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Abstract

We consider a Bose gas at density p > 0, interacting through a repulsive potential
V € L?(R3) with scattering length a > 0. We prove an upper bound for the free energy
of the system, valid at low temperature T" < pa. Combined with the recent lower bound
obtained in [I9], our estimate resolves the free energy per unit volume up to and including
the Lee-Huang-Yang order ap?(pa®)'/2.

1 Introduction

1.1 Setting and main result

Consider a gas of n bosons, moving in a periodic box 2 and interacting through a non-negative,
radially symmetric and compactly supported potential V' € L?(R3) with scattering length a > 0.
The Hamiltonian of the system has the form

anzl—AxmL > Viwi— 1)) (1.1)

1<i<j<n

and, according to Bose statistics, it acts on the Hilbert space L2(Q"), the subspace of L?(2")
consisting of functions that are symmetric with respect to permutations of the n particles. The
canonical free energy of the gas at temperature T' > 0 is defined by

Fqo(n) = hllf [Tr H,T —TS(I')], (1.2)

where the infimum is taken over all density matrices I' on L2(2"), i.e. all non-negative operators
I on L?(Q") with TrT' = 1. Moreover, S(I') = —TrT'logT" denotes the entropy of I'. We
are interested in the thermodynamic free energy per unit volume at density p > 0 and at
temperature 7T', which is defined by the limit

. Fo(n)
,T7)=lim , 1.3
n/|Q=p

where || denotes the volume of the box €. The existence of the thermodynamic limit and its
convexity in p are well-known; see [25].
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At temperature T' = 0, the free energy (2] is the ground state energy of the Hamiltonian
(CI). In the thermodynamic limit, Lee-Huang—Yang predicted in [22] that the ground state
energy per unit volume is given by

e(p) = f(p,0) = 4map® ( 1;;% )2+ ) (1.4)

up to contributions of lower order in p in the dilute limit pa® — 0. To leading order, the validity
of (IL4)) was rigorously established in [16] and [23], as an upper and, respectively, lower bound.
A lower bound capturing the second order corrections on the right-hand side of (L4)) has been
shown in [I7] (for integrable potentials) and in [I8] (for potentials including a hard-core). The
matching upper bound was proved in [27] (for sufficiently regular V'); recently, a simpler proof
of the upper bound (for V € L3(R3)) was obtained in [3] (see also [2]). For hard-core potentials,
the derivation of an upper bound confirming (L.4)) to second order is still an open question;
in this setting, the best available estimate, matching (L4 up to an error comparable with the
predicted second order term, has been recently derived in [4].

For T > 0, the free energy (I.2)) is attained by the Gibbs state z le Hn/T with the normal-
ization constant z = Tre Hn/T . In [22], it is predicted that in the dilute limit and at low energy,
H,, can be approximated by a linear combination of uncoupled harmonic oscillators, labeled by
the momentum p, with the dispersion (p) = 1/|p|* + 167pa p?. Under this assumption, a simple
ideal gas computation leads to the expectation that

f(p,T) = dmwap? (1 + —( )1/2> + £5323 / log (1 _ oV Pl 2) dp+... (1.5)
™ R3

15/

as pa® — 0. Up to errors that are small with respect to p2a, the validity of (IL5]) was established
n [26, 28], for temperatures T < T,.(p), with T.(p) ~ p*/3 denoting the critical temperature of
the free Bose gas. In the present paper, we aim at resolving (L3 up to the Lee-Huang—Yang
order p2a(pa3)1/ 2. To this end, we are going to consider temperatures T < pa, for which the
thermal contribution is, at most, comparable with the Lee-Huang—Yang term.

As a lower bound, a rigorous derivation of (LH) to the order pa(pa®)'/? was recently obtained
in [I9] for all T" < pa. The goal of the present work is to show an upper bound matching the
lower bound of [19] and therefore proving the formula (L)) for all T < pa.

Let us elaborate on the choice of the temperature. When T ~ pa, the typical momenta of
thermal excitations T/2 ~ (pa)l/ 2 = Ea%, is of the order of the inverse of the healing length,
also known as the Gross—Pitaevskii length, which is also the typical order of momenta of the
excitations responsible for the Lee-Huang-Yang correction at T' = 0. In fact, as we will explain
in more detail later, the study of the thermodynamic limit (IL3]) often relies on the analysis of
subsystems of fixed size. The Gross—Pitaevskii length /gp is also the shortest length on which
the systems exhibits the correct second order behavior. The free energy is then given by an
expansion similar to (L), as it has already been proven in [14. [13], [7, 1T}, 12].

For the proof of the lower bound of (LE) in [19], it was sufficient to consider subsystems
of size slightly larger than £gp. For the upper bound, on the other hand, we need to work on
boxes with length of the order a(pa)~ for some > 1, which is much larger than ¢gp. This
is a consequence of the fact that the effect of Dirichlet boundary conditions, which are relevant
to show upper bounds, on the free energy is substantially stronger than the effect of Neumann
boundary conditions (relevant for lower bounds). From this point of view the analysis is more
involved and consequently new techniques are required.

The following theorem is our main result.



Theorem 1. Let V € L?(R3) be non-negative, spherically symmetric and compactly supported.
Let 0 < T < Cpa for some C > 0. Then there exist ¢,e > 0 such that

128 T5/2 _J|pl4y 16mpa o
T) < dmap? [ 1+ ——=(pa®)!/? L/2+e /1 1— e VIPPFZ57 g,
f(p7 ) wap < + 15\/—( ) —|—C([)Cl) + (27’(’)3 R3 og € dp
(1.6)

Similarly as for the result on the lower bound [19], our proof also allows to take slightly
larger temperatures, that is T < Cpa(pa®)~" for some v > 0 small enough. For the sake of
simplicity we restrict our attention to T' < Cpa.

1.2 Localization into small boxes and grand canonical ensemble

To show Theorem [I], it is convenient to consider a system confined in a smaller box Ay =
[-L/2;L/2]3, with L = p~7 and with periodic boundary conditions, in the grand canonical
setting, where the number of particles is allowed to fluctuate. If v > 1, we will show that an
upper bound on the small periodic box Ay, implies an upper bound in the thermodynamic limit
by patching small boxes together, see Fig. [l To work in the grand canonical ensemble, we
introduce the bosonic Fock space

- @

k>0
and consider the Hamiltonian
1 ~
H= Z p’a »0p + 3 Z V(r)ay,agaq1rap (1.7)
pe27? p.q,r€2ET3

on F(Ap). Here, for a momentum p € Q%Zg, a, and a, are the usual creation and annihilation
operators satisfying canonical commutation relations.

Localization to the small periodic box Ay, is achieved through the following standard propo-
sition, which is proven similarly to [3, Prop. 1.2], see also Figure[ll For the sake of completeness,
we sketch the proof in Appendix[B], stressing the changes due to the fact that we work at positive
temperature.

Proposition 2 (Comparison to small periodic boxes). Let 0 < R < ¢ < L such that V(x) =
forall|x| = R. Let T, be a density matriz on the Fock space F(ApL), i.e. a non-negative operator
on F(Ar) with Tr Ty = 1, satisfying periodic boundary conditions and the bound Tr NTf, < oo.
Let

- 1
Then there exists a constant ¢ > 0 such that
1 c
0, M ———— [T Iy —7TS( —0p 1.

for all T < Cpa.
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Figure 1: We obtain a trial state on the thermodynamic box € by first taking the periodic state
I'r on A from Prop.Bland placing it in a slightly bigger box of sidelength L + 2¢. On this box,
we modify I';, such that it satisfies Dirichlet boundary conditions, while also not changing its
free energy significantly. Finally, we copy this state into boxes of sidelength L 4 2¢ + R, where
the slight increase of the box sidelength by R prevents interactions among them.

Taking into account Prop. 2], our main challenge is the construction of the trial state I';, for
the free energy functional on the small periodic box Ay, with L = p~7. As discussed above, to
make sure that the localization error on the right-hand side of (I.9)) is smaller than the resolution
we want to achieve, we will need to choose v > 1. In the next proposition, whose proof occupies
the bulk of the paper, we construct the trial state I'y,. Its particle density is slightly bigger than
the desired density p in order to compensate for the extension of the box Ay that was needed
in Prop. 2 to switch to Dirichlet boundary conditions and to avoid interactions among boxes.

Proposition 3 (Trial state on small periodic boxes). For p > 0 and v > 1 we set L = p~7.
Then, if v is small enough, there exists € > 0 and a density matriz T'y, on F(AL), i.e. a non-
negative operator on F(Ar) with Tr T'y, = 1, that satisfies periodic boundary conditions and is
such that

1
Clp(’y+2)/2 < ﬁTI’ NFL —p < C2,03/2 (110)
for some c1,co > 0, and
L [Tr HIp — TS(PL)} < dmap? (1 o (pa) 2 4 c(pa3)1/2+e)
L3 15ﬁ

1.11)

/2 T (

+ —T / log[1—e" Ipl*+ 252 p? dp
(2m)? Jgs

for some ¢ > 0 and for all T < Cpa.

Combining Proposition 2l and Bl we are ready to prove Theorem [I1

1.3 Proof of Theorem [

Let v > 1 small enough. Putting L = p~7, we conclude from Prop. [l that there exists a density
matrix I'y, on F(I'y), satisfying periodic boundary conditions and the above estimates (L.I0])



and (LIT)). Setting now £ = L* = p~7* for some a € (0,1) and defining p as in (L)), Prop.
implies that

_ 2 T5/2 4 167TClp 2
f(5.T) < Amap? (1+—( )1/2>+ /Ralog (1— VIR g

15y/m (2m)3

+C [p5/2+e + p1+’y+a'y] )

Moreover, by (LLI0) there exists ¢; > 0 such that

- TrNT,

“@r2+RP”

for p small enough, if we assume « < 1/2. Here, we used that RL™' < /L~! = p7=7,

Using that r — f(r,T) is convex (see [25]), that f(0,7) = 0 and that f(p,T) > 0 for our
range of parameters (see [19]), we have f(p,T) < f(p,T). Taking into account that v > 1 and
choosing o = 1/2 — 5 for a sufficiently small 7 > 0, this concludes the proof of Theorem [ [

1.4 Strategy of the proof of Proposition 3]

The remainder of the paper is devoted to the proof of Proposition [8l In order to show (LIII),
it is convenient to rescale variables x; — x;/L. Particles then move in the unit torus A, i.e.
the unit box [~1/2,1/2]® with periodic boundary conditions. For convenience, we introduce
N := pL? = p'=37 or, equivalently, L = N'=% with x = (2y — 1)/(3 — 1). The constraint on
the temperature becomes T < CN ~273%, We conclude that the Hamilton operator (7)), acting
on F(Ap), is unitarily equivalent to L=2Hy, with the new Hamiltonian

Hy = Z payap + Z Vn(r )4 Qi (1.12)

pEA* p q,rEA*

acting on F(A). Here, we introduced the notation Vi (r) = N~V (r/N1=*) and we denoted
by A* = 2773 the set of momenta on the torus A. The condition v > 1 is equivalent to x > 1/2.

In the next sections, we will construct a density matrix I'y on F(A) that has the correct
expected number of particles and the correct energy. That is, we have the bound

61N3n/2—(/@—1/2) < TTNFN —N< 62N3“/2’ (1.13)
which is equivalent to (LI0) and also

TrHNTy — TL?S(T'y)
128
157

+ TN?72% Z log [1 — exp < TN2 5 ——————/|p|* + 16maN*p )] + CNO/2=¢/2
NN/275<|p|<NN/2+E

< 47TCIN1+H <1 + (N—2+3Ha3)1/2>

(1.14)

for all T < CN—2?3% and some fixed € > 0. After rescaling and approximating the sum with an
integral, we will obtain the statement of Prop. Bl Note that, after rescaling to the unit torus,
the effective temperature is given by TL? = TN?~2%,

To construct the trial state Iy, we will apply a strategy similar to the one used in [3] to
prove an upper bound for the ground state energy at temperature 7' = 0. The work [3] was
partly motivated by the results of [0 [6], establishing the validity of Bogoliubov theory in the



Gross—Pitaevskii regime, where the Hamiltonian takes the form (LI2]), with x = 0 (see [20, [10]
for alternative approaches). The main observation is that (I.I2]) can be reduced, through a
series of unitary transformations, to a Hamilton operator that, on the range of our trial state,
can be approximated by a linear combination of decoupled harmonic oscillators.

Let us explain the procedure a bit more precisely; the mathematical details will follow in
the next section. First of all, since the temperatures under consideration are below the critical
temperature, we need to factor out the Bose-Einstein condensate. To this end, we conjugate
(LI2) with a Weyl operator Wy, producing a condensate with Ny particles. The parameter
Ny € R, will be fixed later on; it will be chosen so that 0 < N — Ny < N3%/2 Let us introduce
the momentum sets

High momenta: H = {p € A" : |p| > Nl_"‘_’f}’

1.15
Shell momenta: S ={p e A*: NFr/2—¢ Ip| < Nn/2+5} ( )

with a parameter ¢ > 0 that is chosen so that the sets do not overlap, i.e. —2+3x+4¢ < 0. To
approximate W]{;OH ~NWh, with a quadratic Hamiltonian, we first remove the short-range correla-
tion structure. This renormalization is achieved by conjugating Wy Hy Wy, with a Bogoliubov
Biacting only on momenta lp| > N %/2+¢  Unfortunately, to reach the correct
energy, quasi-free states constructed by quadratic transformations are not enough. Therefore,
we conjugate the resulting renormalized excitation Hamiltonian with a unitary cubic operator
T¢; the choice of T, is the crucial step in our analysis. The Hamiltonian T} e B WA“;OH NWh, ePL T,
is well approximated by a quadratic operator, which can be diagonalized by a second Bogoliubov
transformation €52, acting on momenta in the shell S. Up to error terms, that are negligible in
an appropriate sense, we find

transformation e

e BT e T PYWR Hy Wiy P T
128
~ 47TC(N1+R (1 + W(N2+3Ra3)1/2> + Z \/|p|4 + 167T0Nﬁp2 a;ap,
s
peS

(1.16)

provided that x > 1/2 is small enough. At temperature TN2~2%, the Gibbs state associated
with the quadratic operator on the right hand side of (L16]) has the form

1
Lo = Z " {nge—0} oXP < ~ TN? R Z Vlplt + 16maN*p? af,a,;) (1.17)
peS

with the normalization constant Z > 0 chosen so that TrI'g = 1 and where, for any F C A*,
we introduced the notation
Np = Z a;ap

peF

for the operator measuring the number of particles with momentum in the set F. Therefore,
we use
Iy = Z Wi, B T.ePeTge B2 Tre B Wi, (1.18)

as a trial state for the Hamiltonian (IL.I12]). With the approximation (LI6)), it is then not difficult
to check that this trial state has indeed the correct free energy, completing the proof of (I.14]).

We now highlight the main novelties with respect to [3], where a trial state was constructed
to estimate the ground state energy of (LI12]). Since we work at positive temperature, I'g must
be chosen as a mixed state that describes thermal excitations. In contrast, at zero temperature
it is sufficient to take I'g as the projection onto the vacuum vector in the Fock space F(A). The
analysis of [3] strongly relied on the fact that the cubic transformation that is needed to create



the correct correlation structure acted directly on the vacuum. For this reason, it was possible
to implement this transformation through a non-unitary operator, given by the exponential of a
cubic expression involving only creation operators, and to compute its action almost explicitly.
Here, we follow a different strategy and implement a unitary transformation mainly for two
reasons. First, the action of the cubic transformation on I'y is more involved than its action on
the vacuum and explicit computations are the exception. Second, to estimate the entropy of I'y
we need to compute the spectral distribution of the transformed state, which is considerably
simpler if T, is unitary.

Let us briefly explain why it is challenging to control the action of a unitary cubic transfor-
mation in the current setting. The action of a unitary operator €8 can be formally computed
via the commutator expansion

e Bxef =" ﬁ#adg) (X), (1.19)

n>=0

with adg(X) = [B, X| and where adgl) denotes its n—fold iteration. For quadratic transforma-
tions, say B = % > keas Meara’, — h.c. with some real numbers n;, = n_y, it is well known that
(LI9) converges. For example for X = ay,p € A*, it leads to the explicit formula

eiBa;eB = ch(np)a, + sh(ny)ay.

Cubic transformations, however, do not enjoy the same algebraic structure. In the Gross—
Pitaevskii regime (k = 0) considered in [5] [9, 24], or in slightly more singular regimes (k > 0
small), as in [I 8| 9], the kernel of the cubic transformation B = 3, .« nraj,,a”.a; — h.c.
can be taken to be small so that the expansion (I.I9) converges and can be truncated after a few
iterations. In our case, since we consider x > 1/2, the trial state I'g has too many excitations
and the expansion (IL19]) is not convergent.

To deal with this problem, we implement the cubic renormalization as product of many
“smaller” unitary operators, constructed in such a way that the expansion (I.19)) converges and
yields a closed formula, similar to the one obtained for quadratic transformations. To achieve
this goal, we introduce cutoff functions analogous to the ones used in [3], to make sure that for
a given momentum k in the shell S, we only create one pair (—r, k + r) of particles with high
momentum in H. For k € S, we say that a pair (p, q) of momenta in H forms a k-connection if
p+q = k. We define B, = Bg — By, see (ZI0) below, so that B,ti only creates a k-connection if
it acts on a state with no k-connection, and it cannot create k’-connections, for k¥’ # k. Thanks
to these exclusion rules, we will show in Lemma E3] below that the unitary transformation eB*
is explicitly given by

B, gsin Xp, sin Xy, gcos X — 1 .
e F = cos X}, + By, X, X, Bk—i-BkT]sz,
where X = |B£| Using that X is small in average on the trial state, we will be able to

iteratively combine the action of €8¢, for all momenta in the shell S. Additionally, we will
show that the cubic transformation preserves some properties of the trial state, which is used
to simplify computations.

Organization of the paper. In Section 2, we precisely define the previously discussed unitary
transformations and our trial state. In Lemma /Bl and in Lemma [6] we describe the action of the
Bogoliubov transformation 5! and of the cubic transformation T,, respectively. Using these
lemmas, we may conclude the proof of Prop. Bl Section [ is devoted to the proof of Lemma



and Section M to the proof of Lemma [l Finally, in the appendix, we show properties of the
kernel of the transformations and we give a proof of Prop. 2l
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2 The trial state

In this section we make explicit our trial state I'y given in (LI8). In particular, we con-
struct the unitarity transformations appearing in its definition and compute their actions on
the Hamiltonian.

2.1 The Weyl transformation Wy,
To generate the Bose-Einstein condensate we use the Weyl operator
Wh, = exp [\/No(as — ao)],

with a parameter Ny € N, which will be specified later on, see ([2.28]). The Weyl operator leaves

ap, ay, invariant for all p € A*\ {0}. On ay, ag, it acts as a shift, i.e.

th/oaoWNO = ap + v Ny, W;[OG,SWNO = aE’; + v/ Np. (2.1)

We obtain the excitation Hamiltonian

NZ ~ ~ N
Wy HN Wi, = TOVN(U) + Q1+ Q+ Qs+ Qu+t Y (p2 + NoVn (0) + NOVN(P)> ayap (2.2)

peEA*
with
3/25 No = .
Q1= Ny "Vn(0)ap + h.c. Q2 = - Z Vn(p)aya”, +h.c.
peA~
1/2 > * ok 1 % * *
Qs = NO/ Z Vn(r)al,a; ,ap +h.c. Q4= 3 Z VN(7)ap ., aqaq+rayp
p7T‘€A* pqureA*

2.2 Quadratic transformation €' on momenta |p| > N*/2*¢

To factor out the short-range correlations, we conjugate Wy HnWy, with a Bogoliubov trans-
formation that acts on momenta that are higher than the shell momenta. For p € A* \ {0}, we
define ¢, as the unique solution to the box scattering equation

~ 1~
Pop+5 > Vv —a)p, = —5Vn (D), (2.3)

where we introduced the notation ”q # 0” for ¢ € A*\ {0}. The existence and the uniqueness
of a solution to this equation was established in [20]. For the sake of completeness we provide



the proof in Appendix [Al Next, we define the box scattering length ay, which appears more
naturally in our setting and, as we will show, is close to the full space scattering length a.

8ray = V(0) + N'™* 3" Vn(p)gp. (2.4)
p#0

Important properties of the function ¢: p — ¢, with ¢9 = 0 and of the box scattering length
ay are stated in the next lemma. Its proof is given in Appendix[A] see also [20], [10, Appendix]
or [21, Appendix] for alternative proofs.

Lemma 4. For p € A*\ {0}, we have the pointwise bound
©p S pf2N71+n‘

Moreover, we have the estimates

leli S5, llele SN el SNTHE - lppll3 S N7
For cpz(,a) = wplip|>ya, > 0, we obtain
@l N2, @, < N2
Moreover,
lay —al S N7 (2.5)

Using the solution ¢, we define the unitary Bogoliubov transformation Bt with the anti-
symmetric operator

1 : —1 * %k
B = 3 Z sinh™" (Nowp)aya”, — h.c.

|p|>N*/2+e

Recall that the parameter ¢ > 0 was introduced in (LI5). For p € A*, the action of €5 on an
annihilation operator is given by

=B, Bi _
e Ttape”t = cpa, + spa (2.6)

*
—p»

where we denote

¢p = cosh (Sinhfl(Nogpp)) = /14 N3pZ, sp = sinh (sinhfl(Nogop)) = Nowp (2.7)

for all |p| > N #/2+¢ while the transformation acts trivially otherwise, i.e. ¢p = 1 and s, = 0 for
‘p’ < NE/2+e

Conjugating (Z.2) with the Bogoliubov transformation 5! we obtain a new, renormalized
excitation Hamiltonian. Its form is described in the next lemma, whose proof is deferred to
Section Bl Here we introduce the orthogonal projection

Z = Tynsumye=0 L nveano}-

Since the state that we are going to use to estimate the free energy of e =5 Wy, H NWN0681 will
be in the range of = (because (LI7) is clearly in Ran = and because E commutes with T, and
682), it is enough for us to estimate the error arising from conjugation with B on this subspace.



Lemma 5. Suppose that 0 < N — No < CN3%/2 for some constant C > 0. Then we have

e B W]{FOHNWNOeBl

AraNF 2
= 4raN' " — 8maN"®(N — Np) + Z %
p (2.8)
peS
+ Z p2a;ap + 2‘7(0)]\7”/\/ + Z 4raN" (a;a*,p +h.c.) + Q3+ Qs+ &1,
pEA* peES

where the error term &1 is bounded, on the range of the projection =, by

& 5 N3¢ Z p2a;ap + ]\7*55/2624 + N*H/2f€/2_/\/'2 + N73+7n+4e./\/']3 + N272H72€N’H
peA” (2.9)
+ N5n/27€/2

if 1/2 < k < 8/15 —2¢/3 and € > 0 is chosen as in (L13).

Remark. We will show that the trial state that we are going to use for the Hamiltonian
e*BIW]{FOHNWNOeBI is such that, for j = 1,2,

NI]{ < N(72+9H/2+€)j; N7 < Nj3n/2; Q4,Zp2a;ap < N5r/2
in expectation. This explains why, for 1/2 < k < 14/27 — ¢, all terms on the right-hand side of
[29) are subleading, i.e. they are smaller than N 56/2 which is the resolution we are trying to
achieve.

2.3 The cubic transformation 7,

Next, we conjugate the renormalized excitation Hamiltonian e~ Wi, H NWN0681 with cubic
transformations, annihilating a particle with shell momentum k£ € S and creating a pair of
particles with high momenta —r, k 4+ r € H, or, vice versa, annihilating a pair of particles with
high momenta —r,k + r € H and creating a particle with shell momentum k£ € S. Instead
of a single cubic transformation, we consider a product of unitary operators, one for each low
momentum k € S. More precisely, for k € S, we define

By =Y NYp.a* a0l kO,  Bi= (Bli) . By=B -8, (2.10)
reHy

with Hy = {r € H|r + k € H} and where the cutoff ©, is defined, similarly as in [3], by
O, = 0F x 0,

1 2
(—)IE: = H(l — L0 L g>0p); @l(ﬂ,z - H(l N 1{Nr+q+N—(k+r)+q>0})'
teHd qeS

(2.11)

Here and in the following we use the notation N, = ayaq, ¢ € A*, for the operator measuring
the number of particles with momentum g. Then we define the unitary operator T, = €P+ for
every k € S, and the product

T.= ] T (2.12)

keS

In fact, since [Ty, Ty/] # 0, for k' # k, we need to choose an order in the finite set S to define
T.. However, our analysis will not depend on this choice.

10



We say that a pair of high momenta (r,t) € H? is a k-connection if r +t = k. The cut-off
Oy, has two roles. The first factor @SZ ensures that Bi only creates a k-connection if there

)

is not already one. The second factor @,gr ensures that B,’i does not create any g-connection,
for ¢ # k. This latter condition is implemented by asking that the shell-neighborhoods of r
and —(k 4 r) are empty, that is, that there is no occupied mode with momentum ¢ € r + .S or
te—(k+r)+5S.

In the next lemma we describe the action of T, on the renormalized excitation Hamiltonian
e B W]\’}OHNWNOeBl. When applying the lemma, we will only be interested in controlling the
action of T, on a specific trial state I'. For this reason, we are going to restrict our attention
to states with certain additional properties, which will be satisfied by the I' that we are going
to choose. First of all, we can restrict our attention to the range of the projection 1ypry.—o)
(because the trial state will not have particles with momentum outside S). Additionally, we can
focus on states that commute with the parity operator for the sum of the number of particles
with momentum +k and the number of £k-connections. For k € S, consider

1
M =N + 5 Z N_t./\/tJrk (2.13)

teHy

and the parity operators

Pr = T4 Mm_pe2vp)s (2.14)

Qr =1—Pr = Lfr 4 M_pe2No+1}-

In accordance with the intuition that B/,tiC annihilates a particle with momentum k while creating
a k-connection, one readily checks that [Bg,Mk] = 0 for all ¢ € S. Therefore we find that
[T, Mi] = [T.,Pr] = [T¢,Qi] = 0 for all k € S. For this reason, restricting to I' such that
[ Px] = [I',Qg] = 0 for all £ € S, we will be able to neglect all terms in the renormalized
excitation Hamiltonian e 5! Wi, HN Wi, B that do not preserve parity.

Lemma 6. Let I' be a normalized density matriz on F(A) with T' = Lyrr.—oy T L pnge—0y and
such that [0, P,] = 0 for all k € S. Assume 0 < N — Ny < N3%/2. Then we have

Tr T e B Wy Hy Wi, P T.T

AraNF 2
< AraN'™™ — 8raN™(N — No) + %
pes P (2.15)
+ Tr [sza;ap + 16maN"Ng + Z 4raN" (a;a*_p + h.c.)] I'+46(I)
peS peS

where

5(F) S N R+ Ty (NS + N3n/2+35) ZNI?P
kesS (2.16)
+ (N7R/27€/2 + N77+13I€+6€) Tr Ngr + N5li/27€/2

if 1/2 < k < 8/15—2¢/3 and € > 0 is chosen as in (L.13).

This lemma is the main novelty of the paper. We defer its proof to Section [l
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2.4 Quadratic transformation €2 on shell momenta

Consider now the quadratic Hamiltonian in (ZI5]). Since we are going to choose Ny such that
N — Ny = Tr NoT + o(N3%/2), see ([228) below, we are effectively left with a factor 87aN*Ng
in the last line of (ZI5). With the aim of diagonalizing this quadratic operator, we implicitly
define the coefficients 7, € R, for p € 9, via

8malN"®

tanh(27,) = — L
anh(27;) P2+ 8TaN*®

The action of the unitary Bogoliubov transformation €52, with the antisymmetric operator

g TpQ p ,p h.c.,

pES
is given explicitly, similarly to (2.6]), by

By _

_[3’2 —Bg *
e TfapeTt = Ypap + Jpa a

e p682 = Ypa, + opa_p (2.17)

Zps
with 7y, = cosh 7, 0, = sinh 7, for all p € §. A straightforward calculation shows that
e B2 [Z anZap + 8maN"Ng + Z AmaN" (asa* , + h.c.)} B2
pES p€eS

= % Z [\/’p\4 + 167TClN:‘€p2 _ p2 _ 87TC(N'V”] + Z \/‘]9’4 n 167TaN“p2 a;ap.
peES e

(2.18)

We may now precisely define the trial state of the transformed Hamiltonian as the Gibbs state
of the diagonal quadratic Hamiltonian in (ZI8]). We set

_ 1 X
Lo =Z "N py—0y exp < ~ TN Z VIp[t + 16maN#p2 apap>, (2.19)
peS

with the normalization constant

1 %
7 ="Tr ]l{'/\/'sczo} exp < - W Z \/|p|4 + 167T0N/€p2 apap> .
peS

Furthermore, we define
[ = P2rge P2 (2.20)
as the trial state for the Hamiltonian appearing in Lemma Bl Some important properties of T’

are listed in the following lemma.

Lemma 7. Let I' be defined as in (220). Then I' > 0 with TrI" = 1. Moreover, we have
' = Typnge—0yTpnge—oy and [['Py] = [[,Qx] = 0 for all k € S and with the parity operators
Py, Q. defined in (2.14). Furthermore, for j = 1,2, there exist positive constants ¢ < C such
that

N3jf€/2

O NI(B3r/2+2¢) (2.21)

eN3IF/2 < Tr NIT
Tr N~ 12:./\//1311

kesS

<C
<C

12



Proof. The fact that I' > 0, TrI' = 1, I' = T nrg .y [ arge—0y and [[', Pg] = [I', Qx] = 0 for all
k € S follows readily from the definition of I'. It remains to show the inequalities (2.2I]). We
begin with j = 1. From the definition of I'y a standard ideal gas computation gives

1
TTAfIb::
P exp (m \/\p]‘l + 167TC1N“p2) -1
2 1
Tr N2Ty = +
P 2 1
[eXp (== V/Ip|* + 16maNFp?) — 1] exp (gxz=r /[Pt + 167aN"p?) — 1
(2.22)
and, by symmetry,
Traya,I'o = Traya_,T'o =0
for all p € S. With (ZI7), we find
Tr NI = Z Tr (ypay + opa—p) (pap + opa’ ,)To
peS
_ p? + 8raN* 1
peS VPt + 16maN"p? exp (7xa—sr /[p[* + 167aNFp?) — 1 (2.23)
1 %2 4 8mraN*
t3 Z [ p4 "2 1}'
oo W/ It + 16maN"p

Scaling p — p/N %/2_interpreting the sums as Riemann sums, approximating them with integrals
over R?, and using the restriction TN 2738 L O, we conclude that ¢N 3k/2 <TrNgI' < CN 3r/2
(both terms are positive, the second term is of order N 36/2 independently of T and the first
term is at most of order N3%/2, for TN?~3% < ().

To prove the second bound in (22]]), we proceed similarly. Also here, we use the fact that
only observables preserving the number of particles have non-trivial expectation w.r.t. I'.

Tr ZNI?F = Z Tr (vpay, + opa—p)(Vpap + 0pa’ ) (Vpay, + opa—p) (Vpap + opa’,)To

peS peS
S (o) Te (N +N2)To+ Y on(v7 + o)
peES peES
2 2 (2.24)
8malN"®
S Z|[1|11_:—167T N"J QTYNI?FO
s lp TaN®p
+lz[ p? + 8raN* ] p? + 8raN"
2 pyere VIp|* + 16maNFp? VIp|* + 16maN"p?

Inserting (2:22)), we can again scale p — p/N %/2 and we can approximate with an integral.
Compared with (2.23]), however, the singularity at p/N #/2 ~ () is more severe since there
Tr N3y ~ (p/N*/2)=2. For this reason, in the region N=¢ < |p|/N*/? < ¢, we estimate
Tr VT < N*¢. We conclude that 5 ¢ Tr NPT < N3#/242

Let us now consider the case j = 2. We have

Tr N2l = Z Tr (pay, + opa—p)(Vpap + opa’,)(veay + 0qa—g)(vgaq + 0qa’,)To (2.25)
P,geS

Since the Gibbs state I'g factorizes, we find that Tr./\/gl1 is the same as (Tr NsI')2, up to terms
that are associated with p = ¢ on the right-hand side of (2.25]) and that can be handled as we

13



did in (Z24)), producing errors of order N3%/2+2 <« N3¢ We conclude that cN3* < Tr N2 <
CN3%. The second bound in ([Z2ZI)) for j = 2 can be proven similarly; we leave the details to
the reader. O

2.5 Definition of Ny and proof of Proposition
From (2.20)), we are led to the definition
Ty = Wi eP' T.DT e B W = Wi, eP ToeP2 Tg e B2 e By (2.26)

as trial state for the Hamiltonian H on the small, rescaled box A. In the next proposition, we
estimate the expected number of particles in the state I'y. Its proof is deferred to Section 4.7,
because it makes use of some properties of T, that will be discussed in Section [l

Proposition 8. Let 'y be given by (2.28). Then there exists a constant C > 0 such that for e
chosen as in (L17) we have

No+ TrNsT < TrNTy < Ny + Tr Ngl + CN3#/2—¢, (2.27)
Prop. 8 motivates the following choice of Ny € R4
Ny := N — Tr NgI" + N3#/2=(r=1/2), (2.28)

From Lemma [7, we conclude that c¢N 3k/2 < N-Ny <CN 35/2 for all k > 1 /2 and N large
enough. The term N3%/2=(v=1/2) which is small compared with Tr NsI' for x > 1/2, will be
used to make sure that the lower bound in (ILI3]) holds true. We are now set to show Prop. Bl

Proof of Prop.[3. Combining (2.28]) with Prop. 8 we obtain constants ¢1,ce > 0 such that
N + ¢ N3#/2=(5=12D) e NT oy < N 4 ¢ N3%/27¢, (2.29)

Furthermore, we observe that with the definition (2.20) of the density matrix I" and the choice
[228)) of Ny, all assumptions in Lemma [6] are satisfied. Thus, inserting (Z.I8]) into Lemma [6] we
find

TrHNTn — TN?72S(Ty)

1 (8raN*®)?
< AraNtre 4 2 4 41 16maNcp? — p? — 8raN™ + ~——~
ma +3 Z [V/|p|* + 167aN"p2 — p maN" + o7 | (2.30)
peS
+Tr Y /Iplt + 16maN®p? aja,ly — TN?*7255(I'g) + 8raN>/2=(==1/2) 1 5(T).

peS
Combining (2.16]) and Lemma [7], we conclude that
(5(P) g N5/§/2—5/2

if1/2 < k < 14/27 and € > 0 is small enough. As in the proof of Lemmal7l we scale p — p/N*”’”/2
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p+— q=p/N*%/? in the first sum on the r.h.s. of (Z30). We find

1 8raN")?
B > [VIpI* + 167aN=p? — p* — 8waN"™ + %}
peS

N56/2 (97)3 2
= o) > [Vlal* +16mag? — ¢* — 8ma+ (re) ]

(27T)3 N3K/2 N e 2q2
ENTR/2277°:
qN*Eg\q\ng (2.31)
N5k/2 87
S (e / [\/|q|4+167mq —¢* — 8ra +( ) |dq + O NOK/2—¢
_4 aN5“/2 128a +CN5H/2—5.
15y/m

Here, we approximated the Riemann sum with the corresponding integral over R?, which can
be computed explicitly, see, for example, [19, eq. (8.11)] for more details.

Next, we consider the term in the second line of (2.30). From the choice (2.19]) of I'y we
conclude, by the Gibbs principle, that

Tr ) "V/Ipl* + 167aN*p2 ara,To — TN?27S(Ty)
peS

= —TN>*1log Z = TN*7** "log [1 — exp ( = N2 ———-V/Ip|* + 16maN"p )]
peS

where the last equality is a standard ideal gas computation as in (2Z22)). As before we rescale
p+— p/N %/2 and replace the resulting Riemann sum by an integral, while keeping in mind the
condition TN273% < C. We obtain

TN?2+ Zlog [1 —exp < TN2 5 ————/Ip|* + 16maN*"p >]
peS

167ag?
< T5/2NP=5% (27) =3 / log [1 = exp (= y/lal" + 75
R3

5k /2—
see [19, eq. (9.13)] for more details. Inserting (232 and (231 into (2.30]), we arrive at
TrHyT Ny — TN?72°S(Ty)

< 47TC(N1+K <1+ 128 (N—2+3/@a3)1/2>

15/ (2.33)
_ _ 16mag? _
+ T5/2 N5 5/@(27() 3/Rglog [1—exp(— ’q‘4+m>}dq+0]v5n/2 /2
Next, we scale back to the box Ap = [~L/2,L/2]3, with L = p~7, for some v > 1. We

recall the choice N = pL3 = p!=37 which translates into L = N'=%, with x = (2y —1)/(3y - 1).
We observe that the condition 7 > 1 is equivalent to x > 1/2. We define the unitary operator
Uy - F(N) = F(AL), Up)™M (zy,. .. x,) = L3290 (21 /L, ... 2, /L), for all n € N and all
U = {1, ey € F(A) and we remark that the Hamiltonian (LI2)) satisfies L™ 2U,HNUF = H.
Therefore, a good trial state for # is given by the density matrix I'y, = U nU; on F(AL).
Since Tr NT, = Tr NTy, it follows from (IZZQI) that

e pHA/2 e Tr./\/FL — p < eap’l?
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in accordance with (LI0). Here we used the facts that N*/2/L = p'/2, that N=2*3% = p and
that k = (2y —1)/(3y — 1). Moreover, from (2:33]) we obtain

= [Tr M, — TS(FL)} = L9 [TrHpTy — TNQ*%S(FN)}

T5/2
< drap? (14 =—=(pa)"/2) /1 1= exp (= Ial* + 16mapg®/T) |dg + p*/***
map +15\F( a’) G o 8 exp (— /lg|* + 16mapg®/T) |dg + p
for a sufficiently small € > 0 and for all T' < C'pa. This concludes the proof of Prop. Bl O

3 Quadratic Transformation on Large Momenta

The goal of this section is to prove LemmalBl Throughout, we will assume 0 < N—Ny < N3%/2 ag
in Lemmalil With this aim, we consider separately the action of the Bogoliubov transformation
Bt determined by (2.6), on each term in the excitation Hamiltonian ([2.2)). We start with the
diagonal term.

Lemma 9. We have

e B Z (p2 + NoVn (0) + NO?N(p)> a;apeg1
peEA*

( 0)N"N + Z payap + Z pzsp(a;a*_p +h.c.) + Z pzs?, +€1(diag), (3.1)

peEA* pEA* peEA*
with

+&{1%) < N2 N 20%a, + NEIN 4 NOW/2E2,
pEA*

for all 0 < k < 2/3 and with € > 0 as introduced in (LI5).

Proof. Denote 3, = (p2 + NoVa(0) + NO?N(p)>. With (2.6) and ¢ — s2 = 1, we compute

e B Z 5pa;ap681 — Z Bpapap = 2 Z 5ps§a;ap + Z ﬁpcpsp(a;a’ip +h.c.)+ Z ﬁpsf,

peEA* peEA* peEA* peEA* peEA*

and we obtain

e B Z ﬁpa;apelg1 — 0)N"N — Z praya, — Z p28p(a;‘,a*_p +h.e)— Z pzs?)
PEA* pEA* pEA* pEA*
== <N017N(0) + NoVn (p) — 2V (0)N™ + 28,5 >a ay (3.2)
peEA*
+ Z ((NoViv (0)ep + NoViv (p)ey + p*(cp — 1)) sp(aja”, + h.c.) Z No(Vn(0) + Vi (p))sz.
peEA* peEA*

Let us denote the term on the right-hand side of the previous equation by El(diag). We obtain
(B) and it remains to estimate the error term. In order to control the diagonal part of El(dlag),

we use |V (p) — Vi (0)| < p2N—313% which easily follows from the fact that V is even, the
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assumption of Lemma [§ that 0 < N — Ny < N3%/2 as well as the estimate Bps?) < N®~% from
277) and Lemma [ We find

+3 (NOT/N(O) + NoVi(p) — 2V(0)N* + 28,5 ) asay
peEA*

< N~ 243k Z p’a ap+NH_2€N+N_1+5K/2N. (3‘3)
peEA*

As for the constant term in E{diag), we have

+ > No(Va(0) + Viv(p))ss S N sl < No*/27= (3.4)
peEA*

Finally, we consider the off-diagonal part of El(diag). From 0 < ¢, —1< 312, we find the inequality
N0‘7N(0)Cp + NOT/}N(p)cp + p?(c, — 1) < N¥. Thus, Cauchy—Schwarz implies

+ Z ((No‘/}N(O)Cp + NOT/}N(p)cp +p*(cp —1))sp(aya*, +h.c.)
peEA*

S N (NN 4 N2 + N2|Js|[3) S N*"/2N 4 NOw/2/2,

Inserting (B.3)), (8.4 and the last estimate into (3.2]) yields Lemma [ (using also the assumption
—2+ 3k +4e < 0 from (LI5))). O

Next, we consider the action of €51 on the quadratic term Qs, defined in (Z2)).

Lemma 10. We have

e B1QaePt = Q2 + Ny Y Vn(p)sy + (%% (3.5)
pPEA*

with

i51(Q2) < Nﬁ—26N+N5/@/2—357
for all 0 < k < 2/3 and with € > 0 as introduced in (LI5]).
Proof. With (2.6), we compute

e B1QqeP — @y
:NOZ‘/}N(Z?)S ; * —|—hc +NOZVN cpspapap—i-NoZVN spcp

pEA* pEA* pEA*
We obtain
2) — Ny Z vN(p)s (apa’, +h.c.) + Ny Z VN (p)epspayap + No Z VN (p)sp(cp — 1).
pEA* pEA* peEA*
The bound for 5{622) follows from Cauchy-Schwarz, 0 < ¢, —1 < 312, and Lemma Ml O

Next, we consider the cubic term (J3. Notice that here, and also in the next lemma which
devoted to @4, we only bound the restriction of the error term on the range of the projection
=; this is enough, since our trial state will be in the range of Z.
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Lemma 11. We have
e P1Qyelt = Qy + £, (3.6)

where, on the range of =,
j:gl(QS) 5 N72+4n+5€ (NH + 1)2 + Nli*4€ (N+ N3/€/2+3€),
for all 0 < k < 2/3 and with € > 0 as introduced in (LI5).

Proof. To compute e B1Q3e5', we apply ([2.8). We find (B.8), with an error El(QB) given, as a
quadratic form on the range of =, by

El(QS) = N&/2 Z ?N(r)(crcrﬂ,cp —1)a”,a; 0, + N&/2 Z ?N(T)crcrﬂ,sp a’ a0,

p,reA* p,reEA*
+ N2 VN (r)erSpipep a® a a, + N2/? VN (r)erSpipspa® a* a
0 NAT)CrSr4pCp bp&—(r4p)dp 0 NA\T)CrSr+4pSp A—pd_pl—(r4p)
p,reEA* p,reA*
NS T PR ob 7 o
+ Ny N(T’)Srcr-i-pcp Ay pQrap + N N(T)Srcr-i-psp Q4 pQ_pQr
preA* preA*
1/2 >
+ NO/ Z VN(7)8r8r1pCp Qra_(ripyap + h.c. (3.7
preA*

Here we already used the fact that terms that annihilate or create particles with momenta in
(H U S)¢, as well as terms that do not preserve the parity of Ny vanish on the range of Z. In
particular, all contributions where two momenta contract in the canonical commutation relation
must vanish since, by momentum conservation, these terms are either proportional to ag or to
aj. Additionally, the terms proportional to s,s,1,5, must vanish on the range of = because,
since s is zero on S, we would need —r, p+r,p € H; this, however, breaks the parity of Ng. To
bound the contributions in ([3.7), we argue again with the parity of Ny to conclude that among
the three momenta r,r + p, p, two must be in H, one in S. Keeping this in mind, and moving
around factors of (N + 1), (N 4 1)*/2 as needed, we can estimate the terms on the right-
hand side of [B.7)) as follows. Let us consider the first term. We use |c,¢p4pcp —1| < 52+ 2 +p+312)
and the notation sy for the restriction of the coefficients s, to the set H. Then, for £ € Ran =,
we obtain

‘NOI/2 Z Vi (7) (erCrapep — 1)<£’a:a:+1’a”£>‘
p,rEA*

SNl 2+ IsTlloo N2/ HH252) | (N + DEININ +1)%¢]
S NI (W + DEJIIN +1)M2¢].

Here we used that in the term proportional to 512, we have p € H so that either r € Sorr+p € S,
this allows us to sum up the second momentum after a Cauchy—Schwarz inequality (recall
that |S| < CN3%/2+3%) Moreover, we used Lemma [l to bound [|s%||a < CN—/2+9%/2+5¢/2,
5% |l < CN—4T65%42 and the condition 4e — 2 + 3k < 0 from (LIH).

To estimate the second term on the right-hand side of ([B.7]), we assume for example that
rp€ H, r+pé€S (the case r +p,p € H, r € S can be treated similarly). Since ¢ is bounded
uniformly in N and with the estimate ||sg|jz < N(-1H35+9)/2 we find

1/2 > * % * — K
VG2 Unn)crcripsy (€ a2t ot | S N7V 3 sy lacraspél [llap st + €]
S N7V sl N | (W2 + N¥/4+32 )

—2+5k+¢

SN2 INHEN (V2] + NP2 e)).
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The next four terms on the right-hand side of (8.7) can all be estimated in the same way
applying a Cauchy—Schwarz inequality. We obtain

1/2 ~ .
NO/ Z VN(r)ersripsp (€, a0 ,a_(rip)§)

‘N01/2 Z VN(T)CTST-H?CP <§7 aira,(r+p)ap§>

) )

p,reEA* p,reA*
1/2 > 1/2 5 * *
‘NO/ Z VN (7)SrCripCp (&, G:erarap@ ) ‘No/ Z VN (T)srCripsp (€, ar+pa7pa7’§>‘
p,reA* p,reEA*
SNV s |lo (Wi + DENIIN + 1)

—245k+e

SNV + DENIN + 1)1 %]

Finally, we control the last term on the right-hand side of (37)). We find

1/2 =
‘No/ Z VN (r)8r8ripcp (€5 ara—(r+p)ap£>‘
p,reA*

SNV sospllara gl (lag] + [€1)
S NV NG (salallsilloo IA/2€11 + lsa 3611
< NTHIR/Z2 NG A2 | N2 )

Putting all together, we conclude that, for any 0 < k < 2/3 and € > 0 as in ([.T15]), we have

—245k+¢€

€, E99)6)] S NTH25|| (Wi + 1)E]| (JNVV2¢)) + N3=/4+3/2) )
< N—2+4n+56”(NH + 1)5”2 +Nm—45(HN1/2§”2 +N3n/2+35”§H2).

O

Finally, let us compute the action of €5 on the quartic term Q4. Here, the restriction on
and ¢ only serves to simplify the form of the error terms.

Lemma 12. We have

— 1 i * % 1 i
e B1QueP = Qu + 3 Z Vn(r —p)s;(aza’ , +hc) + 3 Z Vn(p —7)spsy + 51(Q4), (3.8)
p,reA* p,reA*

where, on the range of =,
i51(Q4) < N—H/2-Ep2 4 N—3+7n+4eN12{ L NN L NEBENS N5/@/2—6’

if 1/2 < k < 8/15 —2¢/3 and € > 0 is chosen as in (LID).

Proof. With (2.6), we decompose
1 4
-B B E
e 1Q4e 1 — 5 ‘ OA]' (39)
i

where A; collects all contributions with exactly j coefficients s, with k € {p +r,q,q¢ + r,p}.
We will see that the contributing terms stem from Ag, A1 and As. For j = 0, we clearly have

_ i * *
Ay = E VN (r)cerrcch+rcpap+raqaq+rap.
p,m,gEA*
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We observe that

Ay —2Q4 = Z Vn(r) [cp+rcch+rcp — 1] a;+ra2aq+rap.
p,m,gEA*

Estimating |cpqrCqCqarcy — 1| < s2,, + 52+ 524, + s2, we find

(€, (Ao — 2Qq)¢ 4‘ Z Vn (r)sp(apiragt, aq+rap§>‘

For ¢ in the range of =, we must have p 4+ r,q,¢ +7,p € HUS. Since s, = 0 for p € 5, we
can assume p € H. To preserve the parity of Ny, there must be a second momentum in H.
Assuming for example ¢ € H, we can estimate, using Lemma 4]

Z VN() <ap+raq5aapaq+r£>‘

p,gEH,reA*
S W lIspllapsragtlllapags £
p,gEH,reA*
1/2 ~ 1/2
SIY silapal?] ] Y VRO lapagl?
pvquvT‘eA* p,qEH,rEA*

S N—2+4n+55/2HN1/2N11{/2£”2,

where we used |[Vyl2 S NO=%/2 and s, < N*p~2. Moving factors of (M + 1)Y/2, (N + 1)1/2
around, we can similarly bound also contributions arising when p+r € H or ¢+ r € H. With
the assumption —2 + 3k + 4e < 0 from (L.I5]), we conclude that, on the range of =,

1
i(ng _ Q4> < N72+4H+5€/2(N+ DNg +1) < NH/2E A2 +N74+17n/2+6€j\/’[2{ 4 NO/2—¢
(3.10)

Next, we consider the term A; in (3.9]). Arranging operators in normal order we find

% 2
A =2 Z Vi (r )SptrCqCqtrCp(aa_p_ragirap +h.c.) + Z VN(7)sptrCpircy (apa—p +h.c.).
pgrEN” preAr

Let us start to bound the first term. On the range of =, all momenta must be in H U S. In
particular, p+r € H. To preserve parity of Ny, there can be, in total, two or four momenta in
H. Handling these two cases separately (if all momenta are in H, we need to use T?N to perform
one of the sum; if instead 2 momenta are in S, we can use |S| < N3%/2%3¢) we arrive at

‘ ZVN(T)SP-‘FTCQCQ-FTCP <§7 aza—p—raq+7"ap§>
p,q,T

S NP (N + 1ENP + N

6+13n+25

[N + D)V (N +1)%¢ 1%

As for the quadratic contribution to A;, we observe that
‘ Z ‘71\7 (r) 5p+r(cp+r02 - 1)(, apa*p@‘
S Z VN () ptr (Spar + 5p) [lap€ll* + llap€ ][ 1€]]

S HSQHooIHVN! # 8 loo N2+ 11Viv]  slloo 5”2V 2EIIEN + D (V] # 5%) () llap l11E].

p
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The first two terms are bounded with |||Viy|*s|lso < N*. To bound the last term, we distinguish
the cases p € H and p € S (on the range of =, there is no other possibility). We find, with
Vil * s%ll2 S Vv ll2lls®[l S NV/2Ee3e,

> (W] xs*) Dllagell€l S 1T ]* szl 2NN + 1P| x5 oo N3/ 13272 A 2g g

p
S NYZER3 NG|l + NTRAZ52 N2 g

We conclude that, on Ran =,

+ {Al - Z v(r)serr(apa,p + h.c.)] (3.11)

preA*
g NI{+€/2(NI2{ + 1) +an/2fsN2 + N73+7n+25NI2{ + an4eN+ len/2f5eNH + N5/€/275

for any 0 < k < 2/3 and € > 0 as in (LI5).
We switch our attention to the term

Ay = Z‘/}N(T)Cmrcqsﬁrsp( Ay g0’y pa”, +h c.)
+2 Z ‘?N T)Cp+r5ch+r5pap+ra— A—qQgr
+2 Z VN (r)CpirSqSqtrCply 10’y rG_qap (3.12)
+ Z VN (7)CqSqCqtrSqtr (4a ag+1)
+2 Z Vn(r)c p p+r ayap + 2VN( ) clz)sga;ap.

The only contributing term is the constant in the fourth line. We estimate the other terms.
To control the term in the first line, we observe that, on the range of =, the four momenta
p—+7r,q,—q—1,—p must be in H U S and, more precisely, either 4 or 2 of them must be in H

(to preserve parity). Let us assume, first, that all four momenta are in H. Denoting by s the
sum over all p,q,r € A*, with p+r,q,—q — r, —p € H, we can bound

‘ZVN CPJrTCquJrTSp(éa p+ra afq ra 7p£>‘
S 5 T ) lsptrspllapsra—pa—gor N + 1720 [lagNir + DV2€] + i + 12

~ * 1/2
S 1+ D60 (173 e [ 3 200 + 112 ]

I+ 026 3 T srst] )

S NTEEEE (N DENP + NTVEEEEE (N D€ |(Wir + 1)
< (N 2+4I€+€+N 3+7I€+4€) H(NH+1)£H2+N2 2k— 25H(NH+1)1/2£”2

~

for 0 < k < 2/3 (we absorb the second contribution by a Cauchy—Schwarz inequality with
appropriate weights). If two momenta are in H and two in S (in this case, we must have
p+r,qg €S, q+nrp € H, since s =0 on §), we proceed similarly, but instead of using
the potential Vi to sum over the third momentum (as we did in the fourth line of the last

equation), we use the restriction onto S, estimating 17]\/ in . Indicating with 5~ the sum over
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p+r,qeS,q+rpe H, we find

*

‘Z‘A/N r cp+rcqsq+rsp(§,a;+raqa,q - )
NI (V1) 2N 1) 22 4 N ) 2 (W + 1) Wi+ 1) |
fSN 2+4n+26”(N+1)1/2(NH+1)1/2§”2+N 2+11H/2+38H(NH+1)1/2§H2'

The second and the third terms on the right-hand side of (812]) can be bounded by a simple
Cauchy—Schwarz inequality (remarking that, on the range of =, the momenta associated with
the coefficients s must lie in H). We find

~ _ 1/2

| U )cptrsacatrsn(és @y pa-gagrr§)| S N2 NG AN 2 2
~ _ 1/2

‘ Z VN(T)CptrSqSq+rcp(§,s a;+ra*_q_ra,qap§>‘ SN 2+4H+EHNH/ Nl/Qsz-

The quadratic part of the fourth term in (ZI2) can be bounded, using that ||[Vy * s[jcc < N*
and that ¢ € H on the range of Z (because s, = 0 for |¢| < N*/?*¢). We find

~ _ 1/2
‘ Z VN (r)cqSqCqtrSq+r(aqt, aq§>‘ SN 2+4H+2€”NH/ &>
As for the constant term, we extract a contribution observing that
( Y VN () (ceqrr = Vsgsqrr| < Y VN (sgsqer + sq5ian) S VA lloolsll 8%l S No*/275,

where we used that [|s]y < N|l¢lli < N. The terms on the last line of ([B.I2]) are simply
estimated by

‘ZVN p p+r (& ap
Thus, on Ran =,

i[Ag _ Z XA/N(r)sqqurr] < NTHHTRHAEN2 L (Nz—zn—Qa +N—2+11/@/2+36)(NH+ 1)
q,reA*

T 0)]| X (e, apaye)| £ NI 22

S NC2HRER2E NN LR 2=\ NOR/2—e
S N~3+TrHiep2 (N272n72€ + N—2+11H/2+3€)(NH +1)
+ NTR2mENZ p NTIHSR/2me g g NOR/2-E (3.13)

for all 0 < k < 2/3 and for € > 0 as in (LI5).
Next, we consider

A3 =2 Vn(r)epsrsqsqrrsp(ay,a”, a7 ,a_q+h.c)
+2> Vn(r)sqcqsiy, (aja”, +huc)
3 U r)sacysy (Ot 1)
+2Un(0) Y s2spep(afa”, + hic.).

We can control the quartic term noticing that, on the range of =, all momenta p + r,q,q + r,p
must be in H (because s = 0 on S and because of parity). With |[sg|lec < N3 22 we find,
for £ € Ran E,

| > V) prrsasaresplés ahera®rapa-46)| S IVl s lloo lsulBI (N + g
g N74+7H+3EH(NH + 1)5”2
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The quadratic terms can be estimated, for £ € Ran =, by

‘ZVN chq q+r<§?aq —q ngspcp<§,ap —p£>
S 1Vwlloolls H2H8HH2H(NH +)V2E|P S NP (W 4+ 1)

and by
‘7 2 * < ‘7 2 N 1 1/2¢112
N (7)SqrCarrsg (€, aqa” (&) S IV * slloollstrll2ll(Na + 1) 77¢]]
< N*5/2+11/€/2+5€/2||(N’H + 1)1/2£H2
We conclude that, on the range of =,
+ A5 g N74+7H+3€NI2{ + N73/2+4H+€/2NH + N5I€/2*€ (3.14)

for all 0 < k < 2/3 and for € > 0 as in (LI5).
Finally, we bound the contribution

Ay = ZVN (r sp+rsqsq+rspa*, B R
+ Z Vn (r p+r p 2a p0—p t+ 1) + ‘7]\/(0) Z 8283 (2a*_qa,q +1).
Proceeding similarly as we did for Az, we easily find that, on Ran =,

As S IV llsollstrllsolls 13N F + VA llocllsTr oo 1N h + Vv lloo lls? (1
< N-OHIOnFBe A2 NOHITR/243e \r N 1HAR—2e

Combining the last equation with (BI0), (I11), BI3), (314, we obtain (B.8]), with an error

51(Q4) satisfying, on Ran Z,
j:é’l(Q4) < N—HF/2=epr2 4 N73+7n+45NI2{ 4+ N2\ 4 NRTEEN 4 N5n/2—s’

where we used the assumption 1/2 < k < 8/15 — 2¢/3 (in particular £ < 1/20). O

3.1 Proof of Lemma

We are now ready to show Lemma Bl Combining the statements of Lemmas @] [I0], [T and [I2],
we find

e B, Hn Wiy, e

N ~
S V(0 + ) paya, + 2NV (ON + Qs + Qu

EA*
+ Z {p Sp + NOVN Z Vn(r ri| (apa”, +h.c.) (3.15)
peEA* reA*
+ Z {p232 +NOVN( p)sp + Z Vn(p — T)spsr] + &
peA* reA*

where, on the range of =,

E SN Z p ayap + N7F2mE N2 N3 TR 2
peA® (3.16)
+ N272H72€NH +NI€*€/2N_"_ N5I€/27€/2’
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if 1/2 < k < 8/15 — 2¢/3. Here we also used the fact that the contribution e %1Qeb1, with @y
as in (2:2)), vanishes on the range of Z. With a slight abuse of notation that is only used in this

subsection, we introduce the following momentum sets
L={peA"\{0}: |p| S N*/**¥}, L= {peA™:|p| > N*/>}.

The constant term on the last line of (B.I5]) can be rewritten, using (2.7)), (2.3]) and (2.4).
We find

Z [p252 + NOVN

Z Vn(p—r Spsr}

peEA* 2
NN~ o N N~ o
-9 Z Vn(p)ep — o Z Vn(p = r)eper
peLec rel
peL°©
= i (8may = V(0) = NG D e —7)
peL T‘ELC
NO K Ng %
= 2NN (8way — V(0 Zp 7 Z Vn(p —7)eppr.
pEL p,r€L

The last term is bounded by CN~1T4+2¢ We write
N2
% 5 o ey~ 0 (v ).
p,reL
As for the second term, we observe that

NG Y plor=Ng > per

pEL peS

+0 N5I€/2 6)

Estimating [Vy(p — ) — Vy
that

(r)| £ N~=2+2%|p| and using again equations (23], (Z4)), we deduce

‘p gpp-i- ‘ < N~ 2+2H’p‘

(3.17)

Together with the bound |ay — a| < N_H“ from Lemma [, this yields

Z [p252 + NoVn (p Z Vn(p—r Spsr]

peA* rEA*

2
+ O(N5K/2—6)’

if =2+ 3k 4 6 < 0. Combining this with the first term on the right-hand side of ([B.13]), we
conclude that

N2
S Vx(0)+ ; [p282 + NV (p
p *

Z Vn(p—r Spsr}

TEA*
(a2 (3.18)

= 4raN't* — 8maN®(N — No) + > 2

peS

+ O(N5n/2f€)’

where we used the assumption 0 < N — Ny < N3%/2,
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To deal with the off-diagonal quadratic term in ([B.13]), we use again (2.3)), ([2.7) and (2.4).
As a form on the range of the projection = = ]I{N SUH)CZO}]I{NHGQNO}, we find

Z {p sp + NOVN Z VN (r ](a;‘)a*_p +h.c.)
peEA* reA* ( )
3.19
=—No Y _p’¢p(aja’, +he) ——ZVN p)ey (aha®, +h.c.).
peS peEA*

relL
Recalling ([B.I7), we can estimate
+ [ — Np Zp2<pp (apa’, +h.c.) —4maN" Z(a;a*_p + h.c.)} < NTIHOR/2H5e/2(\f 4 N3R/2),
peS peES

As for the last term on the right-hand side of ([B.I9]), we can bound it switching to position
space. For £ € F(A) we find

Z Vi (r = p)er (&, a ‘ = ‘ /A V(e —y) Y e 90, (aza,8,€) dfﬂdy‘

relL

rEL
<No Y lirl (6(6,Qaé) + COTINTIg|2) § NTUEA (€, Qug) + N2 g 2)

relL

choosing § = N—1/2-3%/4=¢ W conclude that

Z [p sp + NOVN Z Vn(r — sr] (apa’, +h.c.) = 4raN" Z(a;a*,p +h.c.) + &
peEA* reA* peS

where, on the range of =,
:té’{ < N—56/2Q4 +N_1+5H/2+56/2N+N5/€/2—6/2

if =243k + 10e < 0 . Combining this estimate with (8I6]), and simplifying the absorbing the
term proportional to N by a Cauchy-Schwarz inequality, we arrive at (2.8]), (2.9) given that
1/2 < k < 8/15 — 2¢/3 (note that this implies the previous inequality on ¢ and k). O

4 Cubic transformation

The goal of this section is to show Lemma[6l and Proposition [8 All lemmas in this section hold
for all 0 < kK < 2/3 and € > 0 as introduced in (L.I5).
4.1 Properties of the cubic transformation

We start by observing that the action of the transformation T}, = €5, defined in ([2.IZ), can be
computed explicitly. To this end, we define, for k € S,

Xi = |Br| = \/ BB
Lemma 13. Let k € S. We have

XE=BB, =Y Nowlgr + 9rik)aharOp- (4.1)
T‘er

Furthermore, recalling the notation Nj, = ajay,

Xi <2N|om|3Ne S N72HHHNG (4.2)
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Proof. Let us compute

o ﬁ * * *
BkBk = E N‘Pr‘Ptek,rakarJrka—ra—tatJrkak@k,t
T‘,tEHk

= Z NSDTSDtGk,raZ[ak—i—rafraa*—ta;k-ylg]ak@k,t
rt€Hy

= Z N@r@tek,raz (5t,r + 5k+r+t,0) (1 + aira—r + a:+kar+k) ak@k,t
T‘,tEHk

= Z N@r(‘pr + (PrJrk)azak@k,r-
reHy

(4.3)

To obtain the second equality, we used that a,;ra—,Or; = 0 (since the cutoff imposes that
there is no k-connection). In the last identity, we used Oy ,a*, = Oy a’ =0 (because the
cutoff imposes that the shell-vicinity of —(k +r) and r are empty) and Oy, _ (1) = O, The

bound (£.2]) then follows from Lemma [l O

Lemma 14. For k € S we have

gsin Xp  sin Xy,
kX, X5

5 gcos Xp —1

T, = cos X, + B By

Proof. Due to the cutoff, Bi cannot create a k-connection if there is one already. That is,
(BL)* = (B7)* =0.

This allows us to expand the exponential explicitly. We find

i o\m i 0\2m f 0\2m+1
Cn BB~ (BB (BL-BY)
Ti=c =) =, 2 (2m)! 2m + 1)

m>=0 m=0
m

= 3 oy (e80) " e+ 3 (o ()"

-1)" o m -1)" o ™ oo
+Z(2(m421)18£(8k8£> _Z(z(mln! (B’f[”’ﬁf) By

m>=0 m2=0

With Lemma [I3] we find

- e (32 Gt e X Gl

m=>=1

—1)™ —1)™
+ Blﬁg Z ( ) X]%m _ Z ( ) Xl%mB]C;

| |
= (2m +1)! = (2m +1)!
_opcos X —1 ] gsin Xg - sin Xy,

For k € S, we introduce the notation

1
Ay = @é )]I{quH)c:O}]l{NHEQNO}'
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We observe that

H Aplinge=01 = Lnge=0}-
kes

Thus, on the range of 1z .—py, we have

X B
T, =T\, = (COSX]C—{—B?CSH;( k)A

e (4.4)

Moreover, since A, commutes with T}, for all ¥’ # k, we obtain, on the range of Lipnge=0)

T.=[[ e = [[ Tx (4.5)

kesS keS

In the next lemma, we control moments of the number operator with respect to the action
of the cubic transformation.

Lemma 15. For S’ C S, let T, g := HpeS'T There is a constant C > 0 such that, for all
S"C S and all j > 1, we have, on the range of Linge=0ys

+ (Tog NiTus = NG) < CNTZH2N, (4.6)
T NiT. 50 < N (4.7)

Moreover, for all j > 1, there is a constant C; > 0 such that, for all 8" C S, we have, on the
range of Ling.—o},

T(:S’N}{TC,S/ < CjN—2+3n+6NS (N—2+3n+6NS + 1)j—1 _ (4.8)

Proof. We start by proving (£6) and ([£7T). First of all, we observe that [By, Ng + Ny /2] =0,
for all k£ € S. This implies that

T (Ns + Nu/2) Tosr = (Ns + Nu/2)’ (4.9)
for all j € N and all S’ C S. We immediately obtain
T} o NiT. s < (Ns + Ny /2)” = (4.10)

on the range of 1 xr,.—}. To prove the lower bound we choose k as the “first” element in S” C .S
(according to the order used to define T;.) and we compute

Tv,;kj\/gvfk = Ak(cos X + SkaBk)./\/'] (cos X, + B Sil;(fk)Ak
_ Ak(cos2 XN+ sin X’“ BINIB: “nX’“)Ak
_ Ak(cos2 XN+ sin X’“ (Ns — 1)7 X2 Slr;(f’“)Ak
— Ay (Ng; (N —1) — Ng) sin Xk)Ak. (4.11)

On the range of Ay, we find (with g the restriction of ¢ on H)

TENIT, > N — joN|lon |ZNNT™ > Vi — N2 NIy,

27



Conjugating with 7, ¢n (1) and using (4I0) we obtain, on the range of 1xr,.—o},
* j * j S AT— 1/2 % i—1 1/2
T2 NiTes > Tign gy NETesn gy — CIN TP NPT g (g NG Tosn g N
: o -
2 T:,S/\{k}'/\/g'Tc,S/\{k} — C]N 2+3I€+€N‘é Nk
Iterating to cover all k € S/, we obtain

T;S’NéTC,S > Ngv _ Cij2+3/i+€Ng‘—1 Z Nk > Ng _ CjN*2+3li+€Ng‘.
kesS’

Let us now show (4.8]). Similarly as in (£I1]), we find
TENLTe = Mg (N 4+ (Vo + 2)7 — N sin® X)) Ay
Thus, there exists C' > 0 depending on j such that, on the range of Ag,
TENG T < N + CN“236 (VI L DA

Conjugating with T¢, gn 11} we obtain, on the range of Ijpr;.—0},
j j - 1/2 (s j—1 1/2
Ty o NG Test < Tpn gy NiTe,sn k) +ON 23t pl (TrsngmNi T, sk F DN (4.12)

Next, we claim that for all j € N there exists C’; > 0 independent of S’ such that, on the range
of ]l{NSC:0}7 ' )
T g NG T 50 < CjN 23 NG (N-283m ke N 4 1) 771 (4.13)

For j = 1, the claim follows ([{.I2]), iterating to cover all k € S’. Assuming (E13]), we use (£I12)
to estimate

* j * j — K 1/2 j 1/2
Tr N s sk TT, g iy + CNT2E3TEN k/ (Trsn gy NorTesn ey + DA, k/

<T
< TﬁS’\{k}NI];HTc,S’\{k} + CjCN72+3H+€(N72+3H+€NS + 1)ij‘
Iterating over all k € S” we conclude that, on the range of 1 {Nge=0}

T(:S/NIJ;ATC’S/ < NIJ;Ll + Cj+1N—2+3m+a(N—2+3n+eNS 4 1)]‘ Z Nk
kes’
< N2 NG (N2 N 1 1),

By induction, we obtain (4.8]). O

4.2 Action on the off-diagonal quadratic term

Next, we control the action of T, on the quadratic off-diagonal term on the right-hand side of
[28). We introduce the notation

Qb = 4maN*™ >y " aa*, = (Q3)".

peES

Lemma 16. On the range of 1jpry.—oy, we have
+ [T:(@g + é;)Tc — (@g + @;)] 5 N—2+4/@+6(NS + N35/2+35).
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Proof. Let p,k € S. If p ¢ {£k}, then clearly
Trasa* Ty = Apaa® Ay (4.14)

)

only depends on operators N,
@g)] = 0 and therefore Apa*a* BE = B°a*a* Ar = 0. We find

Let us now consider the case p € {+k}, say p = k. Since @5:

M P
with ¢t € H, we have [aya”,, 20, caya’,
~ ~ sin X sin X,
Trapa™ Ty, = Ay < cos Xraga*;, cos X, + —sza};a’ikB;;X—kk> Ay
sin X .
= Ak<costaZaik cos X}, + kal’;aika szk)Ak,

where we used that [Bf,afa*,] = 0. With the formula @I for X? and since Nyaja*, =
aja*  (Nj + 1), we obtain

XEaja*, = aja* Y7,
with Y}, being defined as the square root of the positive operator

V2= X2+ Z Noi(or + ©ivr) Ot
teHy,

Since (with O = O _¢—k)

N
Y2 = X7 =) Nou(pr + pron)Ons = 5 > (Pt + Prrr) O (4.15)
ter ter

we conclude that Y,f > X ,3 Since X}, and Y, commute, we arrive at

_ - nY;
Traga® T = Aka,’;a*_k(cos Y}, cos X, + X, SinXkSH;/ k)Ak
k

in Y
= Akaz’éa*_k(cos(Yk — Xp) + (X, — V) sin X o ’f)Ak (4.16)

k
=: AkaZa*_k(l + Rk)Ak

From |cos(y —x) — 1+ (x —y) sin(z) sin(y)/y| < C(y* —22) for all 0 < z < y and from Lemma4]

we obtain
Ry, S Nlenls S N7

With (4.16]), we conclude that
+ Ay, (Tiapa® ) T — aja’ ) A+ hee SN2 + N+ 1).

Conjugation with T__j can be handled similarly. Since moreover the error term is invariant w.r.t.

Ty, for p € S\{£k}, we find
+(Trapa* ) T, — agaty,) +he. S N2 FE(NG 4+ N, + 1)

on the range of 1r,.—oy- The claim follows by summing over k € S (recall that |S| < N 3r/2432)
U
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4.3 Action on the kinetic energy operator

In this subsection, we control the action of a single cubic transformation T}, for a fixed k € S,
on the kinetic energy operator. In the next subsections, we show similar statements for the
action of T} on the cubic term ()3 and on the quartic term )4, appearing in Lemma [5] on the
right hand side of (2.8]). Eventually, we will obtain the action of the full transformation 7, by
iteration.

Lemma 17. For k € S we have, on the range of Ay,
+ [T,;‘ Z prasapTy — Z praia, — 2 Z Nrio, (o + apk+r)a2ak@k7r] < NTIBR/28E2 \ 2

peEA* peEA* reHy
(4.17)

Proof. Using that BYAy = 0 and that [X2, Ag] = 0, we obtain

* * SlnXk sinXk
AT EZA PaagTi = Ae( cos X + < 5) g*q 30, cos X, + B} & )
q

X X
= <cos XkZpaap SmkkBkZpaapBﬁSH)l( k)A]C

peEA* pEA*
sin Xk sin Xk
:Ak<2paap Bk,Zp Bﬁ )Ak.
peEA* peEA*
Let us now compute
Bk, Z pa’ ap = Z Nl/2 (r? + (k +7)? k:2) @k7ra2a,rak+r8i
peEA* reHy,

— 2 *

=2 Z Nor(or + Orr) (T +k- 7n) akak@k,h
reHy,

where we used that, similarly as in the proof of Lemma 13,

af—rak:JrrE‘,]ﬁ€ - (‘Pr + (PrJrk)ak@k,r-
We therefore obtain

Ay (T,;k Z p2a;aka — Z p2a;ap -2 Z NT2§07’(§07’ + gpkﬂ,)a;;ak@].CJ) A

pEA* PEA* reHy
sin® X}, sin? X,
= M(2 D0 Nor(or + prer)aiarOn, X2 1) ok X2 )
TEHk

From Lemma [] we find that

> Nrer(er + rar)l S N[l S N*
reHy,
and that

> NirllEllerller + erirl S Nlkllpellallomlls S N7HER2T3/2
TEHk

since |k| < N*/2t¢. Moreover, ([@32) implies that

;2

sin® X}, _

<1 - ) < N2HBRte s
k

Since NFN—2H3rte — N—2Hdnte < N—1456/243¢/2 o1 a]] k< 2/3, we obtain ({@17). O
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4.4 Action on the cubic term

Next, we proceed with the conjugation of the cubic term ()3 appearing on the right-hand side
of (2.8)). On the range of the projection = = LN os)e=03 LNy eam,}, We can decompose

Qs = /22 (@4 + Qb +@5) (418)

with

QY = Z Nl/z‘/}N(r)a*_raﬁ_Fpap +h.c.

T'er7pES
M 1/27; ® % 1/21; * %
Q3 = Z NY Vn(r)aZ,a;,,ap + Z NY Vn(r)aZ,a; ,ap +h.c.
r,pEH: pEH,,TES
r+pes
s 1/275
Q3 = Z NY Vn(r)aZ,a;i,ap +h.c.
r,peS:
r+peS

Note that since 0 < N — Ny < N3%/2 we have /No/N =1+ (Q(N—1+3n/2).
In the next lemma we conjugate the operator Q?{{ .

Lemma 18. Let k € S. On the range of A, we have

+ (TrQET, - QF =237 NV()(pr + 9rir)NiOiy )
reHy,

S NTHHARFEN 4 NOHIER/ 24T <N2_2"‘ > Ls(r+q)ajajaga, + N"‘J\/’s> (Ne+1)  (4.19)
rqeH

Proof. Let us write Q¥ = > pes Q?{{J’,ﬁ + Qg; with Qi{,o = (Qﬁ{,’,ﬁ)* and

Hyp 1/21;
Q3 = Z NY Vn(r)a®, a; ,ap.
rcH,

Let k,p € S. With (£4)) and using that A/Xlrgé‘):?l’)ﬁlﬁl,ﬁg = 0 (since Qfl’)ﬁ cannot annihilate a k-
connection), we find

sin X sin X
AT QST AR = Ay, cos XpQ5HF cos XpAy, + Ap——LBrQi By — " Ay
). ). Xk ). Xk
in X
+ AR BR QI cos Xy Ay (4.20)
Xk 7p
We compute
Bgng’,ﬁ — Z ngtT?N(r)@hta;;ak_,_ta,ta*_rai_,_pap
teHy,reHy
= Z N@t‘?N(T)@k,t (aira:+pak+ta—t + O p(Ot,r + 5t,—(p+r))
tEHk,T‘GHp

*
+ a;+rar+k (Ot + Ot,—r—k) + 02,0 pr ik (Ot,—p—r + 5t,p+rfk)) agap

= > NeVn(r)Oy (a*—ra:—i—pak-f—ta’*t + Ok p (Ot + 5t,—(p+r))>a;§ap, (4.21)
teHy,reHy
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where, in the last step, we used the definition of ©y, ; (which implies for example that Oy, Oy =
0 and similarly for the other terms on the third line).
Next, we distinguish the cases k = p and k # p. Let us first assume that ¥ = p. Since

A/LCQ?I:”ﬁ = 0, the first term on the right-hand side of (420 vanishes. Using (4.21]) and
Oa’,ar,, = 0, we conclude that also the second term on the right-hand side of ([£20) is

zero (because Ay can be moved through B} Q3 HE and AkZS’ti = 0). Thus, we have

sin Xj, cos X
ATy Qs Ty = Ak# Z NVN (r)(r + Prik)arar O, A
reHy

With the elementary inequality

sinxcosx _ 2
0S1l———— < 527,
T 3

using Lemma [] to estimate

| > NUNG) @ + orn)| S N
reHy,

and applying the bound (4.2]), we obtain

0 (TR~ Y2 NUND) o+ prin)afan®i, )Ax S NTHIEEAR (4.22)
reHy,

We now consider the case p # k. We will prove that

iAk<T,: ST oo - 3 ol )Ak—i—hc

peS\{k} peS\{k}
< NEHER/24Te (szzn S 1s(r + q)atalagar + N“Ns) (Njs + 1) (4.23)
r,qeH

Together with (£22]) and Ay (Q + Q3 i )Ak = 0 this implies (4.19]).

To show ([4.23]), we observe that, from (@.21)), ByQ 37pﬁAk = 0 since agyra—¢A = 0 for t € Hy,.
Therefore, the last term in (4.20) vanishes. Using (4.2I]) to rewrite the second term on the
right-hand side of (£20]), we find

AT Qg ’ﬁTkAk = Ay cos XkQ3 HE s XAy
sin X

X
Y. NeWn(r )@(2)61 POy k10O B —— 0 A

teHy,rcHy

SRR AL (4.24)
k

2)

In the second term, we move the cutoff @ét
this end, we use the identity

to the right to reconstruct the operator B;. To

@,(jza =a @](622 (1 — ]l(tJrS)U(,(tJrk)Jrs) (T)) Vk € S,t € Hk,’l“ e AN* (4.25)
We find
Z NV (r )9(2)a ,,a,,erakHa,ta}ZapBg
ter,T‘GHP

= Z NV (r )a_rCLT_H)CLPG)/,(C?Qak_Hta,t(z};BlﬁC (1=1(=rr+p~g—(t+k),t)
teHy,rcHy
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with the notation

L if{—rr+ptn(t+S)U(=(t+k)+5)) #0

0 otherwise.

]]'(_T’T +p ~s _(t + k)at) = {
Proceeding as in the proof of Lemma [I3] we find
Z Ngot‘/}N(r)Ql(f’z a*,ra:+pak+ta,ta2ap82 = Z NI/QXA/N(r)a*,ra:ijap(X,g*T’Hp))2
teHy,rcHp reHp,

where we defined

(X/,gfr’rﬂ’))2 = Z (1 =1(=r,r+p~g —(t+k),1) OrtNow(pr + Qrin)agax (4.26)
teHy

We can decompose (Xli_rvrﬂ’))? = X7 - 5,2_7"’7"”) with

6[5:7r,7“+p) _ Z 1(=r, 7 +p~g —(t + k), t)Or :Not(0r + 0r k) Ni (4.27)
teHy

Notice that (X,gfr’wrp ))2 and 5,(§7r’r+p ) are both non-negative operators (this can be shown
similarly as in (4.I5])). Moreover, with Lemma [l we find

5I(€—r,r+p) < NB’”‘PHHgoNk < N_5+15H/2+7€Nk-

(7T‘,T‘+p)
k

Hence, after summing over p € S\{k}, the contribution of § can be bounded with

Cauchy—Schwarz on the range of A by

+ Z Nl/QYAfN(r)a*_raﬁerapé,(g_r’Hp) + h.c.
peS\{k},reH,

< NOHIoR/2+Te (N2_2“ Z 1s(r + q)ayayaqa, + N“NS) (N +1). (4.28)
rq€H
Therefore
+ A | T QT X, QM cos Xy — S2XROIEX Gn Xy 4 e A
Z k kQB,p k — COS kQ37p COS A — Xk Q37p kS Xg + h.c. | Ay
pES\{k‘} (429)
S N—5+15:"€/2+76 <N2—25 Z ]lg(’l“ + Q)aia;aqar + NH./\/'5> (Nk + 1)‘
rq€H
Arguing as in (£.25)), we also obtain
A Xiat ar, japhy = Apa®a)y ap (X,ng’Ter))zAk. (4.30)

Since moreover X and X li_r’rﬂ) ) commute, we find

SinXk %

Ay cos Xpa* a

* .
r Oy pOp €08 XpAg + Ay, =y pap X sin Xg Ay

sin X7 )

= ApaZ,a; ,ap <cos Xli_r’rﬂ)) cos X + X}, sin Xk> Ay

3 (_7+)
Ska rrp) .

(77+)
Xkrrp

X
= Apa®,a;, ,ap <COS(Xk - X}g—r,rer)) + (Xx — X,gfr’rﬂ))) sin X,

= Apal,ar,,ap <1 + R,g_r’r+p)> Ay,
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With |cos(z —y) — 1 + (z — y) sin(x) sin(y) /y| < C(z? —y?) for all 0 < y < z, we conclude that
(7T7T+p) (7T‘,T‘+p)
+R, < Co, .
Thus, proceeding as in (4.28]), we arrive, on the range of Ay, at

+ Z N1/2‘7N(r)a"_rai+papng_r’r+p) + h.c.
peS\{k},reH,

< NIRRT N2228 N g o(r 4 g)ajagagay + NNs | (M +1).
rqeH

Inserting this bound into ([£.29), we arrive at (4.23]). O

As for the observables Qg” ,Qg , we employ the parity operators Py defined in (2I4) and
the assumption [P, I'] = 0 for all £ € S to show that their expectation vanishes in the state
described by the density matrix I'. Here, we will make use of the following property stating that,
for p € H, the density matrix T.I'T* can only have either zero or one particle with momentum
p and that, in the second case, there must be exactly one particle with momentum in the set
—p+ S, forming an S-connection with the particle with momentum p.

Lemma 19. Let I' = T~y L inge—0y- Forp € H, define

Xp = Linp=0) + Lv=y DI pea=y 11 Tvpru=0y
z€eS yeS\{z}

(4.31)
Xo = Lip=0p T Lpp=13 ) Iae =y
zeS
Then we have
T.IT! = x,T.TTF xp = XTI TR (4.32)

Proof. Let p € H. Note that I' = x,I'x,. We now show that [a*,.ay, ,a1Ok, xp] = 0 for all
k € S,r € Hy, which implies [T¢, xp] = 0 and thus the first identity in ([£.32]).
We start by observing that from the definition of ©y , in (ZII)) we have

a0y Okr = Tiv iy lvmy ] Tivis,—0y0" 05 40Ok - (4.33)
yeS\{k}

This implies

[0 7 10k Ok, T n=0)]

*

= %710k Ok L n; =0} (0-rp + rik.p)

= Live=it v =1 H LN =0} 090" 1 50k Ok, —p (6—rp + Orip) . (4.34)
yeS\{k}

To compute the commutator with the second summand in the definition (£31]) of the projection
Xp, we distinguish four cases.
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Case 1: p= —r or p = r + k. This implies that p € —(r + k) + S or p € r + S, which by
definition of 91(33 gives O L, —13 = 0. Thus

[a*ﬁrahkak@kvm]l{/vp:l}Z]lw-w:l} II ﬂw_m:oﬂ

zeS yeS\{z}
= L=y ) U=ty [ Tov e —00p07 00k Ok —p
z€S yeS\{z}

= Ul e 1 Leve,s, 008507 14 0kOk—p,
yeS\{k}

where the last equality follows from ([@.33]). With (£34)), this proves [a*,.a; . axOf s, Xp] = 0.

Case 2: p =1+ z for some z € S\ {k}. Then p ¢ {—r,r + k} and also Oy, Lr;—13 =0,
which implies

[aira:+kak@k,r7 ]l{./\/pzl} Z ]I{N—p+x:1} H 1{N—p+y:0}] =0
€S yeS\{z}

Since, in this case, we find from ([.34)) that [a”,a;,,akOf r, Linr,—03] = 0, we conclude again

that [a* ,a’, ,akO.r, Xp) = 0.

Case 3 p= —(’I“ + kj) + z for some z S S \ {k} Then D ¢ {_T7T + k/’} and @kvr]l{szl} =0.
Again, we find [a*,a’, , axOk ., xp] = 0.

Case 4: If none of the conditions apply, terms commute and [a* .a; , ,arOk ., xp] = 0.

This shows that x,TcI'T}xp, = TcI'T}. The second identity in (£.32]) can be shown similarly.
O

With Lemma [[9 we can now show that the expectation of Qgg and Qé\/[ vanish in the state
T:I'T,.

Lemma 20. Let I' be a density matriz on F(A) satisfying I' = 1pr..—o) T iprge—0y as well as
[[,Px] =0 for all k € S. Then

Tr TFQST.T = Tr T/QYT.T = 0. (4.35)

Proof. As noticed below (2.14]), we have [Py, T.] = 0 for all k£ € S. By assumption, we consider
density matrices I" such that [I',P,] = 0 for all £ € S. It follows that

T,ITF = P, T.IT Py + Q,T.TT Qy, (4.36)

for all k£ € S. On the other hand, from the definition of M, in ([2I3]) and ./\/'Z-a; = a;f(./\/'l- + 0i,5)
we find
an"_raﬁ+pap = a"_rai+pap (Mg + 0z, —r + 0z r4p — Oz p) - (4.37)

The analogous statement holds for M_,. Distinguishing different cases, we readily show that
the parity has to be violated for some x € S, i.e. for every r,p € S with r 4+ p € S there exists
a x € S such that

x % ok _x
Pra” arypap = a” a7, ,0pQy.

Thus we find that Tr a* ,.a;, ,a,T.I'T = O for allr,p € S with r+p € S. Hence Tr QST.TT: = 0.
To show the second equality in (£.35]), we derive an identity similar to (4.37). Here this task

is more subtle than above, because the second term in the definition (2I3]) of M, measuring
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the number of z-connections, does not commute with Qg/f . We are going to use Lemma[I9 We
decompose

M 1/27 1/27 . AM,1 M,2
Q3 = Z NY Vn(r)a®,a;,,ap+hc. + Z NY Vn(r)a®,a;,,ap +he = Q3" + Q5"
r7p€H: pEHr,TGS
r+pes
First, we consider di’l. From (4.32), we find

Tr T é\/[’chF = Z N1/2‘7N(7“)Tr a*ar, a,T.IT)

r'r+p
r,peH:
r+peS
= Y N'YVUn(r)Tr x_ra®,af apxpTeT Ty
r,peEH:
r+pes

Using that a*, = L1y >1ya”, and ap = aplin;,>1y, we may equivalently consider the expecta-
tion, in the state T.I'T, of the observable

Dot =nlve,=y [T T, —oetaipaelv=nln, .=y [ Tu,..=0
Y,2€S8 y'eS\{y} z'€S\{z}
(4.38)

for r,p € H such that r+p € S. To show that the expectation of each summand in the previous
line vanishes, we apply the parity argument as we did for Qg . For x € S, using the definition

of M, in (2I3) and ./\/ia; = a;‘»(./\/i + 0; 7), we find

* * 1
an*,rar+pap = a*,rarﬂ, (Mm + 5m,r+p + 5 Z (5t,rM+m + 5t+x,rNt)> Qp

teEH,
* * * * * *
= A_pQpy pyQp (Mm + 6:B,T+p) + NTer]le (T)a—rar-i-pap — Q_pQpypQp N*er:B]le(_p)'

Thus, we obtain, for y,z € S such that r +y, —p+ z € H (note that otherwise the expectation
in ([@38)) vanishes as r + y, —p + z cannot be in S and there is no particle in (H U S)¢)

Malin, =y I Lo, —0esaipalpn oy [ Tov,,.-0
yES\in) ES\(2)

=1y 1 tw—00taioelne, oy [ 1o, -0
yes\(u) JES\(2)

X (Mx + 5J:,r+p + 5x,y - 5J:,z)

(compare this to ([A37)). The same calculation for M_, and a case distinction shows that the
parity is violated for some z € S, i.e. for every p,r € H such that » +p € S and for every
Y,z € S, there exists x € S such that

Prlin,,,=1) H Liw,=ora’par paplin 21y H Tin, =0}

y'eS\{y} z'e€S\{y}
=l 1] Lov,,=odaipmlne, oy [ L, —0Q.  (4.39)
y'eS\{y} 2'e€S\{y}

With (£.30) this implies that the expectation of each term in (A38]) vanishes. By linearity, we
conclude that Tr T gd’chI‘ = 0. Similarly, swapping the roles of —r and r + p, we also obtain
Tr 7:Q3"*T.I = 0. O
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4.5 Action on the quartic potential energy operator

Finally, we study the conjugation of the quartic term @4 in (2.8]). On the range of the projection
== ]l{N(Hus)c:O}]l{NHEZNo}v we can decompose

Qi=QF + QY +QF

with
QH _1 Vn(r)a®, atagra
4 79 N p+rtqtq+rtp
recA*
p,q€H,
QM—1 Vn(r)a’, atagira, + h.c —1—1 Vn(r)a’, atagira, + h.c
4_2 N p+rq¥q+rtip I 9 N p+rq¥q+rtip I
qEH peS,reA*: p,qES,TEN*:
p+reH,q+res p+r,g+reH
1 = M1 M2 M3
+ 5 E VN(r)a;Ha;aqHap +he =Q +Q, " +Qy"
pEH,qeS,reN*:
p+reH,qg+res
1 ~
S _ * *
Q4 =35 E VN(r)apquaqaq-l-Tap'
q,pES,;reN™:
p+r,g+resS

(4.40)

Let us first consider the term Q4. It is convenient to define

~ 1 ~
Qy = 2 Z Vn(r)Ls(p + g+ r)a,,agaq+rap.
reN*
p,q€H
In the next lemma we show that the difference Qf — @f is small on an appropriate class of
trial states.

Lemma 21. Suppose that I is a density matriz on F(A) satisfying I' = Liarge—oy Tl nrge—03-
Then we have

+Tr THQY — QT < N~1H9-/243 Ty T* N2 T, T,

Proof. Let us first explain the idea of the proof, heuristically. Consider the expectation of
UpiyQyq+rap in the state TeI'TY. The operator a;, annihilates a particle with momentum p
which, by ([4.32)), has to be connected to exactly one other particle with momentum —p+z,z € S.
After the annihilation and application of the remaining aj_,azas+, this pa}:ticle again needs
to be connected. So either ¢ + r = —p + x, which is the main term of Qf, or —p+x €
—(p+7r)+SU—qg+S. This leads to the condition r € S+ S or g—p € S+ S. Either constraint
is enough to show that these contributions are negligible.

We will now make this argument rigorous. First, let us assume that r ¢ S+ .S and ¢ —p ¢

S+ S. Then from Lemma 19, we find
Tr (a; @y rap TUTY >

= Tr (a4, 05040y L w1 D Ly TTTY)
zeS

= Z Tr <]l{N_p+x:1}a;+ra2aq+rap]l{szl}TcI’Tc*> 1(g,p+7r#—-p+2x)
z€S
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because, on the one hand, —p + = # ¢ + r (from the assumption p+ ¢ +r ¢ S) and, on the
other hand, the contributions from —p + x = ¢ and —p + = = p + r vanish, since there cannot
be two H-particles in the same momentum state on the range of T.I'T, i.e. Lz, >0 TeI'T =0
for all k € H, which follows from ([4.32]). Applying again (4.32]), we obtain

Tr <a;+ra:;aq+rapTcI’Tc*)

= 3 T (Lm0 1) s 05t oy T T ) (g p 7 # —p )
z,yes

- Z Tr <a’;+7’a2aq+rap]l{/\/——p+x:1}]l{Np—x+y:1}]l{Np:1}Tch:)
z,yeSs

I(gp+r#-—p+z)lig+r,p#p—x+y)

since p — x +y # p + r,q from the assumption r,q —p € S + S and the contribution from
p—x+y=q+r,p can be excluded as above, using that 1 x; >2,7.['T; =0 for all k € H. Since
the particle with momentum —p + z is S-connected both with the particle with momentum p
and the particle with momentum p — x 4+ y, we conclude that

Tr (a; +ra2aq+rapTcFT:> =0 (4.41)

To handle the case r € S+ S or ¢q —p € S+ 5, we observe that, by the Cauchy—Schwarz
inequality, we find

£ Y Vn(r)an,,aagiraplse(p+q+7) (Lsis(r) + Lisisy(r)lsis(q —p))

reA*
p,q€H,

< N*1+5“/2+3€N£{,
where we used that [|V]|so < N7 and |§] < N3#/2+3, O
Next, we conjugate @f with T}, for a k € S.
Lemma 22. On the range of A, we have, in the sense of quadratic forms,

i<T5@ka — Q= " Un(r—p)Nei(pp + 0pin) 0100 ahar >

r,pEHy

SNSRI N+ 1) Y s(p + @)laPajaiaga, + NT2HTEAL
p,g€H

Proof. Let us fix k € S, r € A*, p,q € H, with p+q+r € S. Using (4.4), we obtain, on RanAy,

. sin(X) sin(X%)
Ty an s ragaqirapTy, = cos(Xg)ay ,ayaq1rapcos(Xg) + X, Bray. .a3aq4ra thi X,
* Sln(Xk)
+ [(:os(Xk)a;k,JFTaqanrraplﬁ’,ﬁ€ X, + h.c.] (4.42)

Let us first show that the cross terms on the second line vanish. We have

* * g * * * % 1/2
Apyy Oy Qg QB = Z Apy g Qg QgtrApa” 4 Qg AN / 01Ok ¢
teHy
= A_tQp1QpirQqQgtrQp T Qpy Qg |Qg4rQp, Qg1 ¢ ] ) Ak PtO%k,t
teHy
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Using

* * * * * *
[aq-H"apa a—tak+t] = f44Qg+r0p,—t + 24 Qg11r0p kit + Ogtr,—tAg 4 Ap + Ogpr k407 4Qp (4.43)
+ Ogtr k+t0p,—t + Op ktt0g+r,—t

and noticing that, since the cutoff ©; imposes that the S-neighbourhoods of ¢ and of —(t+ k)

are empty and since p 4+ ¢ + r € S, the contribution of the quadratic terms on the right-hand
side of (£43]) vanishes, we obtain

* * i
Aptr Qg Qg+r a’ka
* ok * * * * 1/2
=Y (005 0 ahag rap + a0 (Sqir—t0p kit + OgarhatOp—t)) arN 20O 1.

teHy
(4.44)

Observing now that all terms in the sum on the right-hand side create a k-connection, we
conclude that Agay +ra2aq+rap82 = 0. Thus, the cross terms vanish on RanAj.

Let us now consider the second term on the right-hand side of (£.42)). From (4.44)) and using,
similarly to (4.3]), the fact that ©y,+ excludes k-connections and particles in the S-neighborhoods
of t and —(t + k), we find, on the range of Ay,

o % * i
Biay i ,aq0q+rapB),

1/2
=) B (0% 05 1105 050 vy + G0 (Ogr 10kt + OqiristOp, 1)) AN ?0iOp
teHy,

= Z Okt Nt (Pt + Prtt)apakay, ,,ay004rapO ¢

teHy,
+ > Ny (Opr—t0q ket + OpsrstrOq,—t) OqirrtOp—t + Oqir,—t0pst) O a5k Ot
t.t'€H),
+ bh- 5 + ).
= a;;JrTaZ(X]E;p e Tp))2aq+rap + N(pp + p—i)(pq + ‘quk)@k,fpek,fq‘serqur,ka
with

(X]ngrr,q,qur,p))Q - Z Nei(pr + @rit)Orpagar (1 = L(p+7,q¢, + r,p ~g —(t + k), 1))
teHy,

—: X} — gPrraatre), (4.45)

Here, similarly to the analysis of Q4 , we used (£25]) to commute O (on the range of Ay, we
have O, ¢ = @,(fz) and we defined

1 if{p+rgq+rpyn((—t+k)+S)U(t+5)) #0

Lp+rgqtrp~g—(t+k),t):= .
0 otherwise,

which checks if at least one of the momenta p+r, g, q, +r or p is in the shell-vicinity of —(¢+ k)
or t. Notice that 5,(€p Fraatre) o o non-negative operator. Moreover, Lemma [ implies that

B < BISIN lon 2Nk S NTHHIIAHTENG (4.46)
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Recalling the definition (4.26]) and using (£30) we have, from (£42]), on RanAy,

Ty ay agaqsrapTy
: (p+7,q) : (p,g+r)
. tr, a+ sin (X ) (s (p+rgatrp)\2SIL(X )
= ap“aZ(cos(X,(cp TQ)) cos(X,gpq T)) + W(X,(f nad Tp)f% QgirQp
X, X
‘2
sin® X},
+ N (@p + @p-1)(Pg + 94-k)Ok,—pOk —0prgrpNe—r9— (4.47)
k

Using trigonometric identities and the fact that the operators X ,gp +T’q),X ]E:q,p +r),X lip triaatrp)

commute with each other, we can write

sin(XP79)
X}gp+r,q)

,sin(X P

cos(X,ng’q)) cos(Xlgp’qH)) + @)
k

(X]S:p+ryq7q+r7p) )

sin(X,gp+r’q)) sin(X,gp’qur))

(p+7,9) (pg+r)
x(ptra xpatr

= cos(

X}ngrr,q) _ X}gp,qur)) <(Xép+r,q,q+r,p))2 _ X}ngrr,q)Xlgp,qur))

— 1 + R](gp+ryq7q+r7p).

We can estimate

iRIngrnq,qH,p) < 5](€p+r,q,q+r,p) + 35lip+nq) + 25’(gp,q+7’) < N OFI5R/2+Te pnp

as follows from the inequality

sin x siny

P (22 —zy) — 1| < (v* = 2%) + 3(v? — 2°) + 2(v* — y?)

‘ cos(x —y) +

for all 0 < z,y,z < v (with v playing the role of X}). The contribution of the remainder terms

R,(gp traatre) g Tk@f T}, can therefore be estimated, using the Cauchy-Schwarz inequality, by

+ 3 Un()s(p+q+r)alai R Pay a,

reA*
p,q€Hy

Vn(r _
< Z 77| J;f)( )|]ls(p+q+T)q2a;+ra2R,(€p+r’q’q+r’p)(./\/'k+ 1) 1R](§p+r,q,q+np)aqap+r

2
reA*
p,q€Hr
" *
— | é )|p2]15(p+q+r)a;aq+r(/\/k+1)aq+rap
TEA* q
p,q€Hr

for every 17 > 0. Choosing n~! = N—5F15%/2+7¢ e obtain

I Z ?N(T’)]ls(p+q+T)a;+ra;R](€p+r’q7q+r7p)aq+7’ap

reA*
P,q€H,
< NEHIsR 24T § VO 6+ @)lpPagagapag Vi + 1)
~ p—rf rer
reA*
qeH
< NOHI5R/240e Z ]15(p+q)\p!2a;a2apaq(/\/k +1). (4.48)
reN*
qeEH
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In the last inequality, we applied Hélder’s inequality and the bound ||Vi || ;3/24+c < N2,
Let us now consider the last term on the right-hand side of (Z47). To evaluate its contri-
bution to 17 QI'T),, we observe that

1 ~
5 2 VNN (ep+ 0p-i)(8q + 4—k)Ok —pOk —gOp+qriNi
A*
paeH, (4.49)

= Z N‘A/N(T = P)¢r(®p + otk )Ok,pOr, N
r,pEH},

By Young’s inequality and estimating ||¢|j1 < C with Lemma @] we find

| S NUNG = D)ol + ppin)| S N
Typer

With the bound

sin? x

5 —1‘<C$2
T

valid for all x > 0 and with the estimate ([4.2]) for X}, we conclude that
sin” X,

i{ Z ‘/}N(T)]IS(P +q+7)N(pp+ Spp—k)(%pq + Spq—k)@k7—p@k7—q5p+q+r,k-/\/’kT
k

reA*
p,q€Hy

— > NVN(r = p)er(9p + @pin)OnpOrpNi| S N7HHTNL,
T‘vper

Together with (4.48]), we obtain the statement of the lemma. O

Next, we consider the term Q;f , where the four momenta are in the shell. We show that its
contribution is negligible.

Lemma 23. Let I' be a density matriz on F(A) satisfying I' = 1proc—o) Tl yarge—0y as well as
[[,Pr] =0 for all k € S (with Py, the parity operator defined in (2.14)). Then we have

Tr TFQST.T < N7V T TP Ng(Ns + N3¥/2H3) T,
Proof. Let us once again use the parity argument: Recall (2.13]), where, for k£ € S, we defined

AAk :HA@‘+ jg: AﬁfﬁNQ+k’

teHy

counting the number of particles with momenta k and the number of k-connections. From the
assumption I' = T yarg.—o} [T yarge—0y With [I',Px] = 0, and from the observation that [T¢, Py] = 0,
we have T.I'T) = P T IT Py + QT .I'TFQy, for all k € S. After computing the commutator of
My, and M, with ap,,azaq4ra, we find that the contribution of ay,agasira, vanishes unless
one of the following conditions holds true:

e pt+tr=xqandqg+r==p
e p+r==+qg+rand ¢g==+p

e p+r=+d4pandgqg==tqg+r,
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This implies that, necessarily, —r = p+ ¢, p = q or r = 0 must hold true. Therefore, we find
that
Tr T/ QY T.I'TY
< < Z Vi ( (p+ q)a” aza_pa, + Z vN(T)a;H apapirap + Z Vi (0 )a,, aqap>T T
p,q€ES p,r€ES p,q€S

Thus
Tr TrQST.L < ||Viv |l 1o Tr Nis (N + N3/ ) T, 0T
Here we used that

> Vnlp+q)a” ajapay = > Vn(ONLN, — 1) + > Vinlp +q)(a” ja—p)(ajap)
P,qES peES p,q#ES
PFq

< Vil Ng(Ng + N3#/2432),
U

As for the term Q}!, we decompose it as in ([E40), writing QY = Qi\/l’l + Q%Q + Qiu’g’.
. M,1
First, we handle @, .

Lemma 24. Let T be a density matriz on F(A) satisfying I' = 1pr..—o) T arge—0y as well as
[[',Py] =0 for all k € S. Then we have

Tr TFQ' T, = 0.

Proof. Recall that

QM1 = % Z VN(r)ay,, agaqsrap + h.c..

qEH, peS,reA*:

p+reH,qg+res
From g € Hyq+r € S, we find »r € S + S. Similarly, from p+r € H,q+r € S, we obtain
qg—p ¢ S+S. With the analysis at the beginning of the proof of Lemma[2]], in particular (£4T]),
we conclude that, unless p + ¢ +r € S, the expectation of a; .azasirap in the state T.I'TY
vanishes. For p+q+r € 5, the operator a,,, .ajaq+ra, creates a (p+q+7)-connection, annihilates
a particle with momentum p € S and a particle with momentum ¢ + r € S. Consequently, also
this term vanishes in expectation due to the same parity argument that was used in the previous
lemmata. U

Finally, we estimate the expectation of the terms Qi\/l’Q and Qﬁd’?’.

Lemma 25. Let I' be a density matriz on F(A) satisfying I' = 1pr..—o) T iarge—0y as well as
[[',Py] =0 for all k € S. Then we have

+Tr THQY? + QYYD < N~ Ty T* Ny (Ng + N3/2H3) 1,

Proof. Let us focus on the contribution of QQ/I’Q, the one of Qi/l’g can be handled analogously.
Recall that

M2 1 i * *
Q"= 3 g VN(r)a, rayaq+rap + hec.
p,qES,TEAN*:
p+r,gt+reH
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Using Lemma [[9], we write
Tr ay, agaqrapTIT,
. * * *
=1Tr Z LNy =13 LN, sy =13} Opr Qg Qa1 L in =13 L, gy =13 Tl T
T,yeS

The term annihilates a z-connection and a particle with momentum p, and creates a y-connection

and a particle with momentum ¢. Thus, by our standard parity argument, we find that one of
the following conditions must be fulfilled:

(1) z = +p and y = +gq,
(2) © =+4q and y = £p,
(3) x =+y and p = *q.
Case (1): With Cauchy—Schwarz we obtain
£ LNy =13 LN, =1} BprGgOatr 0L N =1 LN, g ry=1)
= LN = LN,y =130+ (990G = Opg)agr LN =y LN, =1
< appp(apap + DaprrLin, =iy Ln, =13 T g1 (agaq + DagerLin, =13 Lin, =13
= Op,g g p+rLin, =1y LN, =13 LN, =13 (4.50)

We sum over z and y and write £p, +q for either value that x respectively y could take. The

contribution of the first two terms on the right-hand side of the previous equation can be
bounded by

Z VN(T)TT a;JrT(a;ap + 1)ap+r]l{/\/—p+r:1}]l{N:tqf(PJrr):l}TCFT:
P,qES,TEN™:
p+r,qg+reH

<Vl Tr > (apap + 1) ararly,—1y > Une, ,—iyTITy
peS reH q€eS

= [[Vnlloe Tr (72 (s + [SDNHTT).

where we first shifted r — r — p and then we used Lemma [I9 to replace the g—sum by 1. For
the third term on the right-hand side of (A.50) we readily find

Z VN(T‘)(Spg a;—i—raerT]l{NP+T:1}]]'{N:tq_(p_,_?ﬂ):l}]]-{N:tp_(p_’_?«):l} < HVNHOC)NH|S|
p,qES,reA™:
p+r,g+reHd

Case (2): This can be handled like Case (1) but without interchanging a; and a,.
Case (3): With Cauchy-Schwarz, we obtain
LN = LN,y =1} OO atrOp LN =1 LN, (gpry=1}
S Opyr0q0gtpr LN, =1y LN, =1} + OgurOptptarLing =0 L, =1}

The contribution of the first term (the second term can be handled analogously) can be esti-
mated, after summing over p and x, by

> * * *
Z Z Vi (’I“)TI‘ aPJFTa’qaqaerr]l{Np+r:1}]l{Ny—(p+r)=1}5p7iqTCFTc
qeS,reA*: yes
p+r,g+reH

<IVnllooTr Y agag Y afaplin, 1y D Uiy, - TeI' T
qeS reH yeS

<V lloo Tt NNy T.IT .
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4.6 Proof of Lemma

First of all, we combine the statements of Lemma [I7 Lemma I8 and Lemma 22] to estimate
the expectation of kinetic energy, cubic and quartic terms on the right hand side of (2.8]).

Lemma 26. Let I' be a density matriz on F(A) satisfying I' = 1 nrgc—o0y Tl pnge—0y as well as
[I',Py] = 0 for all k € S. Then we have

Tr Tc*[ 3 p2a;ap+Q§f+éf] TT < Tr Y pPasa, T +2N" (87a—TV(0)) Tr NsT+6;(T) (4.51)
peEA* peS

with

51(F) g N71+5I€/2+3€/2Tr ZN5P+N*5+17I€/2+116TI. ZNS(NS+N3/£/2+3€)P+NFM7€TI. NSF.

peES peS
(4.52)
Moreover, we have the bounds
Tr T; > pPapa,T.T, +Tr TXQYT.T, Tr TrQYT.T < NPT NsT + 61(T). (4.53)

peEA*

Proof. We start with the proof of (£51]). As a first step, we derive a rough upper bound on the

kinetic operator. Let k € S’ C S. From Lemma [I7] and Lemma [ we obtain, on the range of
Ak,

Ty Z pranap Ty < Zp aja, + NFNj + N7IOR2E82 02 < Zp ara, + N*NE.
peA* pEA* peA*

Since [Ny, Ty] = 0 for k # g, conjugating with T, g (y = HpES’\{k} T, yields

CS/Zpaap cS’ CS,\{k}Zpaap cS’\{k}+NNk
pEA* pPEA*
Iterating, we arrive, on the range of Lypr,.—g}, at
v Y Pasa s S plasa,+ NFY CNZ S NFTEN AR (4.54)
PEA* peS kesS kesS

Next, we show (L5I]). Let k € S. By Lemmas [I7] I8 and 22] we have

iAk{Tk Z pa ap+Q§{+@f)Tk_ Z pza;ap—Q?{{ B ~f —Z(k)]Ak

PEA* pEA*
g N—1+5n/2+36/2N3 + N—5+15/€/2+76< Z N2€\pl2a7’fa;‘,apar + NHNS) (Nk + 1)’ (4.55)
p,reH
p+resS

where we denoted

z0 = 3 N[QI?N( )+ 2%, + Y Un(r — )0 )} (0r + @rii)NLOP). (4.56)
reHy teHy
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Conjugating with T, g\ 1}, we obtain, on the range of 1z.—0y,

[T ( Y PPajay+Qff + QT
peEA*
cS\{k} Z prayap + Q3 + Q4 ) e S\{k} — ;S\{k}Z(k)TaS\{k}]
peEA*
< N—l+5&/2+35/2N2

LN 5+15’"‘/2+75T*s\{k}[ > N*pPaiasayar + N“Ns] (Ne + 1)Te 57\ {1y

p,reH
p+res

Using Lemma [T9 (note that the r-sum runs over the S-neighborhood of —p) we find

r <T:,s\{k} > N*plPLs(p + r)ajagapa NiT, S\{’f}r>
preH

STeTr g iy N> Y IplPajapNiTe s T
peEH

< NFHETE Y NZ NG,

peS

where we used (£54]) in the last inequality.
Let us return to (A.57) and consider the term T s\(k} 2 (k)Tq s\{k}- We claim that

Zl:Aq (T;Z(k)Tq _ Z(k))Aq S N*5+17R/2+76qu\/’k‘

(4.57)

(4.58)

(4.59)

for all ¢ € S\{k}. Since T/NNT; = NN, for all ¢ € S\{k,q}, ([A59) immediately implies

that
+Tr (T;S\{R}Z(k)Tc,S\{k} _ Z(k))r < N~5HITR/24Te e AFOAG T
Inserting (£58) and (£60) in ([@57) yields

Tr T* Z pa ap—l—Q?—i—éf)TcF
peEA*

ST T 5\{k}( Z p-a, pap + Q?, + Q4 ) cs\{k}F +Tr Zz®Kr
peEA*

i CN71+5H/2+35/2TTN]€2F + ONT5HITR/2410e oy ZNE(Nk + 1)

peS

Iterating (and using the assumption I' = Tz —oy 1 {ary.—0} ), We conclude that

Tr T* Zp a ap—}—Qg{—}—éf)TCF

peEA”
< T [ Do pPapa, + Y 20|14 ONTIIEERT S ARD
pes kes pes
+ CN*5+17I€/2+11€ Tr ZNQ(NS + N3n/2+3€)r
p .

peS
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In the definition (4.56]) of Z (k) we apply the scattering equation (23)). With (Z4)), LemmaH
and |V (r — k) — Vv (r)| < |k|N~2+26 < N—2456/242  we find

Z N |:2‘7N(7’)+27“2(,07» + Z ?N(r - t)(Pt ((Pr + <Pr+k)
T‘er ter

= NUN(r)(@r + @rix) + O(N"7F) = 2N%(87a — V(0)) + O(N"°).
reHy

With (L61)), this implies (A5T]).
It remains to show (£59). With (£20]), we obtain

sin(X,
Xy

) ° (2) 2 Sln(Xq
——rBeler)s: X,

)T )T 7t

AqT;@,(f)@,(jZTqu = A, <cos(Xq)@,(§2)®,(§2) cos(Xg) +

q

2) (2 sin(Xg) 2 (r,—(k=+1),— (k=+1),t)
== @k @k,tAq 1 - T 5(] ’ ’ ? Aq,

in(X,
= ePlepA, <c0s<Xq>2+ G= q)) (X)) )A

7r q
where 5§T’7(k+r)’7(k+t)’t) and X(gr’f(kJrr)’*(kH)’t) were defined in (4.45]). Using (£.46]) we find

£, (T;001000T, - 0100 ) A, § N=FH1H/2HTe N, (4.62)

)T )T

From this and

> N2Un() + 2%+ Y Unlr = Ogr| (pr + orin) S N,
T’EHk ter

which follows from Lemma [ we find (4.59).
Finally, let us show (@53). The bound on the kinetic term ) p*a%a, was shown in (Z54).
By Cauchy—Schwarz we find

1
+Qy' < Q1 + CN"Ng, (4.63)
which implies
Qi = Q1 +204 —2Q4 <2QY + Q) + CN"Ns.
This, together with (A5]]), Lemma 21l and Lemma [I5] implies the bound on the quartic term
Q! The bound on the cubic term then follows again by (ZG3). O

We are now set to conclude the proof of Lemma [6l Recalling the assumptions on I' and
the decomposition (I8 and collecting the bounds from Lemma [B Lemma [I6 Lemma 20,
Lemma 2], Lemma 23], Lemma 24], Lemma 25] and Lemma 28], we have

Tr T e B Wg, Hy Wi, P T.T

AraN¥ 2

< 4raN' — 8maN*(N — No) + ) %
+ Tr [Zp a,ap + 167TaN“./\/'s+47raN“ZTr aya ,p+hc)]l’+5(l‘)

peS pES

where
5(T) S Tr THET.T + (v No/N — )Te Ty QY T,T + N™2H4+eTy (Ng + N3%/2H36) 1

4.65
+ N71+5I€/2+3€Tr T:N[%]Tcr + N7y TC*N(NS + N3/€/2+35)TCF + 51(F). ( )
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With (2.9), (452) and with Lemma [I5] we find

5(I')
SN Te Tp Y pPajap,Tel + N7PTe TrQUTLT + (v No/N — )Tr T Q4 T.T
pEA*
+ (N*Ii/2*€/2 +N77+13n+6€)Tr Ngr + N 1Hr+6ey (NS + N3H/2+3€) ZNI?F _i_]\[5.l-e/275/27

peS

if 1/2 < k < 8/15 — 2¢/3 (note again that in particular e < 1/20). For the first three terms on
the right hand side we use ([4.53) and find that they can be absorbed in the error terms that
are already present.

U
4.7 Proof of Proposition [§
From (2.J) and (2:6]), we find
e BIWR N WiyePt = e 751 (No + N + v/ No(ag + ag) ) P!
= Ny + Z [(012, -+ sf,)a;ap + cpsplaya”, +apa_p) +s ] No(ag + ao). (4.66)

peEA*

From (27) and (£35]), we find that on the range of T.I', the second term in (£66]) simplifies to

Z [(012, + sf,)a;ap + cpsplaya”, +apa_p) + 512,] =N+2 Z 23012,a;ap Z Ng 2 (4.67)
peEA* peH |p|>Nr/2+e

Here we used Lemma [I9 to argue that Tr T aya” ,T.I' = 0 for p € H as a,a’,, would leave two
excitations in H which are no longer connected. Also, from the definition of T" in ([2:20]), we
clearly have

Tr (T7agTel) = Tr (apl) = 0.

Recall from (4.9)) that on the range of I' we have

NH)T ./\/-s—i-J\L Ns.

TC*NTC (NS+ 5 5

Then we obtain that
TrNT N > TrN5F+N0

To prove the upper bound, we combine the above identities (A66) and (L67) with Lemma
and ¢, S p 2N~1* from Lemma @] as well as Ny < N, which follows directly from the

~

definition (2.28]) and Lemma [7l We find that on the range of T’
Tre B N WaoePH T, — Ns — No S N3N 4 N3 /22,

and from Tr NgT' < N3%/2 see Lemma [7] we obtain Proposition &l
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A Proof of Lemma 4

For N large enough, Vy is supported in A so that we may consider it as a function on the torus,
i.e. Vi € L*(A). Since Viy > 0 we may invert —A+1Vy on PLL%(A), where P+ = 1—[1,)(1,|
is the projection onto the orthogonal complement of the zero mode. We define

1 1

—= Ptvy € PYL2(A Al
2PL(—A+ lvypt N ) (A1)

@:

and readily find that in momentum space ¢ satisfies ([Z.3]). Moreover, from (A.I]) we obtain

1 1 1 _
(#,~A¢) = =3 (. V(L + ) < =3 (, Vi) < 5 [9lall(P*VP) Vi

In particular ¢ € H*(A) since (3, V) < |l¢ll2]|V|lz < co. We compute

PV Pz =S Vn(p)* _ 3 Vv (p)* - VN(2P)2

2 2
p7#0 0<|p|<N1=* P p|>N1—r p

< C||VnllooN' ™% + CN 2| V||l < ON7H*

and conclude the estimate ||pp||3 < CN~1** from Lemmall From this and (Z3]) we deduce the
pointwise bound p?p, < CN~1*%. This readily implies the bounds ||¢||cc, [|¢2|| < CN~1** and
the bounds for the cutoff version of . Next, we estimate the /!-norm of ¢. For q € [1,6) we
use Holder respectively Young inequalities, note that we always estimate 17]\/ in the /2—norm,
and find that

leellg < H(P]l\p\<N*1+ﬁHq + ”‘P]l|p|>N*1+an

1 o 1
SOv+35lp UL jpsn-tenllg + 5lp (Vv * @)L s n-14xlq
< Oy + Cnlells,

if we choose 1 < s < 66qu. By a bootstrap argument, choosing first ¢ = 1, then ¢ = 6/5 — ¢;
and finally ¢ = 3/2 — &9 for 0 < £1, £9 small enough we find that

lelll < Cn + Cnllelloss—e, < Cn + Cnllpllz/a—e, < o0

Next we show the exact scaling behavior in N. From (23) and p?p, < CN~'* we obtain for
any constant D > 0

el = el i< py—1xll1 + loL > py—1++ 1
1 e T
<Cp+3lp VN1 jpspn-1+c]l1 + 5lp Vv s @l s py-1+ 1

< Cp +CD72||py].

Thus, choosing D large enough, we obtain ||¢||; < C.
Next, we want to show (2.5). We want to compare the scattering solution ¢ on the torus to
the one on R3. It is well known that the optimization problem

1
inf{/ way2+—/ Vy1+w\2:weH1(R3)}
R3 2 R3
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has a unique minimizer w and that the minimal value is given by 4ma. Moreover, w solves the
scattering equation

1
—Aw + §V(1 —l—w) =0

and it holds that |w| < %H’ as well as |[Vw| < ﬁ As a mean to compare ¢ and w we rescale
and truncate the full space scattering solution. Let wy(x) = w(N'""z)x(z), with 0 < x < 1
a smooth and radial function such that x = 1 for |z| < 1/2 as well as x = 0 for |z| > 1. We

obtain that wy solves the following equation

1 1 1 1
(A + SVN)wn = =5 VN - INT™H(Vw)(NT™7)Vx — w(NT") Ay =: —5Vn Fgene (A2)

From the estimate on w we find |lwy|i < CN7'* and |ley]t < CN~1T%. Observe that
8ma = [pa V(1 +w)=N"" [, V(1 + wy) and 8ray = N'7% [, Vy(1 + ). Then with (A2)
and (A.J]) we conclude that

8rla —an| = N'""[(Viv,wn = @) oy | S N'TEH(PH Vv, wy — @) |+ N5V [l lwn|h
1
< N'TF[(2PH(-A + SVN)pwn — @) [+ CN~H*

—K v 1 > —K v —14k
SN0, (A + SVN) (v = @) |+ N (@, VivPwn) |+ CNTH

SNYE(@, en) |+ N5@ oo IVl lwn |1 + CN TS
< N'||gllollen]ls + CNTHFR
< CON1F",

B Proof of Proposition

We follow partly [3].

B.1 Dirichlet localization

Let I';, be a density matrix over F(Ar), satisfying periodic boundary conditions such that (L8]
holds true. By the spectral theorem, we can decompose

Tr = N[0T,

JjeJ
where \; > 0 for all j € J, >,
on F(Ar). We have ¥; = {\Ilg.")}n20 where ﬁlgn) is L-periodic in all its coordinates (we think

Aj = 1 and where ¥; € F(Ar) is an orthonormal family

of \Ilg.n) as a periodic function defined on R3"). For fixed j € J and u € Ay, we define now
\Iffu = {(\Iffu)(")}neN € F(A}, o), where A} 5, = u+ Ar,o is a box of side length L + 2/,
with center at u, setting

(\I]fu)(n) (3715 . ,xn) = \Ilgn) (ml, ... ,QTn) H QL,n(xi — u)
=1
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with Qr¢(x) = H?Zl qr(z9) for all z = (V22 23)) € R3 with gz, : R — [0;1] defined
through
cos (W) if [t+L/2| <4

g ot) = 1 if [t| < L/2—¢
Lt cos (”(t%fm) if |t —L/2| <¢
0 otherwise

By construction \Iffu satisfies Dirichlet boundary conditions on the box A7 .
Lemma 27 (Dirichlet localization). We have
(@l P

Jyur *iu > (L+2£)

= (U, ¥;) = 0y (B.1)
Thus, F€+2£,u =D ies )\j]\IffuM\Iij] is a non-negative operator on F (A} ,,), with Tr I’ﬂ_%u =
1, with S(F€+2£,u) =S(I') and

Tr NI 90, = TENIT (B.2)
for all j € N and all w € Ap,. Moreover, there exists @ € A, such that

C
Tr HID gpq < TrHDL + TN (B.3)

Proof. The proof is an adaptation of [3, Lemma A.1] to the mixed state setting. It is based on
the observation that, for arbitrary L-periodic functions ® € L (R),

L)2+0 L2
[ swlanawpa= [ e,
—L/2—¢ —L/2

This shows that in particular that
(WP, (wh)™) = (w v

<\IID (” Z V(x; — ;) \I/{)u)(”)>:< Z V(x; — ;) ()>

1<z<]<n 1<z<]<n

and thus implies (B.I) and ([B.2). The fact that S(I'P vo0w) = S(I'L) is clear, since the operators
I‘E 120 and 'y, have the same eigenvalues. As for (B.3), we proceed as in the proof of Lemma
[3, Lemma A.1] to show that, for all j € J and all u € Ay,

<¢]u,7'[1/1ju> <1/J],7'[1/J] EQ Z /dml XLZ T —u) /Anl d.%'g...dxnng,n)(xl,...’xn)P
neN L
where we set X, () = 22:1 xr.o(x®) [Lzk X(—Ly2:0/2) (zU)) and we used the notation
XL, = X[-L/2—t;—Lj2+6 + X[L/2—¢;L/2+¢)
Summing over j € J with the weights \;, we obtain
Tr HI‘L+2€u TrHT + — 7 ZJ)\ ZN /dﬂ:l Xre(r1 —u) /A"—l dxsy .. .d:cn|\lf§n)(:v1, cz)]?
VIS ne L

for all uw € Af. Averaging over u, using || X ¢[l1 < CL?*¢, we conclude that there exists 4 € Af,
such that

C
Tr HID g0 < TrHDL + TN

as claimed. O
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B.2 Patching up the boxes

For j € J, we define now \I’fLJr% € F(ALy20) setting (\I’fLJr%)(")(xl, cey ) = (\Iffa)(")(xl -
U, Xy —1U,...,Ty,—u), with @ chosen as in Lemma 27 Correspondingly, we introduce the density
matrix 'Y, ,, € F(Ar1o¢) on the box Aj 490 = [-L/2—0; L/2+(], satisfying Dirichlet boundary
conditions. This allows us to replicate I’IL) o0 into several adjacent copies of Af 2/, separated by
corridors of size R > 0 (to avoid interactions between particles in diffierent boxes). For t € N,
let

L=1t(L+2(+R).

We think of the thermodynamic box A; as the (almost) disjoint union of t3 shifted copies of
the small box Az 94 g, centered at

(=L/2,—L/2,—L/2) + (L + 20 + R)(i1 — 1/2,iy — 1/2,i3 — 1/2)

for i1,i0,43 € {1,...,t}. Let (¢;);—1,. 43 denote an enumeration of the centers of the boxes.

Using L*(A7) = @511L2(ACL a0+ ) and the canonical identification (see for eg. [15, Theorem
16])

® F(AL o r)
we can define on F (A7) the state

T2 T ooy @ @ F€+2£+R,ct3' (B.4)

Here the tensor products are symmetric. Then we have Tr FD =1,
TT-/\/TIZ) = tTr NTT 901 1

as can be seen decomposing N = Zfil./\/;, where N; measures the number of particles in the
box with side length (L + 2¢ + R) centered at ¢; Moreover,

Tr HF% = " Tr HT ] oy
and S(Flz)) = t35(T'P 5, ), as follows by noticing that, if (;)jes are the eigenvalues of
I'+o0+R, then the products Aj, ... A; ; are the eigenvalues of I’g. In particular, we obtain
TrHTY — TS(TF) = t* [Ty HTD 90 g — TS(T T 204,)]

The state Fg is a good trial state for the free energy in the grand canonical ensemble.

B.3 From grand canonical to canonical ensemble

As a last step, infer a bound on the canonical free energy, with a fixed number of particles, from
the energy of a grand-canonical state.
Lemma 28. Suppose there exists a sequence I’lL? of density matrices on F(Az), parametrized
by L>0 and satisfying Dirichlet boundary conditions and such that
1
Jim < Tr ./\/F~ = p. (B.5)

L—oo L

Then
F(5.T) < liminf — [Tmr — s,

L—oo L

o1



Proof. We use the equivalence of ensembles: the free energy p — f(p,T) is convex and is given

by the Legendre transform of the pressure, see for example [25]
(B.6)

ﬁ{uﬁ + fac(u, T)}

f(p,T) =su
pe
with
: T L (H—uN)
faoc(p, T) = lim —=logTre 7tV
I—soo L3
Then, for all 4 € R, using Gibbs’ variational principle, we obtain
1
_ D_ Dy = liminf — D _ Dyl 5
[Tr (H =I5 TS(FL)] lgirri>1c>r(1>f s Tr HT'F TS(FL)] p-
O

1
fao(p, T) < liminf —
I—oo L3

The above inequality being valid for all i, we deduce the claim using (B.6]).

B.4 Proof of Proposition
We can now conclude the proof of Prop. 2l
Let I';, be a density matrix on F(Ar), satisfying periodic boundary conditions and
TrNT < co.

With Lemma 27, we find a density matrix I‘g o0 ON F (A 9¢) satisfying Dirichlet boundary

conditions, with
Tt NTP = TTNT
and
TrHTP o — TS(TF o) < TeHT, — TS(TL) + L%TrNPL.

From (B.4), we find, for any ¢ € N, a density matrix I‘lg on F(Az), with L =t(L+20+R),

satisfying Dirichlet boundary conditions, with
1 C
TeHT L —TS(T TrNTy.
5 (TrHIy, ( L))+(L£)(L+2€+R)3 r NTp,

1 D D
= — =~ < —
3 <Tr7-[FL TS(FL)) ( 57 )

Denoting . )
pi==—TrNT? = ————=Tr NTy,
3 L (L+20+R)

which is independent of ¢, we obtain by Lemma 28] letting L — 00 (i.e. t — 00), that

~ . 1 D D

< - 2 _ £

7 T) < Jim = [Tr?—lFL TS(P)
1

< ITrHD, - TS + 22

T ot iy (e - TSTol+ 7
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