1

L3
TrNΓL − ρ 6 c2ρ

3/2
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in accordance with (1.10). Here we used the facts that Nκ/2/L = ρ1/2, that N−2+3κ = ρ and
that κ = (2γ − 1)/(3γ − 1). Moreover, from (2.33) we obtain

1

L3

[
TrHΓL − TS(ΓL)

]
= L−5

[
TrHNΓN − TN2−2κS(ΓN )

]

6 4πaρ2
(
1 +

128

15
√
π
(ρa3)1/2

)
+
T 5/2

(2π)3

ˆ

R3

log
[
1− exp

(
−
√
|q|4 + 16πaρq2/T

)]
dq + ρ5/2+ǫ

for a sufficiently small ǫ > 0 and for all T 6 Cρa. This concludes the proof of Prop. 3.

3 Quadratic Transformation on Large Momenta

The goal of this section is to prove Lemma 5. Throughout, we will assume 0 6 N−N0 . N3κ/2 as
in Lemma 5. With this aim, we consider separately the action of the Bogoliubov transformation
eB1 , determined by (2.6), on each term in the excitation Hamiltonian (2.2). We start with the
diagonal term.

Lemma 9. We have

e−B1
∑

p∈Λ∗

(
p2 +N0V̂N (0) +N0V̂N (p)

)
a∗pape

B1

= 2V̂ (0)NκN +
∑

p∈Λ∗

p2a∗pap +
∑

p∈Λ∗

p2sp
(
a∗pa

∗
−p + h.c.

)
+
∑

p∈Λ∗

p2s2p + E(diag)
1 , (3.1)

with

±E(diag)
1 . N−2+3κ

∑

p∈Λ∗

p2a∗pap +Nκ−ε/2N +N5κ/2−ε/2,

for all 0 < κ < 2/3 and with ε > 0 as introduced in (1.15).

Proof. Denote βp =
(
p2 +N0V̂N (0) +N0V̂N (p)

)
. With (2.6) and c2p − s2p = 1, we compute

e−B1
∑

p∈Λ∗

βpa
∗
pape

B1 −
∑

p∈Λ∗

βpa
∗
pap = 2

∑

p∈Λ∗

βps
2
pa

∗
pap +

∑

p∈Λ∗

βpcpsp
(
a∗pa

∗
−p + h.c.

)
+
∑

p∈Λ∗

βps
2
p

and we obtain

e−B1
∑

p∈Λ∗

βpa
∗
pape

B1 − 2V̂ (0)NκN −
∑

p∈Λ∗

p2a∗pap −
∑

p∈Λ∗

p2sp(a
∗
pa

∗
−p + h.c.)−

∑

p∈Λ∗

p2s2p

=
∑

p∈Λ∗

(
N0V̂N (0) +N0V̂N (p)− 2V̂ (0)Nκ + 2βps

2
p

)
a∗pap (3.2)

+
∑

p∈Λ∗

(
(N0V̂N (0)cp +N0V̂N (p)cp + p2(cp − 1)

)
sp
(
a∗pa

∗
−p + h.c.

)
+
∑

p∈Λ∗

N0(V̂N (0) + V̂N (p))s2p.

Let us denote the term on the right-hand side of the previous equation by E(diag)
1 . We obtain

(3.1) and it remains to estimate the error term. In order to control the diagonal part of E(diag)
1 ,

we use |V̂N (p) − V̂N (0)| . p2N−3+3κ, which easily follows from the fact that V is even, the
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assumption of Lemma 5 that 0 6 N −N0 . N3κ/2, as well as the estimate βps
2
p . Nκ−2ε from

(2.7) and Lemma 4. We find

±
∑

p∈Λ∗

(
N0V̂N (0) +N0V̂N (p)− 2V̂ (0)Nκ + 2βps

2
p

)
a∗pap

. N−2+3κ
∑

p∈Λ∗

p2a∗pap +Nκ−2εN +N−1+5κ/2N . (3.3)

As for the constant term in E(diag)
1 , we have

±
∑

p∈Λ∗

N0(V̂N (0) + V̂N (p))s2p . Nκ‖s‖22 . N5κ/2−ε. (3.4)

Finally, we consider the off-diagonal part of E(diag)
1 . From 0 6 cp− 1 6 s2p we find the inequality

N0V̂N (0)cp +N0V̂N (p)cp + p2(cp − 1) . Nκ. Thus, Cauchy–Schwarz implies

±
∑

p∈Λ∗

(
(N0V̂N (0)cp +N0V̂N (p)cp + p2(cp − 1)

)
sp
(
a∗pa

∗
−p + h.c.

)

. Nκ
(
N−ε/2N +N ε/2‖s‖2∞N +N ε/2‖s‖22

)
. Nκ−ε/2N +N5κ/2−ε/2.

Inserting (3.3), (3.4) and the last estimate into (3.2) yields Lemma 9 (using also the assumption
−2 + 3κ+ 4ε < 0 from (1.15)).

Next, we consider the action of eB1 on the quadratic term Q2, defined in (2.2).

Lemma 10. We have

e−B1Q2e
B1 = Q2 +N0

∑

p∈Λ∗

V̂N (p)sp + E(Q2)
1 (3.5)

with

±E(Q2)
1 . Nκ−2εN +N5κ/2−3ε,

for all 0 < κ < 2/3 and with ε > 0 as introduced in (1.15).

Proof. With (2.6), we compute

e−B1Q2e
B1 −Q2

= N0

∑

p∈Λ∗

V̂N (p)s2p (a
∗
pa

∗
−p + h.c.) +N0

∑

p∈Λ∗

V̂N (p)cpsp a
∗
pap +N0

∑

p∈Λ∗

V̂N (p)spcp.

We obtain

E(Q2)
1 = N0

∑

p∈Λ∗

V̂N (p)s2p (a
∗
pa

∗
−p + h.c.) +N0

∑

p∈Λ∗

V̂N (p)cpspa
∗
pap +N0

∑

p∈Λ∗

V̂N (p)sp(cp − 1).

The bound for E(Q2)
1 follows from Cauchy–Schwarz, 0 6 cp − 1 6 s2p and Lemma 4.

Next, we consider the cubic term Q3. Notice that here, and also in the next lemma which
devoted to Q4, we only bound the restriction of the error term on the range of the projection
Ξ; this is enough, since our trial state will be in the range of Ξ.
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Lemma 11. We have
e−B1Q3e

B1 = Q3 + E(Q3)
1 , (3.6)

where, on the range of Ξ,

±E(Q3)
1 . N−2+4κ+5ε

(
NH + 1

)2
+Nκ−4ε

(
N +N3κ/2+3ε

)
,

for all 0 < κ < 2/3 and with ε > 0 as introduced in (1.15).

Proof. To compute e−B1Q3e
B1 , we apply (2.6). We find (3.6), with an error E(Q3)

1 given, as a
quadratic form on the range of Ξ, by

E(Q3)
1 = N

1/2
0

∑

p,r∈Λ∗

V̂N (r)(crcr+pcp − 1) a∗−ra
∗
r+pap +N

1/2
0

∑

p,r∈Λ∗

V̂N (r)crcr+psp a
∗
−ra

∗
r+pa

∗
−p

+N
1/2
0

∑

p,r∈Λ∗

V̂N (r)crsr+pcp a
∗
−ra−(r+p)ap +N

1/2
0

∑

p,r∈Λ∗

V̂N (r)crsr+psp a
∗
−ra

∗
−pa−(r+p)

+N
1/2
0

∑

p,r∈Λ∗

V̂N (r)srcr+pcp a
∗
r+parap +N

1/2
0

∑

p,r∈Λ∗

V̂N (r)srcr+psp a
∗
r+pa

∗
−par

+N
1/2
0

∑

p,r∈Λ∗

V̂N (r)srsr+pcp ara−(r+p)ap + h.c. (3.7)

Here we already used the fact that terms that annihilate or create particles with momenta in
(H ∪ S)c, as well as terms that do not preserve the parity of NH vanish on the range of Ξ. In
particular, all contributions where two momenta contract in the canonical commutation relation
must vanish since, by momentum conservation, these terms are either proportional to a0 or to
a∗0. Additionally, the terms proportional to srsr+psp must vanish on the range of Ξ because,
since s is zero on S, we would need −r, p+ r, p ∈ H; this, however, breaks the parity of NH . To
bound the contributions in (3.7), we argue again with the parity of NH to conclude that among
the three momenta r, r + p, p, two must be in H, one in S. Keeping this in mind, and moving
around factors of (NH + 1)±1, (N + 1)±1/2 as needed, we can estimate the terms on the right-
hand side of (3.7) as follows. Let us consider the first term. We use |crcr+pcp−1| 6 s2r+s

2
r+p+s

2
p

and the notation sH for the restriction of the coefficients sp to the set H. Then, for ξ ∈ RanΞ,
we obtain

∣∣∣N1/2
0

∑

p,r∈Λ∗

V̂N (r)(crcr+pcp − 1)〈ξ, a∗ra∗r+papξ〉
∣∣∣

. N−1/2+κ
(
‖s2H‖2 + ‖s2H‖∞N3κ/4+3ε/2

)
‖(NH + 1)ξ‖‖(N + 1)1/2ξ‖

. N−3+11κ/2+5ε/2‖(NH + 1)ξ‖‖(N + 1)1/2ξ‖.

Here we used that in the term proportional to s2p we have p ∈ H so that either r ∈ S or r+p ∈ S;
this allows us to sum up the second momentum after a Cauchy–Schwarz inequality (recall
that |S| 6 CN3κ/2+3ε). Moreover, we used Lemma 4 to bound ‖s2H‖2 6 CN−5/2+9κ/2+5ε/2,
‖s2H‖∞ 6 CN−4+6κ+4ε and the condition 4ε− 2 + 3κ < 0 from (1.15).

To estimate the second term on the right-hand side of (3.7), we assume for example that
r, p ∈ H, r + p ∈ S (the case r + p, p ∈ H, r ∈ S can be treated similarly). Since c is bounded
uniformly in N and with the estimate ‖sH‖2 . N (−1+3κ+ε)/2 we find
∣∣∣N1/2

0

∑
V̂N (r)crcr+psp 〈ξ, a∗−ra

∗
r+pa

∗
−pξ〉

∣∣∣ . N−1/2+κ
∑

sp‖a−ra−pξ‖
[
‖ar+pξ‖+ ‖ξ‖

]

. N−1/2+κ‖sH‖2‖NHξ‖
(
‖N 1/2ξ‖+N3κ/4+3ε/2‖ξ‖

)

. N
−2+5κ+ε

2 ‖NHξ‖
(
‖N 1/2ξ‖+N3κ/4+3ε/2‖ξ‖

)
.
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The next four terms on the right-hand side of (3.7) can all be estimated in the same way
applying a Cauchy–Schwarz inequality. We obtain

∣∣∣N1/2
0

∑

p,r∈Λ∗

V̂N (r)crsr+pcp 〈ξ, a∗−ra−(r+p)apξ〉
∣∣∣,
∣∣∣N1/2

0

∑

p,r∈Λ∗

V̂N (r)crsr+psp 〈ξ, a∗−ra
∗
−pa−(r+p)ξ〉

∣∣∣,
∣∣∣N1/2

0

∑

p,r∈Λ∗

V̂N (r)srcr+pcp 〈ξ, a∗r+parapξ〉
∣∣∣,
∣∣∣N1/2

0

∑

p,r∈Λ∗

V̂N (r)srcr+psp 〈ξ, a∗r+pa
∗
−parξ〉

∣∣∣

. N−1/2+κ‖sH‖2‖(NH + 1)ξ‖‖(N + 1)1/2ξ‖

. N
−2+5κ+ε

2 ‖(NH + 1)ξ‖‖(N + 1)1/2ξ‖.

Finally, we control the last term on the right-hand side of (3.7). We find

∣∣∣N1/2
0

∑

p,r∈Λ∗

V̂N (r)srsr+pcp 〈ξ, ara−(r+p)apξ〉
∣∣∣

. N−1/2+κ
∑

srsr+p‖ara−(r+p)ξ‖
(
‖apξ‖+ ‖ξ‖

)

. N−1/2+κ‖NHξ‖
(
‖sH‖2‖sH‖∞‖N 1/2ξ‖+ ‖sH‖22‖ξ‖

)

. N−3+11κ/2+5ε/2‖NHξ‖‖N 1/2ξ‖+N−3/2+4κ+ε‖NHξ‖‖ξ‖.

Putting all together, we conclude that, for any 0 < κ < 2/3 and ε > 0 as in (1.15), we have

|〈ξ, E(Q3)
1 ξ〉| . N

−2+5κ+ε
2 ‖(NH + 1)ξ‖

(
‖N 1/2ξ‖+N3κ/4+3ε/2‖ξ‖

)

6 N−2+4κ+5ε‖(NH + 1)ξ‖2 +Nκ−4ε
(
‖N 1/2ξ‖2 +N3κ/2+3ε‖ξ‖2

)
.

Finally, let us compute the action of eB1 on the quartic term Q4. Here, the restriction on κ
and ε only serves to simplify the form of the error terms.

Lemma 12. We have

e−B1Q4e
B1 = Q4 +

1

2

∑

p,r∈Λ∗

V̂N (r − p)sr
(
a∗pa

∗
−p + h.c.

)
+

1

2

∑

p,r∈Λ∗

V̂N (p− r)spsr + E(Q4)
1 , (3.8)

where, on the range of Ξ,

±E(Q4)
1 . N−κ/2−εN 2 +N−3+7κ+4εN 2

H +N2−2κ−2εNH +Nκ−3εN +N5κ/2−ε,

if 1/2 < κ < 8/15 − 2ε/3 and ε > 0 is chosen as in (1.15).

Proof. With (2.6), we decompose

e−B1Q4e
B1 =

1

2

4∑

j=0

Aj (3.9)

where Aj collects all contributions with exactly j coefficients sk, with k ∈ {p + r, q, q + r, p}.
We will see that the contributing terms stem from A0, A1 and A2. For j = 0, we clearly have

A0 =
∑

p,r,q∈Λ∗

V̂N (r)cp+rcqcq+rcpa
∗
p+ra

∗
qaq+rap.
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We observe that

A0 − 2Q4 =
∑

p,r,q∈Λ∗

V̂N (r)
[
cp+rcqcq+rcp − 1

]
a∗p+ra

∗
qaq+rap.

Estimating |cp+rcqcq+rcp − 1| 6 s2p+r + s2q + s2q+r + s2p, we find

∣∣〈ξ, (A0 − 2Q4)ξ〉
∣∣ 6 4

∣∣∣
∑

V̂N (r)s2p〈ap+raqξ, aq+rapξ〉
∣∣∣.

For ξ in the range of Ξ, we must have p + r, q, q + r, p ∈ H ∪ S. Since sp = 0 for p ∈ S, we
can assume p ∈ H. To preserve the parity of NH , there must be a second momentum in H.
Assuming for example q ∈ H, we can estimate, using Lemma 4,

∣∣∣
∑

p,q∈H,r∈Λ∗

V̂N (r)s2p〈ap+raqξ, apaq+rξ〉
∣∣∣

.
∑

p,q∈H,r∈Λ∗

|V̂N (r)||sp|‖ap+raqξ‖‖apaq+rξ‖

.
[ ∑

p,q∈H,r∈Λ∗

s4p‖ap+raqξ‖2
]1/2[ ∑

p,q∈H,r∈Λ∗

V̂ 2
N (r)‖apaq+rξ‖2

]1/2

. N−2+4κ+5ε/2‖N 1/2N 1/2
H ξ‖2,

where we used ‖V̂N‖2 . N (1−κ)/2 and sp . Nκp−2. Moving factors of (N + 1)1/2, (NH + 1)1/2

around, we can similarly bound also contributions arising when p+ r ∈ H or q + r ∈ H. With
the assumption −2 + 3κ+ 4ε < 0 from (1.15), we conclude that, on the range of Ξ,

±
(1
2
A0 −Q4

)
. N−2+4κ+5ε/2(N + 1)(NH + 1) . N−κ/2−εN 2 +N−4+17κ/2+6εN 2

H +N5κ/2−ε.

(3.10)
Next, we consider the term A1 in (3.9). Arranging operators in normal order we find

A1 = 2
∑

p,q,r∈Λ∗

V̂N (r)sp+rcqcq+rcp
(
a∗qa−p−raq+rap + h.c.

)
+
∑

p,r∈Λ∗

V̂N (r)sp+rcp+rc
2
p (apa−p + h.c.) .

Let us start to bound the first term. On the range of Ξ, all momenta must be in H ∪ S. In
particular, p+ r ∈ H. To preserve parity of NH , there can be, in total, two or four momenta in
H. Handling these two cases separately (if all momenta are in H, we need to use V̂N to perform
one of the sum; if instead 2 momenta are in S, we can use |S| 6 N3κ/2+3ε), we arrive at

∣∣∣
∑

p,q,r

V̂N (r)sp+rcqcq+rcp〈ξ, a∗qa−p−raq+rapξ〉
∣∣∣

. Nκ+ε/2‖(NH + 1)ξ‖2 +N
−6+13κ+2ε

4 ‖(N + 1)1/2(NH + 1)1/2ξ‖2.

As for the quadratic contribution to A1, we observe that
∣∣∣
∑

p,r

V̂N (r)sp+r(cp+rc
2
p − 1)〈ξ, apa−pξ〉

∣∣∣

.
∑

p,r

|V̂N (r)|sp+r

(
s2p+r + s2p

)[
‖apξ‖2 + ‖apξ‖‖ξ‖

]

. ‖s2‖∞‖|V̂N | ∗ s‖∞‖N 1/2ξ‖2 + ‖|V̂N | ∗ s‖∞‖s2‖2‖N 1/2ξ‖‖ξ‖+
∑

p

(
|V̂N | ∗ s3

)
(p)‖apξ‖‖ξ‖.
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The first two terms are bounded with ‖|V̂N |∗s‖∞ . Nκ. To bound the last term, we distinguish
the cases p ∈ H and p ∈ S (on the range of Ξ, there is no other possibility). We find, with
‖|V̂N | ∗ s3‖2 . ‖V̂N‖2‖s3‖1 . N1/2+κ−3ε,

∑

p

(
|V̂N | ∗ s3

)
(p)‖apξ‖‖ξ‖ . ‖|V̂N | ∗ s3‖2‖N 1/2

H ξ‖‖ξ‖ + ‖|V̂N | ∗ s3‖∞N3κ/4+3ε/2‖N 1/2ξ‖‖ξ‖

. N1/2+κ−3ε‖N 1/2
H ξ‖‖ξ‖ +N7κ/4−5ε/2‖N 1/2ξ‖‖ξ‖

We conclude that, on Ran Ξ,

±
[
A1 −

∑

p,r∈Λ∗

V̂ (r)sp+r

(
apa−p + h.c.

)]
(3.11)

. Nκ+ε/2(N 2
H + 1) +N−κ/2−εN 2 +N−3+7κ+2εN 2

H +Nκ−4εN +N1−κ/2−5εNH +N5κ/2−ε

for any 0 < κ < 2/3 and ε > 0 as in (1.15).
We switch our attention to the term

A2 =
∑

V̂N (r)cp+rcqsq+rsp
(
a∗p+ra

∗
qa

∗
−q−ra

∗
−p + h.c.

)

+ 2
∑

V̂N (r)cp+rsqcq+rspa
∗
p+ra

∗
−pa−qaq+r

+ 2
∑

V̂N (r)cp+rsqsq+rcpa
∗
p+ra

∗
−q−ra−qap

+
∑

V̂N (r)cqsqcq+rsq+r

(
4a∗qaq + 1)

+ 2
∑

V̂N (r)c2ps
2
p+ra

∗
pap + 2V̂N (0)

∑
c2ps

2
qa

∗
pap.

(3.12)

The only contributing term is the constant in the fourth line. We estimate the other terms.
To control the term in the first line, we observe that, on the range of Ξ, the four momenta
p + r, q,−q − r,−p must be in H ∪ S and, more precisely, either 4 or 2 of them must be in H
(to preserve parity). Let us assume, first, that all four momenta are in H. Denoting by

∗∑
the

sum over all p, q, r ∈ Λ∗, with p+ r, q,−q − r,−p ∈ H, we can bound

∣∣∣
∗∑
V̂N (r)cp+rcqsq+rsp〈ξ, a∗p+ra

∗
qa

∗
−q−ra

∗
−pξ〉

∣∣∣

.

∗∑
|V̂N (r)|sq+rsp‖ap+ra−pa−q−r(NH + 1)−1/2ξ‖

[
‖aq(NH + 1)1/2ξ‖+ ‖(NH + 1)1/2ξ‖

]

. ‖(NH + 1)ξ‖
(
‖V̂N‖∞

[ ∗∑
s2q+rs

2
p‖aq(NH + 1)1/2ξ‖2

]1/2

+ ‖(NH + 1)1/2ξ‖
[ ∗∑

|V̂N (r)|2s2q+rs
2
p

]1/2)

. N−2+4κ+ε‖(NH + 1)ξ‖2 +N−1/2+5κ/2+ε‖(NH + 1)ξ‖‖(NH + 1)1/2ξ‖

.
(
N−2+4κ+ε +N−3+7κ+4ε

)
‖(NH + 1)ξ‖2 +N2−2κ−2ε‖(NH + 1)1/2ξ‖2

for 0 < κ < 2/3 (we absorb the second contribution by a Cauchy–Schwarz inequality with
appropriate weights). If two momenta are in H and two in S (in this case, we must have
p + r, q ∈ S, q + r, p ∈ H, since s = 0 on S), we proceed similarly, but instead of using
the potential V̂N to sum over the third momentum (as we did in the fourth line of the last

equation), we use the restriction onto S, estimating V̂N in ℓ∞. Indicating with
∗∗∑

the sum over
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p+ r, q ∈ S, q + r, p ∈ H, we find

∣∣∣
∗∗∑
V̂N (r)cp+rcqsq+rsp〈ξ, a∗p+ra

∗
qa

∗
−q−ra

∗
−pξ〉

∣∣∣

. N−2+4κ+ε‖(N+1)1/2(NH+1)1/2ξ‖2 +N−2+ 19κ
4

+ 5ε
2 ‖(N+1)1/2(NH+1)1/2ξ‖‖(NH+1)1/2ξ‖

. N−2+4κ+2ε‖(N + 1)1/2(NH + 1)1/2ξ‖2 +N−2+11κ/2+3ε‖(NH + 1)1/2ξ‖2.
The second and the third terms on the right-hand side of (3.12) can be bounded by a simple
Cauchy–Schwarz inequality (remarking that, on the range of Ξ, the momenta associated with
the coefficients s must lie in H). We find

∣∣∣
∑

V̂N (r)cp+rsqcq+rsp〈ξ, a∗p+ra
∗
−pa−qaq+rξ〉

∣∣∣ . N−2+4κ+ε‖N 1/2
H N 1/2ξ‖2

∣∣∣
∑

V̂N (r)cp+rsqsq+rcp〈ξ, a∗p+ra
∗
−q−ra−qapξ〉

∣∣∣ . N−2+4κ+ε‖N 1/2
H N 1/2ξ‖2.

The quadratic part of the fourth term in (3.12) can be bounded, using that ‖V̂N ∗ s‖∞ . Nκ

and that q ∈ H on the range of Ξ (because sq = 0 for |q| 6 Nκ/2+ε). We find
∣∣∣
∑

V̂N (r)cqsqcq+rsq+r〈aqξ, aqξ〉
∣∣∣ . N−2+4κ+2ε‖N 1/2

H ξ‖2.

As for the constant term, we extract a contribution observing that
∣∣∣
∑

V̂N (r)(cqcq+r − 1)sqsq+r

∣∣∣ 6
∑

|V̂N (r)|(s3qsq+r + sqs
3
q+r) . ‖V̂N‖∞‖s‖1‖s3‖1 . N5κ/2−3ε,

where we used that ‖s‖1 . N‖ϕ‖1 . N . The terms on the last line of (3.12) are simply
estimated by

∣∣∣
∑

V̂N (r)c2ps
2
p+r〈ξ, a∗papξ〉

∣∣∣, |V̂N (0)|
∣∣∣
∑

c2ps
2
q〈ξ, a∗papξ〉

∣∣∣ . N−1+5κ/2−ε‖N 1/2ξ‖2.

Thus, on Ran Ξ,

±
[
A2 −

∑

q,r∈Λ∗

V̂N (r)sqsq+r

]
. N−3+7κ+4εN 2

H +
(
N2−2κ−2ε +N−2+11κ/2+3ε

)
(NH + 1)

+N−2+4κ+2εNNH +N−1+5κ/2−εN +N5κ/2−ε

6 N−3+7κ+4εN 2
H +

(
N2−2κ−2ε +N−2+11κ/2+3ε

)
(NH + 1)

+N−κ/2−εN 2 +N−1+5κ/2−εN +N5κ/2−ε (3.13)

for all 0 < κ < 2/3 and for ε > 0 as in (1.15).
Next, we consider

A3 = 2
∑

V̂N (r)cp+rsqsq+rsp
(
a∗p+ra

∗
−q−ra

∗
−pa−q + h.c.

)

+ 2
∑

V̂N (r)sqcqs
2
q+r

(
a∗qa

∗
−q + h.c.

)

+
∑

V̂N (r)sqcqs
2
q+r

(
a∗q+ra

∗
−q−r + h.c.

)

+ 2V̂N (0)
∑

s2qspcp
(
a∗pa

∗
−p + h.c.

)
.

We can control the quartic term noticing that, on the range of Ξ, all momenta p+ r, q, q + r, p
must be in H (because s = 0 on S and because of parity). With ‖sH‖∞ . N3κ−2+2ε, we find,
for ξ ∈ Ran Ξ,

∣∣∣
∑

V̂N (r)cp+rsqsq+rsp〈ξ, a∗p+ra
∗
−q−ra

∗
−pa−qξ〉

∣∣∣ . ‖V̂N‖∞‖sH‖∞‖sH‖22‖(NH + 1)ξ‖2

. N−4+7κ+3ε‖(NH + 1)ξ‖2.
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The quadratic terms can be estimated, for ξ ∈ Ran Ξ, by
∣∣∣
∑

V̂N (r)sqcqs
2
q+r〈ξ, a∗qa∗−qξ〉

∣∣∣,
∣∣∣V̂N (0)

∑
s2qspcp〈ξ, a∗pa∗−pξ〉

∣∣∣

. ‖V̂N‖∞‖s‖22‖sH‖2‖(NH + 1)1/2ξ‖2 . N−3/2+4κ−ε/2‖(NH + 1)1/2ξ‖2

and by
∣∣∣
∑

V̂N (r)sq+rcq+rs
2
q〈ξ, a∗qa∗−qξ〉

∣∣∣ . ‖V̂N ∗ s‖∞‖s2H‖2‖(NH + 1)1/2ξ‖2

. N−5/2+11κ/2+5ε/2‖(NH + 1)1/2ξ‖2

We conclude that, on the range of Ξ,

±A3 . N−4+7κ+3εN 2
H +N−3/2+4κ+ε/2NH +N5κ/2−ε (3.14)

for all 0 < κ < 2/3 and for ε > 0 as in (1.15).
Finally, we bound the contribution

A4 =
∑

V̂N (r)sp+rsqsq+rspa
∗
−q−ra

∗
−pa−p−ra−q

+
∑

V̂N (r)s2p+rs
2
p

(
2a∗−pa−p + 1

)
+ V̂N (0)

∑
s2ps

2
q

(
2a∗−qa−q + 1

)
.

Proceeding similarly as we did for A3, we easily find that, on Ran Ξ,

A4 . ‖V̂N‖∞‖s2H‖∞‖sH‖22N 2
H + ‖V̂N‖∞‖s2H‖∞‖s2‖1NH + ‖V̂N‖∞‖s2‖21

. N−6+10κ+5εN 2
H +N−5+17κ/2+3εNH +N−1+4κ−2ε.

Combining the last equation with (3.10), (3.11), (3.13), (3.14), we obtain (3.8), with an error

E(Q4)
1 satisfying, on Ran Ξ,

±E(Q4)
1 . N−κ/2−εN 2 +N−3+7κ+4εN 2

H +N2−2κ−2εNH +Nκ−3εN +N5κ/2−ε,

where we used the assumption 1/2 < κ < 8/15 − 2ε/3 (in particular ε < 1/20).

3.1 Proof of Lemma 5

We are now ready to show Lemma 5. Combining the statements of Lemmas 9, 10, 11 and 12,
we find

e−B1W ∗
N0

HNWN0e
B1

=
N2

0

2
V̂N (0) +

∑

p∈Λ∗

p2a∗pap + 2NκV̂ (0)N +Q3 +Q4

+
∑

p∈Λ∗

[
p2sp +

1

2
N0V̂N (p) +

1

2

∑

r∈Λ∗

V̂N (r − p)sr

]
(a∗pa

∗
−p + h.c.)

+
∑

p∈Λ∗

[
p2s2p +N0V̂N (p)sp +

1

2

∑

r∈Λ∗

V̂N (p− r)spsr

]
+ Ẽ1

(3.15)

where, on the range of Ξ,

Ẽ1 . N−3ε
∑

p∈Λ∗

p2a∗pap +N−κ/2−εN 2 +N−3+7κ+4εN 2
H

+N2−2κ−2εNH +Nκ−ε/2N +N5κ/2−ε/2,

(3.16)
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if 1/2 < κ < 8/15− 2ε/3. Here we also used the fact that the contribution e−B1Q1e
B1 , with Q1

as in (2.2), vanishes on the range of Ξ. With a slight abuse of notation that is only used in this
subsection, we introduce the following momentum sets

L = {p ∈ Λ∗\{0} : |p| 6 Nκ/2+ε}, Lc = {p ∈ Λ∗ : |p| > Nκ/2+ε}.

The constant term on the last line of (3.15) can be rewritten, using (2.7), (2.3) and (2.4).
We find

∑

p∈Λ∗

[
p2s2p +N0V̂N (p)sp +

1

2

∑

r∈Λ∗

V̂N (p− r)spsr

]

=
N2

0

2

∑

p∈Lc

V̂N (p)ϕp −
N2

0

2

∑

r∈L
p∈Lc

V̂N (p − r)ϕpϕr

=
N2

0

2N1−κ
(8πaN − V̂ (0)) −N2

0

∑

p∈L

ϕp

[
V̂N (p)

2
+

1

2

∑

r∈Lc

V̂N (p − r)ϕr

]

=
N2

0

2N
Nκ(8πaN − V̂ (0)) +N2

0

∑

p∈L

p2ϕ2
p +

N2
0

2

∑

p,r∈L

V̂N (p− r)ϕpϕr.

The last term is bounded by CN−1+4κ+2ε. We write

N2
0

2

∑

p,r∈L

V̂N (p− r)ϕpϕr = O
(
N−1+4κ+2ε

)
.

As for the second term, we observe that

N2
0

∑

p∈L

p2ϕ2
p = N2

0

∑

p∈S

p2ϕ2
p +O

(
N5κ/2−ε

)
.

Estimating |V̂N (p− r)− V̂N (r)| . N−2+2κ|p| and using again equations (2.3), (2.4), we deduce
that ∣∣∣p2ϕp +

4πaNN
κ

N

∣∣∣ . N−2+2κ|p|. (3.17)

Together with the bound |aN − a| . N−1+κ from Lemma 4, this yields

∑

p∈Λ∗

[
p2s2p +N0V̂N (p)sp +

1

2

∑

r∈Λ∗

V̂N (p − r)spsr

]

=
N2

0

2N
Nκ(8πa − V̂ (0)) +

N2
0

N2

∑

p∈S

(4πaNκ)2

p2
+O

(
N5κ/2−ε

)
,

if −2 + 3κ + 6ε < 0. Combining this with the first term on the right-hand side of (3.15), we
conclude that

N2
0

2
V̂N (0)+

∑

p∈Λ∗

[
p2s2p +N0V̂N (p)sp +

1

2

∑

r∈Λ∗

V̂N (p − r)spsr

]

= 4πaN1+κ − 8πaNκ(N −N0) +
∑

p∈S

(4πaNκ)2

p2
+O

(
N5κ/2−ε

)
,

(3.18)

where we used the assumption 0 6 N −N0 . N3κ/2.
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To deal with the off-diagonal quadratic term in (3.15), we use again (2.3), (2.7) and (2.4).
As a form on the range of the projection Ξ = 1{N(S∪H)c=0}1{NH∈2N0}, we find

∑

p∈Λ∗

[
p2sp +

1

2
N0V̂N (p) +

1

2

∑

r∈Λ∗

V̂N (r − p)sr

]
(a∗pa

∗
−p + h.c.)

= −N0

∑

p∈S

p2ϕp (a
∗
pa

∗
−p + h.c.)− N0

2

∑

p∈Λ∗

r∈L

V̂N (r − p)ϕr (a
∗
pa

∗
−p + h.c.).

(3.19)

Recalling (3.17), we can estimate

±
[
−N0

∑

p∈S

p2ϕp (a
∗
pa

∗
−p + h.c.)− 4πaNκ

∑

p∈S

(a∗pa
∗
−p + h.c.)

]
. N−1+5κ/2+5ε/2(N +N3κ/2).

As for the last term on the right-hand side of (3.19), we can bound it switching to position
space. For ξ ∈ F(Λ) we find

∣∣∣N0

2

∑

p∈Λ∗

r∈L

V̂N (r − p)ϕr〈ξ, a∗pa∗−pξ〉
∣∣∣ =

∣∣∣N0

2

ˆ

Λ2

VN (x− y)
∑

r∈L

ei(x−y)rϕr〈axayξ, ξ〉dxdy
∣∣∣

6 N0

∑

r∈L

|ϕr|
(
δ〈ξ,Q4ξ〉+ Cδ−1N−1+κ‖ξ‖2

)
. N−1/2+3κ/4

(
〈ξ,Q4ξ〉+N5κ/2+2ε‖ξ‖2

)
,

choosing δ = N−1/2−3κ/4−ε. We conclude that

∑

p∈Λ∗

[
p2sp +

1

2
N0V̂N (p) +

1

2

∑

r∈Λ∗

V̂N (r − p)sr

]
(a∗pa

∗
−p + h.c.) = 4πaNκ

∑

p∈S

(a∗pa
∗
−p + h.c.) + E ′

1

where, on the range of Ξ,

±E ′
1 . N−5ε/2Q4 +N−1+5κ/2+5ε/2N +N5κ/2−ε/2,

if −2 + 3κ + 10ε < 0 . Combining this estimate with (3.16), and simplifying the absorbing the
term proportional to N by a Cauchy–Schwarz inequality, we arrive at (2.8), (2.9) given that
1/2 < κ < 8/15 − 2ε/3 (note that this implies the previous inequality on ε and κ).

4 Cubic transformation

The goal of this section is to show Lemma 6 and Proposition 8. All lemmas in this section hold
for all 0 < κ < 2/3 and ε > 0 as introduced in (1.15).

4.1 Properties of the cubic transformation

We start by observing that the action of the transformation Tk = eBk , defined in (2.12), can be
computed explicitly. To this end, we define, for k ∈ S,

Xk = |Bk| =
√
B◦
kB

♯
k.

Lemma 13. Let k ∈ S. We have

X2
k = B◦

kB♯
k =

∑

r∈Hk

Nϕr(ϕr + ϕr+k)a
∗
kakΘk,r. (4.1)

Furthermore, recalling the notation Nk = a∗kak,

X2
k 6 2N‖ϕH‖22Nk . N−2+3κ+εNk. (4.2)
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Proof. Let us compute

B◦
kB♯

k =
∑

r,t∈Hk

NϕrϕtΘk,ra
∗
kar+ka−ra

∗
−ta

∗
t+kakΘk,t

=
∑

r,t∈Hk

NϕrϕtΘk,ra
∗
k[ak+ra−r, a

∗
−ta

∗
t+k]akΘk,t

=
∑

r,t∈Hk

NϕrϕtΘk,ra
∗
k (δt,r + δk+r+t,0)

(
1 + a∗−ra−r + a∗r+kar+k

)
akΘk,t

=
∑

r∈Hk

Nϕr(ϕr + ϕr+k)a
∗
kakΘk,r.

(4.3)

To obtain the second equality, we used that ar+ka−rΘk,t = 0 (since the cutoff imposes that
there is no k-connection). In the last identity, we used Θk,ra

∗
−r = Θk,ra

∗
r+k = 0 (because the

cutoff imposes that the shell-vicinity of −(k + r) and r are empty) and Θk,−(r+k) = Θk,r. The
bound (4.2) then follows from Lemma 4.

Lemma 14. For k ∈ S we have

Tk = cosXk + B♯
k

sinXk

Xk
− sinXk

Xk
B◦
k + B♯

k

cosXk − 1

X2
k

B◦
k

Proof. Due to the cutoff, B♯
k cannot create a k-connection if there is one already. That is,

(B♯
k)

2 = (B◦
k)

2 = 0.

This allows us to expand the exponential explicitly. We find

Tk = eBk =
∑

m>0

(B♯
k −B◦

k)
m

m!
=
∑

m>0

(B♯
k − B◦

k)
2m

(2m)!
+

(B♯
k − B◦

k)
2m+1

(2m+ 1)!

=
∑

m>1

(−1)m

(2m)!
B♯
k

(
B◦
kB♯

k

)m−1
B◦
k +

∑

m>0

(−1)m

(2m!)

(
B◦
kB♯

k

)m

+
∑

m>0

(−1)m

(2m+ 1)!
B♯
k

(
B◦
kB♯

k

)m
−
∑

m>0

(−1)m

(2m+ 1)!

(
B◦
kB♯

k

)m
B◦
k.

With Lemma 13, we find

Tk = B♯
k

(∑

m>1

(−1)m

(2m)!
X2m−2

k

)
B◦
k +

∑

m>0

(−1)m

(2m!)
X2m

k

+ B♯
k

∑

m>0

(−1)m

(2m+ 1)!
X2m

k −
∑

m>0

(−1)m

(2m+ 1)!
X2m

k B◦
k

= B♯
k

cosXk − 1

X2
k

B◦
k + cosXk + B♯

k

sinXk

Xk
− sinXk

Xk
B◦
k .

For k ∈ S, we introduce the notation

Λk := Θ
(1)
k 1{N(S∪H)c=0}1{NH∈2N0}.
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We observe that ∏

k∈S

Λk1{NSc=0} = 1{NSc=0}.

Thus, on the range of 1{NSc=0}, we have

Tk = TkΛk =
(
cosXk + B♯

k

sinXk

Xk

)
Λk =: T̃k. (4.4)

Moreover, since Λk commutes with Tk′ for all k
′ 6= k, we obtain, on the range of 1{NSc=0},

Tc =
∏

k∈S

Tk =
∏

k∈S

T̃k. (4.5)

In the next lemma, we control moments of the number operator with respect to the action
of the cubic transformation.

Lemma 15. For S′ ⊂ S, let Tc,S′ :=
∏

p∈S′ Tp. There is a constant C > 0 such that, for all
S′ ⊂ S and all j > 1, we have, on the range of 1{NSc=0},

±
(
T ∗
c,S′N j

STc,S′ −N j
S

)
6 CjN−2+3κ+εN j

S, (4.6)

T ∗
c,S′N j

STc,S′ 6 N j
S . (4.7)

Moreover, for all j > 1, there is a constant Cj > 0 such that, for all S′ ⊂ S, we have, on the
range of 1{NSc=0},

T ∗
c,S′N j

HTc,S′ 6 CjN
−2+3κ+εNS

(
N−2+3κ+εNS + 1

)j−1
. (4.8)

Proof. We start by proving (4.6) and (4.7). First of all, we observe that [Bk,NS +NH/2] = 0,
for all k ∈ S. This implies that

T ∗
c,S′

(
NS +NH/2

)j
Tc,S′ =

(
NS +NH/2

)j
(4.9)

for all j ∈ N and all S′ ⊂ S. We immediately obtain

T ∗
c,S′N j

STc,S′ 6
(
NS +NH/2

)j
= N j

S (4.10)

on the range of 1{NSc=0}. To prove the lower bound we choose k as the “first” element in S′ ⊂ S
(according to the order used to define Tc) and we compute

T̃ ∗
kN j

S T̃k = Λk

(
cosXk +

sinXk

Xk
B◦
k

)
N j

S

(
cosXk + B♯

k

sinXk

Xk

)
Λk

= Λk

(
cos2XkN j

S +
sinXk

Xk
B◦
kN j

SB
♯
k

sinXk

Xk

)
Λk

= Λk

(
cos2XkN j

S +
sinXk

Xk
(NS − 1)jX2

k

sinXk

Xk

)
Λk

= Λk

(
N j

S + ((NS − 1)j −N j
S) sin

2Xk

)
Λk. (4.11)

On the range of Λk, we find (with ϕH the restriction of ϕ on H)

T ∗
kN j

STk > N j
S − j2N‖ϕH‖22NkN j−1

S > N j
S − CjN−2+3κ+εN j−1

S Nk
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Conjugating with Tc,S′\{k} and using (4.10) we obtain, on the range of 1{NSc=0},

T ∗
c,S′N j

STc,S > T ∗
c,S′\{k}N

j
STc,S′\{k} − CjN−2+3κ+εN 1/2

k T ∗
c,S′\{k}N

j−1
S Tc,S′\{k}N 1/2

k

> T ∗
c,S′\{k}N

j
STc,S′\{k} − CjN−2+3κ+εN j−1

S Nk.

Iterating to cover all k ∈ S′, we obtain

T ∗
c,S′N j

STc,S > N j
S − CjN−2+3κ+εN j−1

S

∑

k∈S′

Nk > N j
S − CjN−2+3κ+εN j

S.

Let us now show (4.8). Similarly as in (4.11), we find

T̃ ∗
kN j

H T̃k = Λk

(
N j

H + ((NH + 2)j −N j
H) sin2Xk

)
Λk.

Thus, there exists C > 0 depending on j such that, on the range of Λk,

T̃ ∗
kN j

H T̃k 6 N j
H + CN−2+3κ+ε(N j−1

H + 1)Nk.

Conjugating with Tc,S′\{k} we obtain, on the range of 1{NSc=0},

T ∗
c,S′N j

HTc,S′ 6 T ∗
c,S′\{k}N

j
HTc,S′\{k}+CN

−2+3κ+εN 1/2
k (T ∗

c,S′\{k}N
j−1
H Tc,S′\{k}+1)N 1/2

k . (4.12)

Next, we claim that for all j ∈ N there exists Cj > 0 independent of S′ such that, on the range
of 1{NSc=0},

T ∗
c,S′N j

HTc,S′ 6 CjN
−2+3κ+εNS

(
N−2+3κ+εNS + 1

)j−1
. (4.13)

For j = 1, the claim follows (4.12), iterating to cover all k ∈ S′. Assuming (4.13), we use (4.12)
to estimate

T ∗
c,S′N j+1

H Tc,S′ 6 T ∗
c,S′\{k}N

j+1
H Tc,S′\{k} + CN−2+3κ+εN 1/2

k (T ∗
c,S′\{k}N

j
HTc,S′\{k} + 1)N 1/2

k

6 T ∗
c,S′\{k}N

j+1
H Tc,S′\{k} + CjCN

−2+3κ+ε(N−2+3κ+εNS + 1)jNk.

Iterating over all k ∈ S′ we conclude that, on the range of 1{NSc=0},

T ∗
c,S′N j+1

H Tc,S′ 6 N j+1
H + Cj+1N

−2+3κ+ε(N−2+3κ+εNS + 1)j
∑

k∈S′

Nk

6 Cj+1N
−2+3κ+εNS(N

−2+3κ+εNS + 1)j .

By induction, we obtain (4.8).

4.2 Action on the off-diagonal quadratic term

Next, we control the action of Tc on the quadratic off-diagonal term on the right-hand side of
(2.8). We introduce the notation

Q̃♯
2 = 4πaNκ

∑

p∈S

a∗pa
∗
−p = (Q̃◦

2)
∗.

Lemma 16. On the range of 1{NSc=0}, we have

±
[
T ∗
c (Q̃

♯
2 + Q̃◦

2)Tc − (Q̃♯
2 + Q̃◦

2)
]
. N−2+4κ+ε(NS +N3κ/2+3ε).
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Proof. Let p, k ∈ S. If p /∈ {±k}, then clearly

T̃ ∗
k a

∗
pa

∗
−pT̃k = Λka

∗
pa

∗
−pΛk. (4.14)

Let us now consider the case p ∈ {±k}, say p = k. Since Θ
(1)
k only depends on operators Nt,

with t ∈ H, we have [a∗pa
∗
−p,Θ

(1)
k ] = 0 and therefore Λka

∗
pa

∗
−pB♯

c = B◦
ca

∗
pa

∗
−pΛk = 0. We find

T̃ ∗
k a

∗
ka

∗
−kT̃k = Λk

(
cosXka

∗
ka

∗
−k cosXk +

sinXk

Xk
B◦
ka

∗
ka

∗
−kB∗

k

sinXk

Xk

)
Λk

= Λk

(
cosXka

∗
ka

∗
−k cosXk +

sinXk

Xk
a∗ka

∗
−kXk sinXk

)
Λk,

where we used that [B◦
k, a

∗
ka

∗
−k] = 0. With the formula (4.1) for X2

k and since Nka
∗
ka

∗
−k =

a∗ka
∗
−k(Nk + 1), we obtain

X2
ka

∗
ka

∗
−k = a∗ka

∗
−kY

2
k ,

with Yk being defined as the square root of the positive operator

Y 2
k := X2

k +
∑

t∈Hk

Nϕt(ϕt + ϕt+k)Θk,t.

Since (with Θk,t = Θk,−t−k)

Y 2
k −X2

k =
∑

t∈Hk

Nϕt(ϕt + ϕt+k)Θk,t =
N

2

∑

t∈Hk

(ϕt + ϕt+k)
2Θk,t (4.15)

we conclude that Y 2
k > X2

k . Since Xk and Yk commute, we arrive at

T̃ ∗
k a

∗
ka

∗
−kT̃k = Λka

∗
ka

∗
−k

(
cos Yk cosXk +Xk sinXk

sinYk
Yk

)
Λk

= Λka
∗
ka

∗
−k

(
cos(Yk −Xk) + (Xk − Yk) sinXk

sinYk
Yk

)
Λk

=: Λka
∗
ka

∗
−k

(
1 +Rk

)
Λk.

(4.16)

From | cos(y−x)−1+(x−y) sin(x) sin(y)/y| 6 C(y2−x2) for all 0 6 x 6 y and from Lemma 4,
we obtain

±Rk . N‖ϕH‖22 . N−2+3κ+ε.

With (4.16), we conclude that

± Λk

(
T ∗
k a

∗
ka

∗
−kTk − a∗ka

∗
−k

)
Λk + h.c. . N−2+3κ+ε(Nk +N−k + 1).

Conjugation with T−k can be handled similarly. Since moreover the error term is invariant w.r.t.
Tp, for p ∈ S\{±k}, we find

±
(
T ∗
c a

∗
ka

∗
−kTc − a∗ka

∗
−k

)
+ h.c. . N−2+3κ+ε(Nk +N−k + 1)

on the range of 1{NSc=0}. The claim follows by summing over k ∈ S (recall that |S| . N3κ/2+3ε).
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4.3 Action on the kinetic energy operator

In this subsection, we control the action of a single cubic transformation Tk, for a fixed k ∈ S,
on the kinetic energy operator. In the next subsections, we show similar statements for the
action of Tk on the cubic term Q3 and on the quartic term Q4, appearing in Lemma 5 on the
right hand side of (2.8). Eventually, we will obtain the action of the full transformation Tc by
iteration.

Lemma 17. For k ∈ S we have, on the range of Λk,

±
[
T ∗
k

∑

p∈Λ∗

p2a∗papTk −
∑

p∈Λ∗

p2a∗pap − 2
∑

r∈Hk

Nr2ϕr(ϕr + ϕk+r)a
∗
kakΘk,r

]
. N−1+5κ/2+3ε/2N 2

k .

(4.17)

Proof. Using that B◦
kΛk = 0 and that [X2

k ,Λk] = 0, we obtain

ΛkT
∗
k

∑

q∈Λ∗

q2a∗qaqTkΛk = Λk

(
cosXk +

sinXk

Xk
B◦
k

) ∑

q∈Λ∗

q2a∗qaq

(
cosXk + B♯

k

sinXk

Xk

)
Λk

= Λk

(
cos2Xk

∑

p∈Λ∗

p2a∗pap +
sinXk

Xk
B◦
k

∑

p∈Λ∗

p2a∗papB♯
k

sinXk

Xk

)
Λk

= Λk

( ∑

p∈Λ∗

p2a∗pap +
sinXk

Xk

[
B◦
k,
∑

p∈Λ∗

p2a∗pap
]
B♯
k

sinXk

Xk

)
Λk.

Let us now compute
[
B◦
k,
∑

p∈Λ∗

p2a∗pap
]
B♯
k =

∑

r∈Hk

N1/2ϕr

(
(r2 + (k + r)2 − k2

)
Θk,ra

∗
ka−rak+rB♯

k

= 2
∑

r∈Hk

Nϕr(ϕr + ϕk+r)
(
r2 + k · r

)
a∗kakΘk,r,

where we used that, similarly as in the proof of Lemma 13,

a−rak+rB♯
k = (ϕr + ϕr+k)akΘk,r.

We therefore obtain

Λk

(
T ∗
k

∑

p∈Λ∗

p2a∗papTk −
∑

p∈Λ∗

p2a∗pap − 2
∑

r∈Hk

Nr2ϕr(ϕr + ϕk+r)a
∗
kakΘk,r

)
Λk

= Λk

(
2
∑

r∈Hk

Nϕr(ϕr + ϕk+r)a
∗
kakΘk,r

[
r2
(sin2Xk

X2
k

− 1
)
+ r · k sin2Xk

X2
k

])
Λk.

From Lemma 4 we find that
∑

r∈Hk

Nr2|ϕr(ϕr + ϕk+r)| . Nκ‖ϕ‖1 . Nκ

and that
∑

r∈Hk

N |r||k||ϕr||ϕr + ϕk+r| . N |k|‖pϕ‖2‖ϕH‖2 . N−1+5κ/2+3ε/2.

since |k| 6 Nκ/2+ε. Moreover, (4.2) implies that

(
1− sin2Xk

X2
k

)
. N−2+3κ+εNk.

Since NκN−2+3κ+ε = N−2+4κ+ε 6 N−1+5κ/2+3ε/2 for all κ < 2/3, we obtain (4.17).
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4.4 Action on the cubic term

Next, we proceed with the conjugation of the cubic term Q3 appearing on the right-hand side
of (2.8). On the range of the projection Ξ = 1{N(H∪S)c=0}1{NH∈2N0}, we can decompose

Q3 =

√
N0

N

(
QH

3 +QM
3 +QS

3

)
(4.18)

with

QH
3 =

∑

r∈Hp,p∈S

N1/2V̂N (r)a∗−ra
∗
r+pap + h.c.

QM
3 =

∑

r,p∈H:
r+p∈S

N1/2V̂N (r)a∗−ra
∗
r+pap +

∑

p∈Hr ,r∈S

N1/2V̂N (r)a∗−ra
∗
r+pap + h.c.

QS
3 =

∑

r,p∈S:
r+p∈S

N1/2V̂N (r)a∗−ra
∗
r+pap + h.c.

Note that since 0 6 N −N0 . N3κ/2, we have
√
N0/N = 1 +O(N−1+3κ/2).

In the next lemma we conjugate the operator QH
3 .

Lemma 18. Let k ∈ S. On the range of Λk, we have

±
(
T ∗
kQ

H
3 Tk −QH

3 − 2
∑

r∈Hk

NV̂N (r)(ϕr + ϕr+k)NkΘk,r

)

. N−2+4κ+εN 2
k +N−5+15κ/2+7ε

(
N2−2κ

∑

r,q∈H

1S(r + q)a∗ra
∗
qaqar +NκNS

)
(Nk + 1) (4.19)

Proof. Let us write QH
3 =

∑
p∈S Q

H,♯
3,p +QH,◦

3,p with QH,◦
3,p = (QH,♯

3,p )
∗ and

QH,♯
3,p :=

∑

r∈Hp

N1/2V̂N (r)a∗−ra
∗
r+pap.

Let k, p ∈ S. With (4.4) and using that ΛkQ
H,♯
3,p B

♯
k = 0 (since QH,♯

3,p cannot annihilate a k-
connection), we find

ΛkT
∗
kQ

H,♯
3,p TkΛk = Λk cosXkQ

H,♯
3,p cosXkΛk + Λk

sinXk

Xk
B◦
kQ

H,♯
3,p B

♯
k

sinXk

Xk
Λk

+ Λk
sinXk

Xk
B◦
kQ

H,♯
3,p cosXkΛk. (4.20)

We compute

B◦
kQ

H,♯
3,p =

∑

t∈Hk,r∈Hp

NϕtV̂N (r)Θk,ta
∗
kak+ta−ta

∗
−ra

∗
r+pap

=
∑

t∈Hk,r∈Hp

NϕtV̂N (r)Θk,t

(
a∗−ra

∗
r+pak+ta−t + δk,p(δt,r + δt,−(p+r))

+ a∗p+rar+k(δt,r + δt,−r−k) + a∗−ra−p−r+k(δt,−p−r + δt,p+r−k)
)
a∗kap

=
∑

t∈Hk,r∈Hp

NϕtV̂N (r)Θk,t

(
a∗−ra

∗
r+pak+ta−t + δk,p(δt,r + δt,−(p+r))

)
a∗kap, (4.21)
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where, in the last step, we used the definition of Θk,t (which implies for example that Θk,ra
∗
p+r =

0 and similarly for the other terms on the third line).
Next, we distinguish the cases k = p and k 6= p. Let us first assume that k = p. Since

ΛkQ
H,♯
3,k = 0, the first term on the right-hand side of (4.20) vanishes. Using (4.21) and

Θk,ta
∗
−ra

∗
r+k = 0, we conclude that also the second term on the right-hand side of (4.20) is

zero (because Λk can be moved through B◦
kQ

H,♯
3,p and ΛkB♯

k = 0). Thus, we have

ΛkT
∗
kQ

H,♯
3,k TkΛk = Λk

sinXk cosXk

Xk

∑

r∈Hk

NV̂N (r)(ϕr + ϕr+k)a
∗
kakΘk,rΛk.

With the elementary inequality

0 6 1− sinx cos x

x
6

2

3
x2,

using Lemma 4 to estimate
∣∣∣
∑

r∈Hk

NV̂N (r)(ϕr + ϕr+k)
∣∣∣ . Nκ

and applying the bound (4.2), we obtain

±Λk

(
T ∗
kQ

H,♯
3,k Tk −

∑

r∈Hk

NV̂N (r)(ϕr + ϕr+k)a
∗
kakΘk,r

)
Λk . N−2+4κ+εN 2

k . (4.22)

We now consider the case p 6= k. We will prove that

± Λk

(
T ∗
k

∑

p∈S\{k}

QH,♯
3,p Tk −

∑

p∈S\{k}

QH,♯
3,p

)
Λk + h.c.

. N−5+15κ/2+7ε
(
N2−2κ

∑

r,q∈H

1S(r + q)a∗ra
∗
qaqar +NκNS

)
(Nk + 1). (4.23)

Together with (4.22) and Λk

(
QH,♯

3,k +QH,◦
3,k

)
Λk = 0 this implies (4.19).

To show (4.23), we observe that, from (4.21), B◦
kQ

H,♯
3,p Λk = 0 since ak+ta−tΛk = 0 for t ∈ Hk.

Therefore, the last term in (4.20) vanishes. Using (4.21) to rewrite the second term on the
right-hand side of (4.20), we find

ΛkT
∗
kQ

H,♯
3,p TkΛk = Λk cosXkQ

H,♯
3,p cosXkΛk

+ Λk
sinXk

Xk

∑

t∈Hk,r∈Hp

NϕtV̂N (r)Θ
(2)
k,ta

∗
−ra

∗
r+pak+ta−ta

∗
kapB♯

k

sinXk

Xk
Λk (4.24)

In the second term, we move the cutoff Θ
(2)
k,t to the right to reconstruct the operator B◦

k. To
this end, we use the identity

Θ
(2)
k,ta

∗
r = a∗rΘ

(2)
k,t

(
1− 1(t+S)∪(−(t+k)+S)(r)

)
∀k ∈ S, t ∈ Hk, r ∈ Λ∗ (4.25)

We find
∑

t∈Hk ,r∈Hp

NϕtV̂N (r)Θ
(2)
k,ta

∗
−ra

∗
r+pak+ta−ta

∗
kapB♯

k

=
∑

t∈Hk ,r∈Hp

NϕtV̂N (r)a∗−ra
∗
r+papΘ

(2)
k,tak+ta−ta

∗
kB♯

k

(
1− 1(−r, r + p ∼S −(t+ k), t)

)
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with the notation

1(−r, r + p ∼S −(t+ k), t) :=

{
1 if {−r, r + p} ∩

(
(t+ S) ∪ (−(t+ k) + S)

)
6= ∅

0 otherwise.

Proceeding as in the proof of Lemma 13, we find
∑

t∈Hk ,r∈Hp

NϕtV̂N (r)Θ
(2)
k,ta

∗
−ra

∗
r+pak+ta−ta

∗
kapB♯

k =
∑

r∈Hp

N1/2V̂N (r)a∗−ra
∗
r+pap(X

(−r,r+p)
k )2

where we defined
(
X

(−r,r+p)
k

)2
=
∑

t∈Hk

(1− 1(−r, r + p ∼S −(t+ k), t))Θk,tNϕt(ϕt + ϕt+k)a
∗
kak (4.26)

We can decompose
(
X

(−r,r+p)
k

)2
= X2

k − δ
(−r,r+p)
k with

δ
(−r,r+p)
k =

∑

t∈Hk

1(−r, r + p ∼S −(t+ k), t)Θk,tNϕt(ϕt + ϕt+k)Nk (4.27)

Notice that (X
(−r,r+p)
k )2 and δ

(−r,r+p)
k are both non-negative operators (this can be shown

similarly as in (4.15)). Moreover, with Lemma 4, we find

δ
(−r,r+p)
k . N |S|‖ϕH‖2∞Nk . N−5+15κ/2+7εNk.

Hence, after summing over p ∈ S\{k}, the contribution of δ
(−r,r+p)
k can be bounded with

Cauchy–Schwarz on the range of Λk by

±
∑

p∈S\{k},r∈Hp

N1/2V̂N (r)a∗−ra
∗
r+papδ

(−r,r+p)
k + h.c.

. N−5+15κ/2+7ε
(
N2−2κ

∑

r,q∈H

1S(r + q)a∗ra
∗
qaqar +NκNS

)
(Nk + 1). (4.28)

Therefore

±
∑

p∈S\{k}

Λk

[
T ∗
kQ

H,♯
3,p Tk − cosXkQ

H,♯
3,p cosXk −

sinXk

Xk
QH,♯

3,pXk sinXk + h.c.
]
Λk

. N−5+15κ/2+7ε
(
N2−2κ

∑

r,q∈H

1S(r + q)a∗ra
∗
qaqar +NκNS

)
(Nk + 1).

(4.29)

Arguing as in (4.25), we also obtain

ΛkX
2
ka

∗
−ra

∗
r+papΛk = Λka

∗
−ra

∗
r+pap

(
X

(−r,r+p)
k

)2
Λk. (4.30)

Since moreover Xk and X
(−r,r+p)
k commute, we find

Λk cosXka
∗
−ra

∗
r+pap cosXkΛk + Λk

sinXk

Xk
a∗−ra

∗
r+papXk sinXkΛk

= Λka
∗
−ra

∗
r+pap

(
cosX

(−r,r+p)
k cosXk +

sinX
(−r,r+p)
k

X
(−r,r+p)
k

Xk sinXk

)
Λk

= Λka
∗
−ra

∗
r+pap

(
cos(Xk −X

(−r,r+p)
k ) + (Xk −X

(−r,r+p)
k ) sinXk

sinX
(−r,r+p)
k

X
(−r,r+p)
k

)
Λk

=: Λka
∗
−ra

∗
r+pap

(
1 +R

(−r,r+p)
k

)
Λk
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With | cos(x− y)− 1+ (x− y) sin(x) sin(y)/y| 6 C(x2 − y2) for all 0 6 y 6 x, we conclude that

±R(−r,r+p)
k 6 Cδ

(−r,r+p)
k .

Thus, proceeding as in (4.28), we arrive, on the range of Λk, at

±
∑

p∈S\{k},r∈Hp

N1/2V̂N (r)a∗−ra
∗
r+papR

(−r,r+p)
k + h.c.

. N−5+15κ/2+7ε


N2−2κ

∑

r,q∈H

1S(r + q)a∗ra
∗
qaqar +NκNS


 (Nk + 1).

Inserting this bound into (4.29), we arrive at (4.23).

As for the observables QM
3 , Q

S
3 , we employ the parity operators Pk defined in (2.14) and

the assumption [Pk,Γ] = 0 for all k ∈ S to show that their expectation vanishes in the state
described by the density matrix Γ. Here, we will make use of the following property stating that,
for p ∈ H, the density matrix TcΓT

∗
c can only have either zero or one particle with momentum

p and that, in the second case, there must be exactly one particle with momentum in the set
−p+ S, forming an S-connection with the particle with momentum p.

Lemma 19. Let Γ = 1{NSc=0}Γ1{NSc=0}. For p ∈ H, define

χp = 1{Np=0} + 1{Np=1}

∑

x∈S

1{N−p+x=1}

∏

y∈S\{x}

1{N−p+y=0}

χ̃p = 1{Np=0} + 1{Np=1}

∑

x∈S

1{N−p+x=1}

(4.31)

Then we have
TcΓT

∗
c = χpTcΓT

∗
c χp = χ̃pTcΓT

∗
c χ̃p. (4.32)

Proof. Let p ∈ H. Note that Γ = χpΓχp. We now show that [a∗−ra
∗
r+kakΘk,r, χp] = 0 for all

k ∈ S, r ∈ Hk, which implies [Tc, χp] = 0 and thus the first identity in (4.32).
We start by observing that from the definition of Θk,r in (2.11) we have

a∗−ra
∗
r+kakΘk,r = 1{N−r=1}1{Nr+k=1}

∏

y∈S\{k}

1{Nr+y=0}a
∗
−ra

∗
r+kakΘk,r. (4.33)

This implies

[
a∗−ra

∗
r+kakΘk,r,1{Np=0}

]

= a∗−ra
∗
r+kakΘk,r1{Np=0}

(
δ−r,p + δr+k,p

)

= 1{Np=1}1{N−p+k=1}

∏

y∈S\{k}

1{N−p+y=0}a
∗
pa

∗
−p+kakΘk,−p (δ−r,p + δr+k,p) . (4.34)

To compute the commutator with the second summand in the definition (4.31) of the projection
χp, we distinguish four cases.
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Case 1: p = −r or p = r + k. This implies that p ∈ −(r + k) + S or p ∈ r + S, which by

definition of Θ
(2)
k,r gives Θk,r1{Np=1} = 0. Thus

[
a∗−ra

∗
r+kakΘk,r,1{Np=1}

∑

x∈S

1{N−p+x=1}

∏

y∈S\{x}

1{N−p+y=0}

]

= −1{Np=1}

∑

x∈S

1{N−p+x=1}

∏

y∈S\{x}

1{N−p+y=0}a
∗
pa

∗
−p+kakΘk,−p

= −1{Np=1}1{N−p+k=1}

∏

y∈S\{k}

1{N−p+y=0}a
∗
pa

∗
−p+kakΘk,−p,

where the last equality follows from (4.33). With (4.34), this proves [a∗−ra
∗
r+kakΘk,r, χp] = 0.

Case 2: p = r + z for some z ∈ S \ {k}. Then p /∈ {−r, r + k} and also Θk,r1{Np=1} = 0,
which implies

[
a∗−ra

∗
r+kakΘk,r,1{Np=1}

∑

x∈S

1{N−p+x=1}

∏

y∈S\{x}

1{N−p+y=0}

]
= 0

Since, in this case, we find from (4.34) that [a∗−ra
∗
r+kakΘk,r,1{Np=0}] = 0, we conclude again

that [a∗−ra
∗
r+kakΘk,r, χp] = 0.

Case 3: p = −(r+ k) + z for some z ∈ S \ {k}. Then p /∈ {−r, r + k} and Θk,r1{Np=1} = 0.
Again, we find [a∗−ra

∗
r+kakΘk,r, χp] = 0.

Case 4: If none of the conditions apply, terms commute and [a∗−ra
∗
r+kakΘk,r, χp] = 0.

This shows that χpTcΓT
∗
c χp = TcΓT

∗
c . The second identity in (4.32) can be shown similarly.

With Lemma 19, we can now show that the expectation of QS
3 and QM

3 vanish in the state
T ∗
c ΓTc.

Lemma 20. Let Γ be a density matrix on F(Λ) satisfying Γ = 1{NSc=0} Γ1{NSc=0} as well as
[Γ,Pk] = 0 for all k ∈ S. Then

Tr T ∗
cQ

S
3Tc Γ = Tr T ∗

cQ
M
3 Tc Γ = 0. (4.35)

Proof. As noticed below (2.14), we have [Pk, Tc] = 0 for all k ∈ S. By assumption, we consider
density matrices Γ such that [Γ,Pk] = 0 for all k ∈ S. It follows that

TcΓT
∗
c = PkTcΓT

∗
c Pk +QkTcΓT

∗
c Qk (4.36)

for all k ∈ S. On the other hand, from the definition of Mx in (2.13) and Nia
∗
j = a∗j(Ni + δi,j)

we find
Mxa

∗
−ra

∗
r+pap = a∗−ra

∗
r+pap (Mx + δx,−r + δx,r+p − δx,p) . (4.37)

The analogous statement holds for M−x. Distinguishing different cases, we readily show that
the parity has to be violated for some x ∈ S, i.e. for every r, p ∈ S with r + p ∈ S there exists
a x ∈ S such that

Pxa
∗
−ra

∗
r+pap = a∗−ra

∗
r+papQx.

Thus we find that Tr a∗−ra
∗
r+papTcΓT

∗
c = 0 for all r, p ∈ S with r+p ∈ S. Hence TrQS

3TcΓT
∗
c = 0.

To show the second equality in (4.35), we derive an identity similar to (4.37). Here this task
is more subtle than above, because the second term in the definition (2.13) of Mx, measuring
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the number of x-connections, does not commute with QM
3 . We are going to use Lemma 19. We

decompose

QM
3 =

∑

r,p∈H:
r+p∈S

N1/2V̂N (r)a∗−ra
∗
r+pap+h.c.+

∑

p∈Hr,r∈S

N1/2V̂N (r)a∗−ra
∗
r+pap+h.c. =: QM,1

3 +QM,2
3 .

First, we consider QM,1
3 . From (4.32), we find

Tr T ∗
c Q

M,1
3 TcΓ =

∑

r,p∈H:
r+p∈S

N1/2V̂N (r)Tr a∗−ra
∗
r+papTcΓT

∗
c

=
∑

r,p∈H:
r+p∈S

N1/2V̂N (r)Tr χ−ra
∗
−ra

∗
r+papχpTcΓT

∗
c .

Using that a∗−r = 1{N−r>1}a
∗
−r and ap = ap1{Np>1}, we may equivalently consider the expecta-

tion, in the state TcΓT
∗
c , of the observable

∑

y,z∈S

1{N−r=1}1{Nr+y=1}

∏

y′∈S\{y}

1{Nr+y′=0}a
∗
−ra

∗
r+pap1{Np=1}1{N−p+z=1}

∏

z′∈S\{z}

1{N−p+z′=0}

(4.38)
for r, p ∈ H such that r+p ∈ S. To show that the expectation of each summand in the previous
line vanishes, we apply the parity argument as we did for QS

3 . For x ∈ S, using the definition
of Mx in (2.13) and Nia

∗
j = a∗j(Ni + δi,j), we find

Mxa
∗
−ra

∗
r+pap = a∗−ra

∗
r+p

(
Mx + δx,r+p +

1

2

∑

t∈Hx

(δt,rNt+x + δt+x,−rN−t)

)
ap

= a∗−ra
∗
r+pap

(
Mx + δx,r+p

)
+Nr+x1Hx(r)a

∗
−ra

∗
r+pap − a∗−ra

∗
r+papN−p+x1Hx(−p).

Thus, we obtain, for y, z ∈ S such that r+ y,−p+ z ∈ H (note that otherwise the expectation
in (4.38) vanishes as r + y,−p+ z cannot be in S and there is no particle in (H ∪ S)c)

Mx1{Nr+y=1}

∏

y′∈S\{y}

1{Nr+y′=0}a
∗
−ra

∗
r+pap1{N−p+z=1}

∏

z′∈S\{z}

1{N−p+z′=0}

= 1{Nr+y=1}

∏

y′∈S\{y}

1{Nr+y′=0}a
∗
−ra

∗
r+pap1{N−p+z=1}

∏

z′∈S\{z}

1{N−p+z′=0}

× (Mx + δx,r+p + δx,y − δx,z)

(compare this to (4.37)). The same calculation for M−x and a case distinction shows that the
parity is violated for some x ∈ S, i.e. for every p, r ∈ H such that r + p ∈ S and for every
y, z ∈ S, there exists x ∈ S such that

Px1{Nr+y=1}

∏

y′∈S\{y}

1{Nr+y′=0}a
∗
−ra

∗
r+pap1{N−p+z=1}

∏

z′∈S\{y}

1{Nr+z′=0}

= 1{Nr+y=1}

∏

y′∈S\{y}

1{Nr+y′=0}a
∗
−ra

∗
r+pap1{N−p+z=1}

∏

z′∈S\{y}

1{Nr+z′=0}Qx. (4.39)

With (4.36) this implies that the expectation of each term in (4.38) vanishes. By linearity, we
conclude that Tr T ∗

cQ
M,1
3 TcΓ = 0. Similarly, swapping the roles of −r and r+ p, we also obtain

Tr T ∗
cQ

M,2
3 TcΓ = 0.
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4.5 Action on the quartic potential energy operator

Finally, we study the conjugation of the quartic term Q4 in (2.8). On the range of the projection
Ξ = 1{N(H∪S)c=0}1{NH∈2N0}, we can decompose

Q4 = QH
4 +QM

4 +QS
4

with

QH
4 =

1

2

∑

r∈Λ∗

p,q∈Hr

V̂N (r)a∗p+ra
∗
qaq+rap

QM
4 =

1

2

∑

q∈H,p∈S,r∈Λ∗:
p+r∈H,q+r∈S

V̂N (r)a∗p+ra
∗
qaq+rap + h.c.+

1

2

∑

p,q∈S,r∈Λ∗:
p+r,q+r∈H

V̂N (r)a∗p+ra
∗
qaq+rap + h.c.

+
1

2

∑

p∈H,q∈S,r∈Λ∗:
p+r∈H,q+r∈S

V̂N (r)a∗p+ra
∗
qaq+rap + h.c. =: QM,1

4 +QM,2
4 +QM,3

4

QS
4 =

1

2

∑

q,p∈S,r∈Λ∗:
p+r,q+r∈S

V̂N (r)a∗p+ra
∗
qaq+rap.

(4.40)

Let us first consider the term QH
4 . It is convenient to define

Q̃H
4 =

1

2

∑

r∈Λ∗

p,q∈Hr

V̂N (r)1S(p + q + r)a∗p+ra
∗
qaq+rap.

In the next lemma we show that the difference QH
4 − Q̃H

4 is small on an appropriate class of
trial states.

Lemma 21. Suppose that Γ is a density matrix on F(Λ) satisfying Γ = 1{NSc=0} Γ1{NSc=0}.
Then we have

±Tr T ∗
c (Q

H
4 − Q̃H

4 )TcΓ . N−1+5κ/2+3εTr T ∗
c N 2

HTcΓ,

Proof. Let us first explain the idea of the proof, heuristically. Consider the expectation of
a∗p+ra

∗
qaq+rap in the state TcΓT

∗
c . The operator ap annihilates a particle with momentum p

which, by (4.32), has to be connected to exactly one other particle with momentum−p+x, x ∈ S.
After the annihilation and application of the remaining a∗p+ra

∗
qaq+r this particle again needs

to be connected. So either q + r = −p + x, which is the main term of Q̃H
4 , or −p + x ∈

−(p+ r)+S ∪ −q+S. This leads to the condition r ∈ S+S or q−p ∈ S+S. Either constraint
is enough to show that these contributions are negligible.

We will now make this argument rigorous. First, let us assume that r /∈ S + S and q − p /∈
S + S. Then from Lemma 19, we find

Tr
(
a∗p+ra

∗
qaq+rapTcΓT

∗
c

)

= Tr
(
a∗p+ra

∗
qaq+rap1{Np=1}

∑

x∈S

1{N−p+x=1}TcΓT
∗
c

)

=
∑

x∈S

Tr
(
1{N−p+x=1}a

∗
p+ra

∗
qaq+rap1{Np=1}TcΓT

∗
c

)
1(q, p+ r 6= −p+ x)

37



because, on the one hand, −p + x 6= q + r (from the assumption p + q + r 6∈ S) and, on the
other hand, the contributions from −p + x = q and −p+ x = p+ r vanish, since there cannot
be two H-particles in the same momentum state on the range of TcΓT

∗
c , i.e. 1{Nk>2}TcΓT

∗
c = 0

for all k ∈ H, which follows from (4.32). Applying again (4.32), we obtain

Tr
(
a∗p+ra

∗
qaq+rapTcΓT

∗
c

)

=
∑

x,y∈S

Tr
(
1{N−p+x=1}1{Np−x+y=1}a

∗
p+ra

∗
qaq+rap1{Np=1}TcΓT

∗
c

)
1(q, p+ r 6= −p+ x)

=
∑

x,y∈S

Tr
(
a∗p+ra

∗
qaq+rap1{N−p+x=1}1{Np−x+y=1}1{Np=1}TcΓT

∗
c

)

× 1(q, p+ r 6= −p+ x)1(q + r, p 6= p− x+ y)

since p − x + y 6= p + r, q from the assumption r, q − p 6∈ S + S and the contribution from
p−x+ y = q+ r, p can be excluded as above, using that 1{Nk>2}TcΓT

∗
c = 0 for all k ∈ H. Since

the particle with momentum −p + x is S-connected both with the particle with momentum p
and the particle with momentum p− x+ y, we conclude that

Tr
(
a∗p+ra

∗
qaq+rapTcΓT

∗
c

)
= 0 (4.41)

To handle the case r ∈ S + S or q − p ∈ S + S, we observe that, by the Cauchy–Schwarz
inequality, we find

±
∑

r∈Λ∗

p,q∈Hr

V̂N (r)a∗p+ra
∗
qaq+rap1Sc(p+ q + r)

(
1S+S(r) + 1(S+S)c(r)1S+S(q − p)

)

. N−1+5κ/2+3εN 2
H ,

where we used that ‖V̂ ‖∞ . N−1+κ and |S| . N3κ/2+3ε.

Next, we conjugate Q̃H
4 with Tk, for a k ∈ S.

Lemma 22. On the range of Λk, we have, in the sense of quadratic forms,

±
(
T ∗
k Q̃

H
4 Tk − Q̃H

4 −
∑

r,p∈Hk

V̂N (r − p)Nϕr(ϕp + ϕp+k)Θ
(2)
k,rΘ

(2)
k,pa

∗
kak

)

. N−5+15κ/2+9ε(Nk + 1)
∑

p,q∈H

1S(p + q)|q|2a∗pa∗qaqap +N−2+4κ+εN 2
k .

Proof. Let us fix k ∈ S, r ∈ Λ∗, p, q ∈ Hr with p+ q+ r ∈ S. Using (4.4), we obtain, on RanΛk,

T ∗
k a

∗
p+ra

∗
qaq+rapTk = cos(Xk)a

∗
p+ra

∗
qaq+rap cos(Xk) +

sin(Xk)

Xk
B◦
ka

∗
p+ra

∗
qaq+rapB♯

k

sin(Xk)

Xk

+
[
cos(Xk)a

∗
p+ra

∗
qaq+rapB♯

k

sin(Xk)

Xk
+ h.c.

]
(4.42)

Let us first show that the cross terms on the second line vanish. We have

a∗p+ra
∗
qaq+rapB♯

k =
∑

t∈Hk

a∗p+ra
∗
qaq+rapa

∗
−ta

∗
k+takN

1/2ϕtΘk,t

=
∑

t∈Hk

(
a∗−ta

∗
k+ta

∗
p+ra

∗
qaq+rap + a∗p+ra

∗
q

[
aq+rap, a

∗
−ta

∗
k+t

])
akN

1/2ϕtΘk,t
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Using

[
aq+rap, a

∗
−ta

∗
k+t

]
= a∗k+taq+rδp,−t + a∗−taq+rδp,k+t + δq+r,−ta

∗
k+tap + δq+r,k+ta

∗
−tap

+ δq+r,k+tδp,−t + δp,k+tδq+r,−t
(4.43)

and noticing that, since the cutoff Θk,t imposes that the S-neighbourhoods of t and of −(t+ k)
are empty and since p + q + r ∈ S, the contribution of the quadratic terms on the right-hand
side of (4.43) vanishes, we obtain

a∗p+ra
∗
qaq+rapB♯

k

=
∑

t∈Hk

(
a∗−ta

∗
k+ta

∗
p+ra

∗
qaq+rap + a∗p+ra

∗
q(δq+r,−tδp,k+t + δq+r,k+tδp,−t)

)
akN

1/2ϕtΘk,t.

(4.44)

Observing now that all terms in the sum on the right-hand side create a k-connection, we
conclude that Λka

∗
p+ra

∗
qaq+rapB♯

k = 0. Thus, the cross terms vanish on RanΛk.
Let us now consider the second term on the right-hand side of (4.42). From (4.44) and using,

similarly to (4.3), the fact that Θk,t excludes k-connections and particles in the S-neighborhoods
of t and −(t+ k), we find, on the range of Λk,

B◦
ka

∗
p+ra

∗
qaq+rapB♯

k

=
∑

t∈Hk

B◦
k

(
a∗−ta

∗
k+ta

∗
p+ra

∗
qaq+rap + a∗p+ra

∗
q(δq+r,−tδp,k+t + δq+r,k+tδp,−t)

)
akN

1/2ϕtΘk,t

=
∑

t∈Hk

Θk,tNϕt(ϕt + ϕk+t)a
∗
kaka

∗
p+ra

∗
qaq+rapΘk,t

+
∑

t,t′∈Hk

Nϕtϕt′(δp+r,−t′δq,k+t′ + δp+r,k+t′δq,−t′)(δq+r,k+tδp,−t + δq+r,−tδp,k+t)Θk,t′a
∗
kakΘk,t

= a∗p+ra
∗
q(X

(p+r,q,q+r,p)
k )2aq+rap +N(ϕp + ϕp−k)(ϕq + ϕq−k)Θk,−pΘk,−qδp+q+r,kNk

with

(X
(p+r,q,q+r,p)
k )2 =

∑

t∈Hk

Nϕt(ϕt + ϕk+t)Θk,ta
∗
kak
(
1− 1(p+ r, q, q + r, p ∼S −(t+ k), t)

)

=: X2
k − δ

(p+r,q,q+r,p)
k . (4.45)

Here, similarly to the analysis of QH
3 , we used (4.25) to commute Θk,t (on the range of Λk, we

have Θk,t = Θ
(2)
k,t) and we defined

1(p+ r, q, q + r, p ∼S −(t+ k), t) :=

{
1 if {p + r, q, q + r, p} ∩

(
(−(t+ k) + S) ∪ (t+ S)

)
6= ∅

0 otherwise,

which checks if at least one of the momenta p+ r, q, q,+r or p is in the shell-vicinity of −(t+ k)

or t. Notice that δ
(p+r,q,q+r,p)
k is a non-negative operator. Moreover, Lemma 4 implies that

δ
(p+r,q,q+r,p)
k 6 8|S|N‖ϕH‖2∞Nk . N−5+15κ/2+7εNk. (4.46)
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Recalling the definition (4.26) and using (4.30) we have, from (4.42), on RanΛk,

T ∗
k a

∗
p+ra

∗
qaq+rapTk

= a∗p+ra
∗
q

(
cos(X

(p+r,q)
k ) cos(X

(p,q+r)
k ) +

sin(X
(p+r,q)
k )

X
(p+r,q)
k

(X
(p+r,q,q+r,p)
k )2

sin(X
(p,q+r)
k )

X
(p,q+r)
k

)
aq+rap

+N(ϕp + ϕp−k)(ϕq + ϕq−k)Θk,−pΘk,−qδp+q+r,kNk
sin2Xk

X2
k

. (4.47)

Using trigonometric identities and the fact that the operators X
(p+r,q)
k ,X

(q,p+r)
k ,X

(p+r,q,q+r,p)
k

commute with each other, we can write

cos(X
(p+r,q)
k ) cos(X

(p,q+r)
k ) +

sin(X
(p+r,q)
k )

X
(p+r,q)
k

(X
(p+r,q,q+r,p)
k )2

sin(X
(p,q+r)
k )

X
(p,q+r)
k

= cos(X
(p+r,q)
k −X

(p,q+r)
k ) +

sin(X
(p+r,q)
k )

X
(p+r,q)
k

sin(X
(p,q+r)
k )

X
(p,q+r)
k

(
(X

(p+r,q,q+r,p)
k )2 −X

(p+r,q)
k X

(p,q+r)
k

)

= 1 +R
(p+r,q,q+r,p)
k .

We can estimate

±R(p+r,q,q+r,p)
k 6 δ

(p+r,q,q+r,p)
k + 3δ

(p+r,q)
k + 2δ

(p,q+r)
k . N−5+15κ/2+7εNk

as follows from the inequality

∣∣∣ cos(x− y) +
sinx

x

sin y

y
(z2 − xy)− 1

∣∣∣ 6 (v2 − z2) + 3(v2 − x2) + 2(v2 − y2)

for all 0 6 x, y, z 6 v (with v playing the role of Xk). The contribution of the remainder terms

R
(p+r,q,q+r,p)
k to TkQ̃

H
4 Tk can therefore be estimated, using the Cauchy-Schwarz inequality, by

±
∑

r∈Λ∗

p,q∈Hr

V̂N (r)1S(p+ q + r)a∗p+ra
∗
qR

(p+r,q,q+r,p)
k aq+rap

6
∑

r∈Λ∗

p,q∈Hr

η
|V̂N (r)|
p2

1S(p+ q + r)q2a∗p+ra
∗
qR

(p+r,q,q+r,p)
k (Nk + 1)−1R

(p+r,q,q+r,p)
k aqap+r

+ η−1
∑

r∈Λ∗

p,q∈Hr

|V̂N (r)|
q2

p21S(p+ q + r)a∗pa
∗
q+r(Nk + 1)aq+rap

for every η > 0. Choosing η−1 = N−5+15κ/2+7ε, we obtain

±
∑

r∈Λ∗

p,q∈Hr

V̂N (r)1S(p+ q + r)a∗p+ra
∗
qR

(p+r,q,q+r,p)
k aq+rap

. N−5+15κ/2+7ε
∑

r∈Λ∗

q∈H

|V̂N (r)|
|p− r|21S(p + q)|p|2a∗pa∗qapaq(Nk + 1)

. N−5+15κ/2+9ε
∑

r∈Λ∗

q∈H

1S(p+ q)|p|2a∗pa∗qapaq(Nk + 1). (4.48)
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In the last inequality, we applied Hölder’s inequality and the bound ‖VN‖L3/2+ε . N2ε.
Let us now consider the last term on the right-hand side of (4.47). To evaluate its contri-

bution to T ∗
k Q̃

H
4 Tk, we observe that

1

2

∑

r∈Λ∗

p,q∈Hr

V̂N (r)N(ϕp + ϕp−k)(ϕq + ϕq−k)Θk,−pΘk,−qδp+q+r,kNk

=
∑

r,p∈Hk

NV̂N (r − p)ϕr(ϕp + ϕp+k)Θk,pΘk,rNk.

(4.49)

By Young’s inequality and estimating ‖ϕ‖1 . C with Lemma 4, we find

∣∣∣
∑

r,p∈Hk

NV̂N (r − p)ϕr(ϕp + ϕp+k)
∣∣∣ . Nκ.

With the bound ∣∣∣sin
2 x

x2
− 1
∣∣∣ 6 Cx2

valid for all x > 0 and with the estimate (4.2) for Xk, we conclude that

±
[ ∑

r∈Λ∗

p,q∈Hr

V̂N (r)1S(p+ q + r)N(ϕp + ϕp−k)(ϕq + ϕq−k)Θk,−pΘk,−qδp+q+r,kNk
sin2Xk

X2
k

−
∑

r,p∈Hk

NV̂N (r − p)ϕr(ϕp + ϕp+k)Θk,pΘk,rNk

]
. N−2+4κ+εN 2

k .

Together with (4.48), we obtain the statement of the lemma.

Next, we consider the term QS
4 , where the four momenta are in the shell. We show that its

contribution is negligible.

Lemma 23. Let Γ be a density matrix on F(Λ) satisfying Γ = 1{NSc=0} Γ1{NSc=0} as well as
[Γ,Pk] = 0 for all k ∈ S (with Pk the parity operator defined in (2.14)). Then we have

Tr T ∗
cQ

S
4TcΓ . N−1+κTr T ∗

c NS(NS +N3κ/2+3ε)TcΓ.

Proof. Let us once again use the parity argument: Recall (2.13), where, for k ∈ S, we defined

Mk = Nk +
∑

t∈Hk

N−tNt+k,

counting the number of particles with momenta k and the number of k-connections. From the
assumption Γ = 1{NSc=0}Γ1{NSc=0} with [Γ,Pk] = 0, and from the observation that [Tc,Pk] = 0,
we have TcΓT

∗
c = PkTcΓT

∗
c Pk +QkTcΓT

∗
c Qk, for all k ∈ S. After computing the commutator of

Mk and M−k with a∗p+ra
∗
qaq+rap we find that the contribution of a∗p+ra

∗
qaq+rap vanishes unless

one of the following conditions holds true:

• p+ r = ±q and q + r = ±p

• p+ r = ±q + r and q = ±p

• p+ r = ±p and q = ±q + r,
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This implies that, necessarily, −r = p + q, p = q or r = 0 must hold true. Therefore, we find
that

Tr T ∗
cQ

S
4TcΓT

∗
c

. Tr
( ∑

p,q∈S

V̂N (p+ q)a∗−qa
∗
qa−pap +

∑

p,r∈S

V̂N (r)a∗p+ra
∗
pap+rap +

∑

p,q∈S

V̂N (0)a∗pa
∗
qaqap

)
TcΓT

∗
c .

Thus

Tr T ∗
cQ

S
4TcΓ . ‖V̂N‖L∞Tr NS(NS +N3κ/2+3ε)TcΓT

∗
c .

Here we used that
∑

p,q∈S

V̂N (p+ q)a∗−qa
∗
qa−pap =

∑

p∈S

V̂N (0)Np(Np − 1) +
∑

p,q∈S
p 6=q

V̂N (p + q)(a∗−qa−p)(a
∗
qap)

. ‖V̂N‖L∞NS(NS +N3κ/2+3ε).

As for the term QM
4 , we decompose it as in (4.40), writing QM

4 = QM,1
4 + QM,2

4 + QM,3
4 .

First, we handle QM,1
4 .

Lemma 24. Let Γ be a density matrix on F(Λ) satisfying Γ = 1{NSc=0} Γ1{NSc=0} as well as
[Γ,Pk] = 0 for all k ∈ S. Then we have

Tr T ∗
cQ

M,1
4 TcΓ = 0.

Proof. Recall that

QM,1
4 =

1

2

∑

q∈H,p∈S,r∈Λ∗:
p+r∈H,q+r∈S

V̂N (r)a∗p+ra
∗
qaq+rap + h.c..

From q ∈ H, q + r ∈ S, we find r 6∈ S + S. Similarly, from p + r ∈ H, q + r ∈ S, we obtain
q−p 6∈ S+S. With the analysis at the beginning of the proof of Lemma 21, in particular (4.41),
we conclude that, unless p + q + r ∈ S, the expectation of a∗p+ra

∗
qaq+rap in the state TcΓT

∗
c

vanishes. For p+q+r ∈ S, the operator a∗p+ra
∗
qaq+rap creates a (p+q+r)-connection, annihilates

a particle with momentum p ∈ S and a particle with momentum q + r ∈ S. Consequently, also
this term vanishes in expectation due to the same parity argument that was used in the previous
lemmata.

Finally, we estimate the expectation of the terms QM,2
4 and QM,3

4 .

Lemma 25. Let Γ be a density matrix on F(Λ) satisfying Γ = 1{NSc=0} Γ1{NSc=0} as well as
[Γ,Pk] = 0 for all k ∈ S. Then we have

±Tr T ∗
c (Q

M,2
4 +QM,3

4 )TcΓ . N−1+κTr T ∗
c NH(NS +N3κ/2+3ε)TcΓ.

Proof. Let us focus on the contribution of QM,2
4 , the one of QM,3

4 can be handled analogously.
Recall that

QM,2
4 =

1

2

∑

p,q∈S,r∈Λ∗:
p+r,q+r∈H

V̂N (r)a∗p+ra
∗
qaq+rap + h.c.
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Using Lemma 19, we write

Tr a∗p+ra
∗
qaq+rapTcΓT

∗
c

= Tr
∑

x,y∈S

1{Np+r=1}1{Ny−(p+r)=1}a
∗
p+ra

∗
qaq+rap1{Nq+r=1}1{Nx−(q+r)=1}TcΓT

∗
c

The term annihilates a x-connection and a particle with momentum p, and creates a y-connection
and a particle with momentum q. Thus, by our standard parity argument, we find that one of
the following conditions must be fulfilled:

(1) x = ±p and y = ±q,
(2) x = ±q and y = ±p,
(3) x = ±y and p = ±q.
Case (1): With Cauchy–Schwarz we obtain

± 1{Np+r=1}1{Ny−(p+r)=1}a
∗
p+ra

∗
qaq+rap1{Nq+r=1}1{Nx−(q+r)=1}

= ±1{Np+r=1}1{Ny−(p+r)=1}a
∗
p+r(apa

∗
q − δp,q)aq+r1{Nq+r=1}1{Nx−(q+r)=1}

6 a∗p+r(a
∗
pap + 1)ap+r1{Np+r=1}1{Ny−(p+r)=1} + a∗q+r(a

∗
qaq + 1)aq+r1{Nq+r=1}1{Nx−(q+r)=1}

− δp,q a
∗
p+rap+r1{Np+r=1}1{Ny−(p+r)=1}1{Nx−(p+r)=1}. (4.50)

We sum over x and y and write ±p,±q for either value that x respectively y could take. The
contribution of the first two terms on the right-hand side of the previous equation can be
bounded by

∑

p,q∈S,r∈Λ∗:
p+r,q+r∈H

V̂N (r)Tr a∗p+r(a
∗
pap + 1)ap+r1{Np+r=1}1{N±q−(p+r)=1}TcΓT

∗
c

6 ‖V̂N‖∞Tr
∑

p∈S

(a∗pap + 1)
∑

r∈H

a∗rar1{Nr=1}

∑

q∈S

1{N±q−r=1}TcΓT
∗
c

= ‖V̂N‖∞Tr
(
T ∗
c (NS + |S|)NHTcΓ

)
,

where we first shifted r → r − p and then we used Lemma 19 to replace the q−sum by 1. For
the third term on the right-hand side of (4.50) we readily find

∑

p,q∈S,r∈Λ∗:
p+r,q+r∈H

V̂N (r)δp,q a
∗
p+rap+r1{Np+r=1}1{N±q−(p+r)=1}1{N±p−(p+r)=1} 6 ‖V̂N‖∞NH |S|.

Case (2): This can be handled like Case (1) but without interchanging a∗q and ap.
Case (3): With Cauchy-Schwarz, we obtain

±1{Np+r=1}1{Ny−(p+r)=1}a
∗
p+ra

∗
qaq+rap1{Nq+r=1}1{Nx−(q+r)=1}

6 a∗p+ra
∗
qaqap+r1{Np+r=1}1{Ny−(p+r)=1} + a∗q+ra

∗
papaq+r1{Nq+r=1}1{Nx−(q+r)=1}.

The contribution of the first term (the second term can be handled analogously) can be esti-
mated, after summing over p and x, by

∑

q∈S,r∈Λ∗:
p+r,q+r∈H

∑

y∈S

V̂N (r)Tr a∗p+ra
∗
qaqap+r1{Np+r=1}1{Ny−(p+r)=1}δp,±qTcΓT

∗
c

6 ‖V̂N‖∞Tr
∑

q∈S

a∗qaq
∑

r∈H

a∗rar1{Nr=1}

∑

y∈S

1{Ny−r=1}TcΓT
∗
c

6 ‖V̂N‖∞Tr NSNHTcΓT
∗
c .
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4.6 Proof of Lemma 6

First of all, we combine the statements of Lemma 17, Lemma 18 and Lemma 22 to estimate
the expectation of kinetic energy, cubic and quartic terms on the right hand side of (2.8).

Lemma 26. Let Γ be a density matrix on F(Λ) satisfying Γ = 1{NSc=0} Γ1{NSc=0} as well as
[Γ,Pk] = 0 for all k ∈ S. Then we have

Tr T ∗
c

[ ∑

p∈Λ∗

p2a∗pap+Q
H
3 +Q̃H

4

]
TcΓ 6 Tr

∑

p∈S

p2a∗papΓ+2Nκ
(
8πa−V̂ (0)

)
Tr NSΓ+δ1(Γ) (4.51)

with

δ1(Γ) . N−1+5κ/2+3ε/2Tr
∑

p∈S

N 2
pΓ+N

−5+17κ/2+11εTr
∑

p∈S

N 2
p (NS+N

3κ/2+3ε)Γ+Nκ−εTr NSΓ.

(4.52)
Moreover, we have the bounds

Tr T ∗
c

∑

p∈Λ∗

p2a∗papTcΓ, ±Tr T ∗
c Q

H
3 TcΓ, Tr T

∗
cQ

H
4 TcΓ . Nκ+2εTrNSΓ + δ1(Γ). (4.53)

Proof. We start with the proof of (4.51). As a first step, we derive a rough upper bound on the
kinetic operator. Let k ∈ S′ ⊂ S. From Lemma 17 and Lemma 4 we obtain, on the range of
Λk,

T ∗
k

∑

p∈Λ∗

p2a∗papTk .
∑

p∈Λ∗

p2a∗pap +NκNk +N−1+5κ/2+3ε/2N 2
k .

∑

p∈Λ∗

p2a∗pap +NκN 2
k .

Since [Nk, Tq] = 0 for k 6= q, conjugating with Tc,S′\{k} =
∏

p∈S′\{k} Tp yields

T ∗
c,S′

∑

p∈Λ∗

p2a∗papTc,S′ . T ∗
c,S′\{k}

∑

p∈Λ∗

p2a∗papTc,S′\{k} +NκN 2
k .

Iterating, we arrive, on the range of 1{NSc=0}, at

T ∗
c,S′

∑

p∈Λ∗

p2a∗papTc,S′ .
∑

p∈S

p2a∗pap +Nκ
∑

k∈S

N 2
k . Nκ+2ε

∑

k∈S

N 2
k . (4.54)

Next, we show (4.51). Let k ∈ S. By Lemmas 17, 18 and 22 we have

± Λk

[
T ∗
k

( ∑

p∈Λ∗

p2a∗pap +QH
3 + Q̃H

4

)
Tk −

∑

p∈Λ∗

p2a∗pap −QH
3 − Q̃H

4 − Z(k)
]
Λk

. N−1+5κ/2+3ε/2N 2
k +N−5+15κ/2+7ε

( ∑

p,r∈H
p+r∈S

N2ε|p|2a∗ra∗papar +NκNS

)
(Nk + 1), (4.55)

where we denoted

Z(k) =
∑

r∈Hk

N
[
2V̂N (r) + 2r2ϕr +

∑

t∈Hk

V̂N (r − t)ϕtΘ
(2)
k,t

]
(ϕr + ϕr+k)NkΘ

(2)
k,r. (4.56)
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Conjugating with Tc,S\{k}, we obtain, on the range of 1{NSc=0},

±
[
T ∗
c

( ∑

p∈Λ∗

p2a∗pap +QH
3 + Q̃H

4

)
Tc

− T ∗
c,S\{k}

( ∑

p∈Λ∗

p2a∗pap +QH
3 + Q̃H

4

)
Tc,S\{k} − T ∗

c,S\{k}Z
(k)Tc,S\{k}

]

. N−1+5κ/2+3ε/2N 2
k

+N−5+15κ/2+7εT ∗
c,S\{k}

[ ∑

p,r∈H
p+r∈S

N2ε|p|2a∗ra∗papar +NκNS

]
(Nk + 1)Tc,S\{k}. (4.57)

Using Lemma 19 (note that the r-sum runs over the S-neighborhood of −p) we find

Tr
(
T ∗
c,S\{k}

∑

p,r∈H

N2ε|p|21S(p+ r)a∗ra
∗
paparNkTc,S\{k}Γ

)

6 TrT ∗
c,S\{k}N

2ε
∑

p∈H

|p|2a∗papNkTc,S\{k}Γ

6 Nκ+4εTr
∑

p∈S

N 2
p NkΓ, (4.58)

where we used (4.54) in the last inequality.
Let us return to (4.57) and consider the term T ∗

c,S\{k}Z
(k)Tc,S\{k}. We claim that

±Λq

(
T ∗
q Z

(k)Tq − Z(k)
)
Λq . N−5+17κ/2+7εNqNk. (4.59)

for all q ∈ S\{k}. Since T ∗
ℓ NqNkTℓ = NqNk for all ℓ ∈ S\{k, q}, (4.59) immediately implies

that

±Tr
(
T ∗
c,S\{k}Z

(k)Tc,S\{k} − Z(k)
)
Γ . N−5+17κ/2+7εTrNSNkΓ. (4.60)

Inserting (4.58) and (4.60) in (4.57) yields

Tr T ∗
c

( ∑

p∈Λ∗

p2a∗pap +QH
3 + Q̃H

4

)
TcΓ

6 Tr T ∗
c,S\{k}

( ∑

p∈Λ∗

p2a∗pap +QH
3 + Q̃H

4

)
Tc,S\{k}Γ + Tr Z(k)Γ

+ CN−1+5κ/2+3ε/2TrN 2
kΓ + CN−5+17κ/2+11εTr

∑

p∈S

N 2
p (Nk + 1)Γ

Iterating (and using the assumption Γ = 1{NSc=0}Γ1{NSc=0}), we conclude that

Tr T ∗
c

( ∑

p∈Λ∗

p2a∗pap +QH
3 + Q̃H

4

)
TcΓ

6 Tr
[∑

p∈S

p2a∗pap +
∑

k∈S

Z(k)
]
Γ + CN−1+5κ/2+3ε/2Tr

∑

p∈S

N 2
p Γ

+ CN−5+17κ/2+11ε Tr
∑

p∈S

N 2
p (NS +N3κ/2+3ε)Γ.

(4.61)
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In the definition (4.56) of Z(k), we apply the scattering equation (2.3). With (2.4), Lemma 4
and |V̂N (r − k)− V̂N (r)| . |k|N−2+2κ 6 N−2+5κ/2+ε, we find

∑

r∈Hk

N
[
2V̂N (r)+2r2ϕr +

∑

t∈Hk

V̂N (r − t)ϕt

]
(ϕr + ϕr+k)

=
∑

r∈Hk

NV̂N (r)(ϕr + ϕr+k) +O(Nκ−ε) = 2Nκ
(
8πa − V̂ (0)

)
+O(Nκ−ε).

With (4.61), this implies (4.51).
It remains to show (4.59). With (4.25), we obtain

ΛqT
∗
q Θ

(2)
k,rΘ

(2)
k,tTqΛq = Λq

(
cos(Xq)Θ

(2)
k,rΘ

(2)
k,t cos(Xq) +

sin(Xq)

Xq
B◦
qΘ

(2)
k,rΘ

(2)
k,tB♯

q

sin(Xq)

Xq

)
Λq

= Θ
(2)
k,rΘ

(2)
k,tΛq

(
cos(Xq)

2 +

(
sin(Xq)

Xq

)2

(X(r,−(k+r),−(k+t),t)
q )2

)
Λq

= Θ
(2)
k,rΘ

(2)
k,tΛq

(
1−

(
sin(Xq)

Xq

)2

δ(r,−(k+r),−(k+t),t)
q

)
Λq,

where δ
(r,−(k+r),−(k+t),t)
q and X

(r,−(k+r),−(k+t),t)
q were defined in (4.45). Using (4.46) we find

±Λq

(
T ∗
q Θ

(2)
k,rΘ

(2)
k,tTq −Θ

(2)
k,rΘ

(2)
k,t

)
Λq . N−5+15κ/2+7εNq. (4.62)

From this and
∑

r∈Hk

N
[
2V̂N (r) + 2r2ϕr +

∑

t∈Hk

V̂N (r − t)ϕt

]
(ϕr + ϕr+k) . Nκ,

which follows from Lemma 4, we find (4.59).
Finally, let us show (4.53). The bound on the kinetic term

∑
p2a∗pap was shown in (4.54).

By Cauchy–Schwarz we find

±QH
3 6

1

2
QH

4 + CNκNS, (4.63)

which implies
QH

4 = QH
4 + 2QH

3 − 2QH
3 6 2(QH

4 +QH
3 ) + CNκNS.

This, together with (4.51), Lemma 21 and Lemma 15, implies the bound on the quartic term
QH

4 . The bound on the cubic term then follows again by (4.63).

We are now set to conclude the proof of Lemma 6. Recalling the assumptions on Γ and
the decomposition (4.18) and collecting the bounds from Lemma 5, Lemma 16, Lemma 20,
Lemma 21, Lemma 23, Lemma 24, Lemma 25 and Lemma 26 , we have

Tr T ∗
c e

−B1W ∗
N0

HNWN0e
B1TcΓ

6 4πaN1+κ − 8πaNκ(N −N0) +
∑

p∈S

(4πaNκ)2

p2

+Tr
[∑

p∈S

p2a∗pap + 16πaNκNS + 4πaNκ
∑

p∈S

Tr
(
a∗pa

∗
−p + h.c.

)]
Γ + δ(Γ)

(4.64)

where

δ(Γ) . Tr T ∗
c E1TcΓ + (

√
N0/N − 1)TrT ∗

cQ
H
3 TcΓ +N−2+4κ+εTr

(
NS +N3κ/2+3ε

)
Γ

+N−1+5κ/2+3εTrT ∗
c N 2

HTcΓ +N−1+κTrT ∗
c N (NS +N3κ/2+3ε)TcΓ + δ1(Γ).

(4.65)
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With (2.9), (4.52) and with Lemma 15, we find

δ(Γ)

.N−3εTr T ∗
c

∑

p∈Λ∗

p2a∗papTcΓ +N−5ε/2Tr T ∗
cQ4TcΓ + (

√
N0/N − 1)TrT ∗

c Q
H
3 TcΓ

+
(
N−κ/2−ε/2 +N−7+13κ+6ε

)
Tr N 2

SΓ +N−1+κ+6εTr
(
NS +N3κ/2+3ε

)∑

p∈S

N 2
pΓ +N5κ/2−ε/2,

if 1/2 < κ < 8/15 − 2ε/3 (note again that in particular ε < 1/20). For the first three terms on
the right hand side we use (4.53) and find that they can be absorbed in the error terms that
are already present.

4.7 Proof of Proposition 8

From (2.1) and (2.6), we find

e−B1W ∗
N0

NWN0e
B1 = e−B1

(
N0 +N +

√
N0(a

∗
0 + a0)

)
eB1

= N0 +
∑

p∈Λ∗

[
(c2p + s2p)a

∗
pap + cpsp(a

∗
pa

∗
−p + apa−p) + s2p

]
+
√
N0(a

∗
0 + a0). (4.66)

From (2.7) and (4.35), we find that on the range of TcΓ, the second term in (4.66) simplifies to

∑

p∈Λ∗

[
(c2p + s2p)a

∗
pap + cpsp(a

∗
pa

∗
−p + apa−p) + s2p

]
= N + 2

∑

p∈H

N2
0ϕ

2
pa

∗
pap +

∑

|p|>Nκ/2+ε

N2
0ϕ

2
p. (4.67)

Here we used Lemma 19 to argue that Tr T ∗
c a

∗
pa

∗
−pTc Γ = 0 for p ∈ H as a∗pa

∗
−p would leave two

excitations in H which are no longer connected. Also, from the definition of Γ in (2.20), we
clearly have

Tr (T ∗
c a

∗
0TcΓ) = Tr (a∗0Γ) = 0.

Recall from (4.9) that on the range of Γ we have

T ∗
c NTc > T ∗

c (NS +
NH

2
)Tc = NS +

NH

2
= NS .

Then we obtain that

TrNΓN > TrNSΓ +N0.

To prove the upper bound, we combine the above identities (4.66) and (4.67) with Lemma
15 and ϕp . p−2N−1+κ from Lemma 4, as well as N0 . N , which follows directly from the
definition (2.28) and Lemma 7. We find that on the range of Γ

T ∗
c e

−B1W ∗
N0

NWN0e
B1Tc −NS −N0 . N−2+3κ+εNS +N3κ/2−ε,

and from TrNSΓ . N3κ/2, see Lemma 7, we obtain Proposition 8.

47



A Proof of Lemma 4

For N large enough, VN is supported in Λ so that we may consider it as a function on the torus,
i.e. VN ∈ L2(Λ). Since VN > 0 we may invert −∆+ 1

2VN on P⊥L2(Λ), where P⊥ = 1−|1Λ〉〈1Λ|
is the projection onto the orthogonal complement of the zero mode. We define

ϕ̌ = −1

2

1

P⊥(−∆+ 1
2VN )P⊥

P⊥VN ∈ P⊥L2(Λ) (A.1)

and readily find that in momentum space ϕ satisfies (2.3). Moreover, from (A.1) we obtain

〈ϕ̌,−∆ϕ̌〉 = −1

2
〈ϕ̌, VN (1 + ϕ̌)〉 6 −1

2
〈ϕ̌, VN 〉 6 1

2
‖∇ϕ̌‖2‖(P⊥∇P⊥)−1VN‖2.

In particular ϕ̌ ∈ H1(Λ) since 〈ϕ̌, VN 〉 6 ‖ϕ‖2‖VN‖2 <∞. We compute

‖(P⊥∇P⊥)−1VN‖22 =
∑

p 6=0

V̂N (p)2

p2
=

∑

0<|p|<N1−κ

V̂N (p)2

p2
+

∑

|p|>N1−κ

V̂N (p)2

p2

6 C‖V̂N‖∞N1−κ + CN−2+κ‖VN‖2 6 CN−1+κ

and conclude the estimate ‖pϕ‖22 6 CN−1+κ from Lemma 4. From this and (2.3) we deduce the
pointwise bound p2ϕp 6 CN−1+κ. This readily implies the bounds ‖ϕ‖∞, ‖ϕ2‖ 6 CN−1+κ and
the bounds for the cutoff version of ϕ. Next, we estimate the ℓ1-norm of ϕ. For q ∈ [1, 6) we
use Hölder respectively Young inequalities, note that we always estimate V̂N in the ℓ2−norm,
and find that

‖ϕ‖q 6 ‖ϕ1|p|<N−1+κ‖q + ‖ϕ1|p|>N−1+κ‖q
6 CN +

1

2
‖p−2V̂N1|p|>N−1+κ‖q +

1

2
‖p−2(V̂N ∗ ϕ)1|p|>N−1+κ‖q

6 CN + CN‖ϕ‖s,

if we choose 1 6 s < 6q
6−q . By a bootstrap argument, choosing first q = 1, then q = 6/5 − ε1

and finally q = 3/2 − ε2 for 0 < ε1, ε2 small enough we find that

‖ϕ‖1 6 CN + CN‖ϕ‖6/5−ε1 6 CN + CN‖ϕ‖3/2−ε2 <∞.

Next we show the exact scaling behavior in N . From (2.3) and p2ϕp 6 CN−1+κ we obtain for
any constant D > 0

‖ϕ‖1 = ‖ϕ1|p|<DN−1+κ‖1 + ‖ϕ1|p|>DN−1+κ‖1
6 CD +

1

2
‖p−2V̂N1|p|>DN−1+κ‖1 +

1

2
‖p−2V̂N ∗ ϕ1|p|>DN−1+κ‖1

6 CD + CD−1/2‖ϕ1‖.

Thus, choosing D large enough, we obtain ‖ϕ‖1 6 C.
Next, we want to show (2.5). We want to compare the scattering solution ϕ on the torus to

the one on R3. It is well known that the optimization problem

inf

{
ˆ

R3

|∇w|2 + 1

2

ˆ

R3

V |1 + w|2 : w ∈ H1(R3)

}
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has a unique minimizer ω and that the minimal value is given by 4πa. Moreover, ω solves the
scattering equation

−∆ω +
1

2
V (1 + ω) = 0

and it holds that |ω| 6 C
1+| · | , as well as |∇ω| 6 C

1+| · |2 . As a mean to compare ϕ and ω we rescale

and truncate the full space scattering solution. Let ωN (x) = ω(N1−κx)χ(x), with 0 6 χ 6 1
a smooth and radial function such that χ ≡ 1 for |x| 6 1/2 as well as χ ≡ 0 for |x| > 1. We
obtain that ωN solves the following equation

(−∆+
1

2
VN )ωN = −1

2
VN − 2N1−κ(∇ω)(N1−κ·)∇χ− ω(N1−κ·)∆χ =: −1

2
VN +

1

2
ǫN . (A.2)

From the estimate on ω we find ‖ωN‖1 6 CN−1+κ and ‖ǫN‖1 6 CN−1+κ. Observe that
8πa =

´

R3 V (1 + ω) = N1−κ
´

Λ VN (1 + ωN ) and 8πaN = N1−κ
´

Λ VN (1 + ϕ̌). Then with (A.2)
and (A.1) we conclude that

8π|a − aN | = N1−κ| 〈VN , ωN − ϕ̌〉L2(Λ) | 6 N1−κ| 〈P⊥VN , ωN − ϕ̌〉 |+N1−κ‖VN‖1‖ωN‖1

6 N1−κ| 〈2P⊥(−∆+
1

2
VN )ϕ̌, ωN − ϕ̌〉 |+ CN−1+κ

6 N1−κ| 〈2ϕ̌, (−∆+
1

2
VN )(ωN − ϕ̌)〉 |+N1−κ| 〈ϕ̌, VNPωN〉 |+ CN−1+κ

6 N1−κ| 〈ϕ̌, ǫN 〉 |+N1−κ‖ϕ̌‖∞‖VN‖1‖ωN‖1 + CN−1+κ

6 N1−κ‖ϕ̌‖∞‖ǫN‖1 + CN−1+κ

6 CN−1+κ.

B Proof of Proposition 2

We follow partly [3].

B.1 Dirichlet localization

Let ΓL be a density matrix over F(ΛL), satisfying periodic boundary conditions such that (1.8)
holds true. By the spectral theorem, we can decompose

ΓL =
∑

j∈J

λj |Ψj〉〈Ψj |

where λj > 0 for all j ∈ J ,
∑

j∈J λj = 1 and where Ψj ∈ F(ΛL) is an orthonormal family

on F(ΛL). We have Ψj = {Ψ(n)
j }n>0 where Ψ

(n)
j is L-periodic in all its coordinates (we think

of Ψ
(n)
j as a periodic function defined on R3n). For fixed j ∈ J and u ∈ ΛL, we define now

ΨD
j,u = {(ΨD

j,u)
(n)}n∈N ∈ F(Λu

L+2ℓ), where Λu
L+2ℓ = u + ΛL+2ℓ is a box of side length L + 2ℓ,

with center at u, setting

(ΨD
j,u)

(n)(x1, . . . , xn) = Ψ
(n)
j (x1, . . . , xn)

n∏

i=1

QL,n(xi − u)
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with QL,ℓ(x) =
∏3

j=1 qL,ℓ(x
(j)) for all x = (x(1), x(2), x(3)) ∈ R3, with qL,ℓ : R → [0; 1] defined

through

qL,ℓ(t) =





cos
(π(t+L/2−ℓ)

4ℓ

)
if |t+ L/2| 6 ℓ

1 if |t| < L/2− ℓ

cos
(π(t−L/2+ℓ)

4ℓ

)
if |t− L/2| 6 ℓ

0 otherwise

By construction ΨD
j,u satisfies Dirichlet boundary conditions on the box Λu

L+2ℓ.

Lemma 27 (Dirichlet localization). We have

〈ΨD
j,u,Ψ

D
i,u〉F(Λu

L+2ℓ)
= 〈Ψj ,Ψi〉 = δij (B.1)

Thus, ΓD
L+2ℓ,u :=

∑
j∈J λj|ΨD

j,u〉〈ΨD
j,u| is a non-negative operator on F(Λu

L+2ℓ), with TrΓD
L+2ℓ,u =

1, with S(ΓD
L+2ℓ,u) = S(ΓL) and

TrN jΓD
L+2ℓ,u = TrN jΓL (B.2)

for all j ∈ N and all u ∈ ΛL. Moreover, there exists ū ∈ ΛL such that

Tr HΓD
L+2ℓ,ū 6 TrHΓL +

C

Lℓ
TrNΓL (B.3)

Proof. The proof is an adaptation of [3, Lemma A.1] to the mixed state setting. It is based on
the observation that, for arbitrary L-periodic functions Φ ∈ L1

loc(R),
ˆ L/2+ℓ

−L/2−ℓ
Φ(t)|qL,ℓ(t)|2dt =

ˆ L/2

−L/2
Φ(t)dt .

This shows that in particular that

〈(ΨD
j,u)

(n), (ΨD
i,u)

(n)〉 = 〈Ψ(n)
j ,Ψ

(n)
i 〉

〈
(ΨD

j,u)
(n),

∑

16i<j6n

V (xi − xj)(Ψ
D
i,u)

(n)

〉
=

〈
Ψ

(n)
j ,

∑

16i<j6n

V (xi − xj)Ψ
(n)
i

〉

and thus implies (B.1) and (B.2). The fact that S(ΓD
L+2ℓ,u) = S(ΓL) is clear, since the operators

ΓD
L+2ℓ,u and ΓL have the same eigenvalues. As for (B.3), we proceed as in the proof of Lemma

[3, Lemma A.1] to show that, for all j ∈ J and all u ∈ ΛL,

〈ψD
j,u,HψD

j,u〉 6 〈ψj ,Hψj〉+
C

ℓ2

∑

n∈N

n

ˆ

dx1 χ̃L,ℓ(x1 − u)

ˆ

Λn−1
L

dx2 . . . dxn |Ψ(n)
j (x1, . . . , xn)|2

where we set χ̃L,ℓ(x) =
∑3

k=1 χL,ℓ(x
(k))

∏
j 6=k χ[−L/2;L/2](x

(j)) and we used the notation

χL,ℓ = χ[−L/2−ℓ;−L/2+ℓ] + χ[L/2−ℓ;L/2+ℓ].

Summing over j ∈ J with the weights λj , we obtain

Tr HΓD
L+2ℓ,u 6 TrHΓL +

C

ℓ2

∑

j∈J

λj
∑

n∈N

n

ˆ

dx1 χ̃L,ℓ(x1 − u)

ˆ

Λn−1
L

dx2 . . . dxn|Ψ(n)
j (x1, . . . , xn)|2

for all u ∈ ΛL. Averaging over u, using ‖χ̃L,ℓ‖1 6 CL2ℓ, we conclude that there exists ū ∈ ΛL

such that

Tr HΓD
L+2ℓ,ū 6 TrHΓL +

C

Lℓ
TrNΓL

as claimed.

50



B.2 Patching up the boxes

For j ∈ J , we define now ΨD
j,L+2ℓ ∈ F(ΛL+2ℓ) setting (ΨD

j,L+2ℓ)
(n)(x1, . . . , xn) = (ΨD

j,ū)
(n)(x1 −

ū, x2− ū, . . . , xn− ū), with ū chosen as in Lemma 27. Correspondingly, we introduce the density
matrix ΓD

L+2ℓ ∈ F(ΛL+2ℓ) on the box ΛL+2ℓ = [−L/2−ℓ;L/2+ℓ]3, satisfying Dirichlet boundary

conditions. This allows us to replicate ΓD
L+2ℓ into several adjacent copies of ΛL+2ℓ, separated by

corridors of size R > 0 (to avoid interactions between particles in diffierent boxes). For t ∈ N,
let

L̃ = t(L+ 2ℓ+R).

We think of the thermodynamic box Λ
L̃
as the (almost) disjoint union of t3 shifted copies of

the small box ΛL+2ℓ+R, centered at

(−L̃/2,−L̃/2,−L̃/2) + (L+ 2ℓ+R)(i1 − 1/2, i2 − 1/2, i3 − 1/2)

for i1, i2, i3 ∈ {1, . . . , t}. Let (ci)i=1,...,t3 denote an enumeration of the centers of the boxes.

Using L2(ΛL̃) = ⊕t3
i=1L

2(Λci
L+2ℓ+R) and the canonical identification (see for eg. [15, Theorem

16])

F(ΛL̃) ≃
t3⊗

i=1

F(Λci
L+2ℓ+R),

we can define on F(Λ
L̃
) the state

ΓD
L̃
≃ ΓD

L+2ℓ+R,c1 ⊗ · · · ⊗ ΓD
L+2ℓ+R,ct3

. (B.4)

Here the tensor products are symmetric. Then we have TrΓD
L̃
= 1,

TrNΓD
L̃
= t3TrNΓD

L+2ℓ+R

as can be seen decomposing N =
∑t3

i=1Ni, where Ni measures the number of particles in the
box with side length (L+ 2ℓ+R) centered at ci Moreover,

TrHΓD
L̃
= t3TrHΓD

L+2ℓ+R

and S(ΓD
L̃
) = t3S(ΓD

L+2ℓ+R), as follows by noticing that, if (λj)j∈J are the eigenvalues of

ΓL+2ℓ+R, then the products λj1 . . . λjt3 are the eigenvalues of ΓD
L̃
. In particular, we obtain

TrHΓD
L̃
− TS(ΓD

L̃
) = t3

[
TrHΓD

L+2ℓ+R − TS(ΓD
L+2ℓ+r)

]

The state ΓD
L̃

is a good trial state for the free energy in the grand canonical ensemble.

B.3 From grand canonical to canonical ensemble

As a last step, infer a bound on the canonical free energy, with a fixed number of particles, from
the energy of a grand-canonical state.

Lemma 28. Suppose there exists a sequence ΓD
L̃

of density matrices on F(ΛL̃), parametrized

by L̃ > 0 and satisfying Dirichlet boundary conditions and such that

lim
L̃→∞

1

L̃3
Tr NΓD

L̃
= ρ̃. (B.5)

Then

f(ρ̃, T ) 6 lim inf
L̃→∞

1

L̃3

[
TrHΓD

L̃
− TS(ΓD

L )
]
.
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Proof. We use the equivalence of ensembles: the free energy ρ̃ 7→ f(ρ̃, T ) is convex and is given
by the Legendre transform of the pressure, see for example [25]

f(ρ̃, T ) = sup
µ∈R

{µρ̃+ fGC(µ, T )} (B.6)

with

fGC(µ, T ) = lim
L̃→∞

− T

L̃3
log Tr e−

1
T
(H−µN ).

Then, for all µ ∈ R, using Gibbs’ variational principle, we obtain

fGC(µ, T ) 6 lim inf
L̃→∞

1

L̃3

[
Tr (H − µ)ΓD

L̃
− TS(ΓD

L̃
)
]
= lim inf

L̃→∞

1

L̃3

[
TrHΓD

L̃
− TS(ΓD

L̃
)
]
− µρ̃.

The above inequality being valid for all µ, we deduce the claim using (B.6).

B.4 Proof of Proposition 2

We can now conclude the proof of Prop. 2.
Let ΓL be a density matrix on F(ΛL), satisfying periodic boundary conditions and

TrNΓL <∞.

With Lemma 27, we find a density matrix ΓD
L+2ℓ on F(ΛL+2ℓ) satisfying Dirichlet boundary

conditions, with
TrNΓD

L+2ℓ = TrNΓL

and

TrHΓD
L+2ℓ − TS(ΓD

L+2ℓ) 6 TrHΓL − TS(ΓL) +
C

Lℓ
TrNΓL.

From (B.4), we find, for any t ∈ N, a density matrix ΓD
L̃

on F(Λ
L̃
), with L̃ = t(L + 2ℓ + R),

satisfying Dirichlet boundary conditions, with

1

L̃3

(
TrHΓD

L̃
− TS(ΓD

L̃
)
)
6

1

(L+ 2ℓ+R)3
(TrHΓL − TS(ΓL)) +

C

(Lℓ)(L+ 2ℓ+R)3
TrNΓL.

Denoting

ρ̃ :=
1

L̃3
TrNΓD

L̃
=

1

(L+ 2ℓ+R)3
TrNΓL,

which is independent of t, we obtain by Lemma 28, letting L̃→ ∞ (i.e. t→ ∞), that

f(ρ̃, T ) 6 lim
L̃→∞

1

L̃3

[
TrHΓD

L̃
− TS(ΓD

L̃
)
]

6
1

(L+ 2ℓ+R)3
[TrHΓL − TS(ΓL)] +

Cρ̃

Lℓ
.
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