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Abstract

Wave-like partial differential equations occur in many engineering applica-
tions. Here the engineering setup is embedded into the Hilbert space framework
of functional analysis of modern mathematical physics. The notion wave-like is
a generalization of the primary wave (partial) differential equation.

A short overview over three wave-like problems in physics and engineering
is presented. The mathematical procedure for achieving positive, selfadjoint
differential operators in an L2–Hilbert space is described, operators which then
may be taken for wave-like differential equations. Also some general results from
the functional analytic literature are summarized.

The main part concerns the investigation of the free Euler–Bernoulli bend-
ing vibrations of a slender, straight, elastic beam in one spatial dimension in
the L2–Hilbert space setup. Taking suitable Sobolev spaces we perform the
mathematically exact introduction and analysis of the corresponding (spatial)
positive, selfadjoint differential operators of 4-th order, which belong to the dif-
ferent boundary conditions arising as supports in statics. A comparison with free
wave swinging of a string is added, using a Laplacian as differential operator.

Keywords: wave-like differential equations in Hilbert space, Sobolev spaces,
boundary conditions from engineering statics, positive selfadjoint differential op-
erators of 4-th order, Friedrichs extension, Euler–Bernoulli (partial) differential
equation in L2–Hilbert space for beam bending dynamics.
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1 Introduction, Overview,

Definition of Wave-Like Equation

In many engineering investigations and applications wave-like partial differential equa-
tions play an important role. The engineering calculations to solve such differential
equations seem to be very specific to the specially chosen situations. But in this way,
deeper mathematical questions remain unanswered. Nevertheless the directly calcu-
lating methods used are successful and appropriate for the selected application, which
lead to concrete solutions, analytically and numerically, e.g. [12, 10, 13, 3].
For beam dynamics there exist four engineering theories: Euler–Bernoulli model,

Rayleigh model, shear model and Timoshenk model. Classically the dynamics of the
transversally bending beam is investigated and directly computed by eigenfunction
expansion [5].
Here we investigate free Euler–Bernoulli bending vibrations of a slender, straight,

elastic beam in a completely different and much larger context, namely in terms of
Hilbert space methods of modern mathematical physics.
Functional analysis is capable to provide general statements for very general situa-

tions, namely predictions on existence and smoothness degrees of eigenfunctions and
solutions (regularity). The mentioned specific engineering techniques are far from be-
ing able to deal with this generality. Nevertheless there are limitations, since also in a
Hilbert space setting it is not possible to calculate analytically eigenvalues and eigen-
functions of differential operators on an arbitrary spatial region Λ ⊆ Rr , r = 1, 2, 3,
which does not possess specific geometric properties like symmetries.
The present article aims to bring together computational and theoretical engineering

science with functional analytic methods. The novelty of the present approach is the
complete incorporation and investigation of the Euler–Bernoulli differential equation
in the general context of Hilbert space operator theory in functional analysis.
In order to be precise let us introduce, what will be understood under a wave-like

differential equation in Hilbert space language.

Definition 1.1 (Wave-Like Differential Equation) A differential equation of type

d2u(t)

dt2
= −Au(t)

in a Hilbert space H with some positive, selfadjoint operator A is called to be wave-
like. A solution of which is a trajectory R ∋ t 7→ u(t) ∈ H, where in applications the
variable t ∈ R is interpreted as the time parameter for evolution in time.

In engineering or physical applications, the operators A usually represent differential
operators of second or higher order acting in some L2–Hilbert space of square inte-
grable functions on a spatial region Λ. The primary wave equation concerns a Laplace
operator A = −∆, so the notion wave-like is its generalization. To free Euler–Bernoulli
bending vibrations of a beam there belong differential operators A of 4-th order.
In the current article we first outline the general Hilbert space solution of wave-like

differential equations, see Section 2.
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In Section 3 the necessary mathematical procedure for obtaining positive, selfadjoint
differential operators A in the L2–Hilbert space approach is described, but also some
general results from the literature are reported. Moreover, a short overview over three
wave-like equations for arbitrary spatial regions Λ is given: the primary wave equa-
tion as a partial differential equation, the wave decoupling for Maxwell radiation in
electromagnetism, and free bending vibrations of a plate.
Section 4 is auxiliary but necessary for bending vibrations of a beam in the next

Section 5. It is dedicated to Sobolev spaces corresponding to diverse boundary condi-
tions with associated differential operators of first and second order acting in the open
bounded interval (0, ℓ) with ℓ > 0.
In Section 5 we outline in detail the L2–Hilbert space frame in one spatial dimension

for positive, selfadjoint differential operators A of 4-th order, which describe via wave-
like equations the free Euler–Bernoulli bending vibrations of a slender, straight, elastic
beam placed in (0, ℓ). At the ends of the beam, x = 0 and x = ℓ, the diverse support
possibilities from engineering statics are taken, namely the combinations of flexible
or fixed support, and free end. Intrinsically involved into the domain of definition
of such a differential operator A of 4-th order is the chosen boundary condition (=
support) of the beam. Each A is identified as the well known Friedrichs extension
[8, 14] of the suitable product operator of four differential operators of first order
respecting exactly the selected support of the beam. For such positive, selfadjoint A
we prove the existence of a purely discrete spectrum with help of a Sobolev compact
embedding theorem. Two groups of these operators A are distinguished. One group
with analytically solvable eigenequations, and the other group for which only numerical
solutions of the eigenequations are possible, both being considered in detail in Section 6.
That reflects directly some properties of the mentioned Friedrichs extensions. We derive
operator properties and interrelations, which seem to be unknown in the engineering
and mathematical literature.
In Section 7 we discuss similarities and differences between free bending vibrations

of a beam and free wave swinging of a string, for comparable boundary conditions.
The detailed mathematical proofs for Section 5 are given in the last Section 8.
In order to understand the results and their proofs, the reader should be familiar with

some basics on unbounded operators and sesquilinear forms acting in Hilbert spaces,
such as closure, closedness, graph norm, core, selfadjointness, spectral calculus, etc.
Some of these basic concepts are outlined for the convenience of the reader.
Abbreviating we write IV for initial value(s), IVP for initial value problem(s), BV for

boundary value(s), PDE for partial differential equation(s), and ONB for orthonormal
basis. Moreover, the natural numbers are without zero, namely N = {1, 2, 3, 4, 5, ...}.

2 Wave-Like Equations in Hilbert Space

Let H be a separable real or complex Hilbert space with inner product ⟨.|.⟩, being
anti-linear in the first and linear in the second variable in the complex case, and
with associated norm ∥.∥ =

√
⟨.|.⟩. (Note: In some purely mathematical texts the

inner product is taken linear in the first factor, but linearity in the second factor is
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general standard in mathematical physics. Also the notion ⟨.|.⟩ for the scalar product
is common in mathematical physics, but in mathematics one also finds (., .) or (.; .).)

2.1 Preliminaries on Selfadjoint Operators, Spectral Calculus

All operators used are linear, so we will not mention this anymore. For readers who
are not so familiar with the operator concept in Hilbert space theory, let us mention
some basics.
Discontinuity of an operator A (with respect to the ∥.∥–topology on H) is equivalent

to its unboundedness. For such an unbounded operator A its domain of definition
dom(A) cannot be the whole Hilbert space H. Instead of that, an unbounded A is
defined on a (norm–) dense domain of definition dom(A) ⊂ H, only, making necessary
a particularly careful mathematical treatment. The differential operators acting in
L2–Hilbert spaces, which we will deal with in the next sections, all are unbounded.
For a possibly densely defined operator A with domain dom(A) ⊆ H, we repeat the

following notions common in Hilbert space theory:

(a) A is called positive, if ⟨ξ|Aξ⟩ ≥ 0 for all ξ ∈ dom(A).

(b) The adjoint A∗ of A is defined by

dom(A∗) = {ξ ∈ H | ∃ ηξ ∈ H with ⟨ηξ|φ⟩ = ⟨ξ|Aφ⟩ ∀φ ∈ dom(A)},
A∗ξ = ηξ , ∀ξ ∈ dom(A∗) .

(2.1)

ηξ is unique since dom(A) is dense, and so the adjoint A∗ only exists for a densely
defined operator A.

(c) A is symmetric, if Aξ = A∗ξ for all ξ ∈ dom(A) ⊆ dom(A∗), denoted by A ⊆ A∗ ,
that is, if ⟨ξ|Aφ⟩ = ⟨Aξ|φ⟩ for all ξ, φ ∈ dom(A).

(d) A is called selfadjoint, if A = A∗ , implying symmetry but with the same domains
of definition dom(A) = dom(A∗).

Selfadjointness – and not only symmetry – of an unbounded operator A is an im-
portant property, since only selfadjoint operators enable spectral calculus, e.g., [14]
Chapter 8, [11] Vol. I ChapterVIII, for an overview [7] Section 43.3.
Because we need the spectral calculus in Theorem 2.1 below, let us repeat its

essentiality in some detail. Given a selfadjoint operator A acting in H. Spectral
calculus is the basis for defining to every ordinary function f an operator f(A) acting
in H. Precisely this means, any real- or complex-valued function

f : σ(A) → R (or C) , y 7→ f(y)

being defined on the spectrum σ(A) ⊆ R of A, gives rise to an operator f(A) acting
in H. f(A) is selfadjoint, if and only if the ordinary function f is real-valued. f(A) is
a bounded, thus a continuous operator, if f is a bounded function. f(A) is a positive
operator on H, if f has values only in the positives [0,∞).
Note that A is positive if and only if the spectrum σ(A) ⊆ [0,∞). Therefore, we

will work with functions f defined on [0,∞) when considering positive, selfadjoint
operators A as in the next subsection.
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2.2 Arbitrary Positive, Selfadjoint Operator A

Let A be a positive, selfadjoint operator acting in H. When A is unbounded, then its
domain of definition dom(A) has to be a proper dense subspace of H.

Theorem 2.1 (Wave-Like IVP) Consider the following wave-like IVP for the posi-
tive, selfadjoint operator A in the Hilbert space H,

wave-like differential equation
d2u(t)

dt2
= −Au(t) , t ∈ R , (2.2)

IV (at t = 0) u(t)|t=0 = u0 ∈ H ,

IV (at t = 0)
du(t)

dt

∣∣∣∣
t=0

= u̇0 ∈ H ,

with given Hilbert space vectors u0, u̇0 ∈ H. Equation (2.2) is the short notion of the
differential equation, it is mathematically rigourously formulated in the weak sense as

d2

dt2
⟨η|u(t)⟩ = −⟨Aη|u(t)⟩ , ∀η ∈ dom(A) . (2.3)

Then the unique solution trajectory of the wave-like IVP is given by

u(t) = cos(t
√
A)u0 +

sin(t
√
A)√

A
u̇0 , ∀t ∈ R . (2.4)

Furthermore, the solution trajectory R ∋ t 7→ u(t) ∈ H is continuous with respect to
the norm ∥.∥ of the Hilbert space H.

Sketch of Proof. That (2.4) is indeed a solution of the IVP, is immediately verified

with help of the spectral calculus. For uniqueness see [9] Chapter 3, or [16].

Remark, as mentioned in the previous subsection, for each t ∈ R the two selfadjoint

operators cos(t
√
A) and sin(t

√
A)√

A
arise by spectral calculus from the ordinary continuous,

bounded, real-valued functions of a single variable,

[0,∞) ∋ y 7→ cos(t
√
y) , [0,∞) ∋ y 7→

{
t , if y = 0 ,
sin(t

√
y)√

y
, if y > 0 .

(2.5)

Regardless of whether A is bounded or unbounded, both selfadjoint operators cos(t
√
A)

and sin(t
√
A)√

A
are bounded, and thus defined everywhere in H. Therefore, the solution

formula (2.4) is indeed valid for all IV Hilbert space vectors u0, u̇0 ∈ H.

Corollary 2.2 If H is a complex Hilbert space, then the solution t 7→ u(t) from (2.4)

is related to the strongly continuous unitary group eit
√
A in the following sense,

u(t) = eit
√
A u0 ∀t ∈ R , if and only if u̇0 = i

√
Au0 (at t = 0) .
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2.3 Operator A with Purely Discrete Spectrum

Let us suppose that the positive, selfadjoint operator A in Theorem 2.1 possesses a
pure point (= purely discrete) spectrum, σ(A) = σp(A) ⊂ [0,∞), meaning a pure
eigenspectrum: There exists an orthonormal basis (ONB) of H, which consists of the
normalized eigenvectors ψn , n ∈ N, of our operator A, corresponding to the eigenvalues
(= discrete spectral points) an ≥ 0, n ∈ N, in terms of the eigenequation

Aψn = anψn , ∀n ∈ N . (2.6)

(Note, H is supposed to be separable, so the ONB is countable.) Thus, for every
ordinary function f : [0,∞) → C, y 7→ f(y) it follows by spectral calculus that

f(A)ψn = f(an)ψn , ∀n ∈ N . (2.7)

Corollary 2.3 With the purely discrete spectrum (2.6) of the positive, selfadjoint
operator A, the solution trajectory t 7→ u(t) ∈ H of (2.4) rewrites as

u(t) =
∞∑
n=1

(
cos(t

√
an)⟨ψn|u0⟩+

sin(t
√
an)√

an
⟨ψn|u̇0⟩︸ ︷︷ ︸

= ⟨ψn|u(t)⟩

)
ψn , ∀t ∈ R . (2.8)

This is the decomposition of the wave-like solution u(t) into the eigenvectors ψn of the
positive, selfadjoint operator A, also denoted as eigenvector expansion of u(t).

Proof. First remark the spectral properties by equation (2.7),

cos(t
√
A)ψn = cos(t

√
an)ψn ,

sin(t
√
A)√

A
ψn =

sin(t
√
an)√

an
ψn , ∀n ∈ N . (2.9)

Since the normalized eigenvectors ψn , n ∈ N constitute an ONB of H, we may decompose
u(t) of (2.4) according to the spectral projections

u(t) =
∞∑
n=1

⟨ψn|u(t)⟩ψn

=
∞∑
n=1

⟨ψn| cos(t
√
A)u0 +

sin(t
√
A)√

A
u̇0⟩ψn

=

∞∑
n=1

(
⟨ψn| cos(t

√
A)u0⟩+ ⟨ψn| sin(t

√
A)√

A
u̇0⟩

)
ψn

⋆
=

∞∑
n=1

(
⟨cos(t

√
A)ψn|u0⟩+ ⟨ sin(t

√
A)√

A
ψn|u̇0⟩

)
ψn

(2.9)
=

∞∑
n=1

(
cos(t

√
an)⟨ψn|u0⟩+ sin(t

√
an)√

an
⟨ψn|u̇0⟩

)
ψn ,

where at the equality sign
⋆
= with the star we used the selfadjointness of the two bounded

operators cos(t
√
A) and sin(t

√
A)√

A
.
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Note, if the spectrum of A contains continuous parts (possibly whole intervals), then
the solution cannot be written in such a simple way.

Remark 2.4 (Modification by a Physical or Material Constant) In the next
sections we consider such positive, selfadjoint operators A for physical, engineering,
or technical applications. In general there A is modified to ς2A with some physical or
material constant ς > 0 in the wave-like differential equation (2.2),

modified wave-like differential equation
d2u(t)

dt2
= −ς2Au(t) , t ∈ R .

Then
√
A in our solution formula (2.4) has to be replaced by ς

√
A, implying that

√
an

is substituted by ς
√
an in the solution (2.8) for eigenvector expansion.

3 About Applications in L2–Hilbert Spaces

Let H = L2(Λ) be the Hilbert space of R– or C–valued, Lebesgue square integrable
functions defined on the spatial region Λ ⊆ R

r in r ∈ N real dimensions, with the
standard inner product (ξ(x) complex conjugate to ξ(x)) and Hilbert space norm,

⟨ξ|η⟩ =
∫
Λ

ξ(x)η(x) drx , ∥ξ∥2 = ⟨ξ|ξ⟩ =
∫
Λ

|ξ(x)|2drx , ∀ξ, η ∈ L2(Λ) .

Λ is chosen as an open and connected subset of Rr , which usually is called a domain
or a region. “Connected” means “path connected”, so that any pair of points in Λ may
be connected via a continuous path within Λ. The domain Λ is called interior if Λ is
bounded, and an exterior region if its set complement Rr\Λ is bounded. Λ̄ denotes
the topological closure of the domain Λ, and so ∂Λ = Λ̄\Λ is just the boundary of Λ.
The subsequent Subsections 3.1 to 3.3 are dedicated to special examples of wave-

like equations formulated in L2–Hilbert space terminology. Subsections 3.4 and 3.5
summarize some general properties of related differential operators and their spectra.

The Procedure 3.1 (Wave-Like Differential Operators in L2–Hilbert Space)
One starts from partial differentiation within a region Λ ⊆ Rr with respect to the r
spatial variables. The first step is to transform this spatial differentiation operation on
Λ into a positive, selfadjoint operator A acting in the Hilbert space L2(Λ), a process,
which in general requires much mathematical effort. Now A can be taken for the
wave-like differential equation in Section 2, especially Theorem 2.1.
The exact mathematical definition of such a positive, selfadjoint differential opera-

tor A acting in L2(Λ) is often done in terms of a closed, positive sesquilinear form by
Friedrichs extension [8, 14], which necessarily has to include the considered boundary
condition. That means, the chosen BV are intrinsically involved into the positive, self-
adjoint differential operator A, and are not an extra condition. Possibly the considered
BV require some kind of smoothness for the boundary ∂Λ of the region Λ, e.g. segment
property, or uniform cone property, or piece-wise Ck–smoothness, etc.
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Finally, the spectral properties of the positive, selfadjoint differential operator A have
to be worked out. In general they turn out to be as mentioned in the Subsections 3.4
and 3.5, e.g. [16, 9, 2, 11, 8].

In Section 5 this procedure is performed for differential operators of 4-th order describ-
ing the tranversal bending vibrations of a slender beam in one spatial dimension.

3.1 Primary Wave PDE in a Spatial Region Λ

Consider the Laplace operator on an arbitrary spatial region Λ ⊆ Rr ,

−∆ = −
(
∂21 + ∂22 + . . .+ ∂2r

)
,

with partial differentiation ∂j =
∂

∂xj
in the j -th variable xj , where j = 1, 2, . . . , r.

It is well known that the Laplacian −∆ leads indeed to a positive and selfadjoint
operator A = −∆ acting on L2(Λ) for each of the classical homogeneous boundary
conditions such as Dirichlet, or Neumann, or mixed. Even when incorporating an
anisotropic, inhomogeneous medium into Λ, in which the waves propagate, with asso-
ciated generalized Laplacian, then one may also show positivity and selfadjointness in
many cases, e.g. [16, 9, 2].
Here the differential equation (2.2) describes the classical propagating wave in Λ,

which satisfies the BV for which the positive, selfadjoint Laplacian A = −∆ is defined.
The solution trajectory t 7→ u(t) ∈ L2(Λ) consists of (L2–classes of) functions

u(t)(x1, x2, . . . , xr) = u(x1, x2, . . . , xr, t) , ∀(x1, x2, . . . , xr) ∈ Λ , t ∈ R . (3.1)

In terms of two times continuously differentiable functions, the differential equation
(2.2) is rewritten as the well known ordinary wave PDE, namely,

∂2t u(x1, . . . , xr, t) = c2
(
∂21 + . . .+ ∂2r︸ ︷︷ ︸

=∆

)
u(x1, . . . , xr, t) = −c2(−∆︸︷︷︸

A≥ 0

)u(x1, . . . , xr, t)

(3.2)
with wave velocity c > 0. Here ∂t =

∂
∂t

indicates the partial differentiation with respect
to the time variable t ∈ R.

3.2 Maxwell Radiation and Wave Equations in Electromag-
netism

For the details to the present subsection, the reader is referred to [7] Chapters 4 and 44.
We only give a short overview concerning wave equations for electromagnetic radiation.
We consider the Maxwell equations in vacuum in the spatial region Λ ⊆ R3 . We use

the real Hilbert space L2(Λ,R6) for R6–valued functions on Λ (vector-valued functions
with 6 components). By Et it is denoted the electric field and by Bt the magnetic
field (three components for each), depending on time t ∈ R. Let us first describe their
dynamical behaviour directly in terms of the Maxwell equations.



Honegger et al. Wave-like Euler–Bernoulli Equation 10

For simplicity we assume no current and no charge distribution in Λ, implying di-
vergence freeness according to the Maxwell equations,

divEt = 0 , div0Bt = 0 , ∀t ∈ R . (3.3)

The remaining two Maxwell equations are of dynamical nature and are summarized in
matrix notation by

d

dt

(
Et

Bt

)
︸ ︷︷ ︸
= u(t)

=

(
0 curl

− curl0 0

)
︸ ︷︷ ︸

= A

(
Et

Bt

)
︸ ︷︷ ︸
= u(t)

, ∀t ∈ R . (3.4)

The dielectric constant ϵ0 and the magnetic permeability µ0 are set to 1 for the con-
venience of the reader.
The walls of Λ, that is the boundary ∂Λ, are supposed to consist of a perfect con-

ductor material. This leads to the well known boundary conditions

Et × n|∂Λ = 0 , Bt · n|∂Λ = 0 , ∀t ∈ R , (3.5)

where n denotes the outer normal vector at the boundary points. The two divergence
operators, div0 and div, as well as the two curl (rotation) operators, curl0 and curl, are
adapted to these perfect conductor boundary conditions, with minimal and maximal
Sobolev domains of definition, respectively.
The Maxwell operator A is anti-selfadjoint, meaning A∗ = −A (that is, in the

complexified Hilbert space iA is selfadjoint), since curl∗ = curl0 and curl∗0 = curl
for the adjoints. Consequently, exp{tA}, t ∈ R, constitutes a strongly continuous
orthogonal group in L2(Λ,R6). With given IV

u(t)|t=0 = u0 =
(
E0
B0

)
,

the unique solution of the IVP (3.4) turns out to be

u(t) = exp{tA}u0 , ∀t ∈ R . (3.6)

Formula (3.6) describes the freely evolving electromagnetic field in the spatial region
Λ, namely the electromagnetic radiation, in which intense coupling of the electric and
magnetic fields takes place due to the component mixing by the nondiagonal Maxwell
matrix operator A in equation (3.4).
It is well known that the electric and the magnetic components can be decoupled.

Taking the second time derivative in (3.4), we arrive at the wave-like equation

d2u(t)

dt2
= A2u(t) = −A∗A︸︷︷︸

≥ 0

u(t) , (3.7)

where we have inserted A∗ = −A. It follows that

A∗A = −A2 = −
(

0 curl
− curl0 0

)(
0 curl

− curl0 0

)
=

(
curl curl0 0

0 curl0 curl

)
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is a diagonal matrix operator in the electromagnetic field Hilbert space L2(Λ,R6),
which thus decouples the electric and magnetic fields. A∗A is a positive and selfadjoint
operator, and so are both double curl operators curl curl0 and curl0 curl.
The two positive, selfadjoint curlcurl–operators, curl curl0 and curl0 curl, agree with

two different Laplace operators, denoted by −∆E and −∆B , corresponding to the
perfect conductor boundary conditions (3.5), but are not covered by the mentioned
classical BV cases in the previous subsection. Decoupling ensures that we get two
separate wave equations, one for the electric field and another for the magnetic field,

d2Et

dt2
= −

=−∆E ≥ 0︷ ︸︸ ︷
curl curl0Et ,

d2Bt

dt2
= −

=−∆B ≥ 0︷ ︸︸ ︷
curl0 curlBt ,

both living now in the Hilbert space L2(Λ,R3) with three components, only.
In direct analogy to Corollary 2.2, the solutions of both wave equations agree with

the original solution (3.6) of the dynamical Maxwell equations (3.4) exclusively, when
the subsequent specific correlation of the IV at the initial time point t = 0 is fulfilled,(

Ė0

Ḃ0

)
︸ ︷︷ ︸
= u̇0

=
du(t)

dt

∣∣∣∣
t=0

=
d exp{tA}u0

dt

∣∣∣∣
t=0

=

(
0 curl

− curl0 0

)
︸ ︷︷ ︸

= A

(
E0

B0

)
︸ ︷︷ ︸
= u0

=

(
curlB0

− curl0E0

)
.

3.3 Free Bending Vibrations of a Plate

The plate is concentrated in the spatial region Λ ⊆ Rr , and bends transversally into
an additional spatial dimension. For an isotropic, homogeneous plate the operator A
of Section 2 is given e.g. with r = 2 by

−∆2 = −
(
∂21 + ∂22

)2
= −

(
∂41 + 2∂21∂

2
2 + ∂42

)
,

up to some material constant. One may also incorporate anisotropy and inhomogeneity
for the plate. In the literature one finds some homogeneous BV, for which such an
operator A turns out to be positive and selfadjoint, see e.g. [9].
The literature, however, does not cover the case r = 1 with the diverse BV from

engineering statics and technical mechanics, which we will investigate in great mathe-
matical detail in Section 5.

3.4 On Spectral Properties of the Differential Operators A

Positive, selfadjoint differential operators A of the above types possess (in general) the
following spectral properties,

pure point (= purely discrete) spectrum σ(A) = σp(A) ⊂ [0,∞) for interior Λ,

absolutely continuous spectrum σ(A) = σac(A) = [0,∞) for exterior Λ,
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with some mild assumptions about the smoothness of the boundary ∂Λ of the region
Λ. In addition, for interior Λ each eigenspace is finite dimensional and the eigenvalues
an , n ∈ N, from (2.6) may be arranged increasingly and converge to infinity,

0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ ..... , lim
n→∞

an = ∞ .

Recall from Subsection 2.3, a purely discrete spectrum is just a pure eigenspectrum
of A, namely: Aψn = anψn for all n ∈ N, where the an ≥ 0 are the eigenvalues
with corresponding normalized eigenvectors ψn . In addition, the set of eigenvectors
{ψn | n ∈ N} constitutes an ONB of the Hilbert space.
There is, however, an exception for the two curlcurl–Laplacians in electromagnetism,

−∆E = curl curl0 and −∆B = curl0 curl, respectively. The kernels of these both oper-
ators (= eigenspaces to eigenvalue zero) are infinite dimensional. These kernels consist
of suitable divergence-free fields in accordance with (3.3). For all other eigenvalues,
that are the strictly positive eigenvalues an > 0, the preceding statements are valid,
including finite multiplicity and convergence to infinity.
In general the existence of a discrete spectrum for interior Λ is proven with the help

of compact embeddings of related Sobolev spaces into L2(Λ), e.g. [16, 2]. Smoothness
properties of the associated eigenvectorfunctions are given by regularity arguments, cf.
the next Subsection 3.5. We also use that argument with a compact embedding in
section 8 for proving the spectral properties of diverse positive, selfadjoint differential
operators of 4-th order in Theorem 5.5 for the Euler–Bernoulli bending vibrations of a
slender beam in the bounded (= interior) interval (0, ℓ).
Exterior domains Λ with absolutely continuous spectra are commonly used in scat-

tering theory, e.g. [1, 11], and many more.

3.5 On Regularity of Eigenvectors and Solutions

In the cited and further literature one may find many results concerning regularity.
Regularity statements are of the following kind:

(a) Smoothness of the boundary ∂Λ implies smoothness of the eigenvectors ψn =
ψn(x1, . . . , xr), interior Λ supposed.

(b) Regularity of a Hilbert space solution function u(t) of (3.1) implies smoothness
of the solution function u(x1, . . . , xr, t), depending on the smoothness degrees of
the boundary ∂Λ and of the two IV functions u0, u̇0 ∈ H = L2(Λ).

For the detailed definition of smoothness, i.e. continuity or differentiability properties,
see e.g. [16, 9, 2, 7].

Summary 3.2 (The Importance of Regularity) In general, every L2–Hilbert
space element υ ∈ L2(Λ) is a class consisting of functions represented by υ with values
either in R or in C,

Λ ∋ (x1, x2, . . . , xr) 7→ υ(x1, x2, . . . , xr) ∈ R or ∈ C. (3.8)
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All functions represented by υ agree almost everywhere in Λ, only (with respect to the
common Lebesgue measure drx on Λ). Therefore, a point evaluation or a conventional
partial differentiation does make no sense.
That is the reason, why a Hilbert space formulation of differential equations is always

a generalization, which has to be formulated weakly like in equation (2.3).
When in addition the class υ contains an element u – a function – with some smooth-

ness properties (= regularity), then that representant u of the class υ allows for a point
evaluation or ordinary partial differentiations defined by differential limits. And then
the L2–solution trajectory t 7→ u(t) as in equation (3.1) fulfilling the L2–Hilbert space
wave-like equation, solves the ordinary wave-like PDE in the classical or traditional
sense with ordinary partial derivatives in terms of conventional differential limits.

So far in the present section we have presented a short overview of results from
functional analysis. But, as mentioned already in Section 1, for a general interior Λ it
is not possible to compute analytically the eigenvectors (= eigenfunctions) of a positive,
selfadjoint differential operator A acting in L2(Λ). Nevertheless Hilbert space theory
is able to prove the existence of an eigenspectrum, several regularity results, and more.
Concrete calculations of eigenvalues and eigenvectorfunctions are in general possible,
only, if Λ has certain geometric properties such as symmetry. Parallelepiped, ball, or
circular disc, are standard textbook examples, e.g. [2], and references therein.
The case r = 1 of a single spatial dimension is obviously such a special case. There

an interior domain Λ is always an open bounded interval, e.g. Λ = (0, ℓ) for ℓ > 0 as
taken in the subsequent sections. The interval (0, ℓ) possesses a “completely smooth
boundary”, namely its edge points x = 0 and x = ℓ. So by regularity arguments,
eigenfunctions and solution trajectories should be smooth, provided some smoothness
degrees of the IV u0 and u̇0 .

4 Differential Operators for the Interval (0, ℓ)

In the interior open interval Λ = (0, ℓ) with boundary (= edge) points x = 0 and x = ℓ
is placed in the next section a slender beam. Before we arrive at the wave-like Euler–
Bernoulli differential equation for bending vibrations of that beam, as preparation it
is first necessary to introduce several differential operators of first and second order.
Let us abbreviate L2 := L2((0, ℓ)) for the complex Hilbert space of C-valued, square

integrable functions ξ : (0, ℓ) → C, x 7→ ξ(x) with inner product and norm

⟨ξ|η⟩ =
∫ ℓ

0

ξ(x)η(x) dx , ∥ξ∥2 = ⟨ξ|ξ⟩ =
∫ ℓ

0

|ξ(x)|2dx , ∀ξ, η ∈ L2 = L2((0, ℓ)) .

4.1 Sobolev Spaces for the Interior Interval (0, ℓ)

For the mathematical description of differential operators it is inevitable to work with
Sobolev spaces. For completeness we state here some notions and properties we need
subsequently.
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By C∞
c (I) we denote the set of infinitely often continuously differentiable functions

ξ : I → C for the open interval I ⊆ R with compact support within I , the stan-
dard testfunction space in distribution theory for I . The elements of C∞

c (I)|J are the
restrictions ξ|J of ξ ∈ C∞

c (I) to the open subinterval J ⊆ I .
Let ξ : R→ C be an s–times continuously differentiable function and φ a testfunc-

tion on (0, ℓ), that is φ ∈ C∞
c ((0, ℓ)). When integrating s–times partially, no boundary

terms occur, since the testfunction φ has compact support in (0, ℓ) and hence vanishing
boundary values φ(k)(0) = 0 = φ(k)(ℓ) for all derivatives,

⟨ξ(s)|φ⟩ =
∫ ℓ

0

ξ(s)(x)φ(x) dx = (−1)s
∫ ℓ

0

ξ(x)φ(s)(x) dx = (−1)s⟨ξ|φ(s)⟩ .

This is the guiding line for the introduction of the following generalized concept of
differentiability.

Definition 4.1 (Square Integrable Distributional Differentiability) Suppose
for a ξ ∈ L2 the existence of a vector ξ(s) ∈ L2 such that

⟨ξ(s)|φ⟩ = (−1)s⟨ξ|φ(s)⟩ , ∀φ ∈ C∞
c ((0, ℓ)) . (4.1)

Then ξ(s) ∈ L2 is called the square integrable s-th derivative of ξ ∈ L2 (exactly,
differentiability in the distributional sense).

Note that, provided existence, the vector ξ(s) ∈ L2 is unique because the testfunction
space C∞

c ((0, ℓ)) is ∥.∥–dense in L2 .
As shown above, ξ(s) agrees with the conventional higher derivative, whenever ξ is

s–times continuously differentiable, and so the distributional definition is an extension
of ordinary differentiation using conventional differential limits.

Definition 4.2 (Sobolev Spaces) For each m ∈ N0 the m-th Sobolev space is de-
fined as

Wm = Wm((0, ℓ)) := {ξ ∈ L2 | ∃ ξ(s) ∈ L2 for 0 ≤ s ≤ m} .
It is equipped with the inner product

⟨ξ|η⟩m :=
m∑
s=0

⟨ξ(s)|η(s)⟩ , ∀ξ, η ∈ Wm, (4.2)

with associated m-th Sobolev norm ∥ξ∥m =
√

⟨ξ|ξ⟩m .

The index m = 0 yields ⟨ξ|η⟩0 = ⟨ξ|η⟩ and ∥ξ∥0 = ∥ξ∥ =
√

⟨ξ|ξ⟩ being the conventional
scalar product and norm on L2 = W0 with ξ = ξ(0) .
We present some results from the literature, see e.g. [16], an overview is found in

[7] Subsection 44.1.2.

Proposition 4.3 (Properties) The following assertions are valid:

(a) Wm is a separable complex Hilbert space for every m ∈ N0 with respect to its
Sobolev inner product ⟨.|.⟩m and m-th norm ∥.∥m from (4.2).
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(b) C∞
c (R)|(0,ℓ) is ∥.∥m–dense in the m-th Sobolev space Wm for each m ∈ N0 .

(This way Wm may be defined without distributional derivatives.)

(c) If m > k , then Wm ⊆ Ck([0, ℓ]), the k–times continuously differentiable functions
on the open interval (0, ℓ), for which each derivative extends continuously to both
boundary points x = 0 and x = ℓ.

(d) Let m > n. Then the identical embedding Wm ↪→ Wn is continuous, injective
and a compact map. Especially, the identical embedding W1 ↪→ L2 is compact.

Note, here in one dimension, an absolutely continuous function ξ : (0, ℓ) → C, x 7→
ξ(x) is differentiable almost everywhere in the sense of conventional differentiation, and
its derivative ξ′ is integrable over all compact subintervals of (0, ℓ), but not necessarily
square integrable. This way the first distributional derivative ξ′ is related to ordinary
differentiation by differential limits, provided square integrability is assumed.

4.2 Differential Operators of First Order for Diverse BV

We define four different differential operators δ. . ∈ {δ++, δ+−, δ−+, δ−−} of first order
acting on L2 (differentiation in the distributional sense),

δ. . ξ = ξ′ , ∀ξ ∈ dom(δ. .) ⊂ L2 .

As mentioned, unboundedness (= discontinuity) makes it impossible that such a differ-
ential operator may act on all Hilbert space vectors. Therefore we define four different
domains of definition leading to four different operators. The following domains of
definition dom(δ. .) ⊂ L2 are ∥.∥–dense in L2 , they are according to the subsequent
construction indirectly adapted to the following boundary conditions at the two bound-
ary points x = 0 and x = ℓ of the open interval (0, ℓ),

δ++ dom(δ++) = ∥.∥1–closure of C∞
c ((0, ℓ)), BV: ξ(0) = 0 , ξ(ℓ) = 0 ;

δ+− dom(δ+−) = ∥.∥1–closure of C∞
c ((0,∞))|(0,ℓ) , BV: ξ(0) = 0 , no BV at ℓ ;

δ−+ dom(δ−+) = ∥.∥1–closure of C∞
c ((−∞, ℓ))|(0,ℓ) , BV: no BV at 0, ξ(ℓ) = 0 ;

δ−− dom(δ−−) = ∥.∥1–closure of C∞
c (R)|(0,ℓ) = W1, BV: no BV at both 0 and ℓ .

The minus or plus sign in the index means: For “+” the BV is fulfilled, and for “−”
the BV is not fulfilled, corresponding to the left or right boundary point, x = 0 and
x = ℓ, respectively. The closures of these spaces with respect to the first Sobolev norm
∥.∥1 are defined to be the domains of definition dom(δ. .) ⊂ L2 of these operators δ. .
regarded as operators acting in L2 . Of course, by construction the domains dom(δ. .)
are ∥.∥1–closed subspaces of the Sobolev Hilbert space W1 .
From Proposition 4.3(c) we know that W1 is a subspace of C0([0, ℓ]) (continuous

functions on the closed interval [0, ℓ]) and thus the above abstract definition with ∥.∥1–
closures allows for a direct boundary evaluation, in contrast to the previous indirect
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BV construction, and it follows with Proposition 4.3(b),

δ++ dom(δ++) = {ξ ∈ W1 | ξ(0) = 0 , ξ(ℓ) = 0} ;
δ+− dom(δ+−) = {ξ ∈ W1 | ξ(0) = 0 , no BV at ℓ} ;
δ−+ dom(δ−+) = {ξ ∈ W1 | no BV at 0, ξ(ℓ) = 0} ;
δ−− dom(δ−−) = {ξ ∈ W1 | no BV at both 0 and ℓ} = W1.

Observe that these four differential operators of first order are auxiliary but necessary
for introducing the correct BV from engineering statics for the diverse differential
operators of 4-th order for the bending beam in the subsequent Section 5.

Lemma 4.4 The four differential operators δ. . ∈ {δ++, δ+−, δ−+, δ−−} are closed, and
for their L2–adjoints it holds

δ∗++ = −δ−− , δ∗−− = −δ++ , δ∗+− = −δ−+ , δ∗−+ = −δ+− .

Proof. The graph norm of these operators agrees with the Sobolev norm ∥.∥1 . So they are
closed unbounded operators in L2 by construction. Especially, by that construction,

C∞
c ((0, ℓ)) , C∞

c ((0,∞))|(0,ℓ) , C∞
c ((−∞, ℓ))|(0,ℓ) , C∞

c (R)|(0,ℓ)

are cores, which are ∥.∥1–dense in the domains dom(δ. .) ⊆ W1 , respectively.
Let us first consider the pair δ++ and δ−− . According to the construction of the adjoint

of an operator in (2.1) we have

dom(δ∗++) = {ξ ∈ L2 | ∃ ηξ ∈ L2 with ⟨ηξ|φ⟩ = ⟨ξ|φ′⟩ ∀φ ∈ dom(δ++)}, ηξ = δ∗++ξ . (4.3)

Suppose first ξ ∈ dom(δ∗++). Applying the testfunctions φ ∈ C∞
c ((0, ℓ)) ⊂ dom(δ++) to the

connection ⟨δ∗++ξ|φ⟩ = ⟨ξ|φ′⟩ = −⟨ξ′|φ⟩, we arrive at ξ ∈ W1 = dom(δ−−) and δ∗++ξ =
−ξ′ = −δ−−ξ , especially dom(δ∗++) ⊆ dom(δ−−) = W1 . Conversely, let ξ ∈ W1 . With
partial integration (PI, extension from smooth functions to W1 via Proposition 4.3(b)) and
φ(0) = 0 = φ(ℓ) for φ ∈ dom(δ++) we arrive at

⟨δ−−ξ|φ⟩ = ⟨ξ′|φ⟩ =
∫ ℓ

0
ξ′(x)φ(x) dx

PI
=

[
ξ(x)φ(x)

]ℓ
0︸ ︷︷ ︸

=0

−
∫ ℓ

0
ξ(x)φ′(x) dx = −⟨ξ|φ′⟩

for all φ ∈ dom(δ++). With help of (4.3) we conclude that ξ ∈ dom(δ∗++) and δ∗++ξ = ηξ =
−ξ′ = −δ−−ξ . Finally, δ

∗
++ = −δ−− . Adjoining leads to δ++ = δ∗∗++ = −δ∗−− (note, for every

closed operator B it holds B = B∗∗).
For the pair δ+− and δ−+ the situation is different. By definition of the adjoint it is

dom(δ∗−+) = {ξ ∈ L2 | ∃ ηξ ∈ L2 with ⟨ηξ|φ⟩ = ⟨ξ|φ′⟩ ∀φ ∈ dom(δ−+)}, ηξ = δ∗−+ξ . (4.4)

Let first ξ ∈ dom(δ∗−+). Applying the testfunctions φ ∈ C∞
c ((0, ℓ)) ⊂ dom(δ−+) to the

connection ⟨δ∗−+ξ|φ⟩ = ⟨ξ|φ′⟩ = −⟨ξ′|φ⟩, we arrive at ξ ∈ W1 and δ∗−+ξ = −ξ′ . In order to
prove that ξ ∈ dom(δ+−) we integrate partially (PI)

⟨δ∗−+ξ|φ⟩ = −⟨ξ′|φ⟩ = −
∫ ℓ

0
ξ′(x)φ(x) dx

PI
= −

[
ξ(x)φ(x)

]ℓ
0
+

∫ ℓ

0
ξ(x)φ′(x) dx

= −ξ(ℓ)φ(ℓ) + ξ(0)φ(0)︸ ︷︷ ︸
boundary term

+ ⟨ξ|φ′⟩ ,



Honegger et al. Wave-like Euler–Bernoulli Equation 17

Thus ⟨δ∗−+ξ|φ⟩ = ⟨ξ|φ′⟩ is fulfilled for all φ ∈ dom(δ−+), if and only if the boundary term

vanishs. We know φ(ℓ) = 0 for all φ ∈ dom(δ−+) = {φ ∈ W1 | φ(ℓ) = 0}, but there is no

BV at x = 0 for φ ∈ dom(δ−+). Thus a vanishing boundary term forces ξ(0) = 0, implying

ξ ∈ dom(δ+−) = {ξ ∈ W1 | ξ(0) = 0}. So far, δ∗−+ξ = −ξ′ = −δ+−ξ for ξ ∈ dom(δ∗−+) ⊆
dom(δ+−). Conversely, let ξ ∈ dom(δ+−). Then the above PI yields ⟨−δ+−ξ|φ⟩ = ⟨−ξ′|φ⟩ =
⟨ξ|φ′⟩ for all φ ∈ dom(δ−+), implying ξ ∈ dom(δ∗−+) and δ∗−+ξ = ηξ = −ξ′ = −δ+−ξ with

help of (4.4). Therefore, δ∗−+ = −δ+− , and by adjoining δ−+ = δ∗∗−+ = −δ∗+− .

Remark 4.5 (Anti-Selfadjoint Differential Operators of First Order) There
exist overcountably many anti-selfadjoint differential operators δz = −δ∗z operating in
L2 . For each z ∈ C with |z| = 1 the operator δz is defined as differentiation of first
order with BV different to above,

δzξ = ξ′ , ∀ξ ∈ dom(δz) := {ξ ∈ W1 | ξ(0) = zξ(ℓ)} .

So, δz fulfills the boundary condition ξ(0) = zξ(ℓ). See e.g. [11]Vol. I p. 259, [11]Vol. II
p. 141 f, or [14] p. 240 f, additional properties are found in [7] Subsection 17.5.1.
The operators δz are related to the two types δ++ and δ−− , in the sense that

δ++ ⊂ δz ⊂ δ−− , meaning dom(δ++) ⊂ dom(δz) ⊂ dom(δ−−) .

δ++ is the smallest, δ−− the largest differential operator in L2 , whereas all the anti-
selfadjoint operators δz lie in between, also δ+− and δ−+ .
Note, when multiplying with −i and with Planck’s constant ℏ, one arrives at the self-

adjoint momentum operators pz = −iℏδz , used in one dimensional quantum mechanics
on the spatial interval [0, ℓ].

4.3 Four Different Laplace Operators on the Interval (0, ℓ)

Here for our interval (0, ℓ) a Laplace operator ∆ is defined to act by double differentia-
tion as ∆ξ = ξ′′ on functions ξ : (0, ℓ) → C, x 7→ ξ(x) of the single variable x ∈ (0, ℓ).
Also when multiplying with the minus sign, that is −∆, the differential operator is
denoted a Laplace operator or simply a Laplacian. In order to obtain positivity and
selfadjointness of −∆ as an operator acting in L2 = L2((0, ℓ)) we have to introduce
some BV, e.g. analogously to Subsection 3.1.
Here, however, we proceed by defining 4 different Laplacians in terms of operator

products of suitable differential operators of first order, possessing the desired BV and
in addition positivity and selfadjointness. So let us recall, that the operator product
BC of the two operators B and C is defined by

dom(BC) = {ξ ∈ dom(C) |Cξ ∈ dom(B)} , BCξ := (BC)ξ = B(Cξ) . (4.5)

Since for a closed operator B the operator product B∗B is always positive and
selfadjoint, one immediately obtains the next result with help of Lemma 4.4. The
indices, DN , DD, etc., denote homogeneous Dirichlet or Neumann BV at the left or
right boundary point, x = 0 or x = ℓ, of the interval (0, ℓ), respectively.
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Corollary 4.6 (Four Positive, Selfadjoint Laplacians on (0, ℓ)) Consider the
following four Laplace operators acting in the Hilbert space L2 (differentiation in the
distributional sense).

(a) The positive, selfadjoint Dirichlet Laplacian is given by the operator product

−∆DD = δ∗++δ++ = −δ−−δ++ , −∆DDξ = −ξ′′, ξ ∈ dom(−∆DD) ⊂ W2.

From ∆DD = δ−−δ++ and the fact that δ−− has no BV, it follows that −∆DD

satisfies the BV for δ++ , only, namely the homogeneous Dirichlet BV ξ(0) = 0 =
ξ(ℓ). In the literature this BV commonly is indexed by “∞” as −∆DD = −∆∞ .

(b) The positive, selfadjoint Neumann Laplacian is given by the operator product

−∆NN = δ∗−−δ−− = −δ++δ−− , −∆NNξ = −ξ′′, ξ ∈ dom(−∆NN) ⊂ W2.

Since δ−− has no BV, the BV for −∆NN arises from the BV of δ++ . The operator
product condition (4.5) implies for the first derivatives δ−−ξ = ξ′ ∈ dom(δ++),
and hence we arrive at the homogeneous Neumann BV ξ′(0) = 0 = ξ′(ℓ). In the
literature this BV commonly is indexed by a zero “0”, that is −∆NN = −∆0 .

(c) The two positive, selfadjoint mixed Laplacians are given by the operator products

−∆DN = δ∗+−δ+− = −δ−+δ+− , −∆DNξ = −ξ′′, ξ ∈ dom(−∆DN) ⊂ W2,

−∆ND = δ∗−+δ−+ = −δ+−δ−+ , −∆NDξ = −ξ′′, ξ ∈ dom(−∆ND) ⊂ W2,

with mixed homogeneous Dirichlet and Neumann BV, ξ(0) = 0 = ξ′(ℓ) and
ξ′(0) = 0 = ξ(ℓ), respectively.

Note that by Proposition 4.3(c) we have W2 ⊆ C1([0, ℓ]), and thus ξ and ξ′ allow for
a boundary evaluation, and so the BV are defined as usual.

The eigenspectra with eigenvalues an and normalized eigenvectorfunctions ψn ,

−∆. . ψn = anψn , ∀n ∈ N ,

of the four Laplacians −∆. . acting in the Hilbert space L2 from this Corollary 4.6 are
well known to be

−∆DD = −δ−−δ++ : an =
(
nπ
ℓ

)2
, ψn(x) =

√
2
ℓ
sin(nπ

ℓ
x) , n ∈ N ;

−∆NN = −δ++δ−− : an =
(
nπ
ℓ

)2
, ψn(x) =

√
2
ℓ
cos( (n−1)π

ℓ
x) , n ≥ 2 ,

a1 = 0 , ψ1(x) =
1√
ℓ
, n = 1 ;

−∆DN = −δ−+δ+− : an =
( (2n−1)π

2ℓ

)2
, ψn(x) =

√
2
ℓ
sin( (2n−1)π

2ℓ
x) , n ∈ N ;

−∆ND = −δ+−δ−+ : an =
( (2n−1)π

2ℓ

)2
, ψn(x) =

√
2
ℓ
cos( (2n−1)π

2ℓ
x) , n ∈ N ;
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with x ∈ [0, ℓ], of course. (Note, that may be easily derived with help of the theory
of Fourier series expansions by applying certain odd or even symmetry arguments.)
Exclusively the Neumann Laplacian −∆NN possesses the eigenvalue zero for which
the constant functions constitute the one-dimensional eigenspace. In each case the
normalized eigenfunctions {ψn ∈ L2 | n ∈ N} constitute an ONB of the Hilbert space
L2 = L2((0, ℓ)), leading to four different ONBs.
Some of these eigenfunctions are not contained in every domain or range (= image)

of the four differential operators δ++ , δ−− , δ−+ , δ+− of first order. For example, for
odd m = 2n− 1 ∈ N we obtain

it holds sin(mπ
2ℓ
x) ∈ dom(δ+−) ⊂ dom(δ−−) , m odd,

but sin(mπ
2ℓ
x) ̸∈ dom(δ−+) and sin(mπ

2ℓ
x) ̸∈ dom(δ++) ,

δ+− sin(mπ
2ℓ
x) = δ−− sin(mπ

2ℓ
x) = d

dx
sin(mπ

2ℓ
x) = mπ

2ℓ
cos(mπ

2ℓ
x) ,

where cos(mπ
2ℓ
x) ∈ range(δ+−) ⊆ dom(δ−+) ⊂ dom(δ−−) ,

but cos(mπ
2ℓ
x) ̸∈ dom(δ+−) and cos(mπ

2ℓ
x) ̸∈ dom(δ++) .

(4.6)

Remark, this fact finally provokes the result that the eigenequation for group (II) in
Corollary 5.4 below is not analytically solvable, see Summary 6.2.

5 Bending Vibrations of a Beam in One Spatial Di-

mension
Here we treat free bending vibrations in de-
tail. Given a slender, isotropic, homoge-
neous, straight, elastic beam of length ℓ with
constant cross-sectional area.
The x–axis is along the neutral fiber of
the beam, and the bending deformations
u(t)(x) = u(x, t) are vertical (transversal) to
the x–axis with positive u–direction down as
in the figures.
It is assumed that the beam is supported only
at its ends x = 0 and x = ℓ.
In the figures beside, only as a first example
both ends are supported flexibly, that is, each
support is free to rotate and has no moment
resistance.

As example, both ends are supported
flexibly, denoted as (a)–(a) support.

The beam is along the closed interval [0, ℓ] with boundary points x = 0 and x = ℓ.
So we deal with spatial functions ξ : (0, ℓ) → C, x 7→ ξ(x) on the open interval (0, ℓ),
for which we are interested in their behaviour at the two boundary points, where the
BV have to be installed.
In the present section we take over our notions introduced in the previous Sec-

tion 4. Especially we use our complex Hilbert space L2 = L2((0, ℓ)) of square inte-
grable complex-valued functions on the open interval (0, ℓ) for describing the bending
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vibrations of the beam in terms of the wave-like Euler–Bernoulli differential equation.
Nevertheless we are interested in real solutions, only.

5.1 Differential Operators of 4-th Order for Beam BV

For beams usually the following three support possibilities are used, well known from
statics. That is, for the transverse, purely spatial bending function ξ(x) we choose at
one end x⋆ of the beam, x⋆ = 0 or x⋆ = ℓ, the following diverse BV, e.g. [10] etc.,

(a) = flexible support ξ(x⋆) = 0 , ξ′′(x⋆) = 0 ;

(b) = fixed support ξ(x⋆) = 0 , ξ′(x⋆) = 0 ;

(c) = free end ξ′′(x⋆) = 0 , ξ′′′(x⋆) = 0 .

Notational Remark 5.1 If the left end of the beam, x⋆ = 0, is supported according
to (a) and the right end, x⋆ = ℓ, is supported by (b), then we briefly call the beam to
be (a)–(b) supported. Analogously, (c)–(b), (b)–(a), . . . , and so on.

For these different possibilities of support at the ends of the beam we will construct
positive, selfadjoint differential operators A of 4-th order, Aξ = ξ(4) = ξ′′′′ (differen-
tiation in the distributional sense), so that the BV are respected. Moreover, we add
three cases, which are not in agreement with the above supports known from statics.
Subsequently we list in the first column the considered support of the beam, then

the associated four BV, and finally in the third column the corresponding product
differential operator Â of 4-th order respecting exactly these four support BV. (See
(4.5) for operator products.) Finally the positive, selfadjoint operator A turns out to
be a unique extension of the product operator Â for each of the beam supports.

(a)–(a) BV: ξ(0) = 0 , ξ(ℓ) = 0 , ξ′′(0) = 0 , ξ′′(ℓ) = 0 , Â = δ−−δ++δ−−δ++ ;

(a)–(b) BV: ξ(0) = 0 , ξ(ℓ) = 0 , ξ′(ℓ) = 0 , ξ′′(0) = 0 , Â = δ−−δ+−δ−+δ++ ;

(a)–(c) BV: ξ(0) = 0 , ξ′′(0) = 0 , ξ′′(ℓ) = 0 , ξ′′′(ℓ) = 0 , Â = δ−+δ++δ−−δ+− ;

(b)–(b) BV: ξ(0) = 0 , ξ(ℓ) = 0 , ξ′(0) = 0 , ξ′(ℓ) = 0 , Â = δ−−δ−−δ++δ++ ;

(b)–(c) BV: ξ(0) = 0 , ξ′(0) = 0 , ξ′′(ℓ) = 0 , ξ′′′(ℓ) = 0 , Â = δ−+δ−+δ+−δ+− ;

(c)–(c) BV: ξ′′(0) = 0 , ξ′′(ℓ) = 0 , ξ′′′(0) = 0 , ξ′′′(ℓ) = 0 , Â = δ++δ++δ−−δ−− ;

add-(i) BV: ξ′(0) = 0 , ξ′(ℓ) = 0 , ξ′′′(0) = 0 , ξ′′′(ℓ) = 0 , Â = δ++δ−−δ++δ−− ;

add-(ii) BV: ξ(0) = 0 , ξ′(ℓ) = 0 , ξ′′(0) = 0 , ξ′′′(ℓ) = 0 , Â = δ−+δ+−δ−+δ+− ;

add-(iii) BV: ξ(ℓ) = 0 , ξ′(0) = 0 , ξ′′(ℓ) = 0 , ξ′′′(0) = 0 , Â = δ+−δ−+δ+−δ−+ .

For the remaining possibilities (b)–(a), (c)–(a), (c)–(b) of statics, simply invert the
beam. Also BV add-(iii) is the inverted beam with BV add-(ii). Note, we have

C∞
c ((0, ℓ)) ⊂ dom(Â) ⊂ W4 ,

especially it follows that each Â is densely defined in our Hilbert space L2 = L2((0, ℓ)).
By construction it holds for each of the above product operators Â that

Âξ = ξ′′′′, ∀ξ ∈ dom(Â) = {ξ ∈ W4 | ξ fulfills all 4 BV of Â} .
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Since W4 ⊆ C3([0, ℓ]) according to Proposition 4.3(c), the boundary evaluations for ξ ,
ξ′ , ξ′′ , and ξ′′′ at x = 0 and x = ℓ are well defined.

Notational Remark 5.2 (Operator Extension) For an operator A to be an ex-
tension of the operator Â, means

dom(Â) ⊆ dom(A) with Âξ = Aξ , ∀ξ ∈ dom(Â) ,

denoted as Â ⊆ A. We write Â ⊂ A or equivalently A ⊃ Â, if A is a genuine operator
extension of Â, that is with dom(Â) ⫋ dom(A).

Theorem 5.3 (Existence of Unique Positive, Selfadjoint Extensions) In each
of the above support cases, there exists a unique positive, selfadjoint operator extension
A ⊇ Â for the product operator Â such that

dom(A) ⊆ {ξ ∈ W2 | ξ fulfills the BV for ξ and ξ′ of Â (not for higher derivatives)}.
(5.1)

Moreover, for that unique A it holds,

Aξ = ξ′′′′, ∀ξ ∈ dom(A) ∩W4.

dom(A) ∩W4 = {ξ ∈ W4 | ξ fulfills all 4 BV of Â} = dom(Â) .

Its proof is given together with the proof of the subsequent Theorem 5.5 in Section 8.
A is the so-called Friedrichs extension of the product operator Â, the smallest form

extension of Â. That procedure to obtain a positive, selfadjoint extension operator A
of the product operator Â is based on well known mathematical techniques, e.g., [16],
[14] Section 5.5, [8] Chapter six, [11] Vol. 2 sectionX.3, etc.
Possibly there may exist further positive, selfadjoint extensions of Â, but then

their domains of definition have to contain elements not from the subspace {ξ ∈
W2 | ξ fulfills the BV for ξ and ξ′ of Â (not for higher derivatives)}, meaning, condi-
tion (5.1) is not fulfilled.

Corollary 5.4 We distinguish two groups (I) and (II) of operators of type A or Â.

(I) In each of the four supports (a)–(a), add-(i), add-(ii), and add-(iii), the positive,
selfadjoint operator A is not a genuine operator extension of Â, since already the
operator product in Â is positive and selfadjoint und so coincides with A,

(a)–(a) A = Â = δ−−δ++δ−−δ++ = (−∆DD)
2 ;

add-(i) A = Â = δ++δ−−δ++δ−− = (−∆NN)
2 ;

add-(ii) A = Â = δ−+δ+−δ−+δ+− = (−∆DN)
2 ;

add-(iii) A = Â = δ+−δ−+δ+−δ−+ = (−∆ND)
2 .

The spectrum of A is the square of the spectrum of the associated positive,
selfadjoint Laplace operator from Corollary 4.6, but of course with the same
normalized eigenvectorfunctions ψn as stated in Subsection 4.3.
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(II) In the cases (a)–(b), (a)–(c), (b)–(b), (b)–(c), (c)–(c), the positive, selfadjoint
extension A is a genuine operator extension of the original product operator Â,
that is A ⊃ Â. Here each A is defined in terms of a positive closed sesquilinear
form (Friedrichs extension). Therefore, the spectrum of A is not related to the
spectra of the four Laplacians from Corollary 4.6.

Proof. Part (I) is an immediate consequence of Subsection 4.3, since also the Laplacians

are operator products. So Â is already selfadjoint, and for a selfadjoint operator there do

not exist selfadjoint extensions nor selfadjoint restrictions.

We prove part (II) for the example (a)–(c) with Â = δ−+

=∆NN︷ ︸︸ ︷
δ++δ−− δ+− ; all other cases

work analogously. By direct inspection, taking into account the BV as in (4.6), it is seen

that none of the eigenfunctions sin(mπ
ℓ x), cos(

mπ
ℓ x), and sin(mπ

2ℓ x), cos(
mπ
2ℓ x) (with m odd)

of the Laplacians from Subsection 4.3 is contained in the domain of definition of the prod-

uct operator Â. Especially, if cos(mπ
ℓ x) ∈ dom(∆NN ) is an eigenfunction of ∆NN , then

cos(mπ
ℓ x) ∈ range(δ+−), since sin(mπ

ℓ x) ∈ dom(δ+−). But cos(
mπ
ℓ x) ̸∈ dom(δ−+), and so the

last operator δ−+ cannot be applied. Hence the spectrum of A has nothing to do with the

spectrum of any Laplacian.

Nevertheless, for all cases of group (II) of the above Corollary 5.4 one may deduce
some general statement concerning the spectrum of the unique positive, selfadjoint
extension operator A ⊇ Â. Since Λ = (0, ℓ) is interior, one expects a spectral result as
stated in Subsection 3.4.

Theorem 5.5 Let A ⊇ Â be an above positive, selfadjoint extension for an arbitrarily
chosen support in Theorem 5.3 (both groups in Corollary 5.4). Then it holds:

(a) A has a pure point (= purely discrete) spectrum σ(A) = σp(A) ⊂ [0,∞).

(b) Each eigenspace is finite dimensional and the eigenvalues an , n ∈ N, from (2.6)
may be arranged increasingly,

0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ .....

according to their finite multiplicity. They converge to infinity, lim
n→∞

an = ∞.

(c) Only when A belongs to one of the supports (a)–(c) [also (c)–(a)], (c)–(c), and
add-(i), then A possesses the eigenvalue zero. For (a)–(c) [also (c)–(a)] and add-
(i) the eigenspace to the eigenvalue zero is one-dimensional, whereas for (c)–(c)
the eigenspace to the eigenvalue zero is two-dimensional.

Part (c) of the Theorem means that rotation of the beam is allowed, and for support
(c)–(c) even transversal translation of the beam is possible. This corresponds to eigen-
functions of type η(x) = a + bx for all x ∈ (0, ℓ) with constants a, b ∈ R, possessing
eigenvalue zero since η′′ = 0. As mentioned, the proof is found in Section 8.
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5.2 Euler–Bernoulli Beam Equation in L2((0, ℓ))

With the previous Subsection 5.1 the main work is already done. It remains to apply
our primary result for the wave-like IVP with purely discrete spectrum for the positive,
selfadjoint operator A from Subsection 2.3, only.
The Euler–Bernoulli (E-B) differential equation IVP for the bending vibrations reads

in Hilbert space language as in Theorem 2.1 but with material modification as outlined
in Remark 2.4,

E-B differential equation
d2u(t)

dt2
= −ς2Au(t) , t ∈ R , (5.2)

IV (at t = 0) u(t)|t=0 = u0 ∈ L2 ,

IV (at t = 0)
du(t)

dt

∣∣∣∣
t=0

= u̇0 ∈ L2 ,

with given IV functions u0, u̇0 ∈ L2 . The positive, selfadjoint differential (extension)
operator A ⊇ Â of 4-th order has to be chosen according to Theorem 5.3 for the
considered support, (a)–(b), (b)–(b), etc., multiplied with the material constant

ς2 :=
EI

ρAc-s

,

arising from the constant cross-sectional area Ac-s , the mass density per unit length ρ,
the elasticity modulus E for the material of the beam, and the second area moment I
of the cross-section, e.g. [10], etc.
With the purely discrete spectrum, that is the eigenspectrum of A,

Aψn = anψn , ∀n ∈ N , (5.3)

with eigenvalues an ≥ 0 and corresponding normalized eigenvectors ψn ∈ L2 consti-
tuting an ONB, the L2–Hilbert space solution trajectory t 7→ u(t) of the IVP (5.2) is
given according to Corollary 2.3 and Remark 2.4 by the spectral decomposition

u(t) =
∞∑
n=1

(
cos(tς

√
an)⟨ψn|u0⟩+

sin(tς
√
an)

ς
√
an

⟨ψn|u̇0⟩
)
ψn ∈ L2 , t ∈ R . (5.4)

6 Solving Concretely the Eigenequation

6.1 The Eigenequation (5.3) as Ordinary Differential Equation

So far we dealed with the abstract results from functional analysis. In order to arrive at
a concrete solution of the Euler–Bernoulli problem, it is necessary to calculate explicitly
the eigenvalues an ≥ 0 and eigenvectors ψn ∈ L2 = L2((0, ℓ)) for a chosen positive,
selfadjoint operator A from the preceding Section 5.
Each positive, selfadjoint differential operator A of group (II) in Corollary 5.4 is

more than only d4

dx4 on W4 fulfilling the associated BV, but possesses a specific domain
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of definition containing some elements not from W4 . Nevertheless it seems that here
regularity can also be proven, similarly for e.g. the Laplace operators in the literature.
And so, without giving a proof, we may assume that the eigenfunctions are sufficiently
smooth, at least contained in C4([0, ℓ]).

Observation 6.1 (Eigenequation for the Eigenfunctions) Under the preceding
assumption of sufficiently smooth eigenvectors ψn the eigenequation (5.3) is just the
linear, homogeneous ordinary differential equation of 4-th order,

Aψn(x) = ψ′′′′
n (x) = anψn(x) , ∀x ∈ (0, ℓ) , an ≥ 0 . (6.1)

Here for example the (a)–(b) support causes the boundary condition

(a)–(b) BV: ψn(0) = 0 , ψn(ℓ) = 0 , ψ′
n(ℓ) = 0 , ψ′′

n(0) = 0 . (6.2)

The two groups (I) and (II) of support cases in Corollary 5.4 behave very different
in solving the eigenequation.

Summary 6.2 (Solving the Eigenequation) The solution of the ordinary differen-
tial (6.1) with associated BV for supports of group (I), namely (a)–(a), add-(i), add-(ii),
and add-(iii), is derived in the subsequent Subsection 6.2. These are the only analyti-
cally solvable cases, they belong to nonproper operator “extensions” but coincide with
the operator products according to Corollary 5.4(I), that is A = Â.
For the remaining support cases, group (II) in Corollary 5.4, for which the positive,

selfadjoint operators A are genuine operator extensions of the product operators Â,
meaning A ⊃ Â, the eigenequation (6.1) with associated BV (like in example (6.2) for
(a)–(b) support) is not solvable analytically, however by numerical methods, only, e.g.
[10], [15], and references therein. The numerics is briefly outlined in Subsection 6.3
below.

6.2 The Analytically Solvable Eigenequations

In the four support cases (a)–(a), add-(i), add-(ii), add-(iii) of group (I) in Corollary 5.4
the eigenequation (6.1) is solvable analytically, since each positive, selfadjoint operator
A = Â = (−∆. .)

2 is the square of one of the four Laplacians −∆. . in Subsection 4.3.
Consequently, by the spectral calculus (2.7) the eigenvalues an of A = (−∆. .)

2 are the
square of the eigenvalues of the Laplacians, respectively, but with the same normalized
eigenvectors ψn from Subsection 4.3 (with x ∈ [0, ℓ]), leading to

(a)–(a) A = (−∆DD)
2 : an =

(
nπ
ℓ

)4
, ψn(x) =

√
2
ℓ
sin(nπ

ℓ
x) , n ∈ N ;

add-(i) A = (−∆NN)
2 : an =

(
nπ
ℓ

)4
, ψn(x) =

√
2
ℓ
cos( (n−1)π

ℓ
x) , n ≥ 2 ,

a1 = 0 , ψ1(x) =
1√
ℓ
, n = 1 ;

add-(ii) A = (−∆DN)
2 : an =

( (2n−1)π
2ℓ

)4
, ψn(x) =

√
2
ℓ
sin( (2n−1)π

2ℓ
x) , n ∈ N ;

add-(iii) A = (−∆ND)
2 : an =

( (2n−1)π
2ℓ

)4
, ψn(x) =

√
2
ℓ
cos( (2n−1)π

2ℓ
x) , n ∈ N .
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For each of these four supports the unique solution u(t) of the Euler–Bernoulli beam
IVP is given by equation (5.4). For almost all x ∈ [0, ℓ] and t ∈ R one arrives at

u(x, t) = u(t)(x) =
∞∑
n=1

(
cos(tς

√
an)⟨ψn|u0⟩+

sin(tς
√
an)

ς
√
an

⟨ψn|u̇0⟩
)
ψn(x) . (6.3)

Note, it arises from the investigation of the spectra of the four Laplace operators
in Subsection 4.3 that only for BV case add-(i) with A = (−∆NN)

2 one obtains the
eigenvalue zero, namely a1 = 0 for n = 1. In accordance with equation (2.5) for that
eigenvalue a1 = 0 we have

cos(tς
√
a1)

a1=0
= cos(0) = 1 ,

sin(tς
√
a1)

ς
√
a1

a1=0
= t .

6.3 Reporting on the Numerics of the Eigenequation

Let us briefly outline the numerics of the eigenequation from Observation 6.1, but for
the strictly positive eigenvalues an > 0, only, cf. [10], [15], and references therein. The
eigenvalue zero is treated in Theorem 5.5(c). The general solution of the linear ordinary
differential equation of 4-th order occurring in the eigenequation (6.1),

ψ′′′′
n (x) = anψn(x) , an > 0 ,

is well known to be given by

ψn(x) = α1,n cosh(κnx) + α2,n sinh(κnx) + α3,n cos(κnx) + α4,n sin(κnx) (6.4)

with arbitrary constants α1,n, . . . , α4,n ∈ R, where

κn := 4
√
an > 0 .

As example let us take the (a)–(b) support, not possessing the eigenvalue zero. The
other support cases work analogously. The (a)–(b) BV in (6.2) yield

0 = ψn(0) =
[
α1,n + α3,n

]
,

0 = ψ′′
n(0) =

[
α1,n − α3,n

]
κ2n ,

0 = ψn(ℓ) =
[
α1,n cosh(κnℓ) + α2,n sinh(κnℓ) + α3,n cos(κnℓ) + α4,n sin(κnℓ)

]
,

0 = ψ′
n(ℓ) =

[
α1,n sinh(κnℓ) + α2,n cosh(κnℓ)− α3,n sin(κnℓ) + α4,n cos(κnℓ)

]
κn .

In other words, the BV rewrite as the system of linear equations
0
0
0
0

 =


1 0 1 0
1 0 −1 0

cosh(κnℓ) sinh(κnℓ) cos(κnℓ) sin(κnℓ)
sinh(κnℓ) cosh(κnℓ) − sin(κnℓ) cos(κnℓ)


︸ ︷︷ ︸

=M


α1,n

α2,n

α3,n

α4,n

 . (6.5)
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In order to obtain a nontrivial function ψn(x) in (6.4), the vector

( α1,n
α2,n
α3,n
α4,n

)
̸= 0 should

be nontrivial. That is only possible when the determinant of the matrix M vanishes.
It is immediately calculated that det(M) = 0 is equivalent to

tanh(κnℓ) = tan(κnℓ) . (6.6)

The latter commonly is called the eigenvalue equation for the (a)–(b) support, too.
From the solutions κn > 0 of (6.6) one derives the eigenvalues an of the eigenequation
(6.1) by

an = κ4n > 0 , eigenvalue to A in (6.1) for (a)–(b) support.

In accordance with Theorem 5.5 the values κn = 4
√
an may be arranged increasingly,

0 < κ1 ≤ κ2 ≤ κ3 ≤ κ4 ≤ κ5 ≤ ..... , lim
n→∞

κn = ∞ .

The described procedure ensures that each eigenspace of A is one dimensional.
(a)–(b) support belongs to group (II) in Corollary 5.4, and hence the eigenvalue

equation (6.6) is solvable numerically, only. A so found numerical κn then has to be

inserted into the linear system (6.5) in order to obtain suitable vectors

( α1,n
α2,n
α3,n
α4,n

)
̸= 0,

from which one finally arrives at a normalized eigenfunction ψn(x) via equation (6.4),
being indeed infinitely smooth.
Here at our example for (a)–(b) support the first and second line in (6.5) imply

α1,n = 0 = α3,n . So the system of linear equation (6.5) reduces to(
0
0

)
=

(
sinh(κnℓ) sin(κnℓ)
cosh(κnℓ) cos(κnℓ)

)(
α2,n

α4,n

)
.

(Note, also the vanishing determinant here is equivalent to the eigenvalue equation

(6.6).) Putting αn := α4,n one gets α2,n = − cos(κnℓ)
cosh(κnℓ)

αn = − sin(κnℓ)
sinh(κnℓ)

αn . Thus by (6.4),

ψn(x) = αn

(
− cos(κnℓ)

cosh(κnℓ)
sinh(κnx) + sin(κnx)

)
, x ∈ [0, ℓ] , (6.7)

where αn ∈ R has to be chosen such that

∥ψn∥2 =
∫ ℓ

0

|ψn(x)|2dx = 1 .

In order to obtain a numerical solution of the Euler–Bernoulli IVP, one has to use
the above solution formula (5.4). However, numerics forces the infinite sum there to
be approximately reduced to a finite sum ranging only over some finite number N of
additive terms, depending on the desired degree of numeric approximation,

u(x, t) = u(t)(x) =
N∑

n=1

(
cos(tςκ2n)⟨ψn|u0⟩+

sin(tςκ2n)

ςκ2n
⟨ψn|u̇0⟩

)
ψn(x) (6.8)
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for x ∈ [0, ℓ] and t ∈ R. Of course, both occurring scalar products,

⟨ψn|u0⟩ =
∫ ℓ

0

ψn(x)u0(x) dx , ⟨ψn|u̇0⟩ =
∫ ℓ

0

ψn(x)u̇0(x) dx , (6.9)

also may be calculated numerically.

7 Wave Swinging of a String versus Bending Vibra-

tions of a Beam

In this section we compare the solution of a wave equation with the solution for the
beam bending equation derived in the prior section. Directly comparable are homo-
geneous Dirichlet BV for the wave IVP and the support case (a)–(a) for the Euler–
Bernoulli bending equation, only.

7.1 String Wave Swinging with Homogeneous Dirichlet BV

The IVP for the wave equation in one spatial dimension with homogeneous Dirichlet
BV is given in function language as

wave PDE ∂2t u = c2∂2xu = −c2(−∂2x)u , x ∈ (0, ℓ) , t ∈ R ,
IV (at t = 0) u(x, 0) = u0(x) , x ∈ (0, ℓ) ,

IV (at t = 0) ∂tu(x, 0) = u̇0(x) , x ∈ [0, ℓ] ,

hom. Dirichlet BV u(0, t) = 0 , u(ℓ, t) = 0 , t ∈ R ,

with wave speed c > 0, length ℓ > 0, and u0(x), u̇0(x) are two given IV functions. The
solution can be interpreted as a swinging string (of a violin or guitar) with length ℓ,
which is fixed at both ends. Translated into Hilbert space language, we arrive at

wave differential equation
d2u(t)

dt2
= −c2(

=A︷ ︸︸ ︷
−∆DD)u(t) , t ∈ R , (7.1)

IV (at t = 0) u(t)|t=0 = u0 ∈ L2 ,

IV (at t = 0)
du(t)

dt

∣∣∣∣
t=0

= u̇0 ∈ L2 ,

with given IV functions u0, u̇0 ∈ L2 . Note, in Hilbert space terminology the BV
are covered by the positive, selfadjoint Dirichlet Laplace operator A = −∆DD from
Corollary 4.6.
The normalized eigenfunctions ψn of A = −∆DD with corresponding eigenvalues

an > 0 are stated in Subsection 4.3, namely

ψn(x) =
√

2
ℓ
sin(nπ

ℓ
x) , x ∈ [0, ℓ] , with eigenvalue an =

(
nπ
ℓ

)2
, ∀n ∈ N . (7.2)
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According to Corollary 2.3 and Remark 2.4 the unique solution of the wave IVP is
given in Hilbert space language as

u(t) =
∞∑
n=1

(
cos(tc

√
an)⟨ψn|u0⟩+

sin(tc
√
an)

c
√
an

⟨ψn|u̇0⟩
)
ψn , ∀t ∈ R . (7.3)

The inner products of the eigenvectors ψn with the IV functions u0, u̇0 ∈ L2 ,

⟨ψn|u0⟩ =
√

2

ℓ

∫ ℓ

0

u0(x) sin(
nπ
ℓ
x) dx =:

√
ℓ

2
Sn ,

⟨ψn|u̇0⟩ =
√

2

ℓ

∫ ℓ

0

u̇0(x) sin(
nπ
ℓ
x) dx =:

√
ℓ

2
Ṡn ,

(7.4)

appearing in the solution (7.3), constitute just the sine Fourier coefficients Sn and Ṡn

of the (odd extensions to (−ℓ, ℓ) of the) IV functions u0, u̇0 ∈ L2 , respectively. Using
these coefficients the wave solution (7.3) rewrites as an ordinary (smooth) function by

u(t)(x) = u(x, t) =
∞∑
n=1

[
Sn cos(ωnt) +

Ṡn

ωn

sin(ωnt)
]
sin(nπ

ℓ
x) (7.5)

for almost all x ∈ [0, ℓ] and all t ∈ R, where

ωn = c
√
an =

nπ

ℓ
c , ∀n ∈ N .

(7.5) is just the sine Fourier series expansion (with respect to the spatial variable x).

7.2 Beam Bending Vibrations with (a)–(a) Support

We take the (a)–(a) operator A = (−∆DD)
2 for the Euler–Bernoulli differential

equation from (5.2). The normalized eigenfunctions ψn of A = (−∆DD)
2 with corre-

sponding eigenvalues an > 0 are stated in Subsection 6.2, namely

ψn(x) =
√

2
ℓ
sin(nπ

ℓ
x) , x ∈ [0, ℓ] , with eigenvalue an =

(
nπ
ℓ

)4
, ∀n ∈ N .

Recall, by spectral calculus (2.7) the eigenfunctions ψn are the same as for the Laplacian
−∆DD from (7.2) but with square for the eigenvalues of −∆DD .
With the sine Fourier coefficients Sn and Ṡn as defined in equation (7.4) above, the

unique solution formula (5.4) or (6.3) of the Euler–Bernoulli IVP turns out to agree
with the sine Fourier series expansion (with respect to the spatial variable x)

u(t)(x) = u(x, t) =
∞∑
n=1

[
Sn cos(ωnt) +

Ṡn

ωn

sin(ωnt)
]
sin(nπ

ℓ
x) (7.6)

for almost all x ∈ [0, ℓ] and all t ∈ R, where here

ωn = ς
√
an =

(nπ
ℓ

)2

ς , ∀n ∈ N .
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For completeness let us state the Euler–Bernoulli IVP in function language. With
ordinary solution function u(t)(x) = u(x, t) and BV support (a)–(a), it writes as

Euler–Bernoulli PDE ∂2t u = −ς2∂4xu , x ∈ (0, ℓ) , t ∈ R ,
IV (at t = 0) u(x, 0) = u0(x) , x ∈ (0, ℓ) ,

IV (at t = 0) ∂tu(x, 0) = u̇0(x) , x ∈ [0, ℓ] ,

hom. Dirichlet BV u(0, t) = 0 , u(ℓ, t) = 0 , t ∈ R ,
hom. second order BV ∂2xu(0, t) = 0 , ∂2xu(ℓ, t) = 0 , t ∈ R .

7.3 Comparison: Wave IVP and Euler–Bernoulli PDE

Both solutions, wave and Euler–Bernoulli (E-B), look very similar, cf. the formulas
(7.5) and (7.6), provided identical IV functions u0, u̇0 ∈ L2 and thus identical Fourier
coefficients Sn and Ṡn by (7.4), because of identical normalized eigenfunctions ψn .
The difference becomes visible from the exponent j = 1 or j = 2 in A = (−∆DD)

j ,
leading to different eigenvalues and different circular frequencies,

wave: A = −∆DD , eigenvalue an =
(
nπ
ℓ

)2
, circular frequency ωn = nπ

ℓ
c ;

E-B: A = (−∆DD)
2, eigenvalue an =

(
nπ
ℓ

)4
, circular frequency ωn =

(
nπ
ℓ

)2
ς .

For each n ∈ N the circular frequency ωn in the bending case of Euler–Bernoulli we
may decompose similarly to the string wave swinging as

wave: ωn =
nπ

ℓ
c with velocity c > 0 ;

E-B: ωn =
(nπ
ℓ

)2

ς =
nπ

ℓ
cn with velocity cn :=

nπ

ℓ
ς . (7.7)

Now the solutions of both IVP are rewritten as

wave: u(t)(x) = u(x, t) =
∞∑
n=1

[
Sn cos(

nπ
ℓ
c t) +

Ṡn
nπ
ℓ
c
sin(nπ

ℓ
c t)

]
sin(nπ

ℓ
x) ; (7.8)

E-B: u(t)(x) = u(x, t) =
∞∑
n=1

[
Sn cos(

nπ
ℓ
cnt) +

Ṡn
nπ
ℓ
cn

sin(nπ
ℓ
cnt)

]
sin(nπ

ℓ
x) . (7.9)

Let us decompose both solutions into left and right propagating waves (running in
negative and positive x-direction, respectively) for every n-th spatial mode sin(nπ

ℓ
x),

n ∈ N, respectively. This may be immediatley done by use of the trigonometric
addition theorems (for α = nπ

ℓ
x and β = ωnt =

nπ
ℓ
c(n)t),

sin(α) cos(β) = 1
2

[
sin(α+β)+sin(α−β)

]
, sin(α) sin(β) = 1

2

[
cos(α−β)−cos(α+β)

]
.
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This finally leads to the mode decompositions

wave: u(x, t) =
1

2

∞∑
n=1

[
An sin

(
nπ
ℓ
(x+ ct)

)
−Bn cos

(
nπ
ℓ
(x+ ct)

)︸ ︷︷ ︸
wave running to the left with velocity c

+ An sin
(
nπ
ℓ
(x− ct)

)
+Bn cos

(
nπ
ℓ
(x− ct)

)︸ ︷︷ ︸
wave running to the right with velocity c

]
;

E-B: u(x, t) =
1

2

∞∑
n=1

[
An sin

(
nπ
ℓ
(x+ cnt)

)
−Bn cos

(
nπ
ℓ
(x+ cnt)

)︸ ︷︷ ︸
wave running to the left with velocity cn

+ An sin
(
nπ
ℓ
(x− cnt)

)
+Bn cos

(
nπ
ℓ
(x− cnt)

)︸ ︷︷ ︸
wave running to the right with velocity cn

]
.

For the string wave swinging the velocity of the wave just is the “c > 0” occurring
in the wave differential equation (7.1). In formula (7.8) this identical wave speed c
appears in all the partial waves for all the n-th modes.
Concerning Euler–Bernoulli (E-B) the n-th mode represents just a wave with wave

speed cn . This means, the Euler–Bernoulli solution (7.9) is an infinite sum over all
the n-th mode waves, not with the same but with different wave velocities cn = nπ

ℓ
ς ,

depending linearly on n as outlined in equation (7.7).

8 Proof of Theorems 5.3 and 5.5 in Subsection 5.1

Part (a). By [9] Theorem 2.6(2) there exists a constant c > 0 so that

∥ξ′∥ ≤ c
(
∥ξ∥+ ∥ξ′′∥

)
, ∀ξ ∈ W2.

Consequently, we arrive at the following estimate for the Sobolev norm ∥.∥2 (recall, ∥.∥ is
the L2–norm)

∥ξ∥22 = ∥ξ∥2 + ∥ξ′∥2 + ∥ξ′′∥2

≤ ∥ξ∥2 + c2
(
∥ξ∥+ ∥ξ′′∥

)2
+ ∥ξ′′∥2

= (1 + c2)∥ξ∥2 + (1 + c2)∥ξ′′∥2 + 2c2∥ξ∥∥ξ′′∥
⋆
≤ (1 + c2)∥ξ∥2 + (1 + c2)∥ξ′′∥2 + c2

(
∥ξ∥2 + ∥ξ′′∥2

)
= (1 + 2c2)

(
∥ξ∥2 + ∥ξ′′∥2︸ ︷︷ ︸

=: ∥ξ∥2s

)
≤ (1 + 2c2)

(
∥ξ∥2 + ∥ξ′∥2 + ∥ξ′′∥2

)
= (1 + 2c2)∥ξ∥22.

At the inequality with star
⋆
≤ we used 0 ≤ (a− b)2 = a2 + b2 − 2ab, therefore 2ab ≤ a2 + b2 .

That means, the norm ∥.∥s and the second Sobolev norm ∥.∥2 are equivalent on W2 .



Honegger et al. Wave-like Euler–Bernoulli Equation 31

For the demonstration how to proceed, let us take for example the support case (a)–(b);
the other cases work analogously. For (a)–(b) it is Â = δ−−δ+−δ−+δ++ . Taking adjoints
according to Lemma 4.4 one gets

⟨ξ|Âη⟩ = ⟨δ−+δ++ξ|δ−+δ++η⟩ , ∀ξ ∈ dom(δ−+δ++) , ∀η ∈ dom(Â) ⊆ W4.

We define the positive sesquilinear form s

s(ξ, η) := ⟨δ−+δ++ξ|δ−+δ++η⟩ ,
∀ξ, η ∈ dom(s) := dom(δ−+δ++) = {η ∈ W2 | η(0) = 0 , η(ℓ) = 0 , η′(ℓ) = 0}

(since W2 ⊆ C1([0, ℓ]) the boundary terms are well defined). Because of the equivalence of
the norm ∥.∥s and the second Sobolev norm ∥.∥2 , it follows that the form s is closed, since
{ξ ∈ W2 | ξ(0) = 0 , ξ(ℓ) = 0 , ξ′(ℓ) = 0} is a ∥.∥2–closed subspace of the second Sobolev
space W2 . Especially it follows that the product operator δ−+δ++ is closed.

We now cite [8] Subsection VI § 2, 1 with a result, which is valid for every positive closed
form in any real or complex Hilbert space H.

Theorem 8.1 (First Representation Theorem of [8]) For the positive closed form s
there exists a positive, selfadjoint operator A acting in H (here H = L2), such that:

(i) dom(A) ⊆ dom(s), and

s(ξ, η) = ⟨ξ|Aη⟩ , ∀ξ ∈ dom(s) , ∀η ∈ dom(A) . (8.1)

(ii) dom(A) is a form core for s.

(iii) If for η ∈ dom(s) and φ ∈ H it holds s(ξ, η) = ⟨ξ|φ⟩ for all ξ from a form core of s,
then η ∈ dom(A) and Aη = φ.

Moreover, uniqueness of A is given by (i).

Suppose ξ ∈ W2 and η ∈ W4 . Then two times integrating partially leads to (extension
from smooth functions by Proposition 4.3(b))

⟨ξ′′|η′′⟩ =
[
ξ′η′′

]ℓ
0
−
[
ξη′′′

]ℓ
0
+ ⟨ξ|η′′′′⟩ . (8.2)

Recall Wm ⊆ Ck([0, ℓ]) for m > k from Proposition 4.3(c), and hence the boundary terms
are well defined. Inserting ξ ∈ dom(s) and η ∈ W4 ∩ dom(s) in (8.2), it follows that

⟨ξ′′|η′′⟩ = − ξ′(0)η′′(0) + ⟨ξ|η′′′′⟩ . (8.3)

Consequently we arrive at the equivalence

s(ξ, η) = ⟨ξ′′|η′′⟩ = ⟨ξ|η′′′′⟩ ∀ξ ∈ dom(s) ⇔ η′′(0) = 0 .

From the condition η ∈ W4 ∩ dom(s) together with η′′(0) = 0 we conclude from (iii) of the
first representation Theorem that η ∈ dom(A) and Aη = η′′′′ . In other words,

dom(Â) = {η ∈ W4 | η(0) = 0 , η(ℓ) = 0 , η′(ℓ) = 0 , η′′(0) = 0} ⊆ dom(A) ,
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and consequently, A is an extension of Â = δ−−δ+−δ−+δ++ .
If conversely, η ∈ dom(A)∩W4 , then doubled partial integration (8.3) for all ξ ∈ dom(s),

s(ξ, η) = ⟨ξ′′|η′′⟩ = − ξ′(0)η′′(0) + ⟨ξ|η′′′′⟩ = − ξ′(0)η′′(0) + ⟨ξ|Aη⟩ ,

compared with (8.1) ensures η′′(0) = 0. Thus

dom(Â) = {η ∈ W4 | η(0) = 0 , η(ℓ) = 0 , η′(ℓ) = 0 , η′′(0) = 0} = dom(A) ∩W4.

With Example 2.13 of [8] SubsectionVI § 2, 4 one concludes that

A = (δ−+δ++)
∗δ−+δ++ . (8.4)

So far we have proven Theorem 5.3 up to the stated uniqueness.

Part (b). Let us turn to derive the stated uniqueness.
We start with support (a)–(a) to be given. Then the equation analogous to (8.4) is

A = Â = δ−−δ++︸ ︷︷ ︸
=∆DD

δ−−δ++︸ ︷︷ ︸
=∆DD

= (−∆DD)
2

with the positive, selfadjoint Laplacian −∆DD , in accordance with Corollary 5.4(I). Since for
a selfadjoint operator there do not exist proper selfadjoint restrictions nor proper selfadjoint
extensions, uniqueness of A is already achieved. The same holds for the other support cases
in group (I), and so we may exclude subsequently the group (I), namely the support cases
(a)–(a), add-(i), add-(ii), and add-(iii). But in the following argumentation an exclusion of
group (I) is not necessary.

Let us select now Â to correspond to any support case. First note that the above form s
is a closed extension of the positive form

ŝ(ξ, η) := ⟨ξ|Âη⟩ , ξ, η ∈ dom(ŝ) := dom(Â) = {ξ ∈ W4 | ξ fulfills all 4 BV of Â} .

For the detailed proof that s is indeed the smallest closed extension of ŝ see part (d). The
heuristics behind that is explained here: First remember, the norm ∥.∥s is equivalent to
the second Sobolev norm ∥.∥2 by part (a), so the ∥.∥s–closure of dom(ŝ) coincides with its
closure with respect to ∥.∥2 within W2 . Now take into account the fact that ξ ∈ W2 does
not possess a boundary evaluation for ξ′′ and ξ′′′ , only for ξ and ξ′ , in accordance with
Proposition 4.3(c). So, when performing the ∥.∥2–closure of dom(ŝ) = dom(Â) within W2 ,
the BV for ξ′′ and ξ′′′ of ξ ∈ dom(Â) are no longer respected, and the ∥.∥2–closure of dom(Â)
should agree with

dom(s) = {ξ ∈ W2 | ξ fulfills the BV for ξ and ξ′ of Â (but not for higher derivatives)}.

Consequently, s is the smallest closed extension, i.e. the closure, of the positive form ŝ, and
A is the Friedrichs extension of Â, [8] SubsectionVI § 2, 3.

For the proof of uniqueness of A, assume that Ă ⊇ Â is any positive, selfadjoint extension
of Â. Then the corresponding positive form s̆(ξ, η) = ⟨ξ|Ăη⟩, ξ, η ∈ dom(s̆) := dom(Ă)
is closable, its closure be denoted by the same symbol s̆. The operator Ă is the operator
associated to s̆ by the first representation Theorem, Corollary 2.2 of [8] SubsectionVI § 2, 1,
that is,

s̆(ξ, η) = ⟨ξ|Ăη⟩ , ∀ξ ∈ dom(s̆) , ∀η ∈ dom(Ă) ⊆ dom(s̆) .
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Since s is the smallest closed form (its closure) extending ŝ, one concludes ŝ ⊆ s ⊆ s̆. If
dom(Ă) ⊆ dom(s) ⊆ dom(s̆), then by restriction to dom(s),

s(ξ, η) = s̆(ξ, η) = ⟨ξ|Ăη⟩ , ∀ξ ∈ dom(s) ⊆ dom(s̆) , ∀η ∈ dom(Ă) ⊆ dom(s) ⊆ dom(s̆) .

According to the uniqueness stated in (i) in the first representation Theorem, it follows Ă = A
and s̆ = s. So, A is the unique positive, selfadjoint extension of Â, which fulfills the stated
property dom(A) ⊆ dom(s) = {ξ ∈ W2 | ξ fulfills the BV for ξ and ξ′ of Â (not higher)}.

Up to the proof of the above more intuitive argument given in part (d), Theorem 5.3 now
has been proved.

Part (c). We prove here the spectral results of Theorem 5.5. The identical embeddings
W2 ↪→ W1 ↪→ L2 are compact by Proposition 4.3(d). The proven equivalence of norms now
ensures that (dom(s), ∥.∥s) ↪→ L2 is compact, and (a) and (b) of Theorem 5.5 follow e.g. from
[7] Proposition 43.5-11, a result outlined also in many further textbooks.

Remark 8.2 Compact embedding arguments for a discrete spectrum (like here) also take
place for the four Laplacians in Subsection 4.3, but since we are in the interval (0, ℓ) with two
completely smooth boundary points, their spectra may be calculated directly with associated
smooth eigenvectorfunctions, as we have done there.

We turn to Theorem 5.5(c). η contained in the kernel of A means η ∈ dom(A) with Aη = 0
(kernel = eigenspace to eigenvalue zero), which leads to 0 = ⟨η|Aη⟩ = s(η, η) = ∥η′′∥2 . Thus
η′′ = 0. This is a vanishing second distributional derivative, so we may conclude η to be of
type η(x) = a + bx with some constants a, b ∈ C. (This conclusion would not be true, if
η′′(x) = 0 is valid for almost all x ∈ (0, ℓ), only, without the knowledge of being a second
distributional derivative, which is ensured by η being an element of W2 .) Up to (a)–(c),
(c)–(c), and add-(i), the other support possibilities imply a = b = 0 and consequently η = 0.
Inserting the supports (a)–(c), (c)–(c), or add-(i) into η(x) = a+ bx finally proves (c) (if one
of the constants a and b is freely to choose, then the kernel of A is one-dimensional, if both,
then two-dimensional). For (c)–(a) invert the beam.

Part (d). We use the Poincaré estimate as proven in [9] Section 2.3: There exists a constant
k > 0 such that

∥ξ∥ ≤ k
(
∥ξ′∥+ |⟨1|ξ⟩|

)
, ∀ξ ∈ W1 . (8.5)

Here ⟨1|ξ⟩ =
∫ ℓ
0 ξ(x) dx is the inner product of ξ with the constant unit function 1(x) = 1

for all x ∈ (0, ℓ). Applying (8.5) to ξ′ yields

∥ξ′∥ ≤ k
(
∥ξ′′∥+ |⟨1|ξ′⟩|

)
, ∀ξ ∈ W2 . (8.6)

Recall, ξ ∈ W2 ⊆ C1([0, ℓ]) is continuously differentiable, and ξ′′ is defined in the distribu-
tional sense. Then for all ξ ∈ W2 ,

∥ξ∥2s = ∥ξ∥2 + ∥ξ′′∥2

(8.5)

≤ k2
[
∥ξ′∥+ |⟨1|ξ⟩|

]2
+ ∥ξ′′∥2

(8.6)

≤ k2
[
k
(
∥ξ′′∥+ |⟨1|ξ′⟩|

)
+ |⟨1|ξ⟩|

]2
+ ∥ξ′′∥2

≤ . . . ≤ d
(
∥ξ∥2 + ∥ξ′∥2 + ∥ξ′′∥2

)
= d∥ξ∥22
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with some constant d > 0. For the latter inequality one has to use the estimate |⟨1|η⟩| ≤
∥1∥∥η∥ and inequalities like 2ab ≤ a2 + b2 as in part (a). It follows that the norm

∥ξ∥2t := ∥ξ′′∥2 + |⟨1|ξ′⟩|2 + |⟨1|ξ⟩|2

is a third norm on W2 being equivalent to the norm ∥.∥s and the second Sobolev norm ∥.∥2 .
The associated inner product reads

⟨ξ|η⟩t = ⟨ξ′′|η′′⟩+ ⟨ξ′|1⟩⟨1|η′⟩+ ⟨ξ|1⟩⟨1|η⟩ , ∀ξ, η ∈ W2.

Suppose that the closure ŝ of the form

ŝ(ξ, η) = ⟨ξ|Âη⟩ , ξ, η ∈ dom(ŝ) = dom(Â)

from part (b) does not agree with the closed, positive form s from part (a). That is, we
have the proper form inclusion ŝ ⊂ s, or equivalently, dom(ŝ) is a proper closed subspace of
dom(s) with respect to the equivalent norms ∥.∥t ▷◁ ∥.∥s ▷◁ ∥.∥2 on W2 . Then there exists a

ϑ ∈ dom(s) = {ϑ ∈ W2 |ϑ fulfills the BV for ϑ and ϑ′ of Â (but not for higher derivatives)},

which is orthogonal to dom(ŝ) with respect to the inner product ⟨.|.⟩t , meaning

0 = ⟨ξ|ϑ⟩t = ⟨ξ′′|ϑ′′⟩︸ ︷︷ ︸
= ⟨ξ′′′′|ϑ⟩

+ ⟨ξ′|1⟩⟨1|ϑ′⟩ + ⟨ξ|1⟩⟨1|ϑ⟩ ,

for all ξ ∈ dom(ŝ), or equivalently,

for all ξ from the form core dom(ŝ) = {ξ ∈ W4 | ξ fulfills all 4 BV of Â} .

(8.7)

Note that the identity ⟨ξ′′|ϑ′′⟩ = ⟨ξ′′′′|ϑ⟩ is valid only, when ξ is taken from the form core
dom(ŝ) ⊂ W4 of its closure ŝ. This is shown with a double partial integration analogously
to (8.2) taking into account the BV of ξ ∈ dom(ŝ) and of ϑ ∈ dom(s).

Lemma 8.3 Let ϕ ∈ L2 . Then the following assertions are valid:

(a) If 0 = ⟨ξ′|ϕ⟩ for all ξ ∈ C∞
c ((0, ℓ)), then ϕ(x) = a for x ∈ (0, ℓ) with a constant a ∈ C.

(b) Suppose there exists a constant β ∈ C such that

0 = ⟨ξ′′|ϕ⟩ − 2β⟨ξ|1⟩ , ∀ξ ∈ C∞
c ((0, ℓ)) .

Then there exist constants a, b ∈ C with ϕ(x) = a+ bx+ βx2 for x ∈ (0, ℓ).

In the more general context of distribution theory, (a) is well known as Hilbert’s lemma.

Proof. Fix a φ0 ∈ C∞
c ((0, ℓ)) with −1 = ⟨1|φ0⟩ =

∫ ℓ
0 φ0(y) dy . For each ξ ∈ C∞

c ((0, ℓ))
define

ψ(x) :=

∫ x

0

(
ξ(y) + ⟨1|ξ⟩φ0(y)

)
dy , ∀x ∈ (0, ℓ) .

Then ψ ∈ C∞
c ((0, ℓ)) with compact support contained in supp(φ0) ∪ supp(ξ). It holds

ψ′(x) = ξ(x) + ⟨1|ξ⟩φ0(x) , ψ′′(x) = ξ′(x) + ⟨1|ξ⟩φ′
0(x) , ∀x ∈ (0, ℓ) .
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(a) Inserting ψ ∈ C∞
c ((0, ℓ)) yields

0 = ⟨ψ′|ϕ⟩ = ⟨ξ|ϕ⟩+ ⟨ξ|1⟩ ⟨φ0|ϕ⟩︸ ︷︷ ︸
=: −a

= ⟨ξ|ϕ⟩ − ⟨ξ|a⟩ = ⟨ξ|ϕ− a⟩ .

Since ξ may be chosen arbitrarily and C∞
c ((0, ℓ)) is dense in L2 , it follows ϕ− a = 0.

(b) Double partial integration (PI) leads to

0 = ⟨ξ′′|ϕ⟩ − 2β⟨ξ|1⟩ PI
= ⟨ξ′′|ϕ⟩ − β⟨ξ′′|x2⟩ = ⟨ξ′′|ϕ− βx2︸ ︷︷ ︸

=: ϕ̃

⟩ .

Inserting ψ ∈ C∞
c ((0, ℓ)) yields

0 = ⟨ψ′′|ϕ̃⟩ = ⟨ξ′|ϕ̃⟩+ ⟨ξ|1⟩ ⟨φ′
0|ϕ̃⟩︸ ︷︷ ︸

=: b

= ⟨ξ′|ϕ̃⟩+ ⟨ξ|b⟩ PI
= ⟨ξ′|ϕ̃⟩ − ⟨ξ′|bx⟩ = ⟨ξ′|ϕ̃− bx⟩ .

So by (a), ϕ̃− bx = a, thus ϕ = a+ bx+ βx2 .

Restricting the orthogonality relation (8.7) to the testfunctions ξ ∈ C∞
c ((0, ℓ)), we get

0 = ⟨ξ′′|ϑ′′⟩+ ⟨1|ϑ′⟩ ⟨ξ′|1⟩︸ ︷︷ ︸
=0

+⟨1|ϑ⟩⟨ξ|1⟩ = ⟨ξ′′|ϑ′′⟩+ ⟨1|ϑ⟩︸ ︷︷ ︸
−2β

⟨ξ|1⟩ ,

since ⟨1|ξ′⟩ =
∫ ϑ
0 ξ

′(x) dx = ξ(ℓ)− ξ(0) = 0 because of the compact support of ξ . Then part
(b) of the previous lemma implies

ϑ′′ = a+ bx− ⟨1|ϑ⟩
2

x2 , x ∈ (0, ℓ), (8.8)

an identity being valid in the distributional or L2–sense, since ϑ ∈ W2 .
In terms of testfunctions with their compact supports, it is not possible to specify ϑ in

further details, one has to take the BV of a beam support into account. Let us reduce the
orthogonality relation (8.7) to boundary terms. This has to be done for every case of Â or
ŝ separately. Moreover, for convenience we set from now on ℓ := 1 without restriction of
generality. As example we choose the support case (b)–(c),

(b)–(c) with BV for all ξ ∈ dom(ŝ): ξ(0) = 0 , ξ′(0) = 0 , ξ′′(1) = 0 , ξ′′′(1) = 0 ,

and for the above ϑ the condition ϑ ∈ dom(s) yields the BV ϑ(0) = 0 and ϑ′(0) = 0. Inserting
(8.8) leads with the BV ξ(0) = 0 and ξ′(0) = 0 for ξ and doubled partial integration (PI) to

⟨ξ′′|ϑ′′⟩ = ⟨ξ′′|a+ bx− ⟨1|ϑ⟩
2 x2⟩

PI
=

[
ξ′(x)

(
a+ bx− ⟨1|ϑ⟩

2 x2
)]1

0
−
[
ξ(x)

(
b− ⟨1|ϑ⟩x

)]1
0
− ⟨ξ|1⟩⟨1|ϑ⟩

= ξ′(1)
(
a+ b− ⟨1|ϑ⟩

2

)
− ξ(1)

(
b− ⟨1|ϑ⟩

)
− ⟨ξ|1⟩⟨1|ϑ⟩ .

Noting ⟨ξ′|1⟩ =
∫ 1
0 ξ

′(x) dx = ξ(1) and ⟨1|ϑ′⟩ =
∫ 1
0 ϑ

′(x) dx = ϑ(1) by the BV, now the
orthogonality relation (8.7) reads as

0 = ξ′(1)
(
a+ b− ⟨1|ϑ⟩

2︸ ︷︷ ︸
=0

)
+ ξ(1)

(
ϑ(1)− b+ ⟨1|ϑ⟩︸ ︷︷ ︸

=0

)
, ∀ξ ∈ dom(ŝ) .
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The expressions in the round brackets vanish because of the following reason: By the bound-
ary extension Theorem, e.g. [4] § 14, 6.6, to all given BV κ(m)(0) and κ(n)(1) there exists a
function κ ∈ C∞([0, 1]) ⊂ W4 satisfying the specified BV. That means, when varying ξ in
dom(ŝ), then ξ′(1) and ξ(1) take arbitrary values independently of each other, and so these
expressions have to vanish,

2a+ 2b− ⟨1|ϑ⟩ = 0 , (8.9)

− b+ ⟨1|ϑ⟩+ ϑ(1) = 0 . (8.10)

On the other hand, (8.8) implies with the BV ϑ(0) = 0 and ϑ′(0) = 0 that

ϑ(x) =
a

2
x2 +

b

6
x3 − ⟨1|ϑ⟩

24
x4 , x ∈ [0, ℓ = 1] . (8.11)

As a first consequence we get by inserting the right boundary point x = ℓ = 1 into (8.11)
(and multiplying by 24) that

−12a− 4b+ ⟨1|ϑ⟩+ 24ϑ(1) = 0 . (8.12)

And when integrating (8.11) over [0, 1] and factor out
∫ 1
0 ϑ(x) dx = ⟨1|ϑ⟩ one arrives at the

second consequence,
−20a− 5b+ 121⟨1|ϑ⟩ = 0 . (8.13)

The formulas (8.9), (8.10), (8.12), and (8.13) perform the system of linear equations
2 2 −1 0
0 −1 1 1

−12 −4 1 24
−20 −5 121 0




a
b

⟨1|ϑ⟩
ϑ(1)

 =


0
0
0
0

 ,

which is uniquely, thus trivially solvable because of a nonzero determinant, meaning

0 = a = b = ⟨1|ϑ⟩ = ϑ(1)
(8.11)⇒ ϑ = 0 .

That is, there does not exist a vector 0 ̸= ϑ ∈ dom(s), which is orthogonal to dom(ŝ) with
respect to ⟨.|.⟩t . This is a contradiction to our above assumption that the closure ŝ of the
form ŝ of part (b) does not agree with the closed, positive form s from part (a).

Our summary in other words: It holds ŝ = s, with dom(ŝ) = dom(s), for the closure of
the form ŝ, or equivalently, s is the smallest closed form extension of the form ŝ.

All other support cases are proven analogously.
However, for the supports (a)–(b), (b)–(b), and (c)–(c) one may arrive faster at the aim

ϑ = 0 with the following argumentation: Remark first that for (a)–(b) and (b)–(b) it is
⟨1|ϑ′⟩ =

∫ 1
0 ϑ

′(x) dx = ϑ(1)−ϑ(0) = 0 because of the BV ϑ(0) = 0 = ϑ(1) for the orthogonal
ϑ ∈ dom(s). Then search for all polynomials p(x) up to degree 4, which fulfill the associated
four BV. Of course p ∈ dom(ŝ). Inserting p into the orthogonality relation (8.7) in the form

0 = ⟨p′′′′|ϑ⟩+ ⟨p′|1⟩⟨1|ϑ′⟩+ ⟨p|1⟩⟨1|ϑ⟩ ,

and noting that ⟨p′′′′|ϑ⟩ = c⟨1|ϑ⟩ with some constant c ∈ C, then one arrives at ⟨1|ϑ′⟩ =
0 = ⟨1|ϑ⟩, simplifying (8.8) to ϑ′′(x) = a+ bx, and thus we end up with a simpler system of
linear equations.
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