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Abstract

In the field of computer vision, the numerical encoding of 3D surfaces is crucial. It
is classical to represent surfaces with their Signed Distance Functions (SDFs) or Un-
signed Distance Functions (UDFs) [AL20, CZ19, GFZ+20, MON+19]. For tasks like
representation learning, surface classification, or surface reconstruction, this function
can be learned by a neural network, called Neural Distance Function [CPM+20]. This
network, and in particular its weights, may serve as a parametric and implicit repre-
sentation for the surface. The networkmust represent the surface as accurately as pos-
sible. In this paper, we propose a method for learning UDFs that improves the fidelity
of the obtained Neural UDF to the original 3D surface. The key idea of our method is
to concentrate the learning effort of the Neural UDF on surface edges. More precisely,
we show that sampling more training points around surface edges allows better local
accuracy of the trained Neural UDF, and thus improves the global expressiveness of
the Neural UDF in terms of Hausdorff distance.

To detect surface edges, we propose a new statistical method based on the calcula-
tion of a 𝑝-value at each point on the surface. Our method is shown to detect surface
edges more accurately than a commonly used local geometric descriptor [PGK02].
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1 Introduction

1.1 Industrial Context

Many problems in science and engineering require solving complex boundary value prob-
lems. The geometric shape of one part of a system may have a significant influence on
the system’s performance. For example, the geometric shape of the turbine blades of an
aircraft engine significantly influence the engine’s performance [Roy96]. In those cases,
the geometry of the parts must be determined very precisely. The simulation codes used
to design the parts can be very costly in terms of time and power [CSR24]. The ultimate
goal of our work is to obtain real-time estimates of the outputs of these codes. This would
significantly reduce the design time and allow better exploration of different geometries
for potentially higher performance. Such approach has also motivated the seminal works
[RLR+20] and [PFS+19] that have inspired our research.

In order to build such a model, we isolate the part from the industrial system and consider
it as a shape in ℝ3. We have access to a set of these shapes and we attempt to construct a
parametric and implicit representation of these shapes. Parametric in the sense that each
shape from the dataset is mapped to a combination of parameters called latent representa-
tion. Implicit means that the shapes are numerically encoded by their distance functions,
from which they are the zero-level set (see Section 1.2). Practically, each shape is rep-
resented by the weights of a neural network called Neural Unsigned Distance Function
(Neural UDF, see Sections 2.2 and 3.4). Each Neural UDF represents each shape because it
has been trained to reproduce the shape’s true UDF. This latent representation can be used
as the input data of a regression model to predict numerical simulations outputs.

In this paper, we only focus on the problem of learning an UDF by a neural network. In
particular, we propose to train the Neural UDF on points sampled in a smart way. Our
objective is that the Neural UDF represents each shape more accurately.

1.2 Encoding 3D Shapes With Implicit Field

Some active research fields like computer vision, robotics, and numerical simulations re-
quire the ability to manipulate three-dimensional data. The 3D scenes to be processed
consist of sets of 3D objects. Here we focus on the envelopes of these objects, specifically
3D watertight surfaces (see Definition 1.1).

Definition 1.1 (Watertight surface)
Let𝒱 be a subset ofℝ3 andℬ its boundary. ℬ is awatertight surface i.i.f. the three following
conditions are fulfilled:

• 𝒱 is bounded

• 𝒱 is a connected set

• ℝ𝐷 ⧵ 𝒱 is a connected set

Given a task to be performed on a set of surfaces (representation learning, regression, clas-
sification,...), a crucial preliminary question is the digital format used to encode the sur-
faces. This format may be imposed by the data source or chosen to suit the learning ap-
proach.

The most common representation is meshing. Meshes are particularly used in CFD or
design. It is also well-suited for training graph networks [SGT+09, LCBF21, LFBC22]. In
this work, we only used surface meshes in order to sample points from the surfaces and
compute the surface UDF (see Section 3.3).
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Point cloud is also an important type of 3D geometric data structure. This type of data is
becoming increasingly available as acquisition democratizes with stereo cameras and Li-
DAR. However, extracting geometric features from a point cloud is challenging because
the number of sampled points and the order in which they are recorded can vary within a
given set of surfaces. Many Geometric Deep Learning approaches are based on PointNet
model [QSMG17]. This model allows to learn shape representation for regression and clas-
sification tasks. In our work, we use point cloud representation for edge detection, surface
reconstruction and visualization.

Other approaches are based on voxel grids [GYLB+19]. This format is well-suited for 3D
convolutional networks but is very expensive in terms of memory. We did not use this
approach here.

It is also possible to encode a 3D surface in the form of its distance function [AL20, CZ19,
GFZ+20, MON+19]. More precisely, this function associates each point in the ambient
space with its distance to the closest object in the surface. This function can be signed
(Signed Distance Function, SDF) or unsigned (Unsigned Distance Function, UDF). These
functions are formally defined in 1.2 and 1.3.

Definition 1.2 (Signed Distance Function)
Let us consider a watertight surfaceℬ ⊂ ℝ3. As it is watertight, one can define ℐℬ (resp. 𝒪ℬ)
the inner (resp. outer) part ofℬ. The Signed Distance Function (SDF) ofℬ is the function
SDFℬ ∶ ℝ3 → ℝ such that:

∀𝒙 ∈ ℝ3, SDFℬ(𝒙) ∶= {
𝑑(𝑥,ℬ) if 𝒙 ∈ 𝒪ℬ
−𝑑(𝑥,ℬ) if 𝒙 ∈ ℐℬ

(1)

Definition 1.3 (Unsigned Distance Function)
Let ℬ ⊂ ℝ3 be a watertight surface. The Unsigned Distance Function (UDF) of ℬ is the
functionUDFℬ ∶ ℝ3 → ℝ such that:

∀𝒙 ∈ ℝ3, UDFℬ(𝒙) ∶= 𝑑(𝒙,ℬ). (2)

The surface thus corresponds to the zero-level set of its distance function. We use this for-
mat because it gives a continuous representation and can be easily learnedusing a surrogate
model (for example a neural network). In Section 1.3, we give a pratical description of a
representation learning model based on SDFs. However, the contributions of this paper
relate to methods based on UDFs.

1.3 DeepSDF: Autodecoder For Representation Learning

In [PFS+19], Park et. al. propose a model called DeepSDF for learning representation of
3D watertight surfaces based on implicit distance function and auto-decoder architecture.
This model combines the following two ideas:

1. interpretation of a surface as the zero-level set of its SDF. Train a neural network to
predict the values of this function on a dataset of points in ℝ3.

2. learn a representation 𝒛 of a surface (encoded by amesh) in a low-dimensional space,
as inspired by autoencoder models [Bal87a].

This Section gives a practical description of the methodology proposed in [PFS+19]. We
make this description rough enough so that the main ideas can be easily understood. For
more details, we refer to [PFS+19].
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In Paragraph 1.3.1, we formulate the problem tackled by DeepSDF model. In Paragraph
1.3.2, we describe the dataset used to train the network. In Paragraph 1.3.3, we explain
how the netowrk is trained. In Paragraph 1.3.4, we give the procedure used to map any
new shape to a point in the latent space. In Paragraph 1.3.5, we explain how one can use
DeepSDF model for shape generation.

1.3.1 Problem Statement

Consider a set ofwatertight surfacesℬ1, ..., ℬ𝑁 whose SignedDistanceFunctions SDF1, ..., SDF𝑁
can be calculated at any point ofℝ3. The SDF of a surface is formally defined in 1.2.

DeepSDF model consists of an auto-decoder network [ZLLM19]. This single network is
able to

• estimate the SDF of each of the shapes ℬ1, ..., ℬ𝑁 at any point in ℝ3.

• maps the shapes ℬ1, ..., ℬ𝑁 to latent codes 𝒛𝟏, ..., 𝒛𝑵 ∈ ℝ𝐿. Latent dimension 𝐿 is a
hyperparameter of the model that needs to be fixed in advance.

1.3.2 Data preparation

The training dataset is composed of inputs and target ouputs. The inputs are the concate-
nation of:

• the spatial coordinates of a point in ℝ3

• a latent code in ℝ𝐿.

For any point 𝒙 ∈ ℝ3 and any latent code 𝒛 ∈ ℝ𝐿 (refering to a shape ℬ), the associated
target output in the dataset is the value of the SDF of ℬ at the point 𝒙.

The training dataset 𝑿 is built as the union of 𝑁 sub-datasets - one for each shape:

𝑿 =
𝑁⋃

𝑗=1
𝑿𝒋. (3)

Given a shape index 𝑗 ∈ J1,𝑁J, let us describe how to build the dataset 𝑿𝒋 corresponding
to the shape ℬ𝑗. A set of points 𝒙(𝟏)𝒋 , ..., 𝒙(𝑻)𝒋 is sampled in the ambient space ℝ3. These
points are sampled close to the surface ℬ𝑗

1 . The obtained training points constitute the
data sets

𝑿𝒋 ∶= {(𝒙(𝒕)𝒋 , SDF𝑗(𝒙
(𝒕)
𝒋 )), 1 ≤ 𝑡 ≤ 𝑇}, 1 ≤ 𝑗 ≤ 𝑁. (4)

1.3.3 Learning the latent representation

In this paragraphwedescribe how the latent representation of the training shapesℬ1, ..., ℬ𝑁
is learned by DeepSDF model.

DeepSDF is an auto-decoder network [ZLLM19]. In this architecture, there is no encoder
network, i.e. there is no parametric functionℬ ↦ 𝒛 that directly encodes the shapes in the
latent space.

1For the sake of simplicity, we do not dive into details regarding the way training points are sampled as
it is the main topic of Section 3.2. For more information on this, we refer to the supplementary materials of
[PFS+19].
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Latent code 
𝒛𝒋 ∈ ℝ"

Point 
𝒙𝒋
(𝒕) ∈ ℝ𝟑

Auto-
decoder
𝐴𝐷𝜽

Output 
𝐴𝐷𝜽 (𝒙𝒋

𝒕 , 𝒛𝒋) ∈ ℝ

Figure 1: DeepSDF model architecture. Each training input is the concatenation of a point
𝒙(𝒕)𝒋 ∈ ℝ3 and a latent code 𝒛𝒋 ∈ ℝ𝐿 (the one referring to the envelope ℬ𝑗). The value of
𝐿 and the architecture of the network are hyperparameters of the model. The parameters
optimized during the training step are both the latent codes 𝒛𝟏, ..., 𝒛𝑵 and the network’s
weights 𝜽.

Let us denote the auto-decoder network AD𝜽 . 𝜽 refers to the weights of the network. The
network architecture is depicted in Figure 1. The input of the network is a concatenation of
a latent code and three point coordinates. The output of the network is a scalar value.

Given a batch of points 𝒙(𝒕)𝒋 ∈ ℝ3 and latent codes 𝒛𝒋 ∈ ℝ𝐿 (1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑡 ≤ 𝑇), the
network is trained in order to minimize a loss which is the absolute difference between its
outputs and the true SDF values:

(𝜽∗, 𝒛∗𝟏 , ..., 𝒛
∗
𝑳) ∶= argmin

𝜽,𝒛𝟏,...,𝒛𝑳

∑

𝑡,𝑗
|AD𝜽(𝒙

(𝒕)
𝒋 , 𝒛𝒋) − SDF𝑘(𝒙

(𝒕)
𝒋 )| (5)

where 𝒛𝟏, ..., 𝒛𝑵 ∈ ℝ𝐿 are the latent codes that refer to the shapes ℬ1, ..., ℬ𝑁 . They are
initialized with values sampled from a Standard Gaussian law in ℝ𝐿.

A regularized term is used to force the distribution of the latent codes to keep close to a
Standard Gaussian distribution 2 .

Once the network has been trained, the latent codes 𝒛𝟏, ..., 𝒛𝑵 obtained constitute the latent
representation of the training shapes ℬ1, ..., ℬ𝑁 . In the context of regression or classifica-
tion on the set of shapes, the latent codes are used as inputs to predict the labels associated
with the shapes.

1.3.4 Latent code inference for unseen shapes

Let us consider a new surface ℬnew ∉ {ℬ1, ..., ℬ𝑁}. In more common approaches like
autoencoder [Bal87b], we would be able to compute directly its latent representation using
the encoder network as the latter maps any shape to a latent code.

In the auto-decoder framework, the latent code 𝒛𝐧𝐞𝐰 associated toℬnew is computed using
inference 3 . Practically, a latent vector is randomly initialized and then optimized so that
the output of the network gets as close as possible to the SDF values of the sampled points
for the given new shape. Formally, points 𝒙(𝟏)𝐧𝐞𝐰 , ..., 𝒙

(𝑻)
𝐧𝐞𝐰 are sampled close to the surface.

2The main idea of the network optimization is summarized in Equation 5. For the sake of simplicity, we
consider that Equation 5 summarizes well the network optimization. For more details, we refer to Section 4.2
of [PFS+19].

3Here the term inference refers to Bayesian inference which is the underlying theory used here. The
Bayesian derivation of the auto-decoder-based DeepSDFmodel is described in Section H of the supplementary
material of [PFS+19]. In our work, we only describe the model practically. As explained right after, the latent
code associated to the new shape is optimized using gradient descent.
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The procedure used to sample these points is the same as the one used to build the datasets
𝑿𝟏, ..., 𝑿𝑵 (see Paragraph 1.3.2). The obtained dataset can be defined as follows:

𝑿𝐧𝐞𝐰 ∶= {(𝒙(𝒕)𝐧𝐞𝐰 , SDFnew(𝒙
(𝒕)
𝐧𝐞𝐰)), 1 ≤ 𝑡 ≤ 𝑇}. (6)

Afterwards, the previously trained auto-decoder network is used with fixed parameter val-
ues to perform a gradient descent in ℝ𝐿 as follows:

𝒛𝐧𝐞𝐰 ∶= argmin
𝒛∈ℝ𝐿

∑

𝑡
|AD𝜽∗(𝒙

(𝒕)
𝐧𝐞𝐰 , 𝒛) − SDFnew(𝒙

(𝒕)
𝐧𝐞𝐰)|. (7)

1.3.5 Shape generation

Shape generation can be performed by picking some new point 4 in the latent space ℝ𝐿.
Given points randomly sampled in ℝ3 in ℝ3, one can get an estimate of the SDF at these
points. Neverthelss, effective methods to compute the zero-level set of a given function
ℝ3 → ℝ are discussed in [OFP04, RLR+20, LDG18]. Most of works in the field of com-
puter vision use the Marching Cubes algorithm [LC87, LLVT03] on the Signed Distance
Function. This algorithm is used to extract a 2D surface mesh from a 3D voxel grid. It
can be conceptualized as a 3D generalization of isoline drawing on topographical maps.
SDF values are incoded as a voxel grid and the algorithm looks for the voxels that cross the
zero-level set of the SDF values.

1.4 Edge Detection

A surface edge is typically characterized as a tangential discontinuity. In [WHH10], Weber
et al. describe edges as distinct features (such as peaks and valleys) where two planesmeet,
alongwith corners formed at the convergence of three ormore planes. In [HWS16], Hackel
et al. refer to these as "wire-frame contours", defining edges as lines where there is an
abrupt change in the orientation (normals) of the underlying surface.

In this paper, we propose a method for improving the training of Neural UDFs by focusing
the network’s effort on surface edges. Before training, and even before building the train-
ing dataset, all types of surface edges (crests, valleys, peaks,...) need to be detected. When
the surface is encoded as a point cloud, it is conventional to compute local geometric de-
scriptors at each point of the cloud [HLP+21, DVVR07, PGK02, WJHM15, HWS16].

For example, in [PGK02], Pauly et al. perform local covariance analysis at each point in
a point cloud to compute several local geometric descriptors. They aim to detect surface
edges. It allows them to sample more points around surface edges than in areas in which
the surface is planar or quasi-planar. By doing so, they optimize the sampling of surfaces.
This is called surface simplification. In [WJHM15], Weinmann et al. use these local geo-
metric descriptors to perform classification and shape matching.

Formally, consider a surface ℬ numerically encoded by a point cloud 𝑩. Let 𝑘 be a posi-
tive integer and let denote 𝑵𝒌(𝒙𝟎) ∶= (𝒙𝒊)1≤𝑖≤𝑘 the 𝑘 neighborhoods of a given point 𝒙𝟎
belonging to the surface. That is,

𝑵𝒌(𝒙𝟎) ∶= argmin
{𝒚𝟏,...,𝒚𝒌}⊂𝑩

𝑘∑

𝑖=1
|𝒚𝒊 − 𝒙𝟎| ∶= {𝒙𝟏, ..., 𝒙𝒌}. (8)

4The way the point is picked depends on the application. For example, if the latent representation of the
shapes is used as an input for a surrogate model of numerical simulations, one can pick a point in the latent
space that is mapped to good simulation outputs.
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In this paper, 𝒙𝟎 is referred to as the centroid of the neighborhood 𝑵𝒌(𝒙𝟎). 𝑘 repre-
sents the scale at which we detect edges. It is an important parameter of the method. In
[HLP+21], Himeur et al. propose to compute some local descriptors at several scales i.e.
for different values of 𝑘. In our work, 𝑘 is a fixed parameter and its value is empirically
chosen. We discuss further on the the value of 𝑘 in Section 4.1.

Then, we can define the local covariance matrix

𝒱 = 1
𝑘 + 1

𝑘∑

𝑖=0
(𝒙𝒊 − 𝒙)(𝒙𝒊 − 𝒙)𝑇 (9)

where

𝒙 ∶= 1
𝑘 + 1

𝑘∑

𝑖=0
𝒙𝒊 (10)

is the barycenter of 𝑵𝒌(𝒙𝟎) ∪ {𝒙𝟎}. The local covariance matrix (also called 3D structure
tensor) is non negative-definite with three non-negative eigenvalues that correspond to an
orthogonal system of eigenvectors. The three eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 of the local struc-
ture tensor give an idea of the local shape of the surface. In particular, Pauly’s descriptor
5 of the surface in 𝒙𝟎 is given by the following formula:

𝜖𝑊(𝒙𝟎) ∶=
𝜆3

𝜆1 + 𝜆2 + 𝜆3
(11)

This local descriptormeasures the surface variationwith respect to the tangent plane of the
local neighborhood 𝑵𝒌(𝒙𝟎). If the surface is locally planar around 𝒙𝟎, then 𝜆3 ≪ 𝜆1, 𝜆2
and thus 𝜖𝑊(𝒙𝟎) ≃ 0. If 𝒙𝟎 is close to a surface edge, then the local 3D structure tensor is
more likely to be isotropic. In this case, 𝜆1 ≃ 𝜆2 ≃ 𝜆3 and 𝜖𝑊(𝒙𝟎) ≃

1
3
.

As explained in [WJHM15], Pauly’s descriptor, combined with other geometric indicators,
yields great performance in point cloud classification tasks. But it turns out that in some
cases, this method does not identify the surface edges. For example, if 𝒙𝟎 is located close to
a very acute crest or valley, then the local 3D structure is similar to the one of a planar area
6 . Indeed, the average plane (carried by the twomain axes of the eigen decomposition) can
be orthogonal to the underlying surface, which invalidates the surface variation estimate
made by Pauly’s method.

In this paper, we propose an edge detector that is also based on neighborhood selection, but
that uses statistical tools. Indeed, our local descriptor is the 𝑝-value of a statistical test and
not directly a geometric descriptor. It is described in details in Sections 2.1 and 3.1.

1.5 Goodness-Of-Fit Tests For Sphericity

In this work, we propose a novel edge detection method. It is applied to a point cloud
representing a surface. We compute a local descriptor at each point of the surface. This
local descriptor is the 𝑝-value of a statistical test on the neighboring points after orthogonal
projection on the average plane of the neighborhood (see Section 3.1). More precisely, the
projected points are considered as i.i.d random vectors in ℝ2 (projection onto the average
plane). In this Section, we give a review of the statistical tests commonly used to assess the
sphericity of a distribution, based on the empirical cumulative distribution.

5In [PGK02], this feature is called surface variation. In this paper, it is both referred as surface variation
and Pauly’s descriptor

6This limit of Pauly’s descriptor is explained in more details in Appendix A.2.
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1.5.1 Notations

Let 𝑿𝟏, ..., 𝑿𝒌 ∈ ℝ2 be a set of i.i.d. observations and (𝑟1, 𝜙1), ..., (𝑟𝑘, 𝜙𝑘) their polar coordi-
nates w.r.t. a given axis. We aim to test the following null hypothesis:

𝐻0 ∶ {
𝐻0,1 ∶ 𝜙1 is uniformly distributed on [−𝜋, 𝜋)
𝐻0,2 ∶ 𝑟1 and 𝜙1 are independent.

(12)

Let us denote respectively 𝐹𝑟𝑘, 𝐹
𝜙
𝑘 and 𝐹

𝑟,𝜙
𝑘 the empirical cumulative distribution functions

(CDF) built on (𝑟𝑖)1≤𝑖≤𝑘, (𝜙𝑖)1≤𝑖≤𝑘 and (𝑟𝑖, 𝜙𝑖)1≤𝑖≤𝑘 respectively. That is,

∀𝑡 ∈ ℝ+, 𝐹𝑟𝑛(𝑡) ∶=
𝑘∑

𝑖=1
𝟙𝑟𝑖≤𝑡, (13)

∀𝜓 ∈ [−𝜋, 𝜋), 𝐹𝜙𝑘 (𝜓) ∶=
𝑘∑

𝑖=1
𝟙𝜙𝑖≤𝜓, (14)

∀(𝑡, 𝜓) ∈ ℝ+ × [−𝜋, 𝜋), 𝐹
𝑟,𝜙
𝑘 (𝑡, 𝜓) ∶=

𝑘∑

𝑖=1
𝟙𝑟𝑖≤𝑡 and 𝜙𝑖≤𝜓. (15)

1.5.2 Goodness-Of-Fit Tests For Uniformity of the Polar Angles

The classical statistical methodology to validate or invalidate the null hypothesis𝐻0,1 (uni-
formity of the polar angles) consists to compute a discrepancy between the empirical dis-
tribution of the sample (𝜙𝑖)1≤𝑖≤𝑘 and the uniform distribution. To begin with, let 𝐹0 be the
CDF of the uniform distribution. That is,

∀𝜓 ∈ [−𝜋, 𝜋), 𝐹0(𝜓) =
1
2𝜋(𝜓 + 𝜋). (16)

We will briefly discuss the classical goodness-of-fit test procedures.

This short review is based on the book [Y+95]. Following Y. Nikitin, we only focus on the
test statistics that are based on the difference 𝐹𝜙𝑘 − 𝐹0. In [Kol33], Kolmogorov proposes
the now classical statistic

𝐴𝑘 ∶= sup
−𝜋<𝜓<+𝜋

|||||𝐹
𝜙
𝑘 (𝜓) − 𝐹0(𝜓)

||||| (17)

In [Dar83], Darling introduced the centered variant of the Kolmogorov statistics, which is
usually called Watson-Darling statistic:

𝐵𝑘 ∶= sup
−𝜋<𝜓<+𝜋

|||||||||
𝐹𝜙𝑘 (𝜓) − 𝐹0(𝜓) − ∫

+𝜋

−𝜋
(𝐹𝜙𝑘 (𝜌) − 𝐹0(𝜌))𝑑𝐹0(𝜌)

|||||||||
(18)

Some other statistics are based on the 𝐿2-norm of the difference 𝐹𝜙𝑘 − 𝐹0. For example the
Cramér-Von-Mises-Smirnov statistic is defined as follow:

𝐶𝑘 ∶= ∫
+∞

−∞
(𝐹𝜙𝑘 (𝜓) − 𝐹0(𝜓))2𝑑𝐹0(𝜓) (19)

These statistics tend to be more efficient than the Kolmogorov-Smirnov-based ones as they
need smaller samples to converge. In the other hand, they involve integrating the squared
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difference between the empirical and theoretical CDFs, which can be computationally
more intensive, especially for large sample sizes. Moreover, they are less sensitive to small
deviations from the null hypothesis.

In [AD52], Anderson and Darling propose to generalize the previous statistic to any 𝐿𝛼-
norm (𝛼 > 0) and to improve its properties by using a non-negative weight function 𝑞 as
follows:

𝐷𝛼,𝑞
𝑘 ∶= ∫

+𝜋

−𝜋
(𝐹𝜙𝑘 (𝜓) − 𝐹0(𝜓))𝛼𝑞(𝐹0(𝜓))𝑑𝐹0(𝜓). (20)

The incorporation of the weight function allows for more flexibility in handling data with
varying importance or significance. This makes it suitable for situations where certain
observations may be more influential than others in assessing the goodness-of-fit.

In terms of consistency and sensitivity to tail behavior, the best known weighted statistic is
the Anderson-Darling statistic (see [AD54]):

𝐸𝑘 ∶= ∫
+𝜋

−𝜋

(𝐹𝜙𝑘 (𝜓) − 𝐹0(𝜓))2

𝐹0(𝜓)(1 − 𝐹0(𝜓))
𝑑𝐹0(𝜓). (21)

All the aforementioned test statistics can be compared in terms of Bahadur efficiency. The
latter measures the rate at which the test statistic converges to its expected value under𝐻0.
For the statistics described in this Section, the expected value under 𝐻0 is zero. One can
refer to [Bah71] for more details on Bahadur efficiency.

1.5.3 Centered Cramer-Von-Mises Test On The Unit Circle

In [Smi77] the author proposes a test statistics that estimates directly and globally the
spherical symmetry of the underlying distribution. Let describe his procedure. First let
introduce the following quantity:

𝑋𝑘(𝑟, 𝜓) ∶= 𝐹𝑟,𝜓𝑘 (𝑟, 𝜓) − 𝜓
2𝜋𝐹

𝑟
𝑘(𝑟) (22)

In order that the test statistics does not depend on the chosen polar axis, he defines the
following centered version:

𝑌𝑘(𝑟, 𝜓) ∶= 𝑋𝑘(𝑟, 𝜓) −
1
2𝜋 ∫

0≤𝑡≤2𝜋
𝑋𝑘(𝑟, 𝑡)𝑑𝑡 (23)

Under 𝐻0, 𝑌𝑘(𝑟, 𝜓) is close to 0. This last observation motivates the following test statistic
proposed in [Smi77]:

𝑈𝑘 ∶= 𝑘∬ 𝑌2
𝑘(𝑟, 𝜓)𝑑𝐹

𝑟,𝜓
𝑘 (𝑟, 𝜓). (24)

In our work, we use the Kolmogorov test statistic (see Equation 17) applied to the angular
coordinate of 2D points (see Section 3.1). We will proceed in order to avoid the drawback
of a test statistics depending on the chosen origin on the circle (i.e. the choice of polar axis
𝜙 = 0). Practically, instead of using the statistics proposed in Equation 18, we center the
data using their Fréchetmean. The centering procedure is described in Section 2.1.4.
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The decision to validate or reject 𝐻0 is based on the 𝑝-value of the test. It is defined as the
probability that the test statistic𝐴𝑘 (considered as a random variable) is greater or equal to
its realization 𝑎, under𝐻0. That is:

𝑝-value ∶= ℙ(𝐴𝑘 ≥ 𝑎 | 𝐻0). (25)

1.6 Distance between Point Clouds

In this Section, we recall some classical distances between two point clouds. Let 𝑨𝟏 ∈
ℝ𝑛1×𝐷, 𝑨𝟐 ∈ ℝ𝑛2×𝐷 be two point clouds. Here, 𝐷 ∈ {2, 3} is the dimension of the ambient
space and 𝑛1, 𝑛2 are the number of points in 𝑨𝟏 and 𝑨𝟐. The three following distances are
quite popular:

Definition 1.4 (Hausdorff distance)

𝑑𝐻(𝑨𝟏, 𝑨𝟐) ∶= max(max
𝒂∈𝑨𝟏

𝑑(𝒂, 𝑨𝟐),max𝒂∈𝑨𝟐
𝑑(𝒂, 𝑨𝟏)). (26)

Definition 1.5 (Chamfer distance)

𝑑𝐶ℎ(𝑨𝟏, 𝑨𝟐) ∶=
1
𝑛1

∑

𝒂∈𝑨𝟏
𝑑(𝒂, 𝑨𝟐) +

1
𝑛2

∑

𝒂∈𝑨𝟐
𝑑(𝒂, 𝑨𝟏). (27)

Definition 1.6 (Wasserstein distance)

𝑑𝑊(𝑨𝟏, 𝑨𝟐) ∶= min
𝜉∈Bij

∑

𝒂∈𝑨𝟏
‖𝒂 − 𝜉(𝒂)‖2. (28)

Here, Bij denotes the set of all one to one applications from 𝑨𝟏 onto 𝑨𝟐.

In Geometric Deep Learning, it is a common practice to use Chamfer distance (Defini-
tion 1.5) or Wasserstein distance (Definition 1.6) to train neural networks (by incorporat-
ing them into the loss calculation) or to evaluate them (by computing them after training)
[ADMG18, FSG17, GFK+18, LCL18, PFS+19]. These distances give an idea of the dissimi-
larity between two point clouds, averaged over all the underlying shapes. Here, we use the
Hausdorff distance [HKR93] (Definition 1.4) because it measures the local dissimilarity in
the area where it is the highest. In the context of Neural UDF evaluation, it measures the
highest local reconstruction error. In this sense, Hausdorff distance is considered more
restrictive and is preferred from other distances.

2 Contributions

In our work, we propose a new statistical method to achieve edge detection on surfaces
encoded as unstructured point clouds. We show that it can be used to improve the training
procedure of 3D surface Neural UDFs.

In this Section, we formalize ourmain contributions. In Section 2.1, we describe our statis-
tical edge detection method. In Section 2.2, we discuss the task of UDF learning. Finally,
the evaluation of the trained Neural UDFs is formalized in Section 2.3.
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2.1 Statistical Edge Detection

In this Section, we discuss the problem of edge detection. Let us consider a watertight
surface ℬ ⊂ ℝ3 (see Definition 1.1) encoded as a point cloud 𝑩 ∈ ℝ𝑛𝑠×3 containing 𝑛𝑠
points in ℝ3. The points in the discrete set 𝑩 are assumed to be uniformly sampled from
the continuous surface ℬ.

Given a point 𝒙𝟎 ∈ ℬ (this point is called centroid), we wish to know if 𝒙𝟎 is located on
an edge of the surface. Let us extract from 𝑩 the 𝑘 nearest neighbors of 𝒙𝟎, as formalized
in Equation 8: these points, denoted 𝒙𝟏, ..., 𝒙𝒌, constitute the neighborhood of 𝒙𝟎
The intuition that led to the edge detector described in this Section is inspired from the local
surface variation descriptor proposed by Pauly et al. [PGK02]. Our edge detector is based
on an analysis of the projections of the points 𝒙𝟎, ..., 𝒙𝒌 on their average plane (defined in
Section 2.1.1). If the surface ℬ is planar or quasi-planar (situation 0) around 𝒙𝟎, then the
average plane is locally tangent to the surface. If the surface is very sharp (situation 1) or
folded around 𝒙𝟎, then the average plane is not tangent to the surface locally (see Figure 2).
In order to differentiate between situations 0 and 1, we perform an orthogonal projection
of the points 𝒙𝟎, ..., 𝒙𝒌 onto their average plane. This projection is formally described in
Section 2.1.1. The projected points are denoted 𝒙′𝟎, ..., 𝒙

′
𝒌. It can be visualized on Figure

2 that in situation 0, 𝒙′𝟎 lies in the middle of 𝒙
′
𝟏, ..., 𝒙

′
𝒌. Whereas in situation 1, 𝒙′𝟎 is off-

centered with respect to the other projected points (see Figure 2).

The key point of our descriptor is to discriminate between these two situations using a
statistical test of central symmetry on the projections of the points, with respect to the pro-
jection of 𝒙𝟎 (that is considered as the potential center of symmetry under null hypothesis).
We use the obtained 𝑝-value to discriminate between situations 0 and 1. This step is de-
tailed in Section 2.1.2.

The statistical test applied to the projections depends on reference frame for polar coordi-
nates. In order to make it independent from this this reference frame, we center the angu-
lar coordinates with respect to their Fréchet mean. This is described in details in Section
2.1.4.

2.1.1 Projection of the neighboring points on the average plane

Given a set of points 𝒙𝟎, ..., 𝒙𝒌 ∈ ℝ3, we aim to compute their projections 𝒙′𝟎, ..., 𝒙
′
𝒌 ∈ ℝ2

on their average plane.

We define the average plane as the affine hyperplane of ℝ3 containing the centroid point
and orthogonal to the third eigenvector of the local covariance matrix. This matrix is com-
puted on the points𝒙𝟎, ..., 𝒙𝒌 according to Equation 9. Roughly speaking, the average plane
is the one in which the local point cloud extends the most (we refer to [Hot33] for more de-
tails on the average plane). Let us denote 𝒆𝟏 and 𝒆𝟐 the first two eigenvectors (with largest
eigenvalues) of the local covariance matrix. The obtained 2D points can be defined as fol-
lows:

∀𝑖 ∈ J0, 𝑘K, 𝒙′𝒊 ∶= (𝒙𝒊 ⋅ 𝒆𝟏𝒙𝒊 ⋅ 𝒆𝟐
) (29)

Thenext step consists in performing a central symmetry test on the set of points𝒙′𝟎, ..., 𝒙
′
𝒌.

2.1.2 Central symmetry test on the projected points

Given a set of points 𝒙′𝟎, ..., 𝒙
′
𝒌 on a hyperplane ofℝ

3, we aim to know if the points 𝒙′𝟏, ..., 𝒙
′
𝒌

are evenly distributed around 𝒙′𝟎 (see Figure 2).
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Figure 2: Projection onto the local average plane. On the left, a quasi-plane surface (situ-
ation 0), and on the right, a pointed surface (situation 1). On the top row, the surface ℬ
is in transparent red color. Points (in grey) are uniformly sampled from the surface. We
aim to know if the surface is folded or pointed in 𝒙𝟎 ∈ ℬ. First, we compute its 𝑘 nearest
neighbors 𝒙𝟏, ..., 𝒙𝒌 (green points). Then the average plane of the neighboring points is
computed (in transparent green color). On the bottom row, the plots represent the projec-
tion of 𝒙𝟎, ..., 𝒙𝒌, denoted 𝒙′𝟎, ...𝒙

′
𝒌. We observe that in situation 0, the projection 𝒙

′
𝟎 is in

the middle of the neighbors’ projections 𝒙′𝟏, ...𝒙
′
𝒌. Whereas in situation 1, it is completely

off-centered.
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Let us consider the centered vectors (𝑿𝒊)1≤𝑖≤𝑘:

∀𝑖 ∈ J1, 𝑘K, 𝑿𝒊 ∶= 𝒙′𝒊 − 𝒙
′
𝟎. (30)

In our modelling we consider 𝑿𝟏, ..., 𝑿𝒌 as i.i.d realizations of a 2D random vector. Our
approach is to assess the central symmetry of this random vector around the origin. We
rely on the method described in Section 1.5. We use Kolmogorov-Smirnov’s test statistics
𝐴𝑘 defined in Equation 17 on the empirical CDF defined in Equation 14, to validate or
reject the null hypothesis𝐻0,1 (see (12)). The 𝑝-value of the test is computed as in Equation
25. Note that the polar angular coordinates are first centered with respect to their Fréchet
mean. Kolmogorov-Smirnov’s test is performed on the centered angles. Fréchet centering
is described in details in Section 2.1.4.

2.1.3 Kolmogorov-Smirnov’s descriptor

If the 𝑝-value is higher than a given threshold 𝑝0, we retain the null hypothesis, and con-
sider that the angles are uniformly distributed. This supports the conclusion that the sur-
face is locally quasi-planar. On the contrary, if the 𝑝-value is smaller than 𝑝0, we conclude
that the surface is pointed or folded (see Figure 2). The computed 𝑝-value is thresholded
using a hyperparameter 𝑝0 ∈ [0, 1]. This allows to define our statistical edge detector, also
calledKolmogorov-Smirnov’s descriptor:

∀𝒙 ∈ 𝑩, 𝜖KS(𝒙) ∶= {
1 if 𝑝-value ≤ 𝑝0.
0 if 𝑝-value > 𝑝0.

(31)

The threshold value𝑝0 is chosen empirically. Wediscuss the choice of𝑝0 in Section 4.1.

2.1.4 Fréchet Centering

In our edge detectionmethod, we calculate the 𝑝-value associated with a central symmetry
test on the underlying distribution of the projected points in the average plane, seen as a 𝑘-
sample𝑿𝟏, ..., 𝑿𝒌 ∈ ℝ2. In order to do so, we use the polar coordinates of the observations.
In particular, we perform a goodness-of-fit test on the empirical law of the polar angle
(coordinate 𝜙) against the uniform law (as mentioned in the previous Section 2.1.2, and
formalized in Section 1.5).

The projected points𝑿𝟏, ..., 𝑿𝒌 are initiallywritten in theCartesian reference system (𝑂, 𝒆𝟏, 𝒆𝟐)
(seeEquations 29 and 30). It is therefore natural to compute the polar coordinates (𝑟1, 𝜙1), ..., (𝑟𝑘, 𝜙𝑘)
as follows:

∀𝑖 ∈ J1, 𝑘K, {
𝑟𝑘 ∶= ‖𝑋𝑘‖2
𝜙𝑘 ∶= 𝒆𝟏, 𝑿𝒌

(32)

where 𝒆𝟏, 𝑿 is the oriented angle between 𝒆𝟏 and𝑿, taken from the interval [−𝜋, 𝜋).

Thus, the polar angle (coordinate 𝜙) is defined with respect to a reference axis, and it turns
out that the 𝑝-value of the aforementioned goodness-of-fit is highly dependent on this ref-
erence axis. Figure 3 shows four different situations. They all correspond to a surface edge
but the projected points are distributed in a different way on the average hyperplane (in
the green rectangles). In the context of edge detection, we would expect to obtain roughly
the same 𝑝-value for the four situations, but the reference axes 𝒆𝟏 and 𝒆𝟐 have different
orientations, resulting in different angle distributions (on the histograms).
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Fréchet 
centering

Figure 3: Fréchet centering of polar angles in the average hyperplane. The four green plots
on the left correspond to the projections of the points of four point clouds onto their mean
hyperplanes. In each situation, the projection of the centroid point is represented by a red
cross in the center. The green crosses represent the projections of the neighboring points.
In all four situations, the projection of the centroid point (red cross) is off-centered with
respect to the projections of the neighboring points (green crosses). These are therefore
four surface edges and the obtained𝑝-values are expected to be roughly the same. However,
the four point clouds are positioned differently with respect to the polar reference axis 𝒆𝟏
(corresponding to 𝜙 = 0 in polar coordinates). The distribution of polar angles 𝜙1, ..., 𝜙𝑘 is
therefore different in the four situations (see the four associated histograms). This results
in different 𝑝-values for each situation. By centering the angles around their Fréchetmean,
we obtain the same distribution centered at 0, as in the resulting histogram on the right.
Thus, we obtain the same 𝑝-value in all four situations, which makes our method agnostic
to any polar reference axis.

To overcome this problem,we center the angles𝜙1, ..., 𝜙𝑘 with respect to their Fréchetmean
[Fré48] before testing the central symmetry of the observations. For the sake of formaliza-
tion, we define the angular distance

∀𝜓1, 𝜓2 ∈ [−𝜋, 𝜋), 𝑑ang(𝜓1, 𝜓2) ∶= min(|𝜓1 − 𝜓2|, 2𝜋 − |𝜓1 − 𝜓2|). (33)

This distance can be conceptualized as the arclength distance between points along the
unit circle. We use a generalization of the Euclidean mean, called Fréchet mean [Fré48],
on the angular distance:

𝜙𝐹 ∶= argmin
𝜓

𝑛∑

𝑖=1
𝑑ang(𝜙𝑖, 𝜓)2. (34)

All angles are centered with respect to the Fréchet mean:

∀𝑖 ∈ J1, 𝑘K, 𝜙′𝑖 ∶= 𝜙𝑖 − 𝜙𝐹 (35)

Visually, this amounts to using a reference axis that depends on the angles 𝜙1, ..., 𝜙𝑘. More
precisely, they are centered with respect to the average direction of the projected point
cloud.

Note that the uniqueness of the Fréchetmean in not guaranteed for any set of observations.
For example, if the angles 𝜙1, ...𝜙𝑘 are distributed in a perfectly even way on [−𝜋, 𝜋), then
their Fréchet mean is not well defined. In our work, we assume that this does not happen
and that the Fréchet mean is always well defined. One can refer to [Cha13] for a more
detailed work on the uniqueness of the Frechet mean on the unit circle.
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Point 
𝒙 ∈ ℝ𝟑

Neural UDF
𝑈%𝐷𝐹ℬ

Output 
𝑈%𝐷𝐹ℬ(𝒙) ∈ ℝ

Figure 4: Neural UDF scheme for a watertight surface ℬ. The inputs of the network are
tridimensional: they represents points in ℝ3. The outputs are real values and the network
is trained to fit the true UDF of the surface ℬ.

2.2 UDF Learning

In this Section, we discuss the UDF learning task. It can be formulated as follows: given a
watertight surface ℬ ⊂ ℝ3 (Definition 1.1), we aim to train a neural network to reproduce
its UDF (Definition 1.3).

The functionUDFℬ is an implicit representation of the surfaceℬ in the sense that it can not
directly allow to draw the surface. Nevertheless, the geometry of the surface is contained
in its UDF as its zero-level set:

ℬ = UDF−1ℬ ({0}). (36)

Let us consider a fixed network architecture considered as a family of functions ℱ. The
architecture is roughly described in Figure 4. ℱ is parameterized by the weights of the
network. TheNeural UDF training consists in the following optimization:

ÛDFℬ ∶= argmin
𝑓∈ℱ

∑

𝒙∈𝑿
(𝑓(𝑥) −UDFℬ(𝒙))2. (37)

where ℬ and 𝑿 ∈ ℝ𝑛×3 is the training dataset. The procedure used to sample the training
points𝑿 is discussed in details in Section 3.2. ÛDFℬ is called theNeural UDF of the surface
ℬ.

2.3 Neural UDF Evaluation

In order to evaluate the Neural UDF of a given surface, we measure its ability to repre-
sent the surface. Consider a neural UDF ÛDFℬ that has been trained on a given surface
ℬ. The evaluation task consists in quantifying the difference between the zero-level set
of the Neural UDF and the true surface ℬ. In this Section, we explain how we estimate
the Neural UDF’s zero-level set and define the metric used to evaluate the neural UDF’s
accuracy.

For the sake of formalization, we define the zero-level set of the Neural UDF ÛDFℬ as
follows:

ℬ̂ ∶= ÛDF
−1
ℬ ({0}). (38)

Effective methods to compute the zero-level set of a given function ℝ3 → ℝ are discussed
in Section 1.3.5. The mentioned methods require fine tuning to yield good results in a
reasonable running time in our application. Moreover, they are commonly based on the
Signed Distance Functions but here we only have access to the Unsigned Distance Func-
tions.

In this work, we use another method: our idea is based on the fact that the Neural UDF
is differentiable with respect to its inputs (spatial coordinates). A set 𝑩𝒓 of 𝑛𝑟 points is
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sampled from the true surface ℬ and is used as initial guess in the following optimization
problem:

𝑩̂ ∶= argmin
(𝒃𝟏,...,𝒃𝒏𝒓 )∈ℝ𝑛𝑟×3

𝑛𝑟∑

𝑖=1
|ÛDFℬ(𝒃𝒊)|. (39)

The optimization method is a gradient descent. The obtained set of points 𝑩̂ is then com-
pared to the initial set of points 𝑩𝒓 sampled from the true surface. The difference between
ℬ̂ and the true surface ℬ is approximated using the Hausdorff distance between the point
clouds 𝑩𝒓 and 𝑩̂. This metric is defined in Section 1.6. Therefore, we define the recon-
struction error of the Neural UDF as

𝛿(ÛDFℬ) ∶= 𝑑𝐻(𝑩𝒓, 𝑩̂). (40)

The reconstruction method we describe here has also some limitations. It highly depends
on the initialization step i.e. on the way 𝑩𝒓 is built. Indeed, we initialize the points on the
true surface ℬ. If the Neural UDF is accurate enough, its zero-level set can be assumed to
be close to the true surfaceℬ. This means that the estimated zero-level set 𝑩̂ is potentially
searched without exploring a large part of the ambient space ℝ3. Furthermore, a large
number of points are needed to cover the entire zero-level set of the Neural UDF.

3 Methodology

Neural UDF training and its evaluation consist of several steps. The steps that consti-
tute our main contributions are discussed in the previous Section. In this Section, we
present the step-by-step computational implementation of our method and and its eval-
uation.

Recall that, given a surfaceℬ, our aim is to train its Neural UDF. To measure the accuracy
of the estimated Neural UDF, we need to compute the distance between the Neural UDF’s
zero-level set and the initial surface ℬ. Neural UDF training can be broken down into
several sub-steps. First, we implement a function to detect pointed or folded areas (edges)
on the surface (see Section 3.1). We then use this function to build a set of training points
whose distribution is more concentrated around these edges (see Section 3.2).

Afterwards, we compute the true UDF of the surface at any point in space, using the mesh
of ℬ (see Section 3.3). Finally, we train a neural network to learn the true UDF. Once
trained, this neural network is called a Neural UDF (see Section 3.4).

To measure the performances of our learning method, we use the trained Neural UDF
to reconstruct the true surface and compare the obtained output with the true surface.
This evaluation procedure is described in Section 3.5. To perform this validation step, we
generate points on the zero-level set of the Neural UDF. Next, we measure the distance
between these points from the original surface.

The whole pipeline for both training and evaluation of the Neural UDF is inherently ran-
dom. Therefore, the results can vary from a run to another. In order tomeasure statistically
the improvement due to ourmethod, we repeat the experiments several times and compute
the median value of the series of improvement measurements obtained. And we achieve
this for several subsets of shapes from ShapeNet dataset [CFG+15]. This is explained in
Section 3.6.
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Figure 5: Neural UDF training and evaluation: methodology scheme. Given a 3D surface
ℬ encoded as a mesh, we aim to train its Neural UDF and evaluate its precision.

3.1 Detecting edges

In this Section, we describe the method used to detect edges on a surface and also explain
how we choose the values of the involved parameters. Given a surface ℬ, the problem
amounts in looking for the mapping:

∀𝒙 ∈ ℬ, 𝜖(𝒙) ∶= {
1 if 𝒙 is close to an edge of ℬ.
0 if ℬ is locally planar or quasi-planar in 𝒙.

(41)

First, we sample points uniformly from the surface. We denote 𝑩𝒔 ∈ ℝ𝑛𝑠×3 the point cloud
thus generated. Given 𝒙 ∈ 𝑩𝒔, we select the 𝑘 nearest neighbors of 𝒙. The resulting points
are then projected onto their average plane. A statistical test of central symmetry is per-
formed on the resulting projections. The computed 𝑝-value is thresholded using a param-
eter 𝑝0 ∈ [0, 1]. This procedure is described in detail in Section 2.1.

The three parameters 𝑛𝑠, 𝑘 and 𝑝0 must be adjusted for each type of surface. For surfaces
in ShapeNet dataset, we set 𝑛𝑠 = 2000, 𝑘 = 40 and 𝑝0 = 0.2. The choice of these values is
discussed in Section 4.1.

3.2 Sampling the Training Points

In this Section, we describe the procedure used to sample the points used for Neural UDF
training. Wewill also introduce and discuss the parameters used to configure this sampling
procedure. We consider a watertight surface ℬ, and the same set of points 𝑩𝒔 ∈ ℝ𝑛𝑠×3

uniformly sampled on ℬ, as introduced in the previous section. It is assumed that the
surface has been previously normalized in order to be a subset of the unit ball

ℬ‖⋅‖2 = {𝒙 ∈ ℝ3, ‖𝒙‖ ≤ 1}. (42)

Let denote the training dataset 𝑿𝟎 ∈ ℝ𝑛×3. It is an 𝑛-sized sample with probability distri-
bution ℒ(ℝ3). Hereafter we define this probability distribution.
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The training points need to be sampled everywhere in the unit ball ℬ‖⋅‖2 and also on the
surface ℬ. Hence, we build ℒ(ℝ3) as the mixture of two sub-distributions:

ℒ(ℝ3) = (1 − 𝜈)𝒰(ℬ‖⋅‖2) + 𝜈ℒ(ℬ). (43)
Here,𝒰(ℬ‖⋅‖2) is the uniformdistribution on the unit ball,ℒ(ℬ) is a probability distribution
on the surfaceℬ that is defined below (see Equation 45), and 𝜈 ∈ [0, 1] is a parameter that
quantifies how the training effort of the Neural UDF is concentrated on the surface ℬ. If
𝜈 = 1, the training points are all sampled on the surface. On the contrary, if 𝜈 = 0, the
training points are all uniformly sampled from the unit ball ℬ‖⋅‖2 .

The points that are sampled from the surface can be either located near a surface edge or
in a planar area. In order to improve the accuracy of the Neural UDF, we concentrate the
training effort around surface edges, i.e. around points 𝒃 ∈ 𝑩𝒔 such that 𝜖KS(𝒃) = 1. For
the sake of formalization, let define the following sets:

𝑩𝒔,𝒊 ∶= {𝒃 ∈ 𝑩𝒔, 𝜖KS(𝒃) = 𝑖}, 𝑖 ∈ {0, 1}. (44)

In order to simplify the sampling procedure implementation, the points sampled from the
surface are picked from the sets 𝑩𝒔,𝟎 and 𝑩𝒔,𝟏. Therefore, we can write

ℒ(ℬ) = (1 − 𝜈1(ℬ))𝒰(𝑩𝒔,𝟎) + 𝜈1(ℬ)𝒰(𝑩𝒔,𝟏) (45)
where𝒰(𝑩𝒔,𝟎) (resp. 𝒰(𝑩𝒔,𝟏)) is the uniform distribution on the point cloud𝑩𝒔,𝟎 (resp. 𝑩𝒔,𝟏)
and 𝜈1(ℬ) ∈ [0, 1] is a scalar that measures the proportion of the surface training points
located close to surface edges.

In our experiments, we train Neural UDFs for several surfaces that can have different ge-
ometries. Some may have more edges than others. In other words, surfaces can have
varying degrees of complexity. We formally define the complexity of the surface ℬ as the
value

𝜏(ℬ) ∶= 1
𝑛𝑠

∑

𝒃∈𝑩𝒔
𝜖KS(𝒃) =

Card(𝑩𝒔,𝟏)
Card(𝑩𝒔)

(46)

To measure the influence of our surface edge detection method on the accuracy of Neural
UDFs on a set of surfaces, we need to set a fixed oversampling parameter across all the
surfaces. This oversampling parameter must locate the value 𝜈1(ℬ) between the degree of
complexity 𝜏(ℬ) (uniform sampling on thewhole surface) and 1 (sampling on surface edges
only). This amounts in setting a parameter 𝜉 ∈ [0, 1] such that for any surface ℬ,

𝜈1(ℬ) = 𝜉 + (1 − 𝜉)𝜏(ℬ). (47)

One can see that if 𝜉 = 0, then 𝜈1(ℬ) = 𝜏(ℬ), which means that the training points sam-
pled on the surface are uniformly sampled on the whole surface (without oversampling the
edges). On the contrary, if 𝜉 = 1, then 𝜈1(ℬ) = 1 and all the points sampled on the surface
are sampled on surface edges.

In the dataset 𝑿𝟎 constructed using the aforementioned sampling procedure, a large pro-
portion of the points are sampled from the surfaceℬ. Indeed, the laws𝒰(𝑩𝒔,𝟎) and𝒰(𝑩𝒔,𝟏)
are distributions on the surfaceℬ, since𝑩𝒔,𝟎 ⊂ ℬ and𝑩𝒔,𝟏 ⊂ ℬ. Thus, the target output for
these points is zero, as their UDF is equal to zero. To prevent the network from converging
towards the trivial null solution, we perturb the points with a Gaussian noise. Hence the
dataset rewrites as

𝑿 ∶= 𝑿𝟎 + 𝒆 (48)
where 𝒆 ∈ ℝ𝑛×3 is a (𝑛, 3)-sample of the distribution𝒩(0, 0.0252). This Gaussian perturba-
tion and the value of the standard deviation 0.0252 has been suggested in the supplemen-
tary material of [PFS+19].
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Figure 6: Neural UDF architecture. The network is composed of three blocks. Each
of the three is composed of two fully-connected layers (Leaky ReLU activation functions
[MHN+13]). The blocks are separated with two skip connections [HZRS16] to avoid gra-
dient vanishing issues.

3.3 Computing the True UDF

In this Section, we describe themethod used to calculate the true UnsignedDistance Func-
tion of a watertight surface ℬ at training points 𝑿. Formally, we seek to compute

∀𝒙 ∈ 𝑿, UDFℬ(𝒙) = min
𝒃∈ℬ

‖𝒙 − 𝒃‖ (49)

To do this, we use the function find_closest_cell from framework PyVista [SK19]. For
a query point 𝒙 ∈ ℝ3 and a surface ℬ encoded as a triangular surface mesh, this function
returns the point 𝒃𝒙 ∈ ℬ closest to 𝒙. 𝒃𝒙 can be seen as the orthogonal projection of 𝒃 in
ℬ. Once 𝒃𝒙 has been found, we compute the distance ‖𝒙 − 𝒃𝒙‖ to find UDFℬ(𝒙).

The function find_closest_cell used here is not optimally implemented. This is not a
problem for us, as we calculate the value of UDFℬ for sets of points of size 𝑛 ≃ 1000. To
reduce the time needed to calculate UDFℬ, we can sample points uniformly over ℬ and
index these points using a 𝑘-dimensional tree [Ben75].

3.4 Training the Neural UDF

In our work, Neural UDFs are Multi Layer Perceptron neural networks with 3 input fea-
tures (input point coordinates) and 1 output feature (input point UDF). Their architecture
is described in Figure 6.

During network training, weights are optimized with the Adam gradient descent [KB14].
The training inputs are the points in the dataset 𝑿 (see Equation 48) and the target out-
puts are their true UDF values (see Equation 49). The minimization is formally written in
Equation 37.

3.5 Evaluating the Reconstruction Capacity of a Neural UDF

Consider a surfaceℬ and its trained neural UDF ÛDFℬ. In this Section, we quickly review
the computational implementation of the evaluation of the neural UDF’s accuracy. The
evaluation procedure and the resulting metric are described in detail in Section 2.3.

First, we construct a point cloud representing the surface ℬ. To do this, we sample points
uniformly on ℬ and gather them in the set 𝑩𝒓 ∈ ℝ𝑛𝑟×3, with 𝑛𝑟 = 2000. These points are
used in the initialization step to reconstruct the zero-level set of the Neural UDF ÛDFℬ,
according to Equation 39. We denote 𝑩̂ the reconstructed points.
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The ability of the Neural UDF to reconstruct the true surface ℬ is given by the distance
between 𝑩𝒓 and 𝑩̂ (see Equation 40).

3.6 Dealing with Randomness

Neural UDF training is an inherently random procedure. First, to detect surface edges,
points are randomly generated on the surface (see Section 3.1). Second, the Neural UDF
training dataset is an 𝑛-sample of a mixture of probability distributions (see Section 3.2).
The initialization of the Neural UDF’s weights is also randomized.

Furthermore, Adam gradient descent [KB14] andmini-batch learning [Ber96] are used for
both the Neural UDF’s weights optimization (in the training procedure) and the surface
reconstruction (in the evaluation procedure). In this optimization method, each iteration
is randomized.

To take into account the randomness in the modelling, the experiments are ran on a set
surfaces. And for each surface, Neural UDF training and evaluation are repeated several
times and we calculate the median of the reconstruction errors. Formally, consider a set
of surfaces ℬ1, ..., ℬ𝑁 , an integer 𝑛 representing the number of training points and 𝜉 ∈
[0, 1] the surface edges oversampling parameter, as defined in Section 3.2. For each of the
surfaces, we train 5 Neural UDFs with different random seeds. The 5 computed values of
the metrics are summarized in their median.

We denote {ÛDF
𝑙
ℬ𝑗 (𝑛, 𝜉)}1≤𝑗≤𝑁

1≤𝑙≤5

the Neural UDFs obtained, and their reconstruction errors

{𝛿𝑙ℬ𝑗
(𝑛, 𝜉)}

1≤𝑗≤𝑁
1≤𝑙≤5

(as defined in Equation 40).

As we aim to measure the influence of surface edge oversampling on the reconstruction
error, we repeat the same operation with 𝜉 = 0. Thus, we obtain a set of Neural UDFs
{ÛDF

𝑙
ℬ𝑗 (𝑛, 0)}1≤𝑗≤𝑁

1≤𝑙≤5

and their reconstruction errors {𝛿𝑙ℬ𝑗
(𝑛, 0)}

1≤𝑗≤𝑁
1≤𝑙≤5

. For each of the Neu-

ral UDFs and for a fixed number of training points 𝑛, we compute the relative improve-
ment due to 𝜉 :

∀𝑗 ∈ J1,𝑁K, ℐ(ℬ𝑗, 𝑛, 𝜉) ∶= 1 −
𝛿𝑚ℬ𝑗

(𝑛, 𝜉)

𝛿𝑚ℬ𝑗
(𝑛, 0)

(50)

where 𝛿𝑚ℬ𝑗
(𝑛, 𝜉) is the median reconstruction error of the five Neural UDFs of shape ℬ𝑗

trained with parameter values 𝑛 and 𝜉, that is:

𝛿𝑚ℬ𝑗
(𝑛, 𝜉) ∶= median ({𝛿𝑙ℬ𝑗

(𝑛, 𝜉)}
1≤𝑙≤5

) (51)

and naturally,

𝛿𝑚ℬ𝑗
(𝑛, 0) ∶= median ({𝛿𝑙ℬ𝑗

(𝑛, 0)}
1≤𝑙≤5

) . (52)

4 Results

In this Section, we present the results of our numerical experiments. In Section 4.1, we
analyze the influence of the scaling parameter 𝑘 (see Section 2.1) and the thresholding
parameter 𝑝0 on edge detection accuracy (see Section 3.1). In Section 4.2 we show that
our descriptor detects surface edges more accurately than Pauly’s descriptor [PGK02] (see
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Figure 7: Setting the scale parameter 𝑘. Kolmogorov-Smirnov’s descriptor on a few shapes
on the dataset ShapeNet (chair, car, table and airplane) for several values of 𝑘. The
local descriptor that is depicted here is the log-𝑝-value of the local central symmetry test
(see Equation 25). It can be seen on the plots that edges are detected for high values of 𝑘
(higher than 30). All the edge detectors are computed with 𝑛𝑠 = 2000 points. The log-𝑝-
value is not thresholded here.

Section 1.4 for a detailed explanation of this descriptor). In Section 4.3.1, we show that
oversampling surface edges improves the accuracy of Neural UDFs locally around surface
edges. In Section 4.3.2, we show that improving the accuracy of Neural UDFs around sur-
face edges improves the global reconstruction capability of Neural UDFs.

4.1 Discussion on the Parameters for Edge Detection

Our edge detector is described in details in Section 2.1. It depends on the values of three
parameters:

• 𝑛𝑠 is the number of points sampled on the surface.

• 𝑘 is the number of nearest neighbors in neighborhood selection. It can be considered
as a scale parameter.

• 𝑝0 is the decision threshold for the 𝑝-value

Of course, the choice of 𝑛𝑠 should depend on the complexity of the considered shapes and
the available computational resources. Indeed, for simple shapes containing few folded or
pointed areas, a few points seem enough to depict the shape. For more complex surfaces
with numerous edges, we need to sample more surface points. However, our edge de-
tection method requires to perform a test and compute a 𝑝-value for each sampled point.
Therefore, it can be computationally costly to compute our descriptor for a large number
of surface points. In our work, and in particular on ShapeNet dataset, we empirically ob-
serve that 𝑛𝑠 = 2000 points are generally sufficient to describe accurately the surfaces and
require a reasonable computation time.

The parameter 𝑘 corresponds to the scale at which the surface edges are detected. The
choice of the scale is important because a point cloud obtained through an acquisition
process consists of points that sample real-world objects, where edges can be rounded or
damaged (we refer to rounding and damage as defined in [HLP+21]). The scale at which
edges can be detected depends of their degree of rounding and damage. For example, in a
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Figure 8: Setting the thresholding parameter 𝑝0. Kolmogorov-Smirnov’s descriptor on a
few shapes on the dataset ShapeNet (chair, car, table and airplane) for several values
of𝑝0. The local descriptor that is depicted here is the thresholded𝑝-value 𝜖𝑛𝑠 ,𝑘,𝑝0 (see Equa-
tion 31). It can be seen on the plots that edges are detected when 0.4 ≤ 𝑝0 ≤ 0.6. All the
edge detectors are computed with 𝑛𝑠 = 2000 and 𝑘 = 40.

building, two façades may be joined by a smoothly curved surface, perceived as an edge at
the building scale, which might not be readily detectable at finer scales, such as the scale
of individual bricks [HLP+21]. In our work, the scale parameter 𝑘 is the same for all the
shapes of a dataset. We choose it empirically by comparing visually its the best value on a
few examples. In Figure 7, one can observe that edges are detected for values of 𝑘 higher
than 30. In all our experiments, we set 𝑘 = 40.

As highlighted in Equation 31, Kolmogorov-Smirnov’s descriptor is strongly dependent on
a decision threshold that we call 𝑝0. It corresponds to the minimal 𝑝-value for which we
retain the null hypothesis i.e. consider that the surface is locally planar or quasi-planar.
The value of this threshold parameter is set empirically by comparing the plots of a few
shapes. For the sake of automation, it remains the same for all the shapes of the dataset. It
turns out that for categories chair, car, table and airplane of ShapeNet dataset, edges
are well detected for 0.05 ≤ 𝑝0 ≤ 0.3.

4.2 Edge Detection On ShapeNet Data

In order to evaluate the accuracy of our edge detector, we compare it with the reference
descriptor proposed in [PGK02] (see Section 1.4). The plots show that our edge detector is
more accurate on chairs, cars, tables and airplanes in the ShapeNet dataset (see Figure 8).
This difference ismainly due to two limitations of Pauly’s descriptor. First, for very sharp or
locally folded surfaces, Pauly’s descriptor approaches zero because the local neighborhood
of points can be almost as flat as for quasi-planar areas (this issue is illustrated in Figures
15a and 15b). Secondly, thin plates are often detected as edges by Pauly’s descriptor be-
cause the neighborhood can contain both faces of the plate (see Figure 15c). These two
limitations are explained with more details and illustrated on toy examples in Appendix
A.
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Figure 9: Edge detection using Pauly’s descriptor (rows 1 and 3) vs. Kolmogorov-Smirnov’s
descriptor (rows 2 and 4). Surfaces are sampled with 𝑛𝑠 = 2000 points. Each point on the
surface is associated with 𝑘 = 40 neighboring points. Points with a 𝑝-value lower than
𝑝0 = 0.4 are considered as close to an edge. On the plots, the latter are colored in purple.
The undetected areas are colored in yellow.

4.3 Application to UDF Learning

4.3.1 Precision on Edges

In this Section, we show that our method improves the accuracy of Neural UDFs locally
around the surface edges.

Let us consider a surface ℬ and a Neural UDF ÛDFℬ trained with parameters 𝑛 and 𝜉
defined in Section 3.2. Points are uniformly sampled on the surface and Kolmogorov-
Smirnov’s descriptor is computed for each of them. Doing this, we are repeating the same
procedure than the one described in Section 3.2. Among the set of points uniformly sam-
pled, we call 𝑩𝒔,𝟎 (resp. 𝑩𝒔,𝟏) the set of points that are not detected (resp. detected) as edges
(see Equation 44).

In order to measure the accuracy of Neural UDFs around these surface edges, we compute
the average magnitude of the Neural UDF’s output over the edges:

|ÛDFℬ(𝑩𝒔,𝟏)| ∶=
1

Card(𝑩𝒔,𝟏)
∑

𝒃∈𝑩𝒔,𝟏
|ÛDFℬ(𝒃)| (53)

Thismetric can be considered as the average error of the Neural UDF on the edges, because
the target output for these points is zero as they lie on the surface ℬ.

Figure 10 illustrates that theNeuralUDFerror on surface edges decreases as 𝜉 increases, i.e.
as surface edges are oversampled. This shows that oversampling improves the Neural UDF
locally. On the other hand, we observe that this local improvement in accuracy decreases as
𝑛 increases. This is because, when a very large number of training points are sampled, the
folds and peaks are already well sampled and oversampling them has less impact.

4.3.2 Global precision

In this Section, we show that our edge detection method can be used to improve Neural
UDF training. The main idea is to sample more training points around the surface edges,
as formalized in Section 3.2. As a result, the accuracy of the network is locally better around
these areas (see Section 4.3.1.

Nevertheless, in the frame of UDF learning, the aim is to accurately reconstruct the entire
surface. So that, the distance between initial and reconstructed surfaces is an interesting

24



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Oversampling parameter 

0.010

0.012

0.014

0.016

0.018

0.020

M
ed

ia
n 

ov
er

 a
ll 

Sh
ap

es

Absolute Neural UDF on Surface Edges
n = 300
n = 500
n = 700
n = 900
n = 1100

Figure 10: Evolution of the average Neural UDF error near edges (see Equation 53) with
respect to the oversampling parameter 𝜉, for several values of the number of training points
𝑛. The plotted metric corresponds to the median of the values computed for each of the
Neural UDFs, over 𝑁 = 25 chairs from ShapeNet dataset.

metric. This reconstruction error is defined in Section 3.5 (see Equation 40).

As UDF learning and its evaluation are subject to a high degree of randomness, the preci-
sion metrics may vary from one run to another. We show that the metrics are statistically
improved by repeating the experiments several times and keeping the median of the com-
puted metrics. This approach is described in detail in Section 3.6.

We apply our method to ShapeNet dataset, for 4 categories (chair, car, table and airplane).
For each category, we train Neural UDFs for𝑁 = 25 different shapes, randomly taken from
the dataset. For each shape, we compute the accuracy improvement due to the use of Edge
Detection to build the training dataset (see Equation 50).

Histograms of the improvements are plotted in Figure 11. For this experiment, we set
𝑛 = 600 and 𝜉 = 0.6. Looking carefully at the charts, we observe that for some shapes
our method does not improve the precision of Neural UDFs. However, this precision is
improved for 76% of the chairs, 72% of the cars, 80% of the tables and 88% of the airplanes.
The average improvement is around 15% for the four categories.

5 Conclusion

In this paper, we propose a new statistical method for edge detection on unstructured point
clouds. This method is based on two key ideas. First, we use locally a statistical test of sym-
metry. The idea is to quantify the position of points with respect to their nearest neighbors.
Second, we use a generalization of the notion of average to center circular data. Thismakes
the circular data independent from any choice of starting point on the circle. Given obser-
vations distributed on the unit circle, it allows to compute a central symmetry test 𝑝-value
that does not depend on any reference axis for polar coordinates. This allowed us to build
our method on a basic goodness-of-fit test: Kolomorog-Smirnov’s test.

Our edge detection method shows better results than commonly used geometric descrip-
tors on surfaces of varying complexities. Moreover, this method is original since it is based
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Figure 11: Improvement of the Neural UDF precision for ShapeNet surfaces.
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on a local statistical test of central symmetry. This idea could inspire new hybrid ap-
proaches. On the one hand, Pauly’s descriptor does not detect sharpest edges, which are
well captured by Kolmogorov-Smirnov’s descriptor. On the other hand, Kolomogorov-
Smirnov’s descriptor does not capture obtuse edges, which can be detected by Pauly’s de-
scriptor. Further work will be done to combine both descriptors and achieve better accu-
racy in edge detection.

We show that thismethod can be used to improve the learning of 3D object representations.
In particular, when learning the distance functions of 3D surfaces using neural networks,
the training effort can be concentrated around surface edges. This paper explains in de-
tails the sampling procedure used to build training datasets that are denser around surface
edges. This sampling procedure can be used for any application in which one needs to
concentrate the training effort of a machine learning model in some areas of interest in the
input space.

We propose amethod tomeasure the influence of our edge detectionmethod on the trained
neural UDF accuracy. In particular, we use an optimization method that can be used for
any application in which one needs to compute the iso-level set of a differentiable func-
tion.

On the one hand, our edge detection method improves the reconstruction capacity of neu-
ral networks by around 15% on the ShapeNet dataset. On the other hand, when training
distance functions with a limited number of training points, oversampling can achieve sat-
isfactory accuracy with fewer training points. Therefore, we show that the use of edge
detection allows to learn more accurately the shape UDFs. As a result, we obtain a more
expressive representation of the shapes with a more efficient procedure.

However, our edge detection method is subject to scaling and decision parameters that
need to be determined beforehand for each dataset. A multiscale approach and a more
granular classification of points according to edge sharpness will be performed in further
work.

Our method improves the accuracy of Neural UDFs locally, close to surface edges. This
improves the worst areas, since the reconstruction error measured in Hausdorff distance
is reduced. However, when the error is averaged over the entire surface (e.g. Chamfer
or Wasserstein distances), it is not improved in a consistent way all over the surfaces. To
further improve themethod, wewill implement the calculation of a trade-off between edge
and non-edge sampling.

Also, in this paper we show that our novel statistical method of surface edge detection
allows to improve the accuracy of Neural UDFs. The latter are simple neural networks
trained to fit the surface UDFs separately. In further work, we will use our statistical de-
scriptor to improve the accuracy of more complex models like DeepSDF, that learn the
UDFs of a whole set of surfaces in one single neural network. This will allow to build
lower-dimensional representations of 3D shapes and potentially yield better performance
in many geometric machine learning problems.
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A Comparing Our Local Descriptor with Pauly’s on 3D Toy
Problems

In this Section, we compare our edge detection method (called Kolmogorov-Smirnov de-
scriptor in reference to the test statistic used) with the standard geometric descriptor pro-
posed by Pauly et al. in [PGK02]. This geometric descriptor is defined in Section 1.4. It
is hereafter referred to as Pauly’s descriptor. For our comparison, we generated toy data
illustrating all types of surface edges. This toy data is described in Section A.1. The re-
sults obtainedwithKolmogorov-Smirnov’s and Pauly’s descriptors are compared in Section
A.2.

A.1 3D toy reconstruction problem

To reproduce the different types of surface edges commonly found on 3D objects, we gen-
erate surface portions corresponding to cones (Figure 12) and folds (Figure 13).

It turns out thatwith Pauly’smethod, areas corresponding to thin plates (such as the back of
a chair or the top of a table, for example) are erroneously detected as surface edges. Wehave
therefore also generated surface portions corresponding to thin plates (Figure 14).

For the cones, we begin by uniformly sampling points on a disk in 𝑥𝑦 plane, which we
denote as 𝑺𝟎. For each point 𝒙 ∈ 𝑺𝟎, we define the radial plane of 𝒙 as the plane containing
the 𝑧-axis and the radial axis of 𝒙. We define the tangent axis 𝑇(𝒙) as the axis that contains
the centroid point 𝒙𝟎 and that is orthogonal to the radial plane of 𝒙. Next, for each angle
𝜓 between 0 and 𝜋

2
, we can define a new set of points 𝑆(𝜓) as the set of the images of

each point 𝒙 in 𝑺𝟎 by the rotation of angle 𝜓 around the tangent axis 𝑇(𝒙). This allows to
generate a series of surfaces 𝑆(𝜓) (𝜓 between 0 and 𝜋

2
) that can be thought of as images of a

cone gradually closing. The centroid point for all the surfaces is the origin of the reference
frame 𝑥𝑦𝑧. We define the range of values of 𝜓 such that 𝜓 = 0 corresponds to the initial
disk (an fully open cone: 𝑆(𝜓 = 0) = 𝑺𝟎), and 𝜓 = 𝜋

2
corresponds to a set of points aligned

on the 𝑧-axis (a fully closed cone). On Figure 12, cones are depicted for three values of
𝜓.

For the folds, we start with the same set of points 𝑺𝟎 in 𝑥𝑦 plane. However, here we rotate
each point around the 𝑦-axis. The resulting series of surfaces can be seen as pictures of
a fold that is gradually folded in half. On Figure 13, folds are depicted for three values of
𝜓.

For the thin plates, 500 points are sampled uniformly on the unit disk in 2D. These points
are assumed to lie in the plane (𝑧 = 0). We then repeat the same operation, except that the

Figure 12: Different cases for local spikes. The parameter 𝜓 represents the rotation angle.
When 𝜓 = 0, the cone is fully open. The higher 𝜓 the more closed the cone. These plots
were generated with 500 samples each.
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Figure 13: Different cases for local folds. The parameter 𝜓 represents the rotation angle.
When 𝜓 = 0, the fold is fully plane. The higher 𝜓 the more folded the fold. These plots
were generated with 500 samples each.

Figure 14: Different cases for fine plates. The parameter 𝑑 represents the thickness of the
plate. The plots were generated with 500 points: each face of the plate is sampled with 250
points from the uniform distribution on unit circle.

500 new points obtained are considered to be in the plane (𝑧 = 𝑑) (where 𝑑 - the parameter
of interest - is the thickness of the platter). The centroid point for the local descriptor is the
origin (0,0,0). On Figure 14, thin plates are depicted for three values of 𝑑.

A.2 Comparison of the descriptors

In this Section, we compare the values of Pauly’s and Kolmogorov-Smirnov’s local descrip-
tors on toy surface portions (the cones, folds and thin plates described in Section A.1). The
aim here is to assess the ability of each of the descriptors to detect surface edges.

To compute the descriptor over the entire surface, we must first select the neighborhood of
each point on the surface. Neighborhood selection is formalized in Section 2.1.

Figure 15 supports the conclusion that Pauly’s descriptor is not effective in detecting all the
edges. Specifically, for large values of 𝜓, Pauly’s descriptor decreases as the local sharpness
of the surface increases. This descriptor measures the local variation of the surface and is
smaller for flatter surfaces. However, for very sharp or locally folded surfaces, Pauly’s de-
scriptor also approaches zero. These areas represent sharp edges and should be detected as
such. They correspond to folds with an angle close to 𝜋

2
. Kolmogorov-Smirnov’s descriptor

is a better alternative as it can clearly differentiate between locally quasi-planar surfaces
and sharp edges.

B Building an Intuition in 2D

In this Section, we describe the thought process that led to our statistical edge detection
method. In particular, the first 2D version of the method is described. Here, surfaces are
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(c) Thin plates

Figure 15: Figures 15a and 15b: Estimator values for cones and folds with different angles
(descriptor values are normalized between 0 and 1). When 𝜓 = 0, the cone (resp. fold) is
fully open and the surface is locally planar and both Pauly and Kolmogorov-Smirnov de-
scriptors are equal to zero. The discontinuity on the Kolmogorov-Smirnov curve indicates
a change of principal plane. For lower values of theta, the principal plane is tangent to the
surface, while for higher values of theta, it is orthogonal to the surface. Pauly’s descriptor
is not suitable because for large values of theta it is not increasing, whereas the larger theta,
the more pointed the cone (and therefore we would expect the descriptor to be larger). Fig-
ure 15c: For thin plates (𝑑 < 0.3), some points on the other side of the plateau are included
in the neighborhood and this induces an error in edge detection: Pauly’s descriptor ap-
pears to be very sensitive to this artifact, taking on very large values despite the fact that
the surface is completely flat. Whereas Kolmogorov-Smirnov’s descriptor is robust to this
difficulty (its values remain low whatever the thickness of the plateau).

replaced by contours, and the aim is to detect contour edges. In Section B.1, we describe
some synthetic data corresponding to contour portions. In Section B.2, we explain our 2D
edge detector based on a test of odds.

B.1 Toy problem in 2D

We aim to compare different local descriptors for edge detection. Hence we generated con-
tour edges with different angles. More precisely, we sample 𝑘 = 50 points evenly dis-
tributed on a straight line, along axis 𝒆𝒙 in ℝ2. Their 𝑥-coordinates are uniformly dis-
tributed between -1 and 1. Their 𝑦-coordinates are equal to zero. The obtained point cloud
is denoted 𝑪𝟎 corresponds to a straight contour portion. The centroid point is the origin
of the Cartesian system. For any 𝜓 ∈ [0, 𝜋

2
), we apply a rotation to each point in 𝑪𝟎 and

generate the new contour portion

𝑪𝝍 = {ℛ(sgn(𝒙 ⋅ 𝒆𝒙)𝜓)𝒙, 𝒙 ∈ 𝑪𝟎} (54)

where

∀𝜓 ∈ [−𝜋, 𝜋), ℛ(𝜓) = (cos 𝜓 − sin𝜓
sin 𝜓 cos 𝜓 ) . (55)

Figure 16 illustrates how we generated the aforementioned contours portions.

B.2 Odds-ratio descriptor

In this Paragraph, we describe the local statistical descriptor that we use to detect edges on
2Dcontours. We call it the odds-ratio descriptor. In Section 2.1, we define theKolomogorov-
Smirnov descriptor as a novel statistical descriptor used to detect edges on 3D surfaces.
This descriptor can be conceptualized as a 3-dimensional generalization of the odds-ratio
descriptor defined here.
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Figure 16: Illustration of the procedure used to generate the contour portions.

Let us explain the intuition that led us to the odds-ratio descriptor. We illustrate our in-
tuition on the toy contour portions described in Paragraph B.1. These contour portions
are depicted in Figure 16. A good descriptor is expected to discriminate obtuse contour
portions (small values of 𝜓) and acute contour portions (large values of 𝜓).

The odds-ratio descriptor relies on a statistical approach to differentiate between obtuse
(small 𝜓) and acute (large 𝜓) contour edges. This approach is based on two key ideas: (1)
projecting the neighboring points on their average axis. Then (2) modeling the projections
as observations of a probability distribution and assess the symmetry of the latter around
the centroid point. Indeed, for obtuse edges (small 𝜓), the average axis is tangent to the
contour, and the projections of the points on this axis are evenly distributed around the
centroid. Whereas for acute edges (large 𝜓), the average axis is orthogonal to the contour,
and the centroid is off-centered with respect to the projections of its neighbors.

In order to formalize the method, let introduce 𝒙𝟎 a centroid point and 𝒙𝟏, ..., 𝒙𝒌 its 𝑘-
nearest-neighbors.

The average axis of the neighboring points is defined as the first eigen axis of their covari-
ance matrix

𝒱 ∶= 1
𝑘 + 1

𝑘∑

𝑖=0
(𝒙𝒊 − 𝒙)(𝒙𝒊 − 𝒙)𝑇 (56)

where

𝒙 ∶= 1
𝑘 + 1

𝑘∑

𝑖=0
𝒙𝒊 (57)

is the neighborhood’s mean.

For the sake of formalization, we call 𝒆𝟏 the first eigenvector of 𝒱 . Its direction is the aver-
age axis of the neighboring points.

We project the neighboring points on their average axis and center them with respect to
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the centroid point, that is:

∀𝑖 ∈ J1, 𝑘K, 𝑋𝑖 ∶= (𝒙𝒊 − 𝒙𝟎) ⋅ 𝒆𝟏 (58)

We aim to assess if the scalar values 𝑋1, ..., 𝑋𝑘 are evenly distributed around 0. In order to
do so, we consider these values as i.i.d. realizations of a random variable 𝑋 and assess the
symmtery of 𝑋 around 0. It amounts in testing the null hypothesis

𝐻0 ∶ "the distribution of 𝑋 is symmetric around 0".

Let introduce the number of positive realizations:

𝑘+ =
𝑘∑

𝑖=1
𝟙𝑋𝑖≥0 (59)

It can be shown that under the null hypothesis𝐻0, the quantity

𝑉𝑘 ∶=
2𝑘+ − 𝑘
√
𝑘

(60)

can be approximated by a Standard Gaussian distribution.

The 𝑝-value is then computed as the probability of observing a test statistic at least as ex-
treme as the one observed here or more extreme, given the null hypothesis. Specifically, if
we denote by𝐹 the cumulative distribution function of the StandardGaussian distribution,
then

𝑝-value ∶= 2 × (1 − 𝐹−1(|𝑣|)) (61)

where 𝑣 is the observed value of the test statistic 𝑉𝑘.

In order to validate or reject the null hypothesis, we use a decision threshold 𝑝0. Here
we empirically set 𝑝0 = 0.01. In particular, if the 𝑝-value is lower than 𝑝0, we reject the
null hypothesis, which means that the distribution of 𝑋 is not symmetric. In this case,
we consider that the contour edge is acute. On the contrary, the 𝑝-value is higher than
𝑝0, we validate the null hypothesis, which means that the distribution of 𝑋 is symmetric.
In this case, we consider that the contour edge is obtuse i.e. that the contour is planar or
quasi-planar. We define the odds-ratio descriptor as follows:

𝜖𝑂𝑅(𝒙𝟎) ∶= {
1 if 𝑝-value ≤ 𝑝0.
0 if 𝑝-value > 𝑝0.

(62)

This method thus allows to remedy the two limitations of Pauly’s approach:

1. This method clearly distinguishes situations 1) and 2) from situations 3) and 4).

2. The descriptor corresponds to the 𝑝-value of a statistical test, we can therefore inter-
pret it and quantify its uncertainty as a function of the size of the neighborhood and
the number of points sampled in it.
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Figure 17: Descriptors computed on 2D toy contour portions as a function of the contour
edge angle 𝜓. For 100 values of 𝜓 between 0 and 𝜋

2
, we generate the contour portion 𝑪𝝍

as defined in Equation 54. For each contour portion, we compute odds-ratio and Pauly’s
descriptors. It can be seen that Pauly’s descriptor does not allow to discriminate between
quasi-planar and acute contours. Indeed, it takes small values in both extreme cases (𝜓 ≃ 0
and 𝜓 ≃ 𝜋

2
).
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