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Abstract

This paper introduces an approach to reference class selection in distributional
forecasting with an application to corporate sales growth rates using several co-
variates as reference variables, that are implicit predictors. The method can be
used to detect expert or model-based forecasts exposed to (behavioral) bias or to
forecast distributions with reference classes. These are sets of similar entities, here
firms, and rank based algorithms for their selection are proposed, including an
optional preprocessing data dimension reduction via principal components analysis.
Forecasts are optimal if they match the underlying distribution as closely as possible.
Probability integral transform values rank the forecast capability of different reference
variable sets and algorithms in a backtest on a data set of 21,808 US firms over the
time period 1950 – 2019. In particular, algorithms on dimension reduced variables
perform well using contemporaneous balance sheet and financial market parameters
along with past sales growth rates and past operating margins changes. Comparisions
of actual analysts’ estimates to distributional forecasts and of historic distributional
forecasts to realized sales growth illustrate the practical use of the method.
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1. Introduction

A major aspect of statistics is to make projections and forecasts of future events which
should be probabilistic in nature to reduce uncertainty (Dawid, 1984). To this end,
we extend the method for distributional forecasts with reference classes proposed by
Theising et al. (2023) to allow construction based on several co-variates. Corporate
bankruptcy, stock returns or cash flow items, e.g., are pivotal features in fundamental
analysis of firms, key drivers of stock selection models (Guerard et al., 2015) and in
general challenging forecast tasks where long forecast horizons increase the level of
complexity. Particularly growth (rates) of corporate sales suffer from low predictability
(Chan et al., 2003). Forecasts thereof are often based on heuristics and were empirically
shown to be biased as well as overoptimistic (see, e.g., Tversky and Kahneman, 1973,
1974; Kahneman and Tversky, 1973; Cooper et al., 1988; Du and Budescu, 2018).

Forecast distortion is predominantly due to the inside view, which considers each forecast-
ing challenge as unique and neglects statistical information as well as results of similar
forecast challenges (Kahneman and Lovallo, 1993). Hence, an inclusion of the outside
view in form of empirical data and existing experience can help to identify and reduce
the aforementioned biases (Tetlock and Gardner, 2016). The concept of the outside
view in this scenario is the definition of a reference class consisting of firms similar to
the initial firm whose sales growth we want to predict (Kahneman and Tversky, 1979;
Lovallo and Kahneman, 2003). By means of this objective data subset of similar firms the
forecaster is equipped to challenge and improve their forecast (Kahneman and Tversky,
1979). Such adjustements of model based forecasts by experts (Wolfe and Flores, 1990;
Sanders and Ritzman, 2001; De Bruijn and Franses, 2017) or combinations of statistical
forecasts with analysts’ predictions (Lobo, 1991; Bunn and Wright, 1991) are already
established in the financial and forecasting literature. Additionally, the resulting reference
classes can be used to issue a distributional forecast and interval or point forecasts.

In general, constructing a reference class of comparable objects is known as the reference
class problem in statistics. While forecasting probabilities with respect to a given object,
Venn (1888) notes that each object has several characteristics to determine a set of similar
objects from which to derive these probabilities. Reichenbach (1949) first called such a
set a reference class. Here, we consider firms and can imagine plenty of possible reference
classes, e.g., all US firms, all S&P500 firms, or firms with similar cash flow or stock
market metrics. Thus, we are challenged to find a reference class that is best in the sense
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of forecasting the distribution of, say, three-year sales growth.2 Clearly, the search for a
reference class is paired with a specific forecast challenge in mind and a good reference
class always depends on this forecast challenge.

Reference classes and outside views are established in forecasting literature and practice,
e.g., Armstrong (2005) and (Tetlock and Gardner, 2016) recommend the use of base rates,
i.e. distributional information, known to improve forecasting performances (Chang et al.,
2016; Karvetski et al., 2021). But in general the literature focused more on biases than
on debiasing itself (Chang et al., 2016). Theising et al. (2023) discuss some examples
of reference class selection in the literature. In our context, Mauboussin and Callahan
(2015) cover corporate sales growth and base reference classes on the current sales level,
however, do not provide a theoretical justification or empirical tests of the procedure.
In contrast, Theising et al. (2023) backtest reference class construction for corporate
sales growth with a single co-variate and we generalize their method using rank based
algorithms in order to handle several co-variates.

We propose a framework for reference class selection based on several co-variates, here
called reference variables, and examine several approaches to find appropriate outside
views to forecast corporate sales growth. Hence, we define reference classes for each
company separately by means of additional observations that share similarities to the
company at hand with respect to the reference variables. These approaches are easy to
implement and we choose interpretable algorithms to build the reference classes. Thus, the
proposed methods are well suited for practical application, the more so, as the outside view
is straightforwardly provided by the realized sales growth rates within the reference class.
We recommend distributional forecasts in terms of the empirical cumulative distribution
function (ECDF) of the reference class outcomes. ECDFs are easy to calculate, non-
parametric and include no assumptions on the underlying distribution. Their simple
structure empowers practitioners to investigate the reference class for a given company and
discuss the nature of forecasts highlighting the procedure’s interpretability. Alternatively,
a parametric model for sales growth distributions is discussed in Stanley et al. (1996).

The forecast performance of different algorithms and reference variables is backtested
on the same data set as Theising et al. (2023) which consists of 21,808 US firms over
the time period 1950 - 2019. Probability integral transform values serve as a ranking

2Venn (1888) originally describes an example of a fifty-year-old consumptive Englishman with many
possible reference classes, e.g., all humans, all males, all at least fifty-year-old Englishmen or all
consumptive patients, that could be used for a distributional forecast of, e.g., remaining life expectancy.
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of calibration. This analysis yields that in particular past operating margins and past
sales growth rates are suitable variables for reference class building regarding future
sales growth rates and a subsequent distributional forecast thereof. Dimension reduction
using principal component analysis allows using more variables, e.g. contemporaneous
balance sheet and financial market parameters, and shorter lags of past variables while
simultaneously improving the results substantially by between 38% and 71%, depending
on the forecast horizon. Further, a case study compares the distributional forecasts with
actual analysts’ estimates, thus, illustrates the practical application of reference classes
and how to apply their results in practice. We additionally display historic distributional
forecasts of sales growth rates and compare them to realized sales growth.

The remainder of the paper is organized as follows: Section 2 contains the theoretical
framework of reference class selection and the proposed algorithms. Performance measures
of reference variables and algorithms are covered in Section 3. Further, Section 4 describes
the data set used in the backtest presented in Section 5 along with the variable and model
selection procedure. Illustrative practical applications are demonstrated in Section 6.
Section 7 concludes and gives an outlook on future research.

2. Reference Class Selection

The notion of reference class forecasting traces back to theories of planning and decision-
making under uncertainties and is motivated by the fact that forecasts are often
based on heuristics and were empirically shown to be biased as well as overoptimistic
(Kahneman and Tversky, 1979). A reason thereof is that forecasters and decision makers
often focus solely on information on the specific case at hand, the inside view, while
neglecting information on a class of similar cases, the outside view. Statistical or empirical
distributional information as well as base rates may serve as an outside view and can be
seen as a data driven method to overcome overoptimism, wishful thinking or strategic
misrepresentations. Kahneman and Tversky (1979) propose a corrective procedure for
prediction, from the selection of a set of similar cases as a reference class to provide
information on outcomes, over evaluation or estimation of the distribution of outcomes
within the reference class and, finally, to a correction of an expert’s inside forecast. For
the latter, they suggest an assessment of the expert’s forecast predictability, e.g. the
correlation between their predictions and the outcomes in case of linear prediction, and,
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e.g., a mean forecast is adjusted towards the mean of the reference class weighted by the
forecast predictability.

Here, we concentrate on a framework to select an appropriate reference class. This is
critical as Kahneman and Tversky (1979) gave no instructions how to build reference
classes except the general rule to use similar cases. Moreover, there is a conflict of
competing objectives in defining the reference class. On the one hand, taking as many
cases into account as possible provides the most distributional information. However, it is
crucial that each object is still comparable to the initial one and heterogeneity is limited.
On the other hand, if the reference class only consists of elements extraordinarily similar to
the initial object, the risk of an undersized and little informative reference class producing
a likewise biased forecast exists. Based on this trade-off Lovallo and Kahneman (2003)
state: “Identifying the right reference class involves both art and science.”

In literature, there are several studies dealing with reference class selection (Theising et al.,
2023, discusses a selection) and a first concept with respect to the forecasting of future
cash flows is proposed by Mauboussin and Callahan (2015). They state that sales growth
is the most important driver of corporate value and define reference classes for sales
growth by firms’ real sales based on historical data of the S&P1500 from 1994-2014 but
their method has certain drawbacks (see Theising et al., 2023) and their study lacks a
theoretical justification and an empirical test. Theising et al. (2023) add a systematic
analysis to the literature and evaluate forecast quality by backtesting the concept of
Mauboussin and Callahan (2015) along with refined reference class construction but the
analysis is limited to using different but only a single reference variable.

In order to overcome this drawback we propose and systematically backtest different
rank based algorithms that allow using multiple reference variables including an optional
dimension reduction. The approaches are easy to implement and interpret and find
reference classes for each analyzed company separately. Then, an assessment of the
distribution within the reference classes follows directly from the outcomes within the
reference class in shape of their ECDF and can be viewed as a distributional or probabilistic
forecast. This study evaluates the resulting reference classes by backtesting out-of-sample
on a 1950–2019 data set to make a meaningful quality valuation. The following two
subsections provide an extended theoretical foundation of Theising et al. (2023) and the
proposed algorithms to select reference classes.
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2.1. Theoretical Framework

For a given firm i at time t, we aim to construct a reference class for an h-step ahead
distributional forecast of sales growth Yi,t.3 Any choice of reference class produces a
forecast of the distribution of Yi,t+h, that is a distributional h-step ahead forecast of the
random variable Yi,t for individual i at time t. To this end, we assume that a sufficient
amount of historical data on firms is available to assess the distribution of Yi,t+h.

We base the reference class on reference variables Xi,τ :t := {Xi,t′}t′=τ,...,t and build a
reference class R by finding firms j in the past which are similar to individual i at time t

with respect to the reference variables.4 Similarity can be measured in multiple ways,
for mathematical purposes it is convenient to view similarity according to some distance
measure d : D2 → [0, ∞). Then, d(Xi,τ :t, Xj,ζ:s) shall be small, where s + h ≤ t ensures
that the realization of Yj,s+h is available and D is the domain of Xi,τ :t (c.f. Figure 1).
d could be a metric, e.g., based on some norm. Thereby, we aim at finding neighbors
for each firm separately. A non-parametric forecast for the distribution of Yi,t+h is now
given by the empirical cumulative distribution function of the values Yj,s+h, (j, s) ∈ R

and serves as an outside view.

Assumptions regarding the dependence of Yi,t on Xi,τ :t and the stability of this dependence
over time are necessary (c.f. Theising et al., 2023). The first assumption behind the
approach is the existence of a data generating mechanism, say a smooth function fh

such that Yi,t+h ∼ fh(Xi,τ :t) which can be interpreted as the conditional distribution
Yi,t+h|Xi,τ :t.5 Moreover, we need an assumption that this mechanism works similarly over
time and we have Yj,s+h ∼ fh(Xj,ζ:s), (j, s) ∈ R, for the outcomes within the reference
class, which can be interpreted as a kind of stationarity assumption. If Xi,τ :t is close
to Xj,ζ:s, which is supposed to be provided by finding suitable reference classes, then
fh(Xi,τ :t) is close to fh(Xj,ζ:s) and the empirical distribution function of Yj,s+h is a good
approximation for the distribution of Yi,t+h. Note, the target is not to identify fh, but to
get information about reference adequacy.

3We phrase the theoretical framework with a specific application in mind, namely forecasting corporate
sales growth. For a general purpose the term ‘firm’ can be replaced by ‘object’ and the term ‘sales
growth’ can be replaced by ‘some characteristic’.

4The reference variables are also called reference characteristics or predictor variables in
Kahneman and Tversky (1979) and Theising et al. (2023) but we stick to the term ‘reference variable’
as they are random variables here, used for reference class selection and do not predict directly but
only implicitly throguh the selection.

5In case of a finance application like here, such a data generating mechanism may be called market
mechanism.
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t+ht−h

time domain of
reference characteristics

τ t

s
(time domain of candidates)

forecast horizon h

Figure 1: Illustration of reference class and prediction timeline. Firms j at times s denote
the set of potential members (candidates) for the reference class of individual i
at time t. Note, τ ≤ t − h is possible as well if τ ≥ h.

2.2. Proposed Algorithms for Reference Class Selection

Algorithms for constructing a reference class from a given sample need to implement
the aforementioned assumption regarding the stable dependence of sales growth Yi,t on
reference variables Xi,τ :t and need to decide which past firm observations are similar
enough with respect to the reference variables. A window length parameter w common to
all algorithms defines the number of past years to use for a specific forecast challenge. w

selects observations from the sample to constitute a set of candidates C for the reference
class from a limited time period and thereby accounts for the degree of stability regarding
the dependence. Assessing the similarity to the firm of interest and deciding whether it
is part of the reference class or not is the essential feature of each algorithm.

The decision problem of labeling each candidate ‘belonging to reference class’ and ‘not
belonging to reference class’ makes the reference class selection a binary classification.
The selection is based on available co-variates (reference variables) only and not on the
outcome of the candidate firms because these outcomes are not observed for the initial
firm at hand as we seek to forecast this quantity. Thus, we use unsupervised learning
techniques to find firms that are sufficiently similar to the initial firm by algorithms. The
decision on sufficient similarity is part of the reference class problem, too, as it is an
integral part of choosing a subset of candidates to form the reference class.
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Figure 2: These three clusters constructed by the k-means algorithm for a simulated data
cloud highlight the pitfall that elements on the border of one cluster may be
closer to the elements of another cluster than to the majority of elements in
their own clusters (see Theising et al., 2023).

In the application on firms we encounter skewed reference variables including outliers
and use rank based methods to be robust against these data features. Unsupervised
cluster algorithms share the property to split the set of candidates in a fixed number of
clusters and due to continuity of reference variables in our case we argue that it does
not necessarily make sense to find candidates that are closest to the given firm in this
manner (c.f. Figure 2)6.

We proceed with the following definition that a reference class has to consist of at least
20 elements or members in order to allow reasonable distributional forecasts.

6This applies to the special case here. The proposed procedures do not account for ‘natural’ clusters
that might occur. For example, there might be only 20 observations ‘very similar’ to the initial
case. But the algorithm may choose the most similar 25 observations and, thus, five less informative
observations. Hence, there is no general conclusion and the algorithms must be adapted to the specific
forecast challenge.
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Definition 1. Reference Class
Let C be a set of reference class candidates. We call any set R ⊂ C of observations j at
times s reference class if the reference variables Xj,ζ:s = {Xj,s′}s′=ζ,...,s and the outcomes
Yj,s+h are observed and |R| ≥ 20.

The set of candidates for a reference class is the largest possible reference class (in sense
of cardinality). It includes all objects that could potentially be a member of the reference
class and additionally serves as a market climate reference class that captures the overall
market sentiment for the time period of candidate firms. The resulting ECDF may serve
as an estimate of the marginal distribution neglecting any confounding variables. The
new rank deviation procedures using multiple reference variables take the backtest against
a benchmark approach of Mauboussin and Callahan (2015), a simple approach using the
major and industry group of a firm, and the market climate reference class.

2.2.1. Group Approach

It is common practice in corporate valuation to form peer groups based on an industry clas-
sification such as the standard indsutrial classification (SIC) due to the assumption that
firms in the same industry are similar in terms of value determinants (Bhojraj and Lee,
2002; Marozzi, 2011). The group approach uses the major and industry group of the SIC
(first two and three digits of SIC) in a straightforward way to construct a reference class
from the set of candidates. In both cases, all candidate firms that are in the same major
or industry group, respectively, as the initial firm are members of the reference class.
Thus, membership in the same major or industry group is said to fulfill the assumption
of sufficient similarity.

2.2.2. Mauboussing and Callahan (2015)

Mauboussin and Callahan (2015) propose to base sufficient similarity on the single refer-
ence variable real sales to construct 11 subsets from the set of candidates as potential
reference classes that do not depend on the specific forecast challenge. They sort the
candidate firms by real sales in 10 deciles as well as an 11th subset for the top one
percentile. For any forecast challenge we assess if the initial firm’s real sales is higher than
the 99% percentile of the candidates’ real sales. If so, the top one percentile of candidate
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firms in terms of real sales constitutes the reference class. If not, we assess the decile
which includes the initial firm’s real sales and this decile becomes the reference class.
The potential reference classes are constructed independently of the forecast challenge
and pose the risk of missing similar firms if the initial firm’s real sales is close to the
boundary of one of the subsets (c.f. Figure 1 and its discussion in Section 2.1).

2.2.3. Rank Deviations

We introduce a novel method using rank deviations that assesses similarity of candidate
firms based on multiple reference variables and extends the approach by Theising et al.
(2023) which uses an arbitrary but single reference variable. Time series data in discrete
time can be incorporated by treating each point in time as an additional reference variable.
The novel method is rank-based to mitigate skewness effects as well as outlier influence
on the selection and constructs custom reference classes seperately for each forecast
challenge, i.e. each inital firm here. Thus, there is no risk of neglecting similar firms
as opposed to Mauboussin and Callahan (2015) who a priori fix the potential reference
classes.

Sufficient similarity is measured based on ranks and a size parameter c ∈ (0, 1) that
controls the size of the reference class as a fraction of the candidate set and thereby
exploits the continuity of reference variables. Consequently, the parameter c determines
which of the candidates’ reference variables Xj,ζ:s lie closely enough to the initial firm’s
reference variable Xi,τ :t to be a member of the reference class and assesses for which
candidate firms j at time s the value d(Xi,τ :t, Xj,ζ:s) is considered as small. The case of
a single reference variable illustrates the method. We select a fraction c of candidates
(j, s) ∈ C for the reference class with the least absolute rank deviation |R(Xi,t)−R(Xj,s)|
as sufficient similar to the initial firm, where the rank function R : R → [1, |C| + 1]
calculates the rank of a single reference variable in the set of candidate firms and the
initial firm.

We propose three ways of combining κ > 1 reference variables by intersecting or unifying
the reference classes obtained from several single reference variables or by using the
candidate firms that have least absolute rank deviation (LARD) inspired by Knudsen et al.
(2017). The two set-theoretic operations both involve first constructing κ reference classes
based on each reference variable seperately. On the one hand, we combine the reference
classes by intersecting them with the possibility of having few or none observations left.
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LARD union intersection

Figure 3: Illustration of the three rank deviation methods for reference class selection
based on κ = 2 reference variables on them same candidate set with size
N = 500 and reference class size c = 0.1. Ranks of the reference variables
between 100 and 400 are displayed on the horizontal and vertical axes. The
triangle shows the initial firm, circles are selected as reference class members
and crosses are the remaining observations.

Constructing the initial reference classes with an adjusted cinter = min{cκ, 0.25} may
avoid an insufficient amount of remaining observations. On the other hand, we combine
the reference classes by union where selecting too many candidates may be solved by
constructing the initial reference classes with an adjusted cunion = c/κ. Unifying the
reference classes has the additional advantage that not all reference variables must be
observed for each reference class candidate. The application of LARD requires a ranking
of candidate firms and inital firms according to each reference variable resulting in
rank vectors ri,t = R(Xi,τ :t) for the initial case and rj,s = R(Xj,ζ:s) for all candidates
(j, s) ∈ C, where R is the rank function applied on each entry of the reference variables
seperately. Then, the fraction c of observations with the least absolute rank deviation
dj,s = |rj,s − ri,t| in L1 norm ||dj,s||1 constitutes the reference class. The algorithm
is related to the k nearest neighbors algorithm where k = cN is chosen relative to
the number of candidates N and proximity is measured by L1-norm of ranks without
subsequent regression or classification but with a distribution forecast. Other norms could
be used but L1 is a natural choice applied on ranks. Further, intersecting κ reference
classes is related to the supremum norm of the vectors of absolute rank deviations dj,s

and the union of κ reference classes is comparable to selecting reference classes by the
minimum entries of dj,s (c.f. Figure 3 for both).

Using rank deviation for a single reference variable is equivalent to the procedure in
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Theising et al. (2023) where candidate firms are ordered by a single variable and the
fraction c of candidates closest to the initial firm’s observation consitute the reference
class. Let F̂cand be the ECDF of all candidate firms and F̂ −1

cand be the associated
empirical quantile function of all candidate firms. Then, all candidates (j, s) ∈ C with
|F̂ −1

cand(Xi,t) − F̂ −1
cand(Xj,s)| ≤ c/2 are chosen for the reference class. If the initial case’s

reference variable is at the tail of the candidates’ distribution, Theising et al. (2023)
choose the top or bottom fraction c of the candidates regarding the reference variable if
F̂ −1

cand(Xi,t) > 1 − c/2 or F̂ −1
cand(Xi,t) < c/2, respectively. This is identical to selecting the

fraction c of candidate firms with least absolute rank deviation.

2.2.4. Principal Component Analysis Rank Deviation

In order to use information from a large number of co-variates, we first apply principal
component analysis (PCA) to reduce the dimensionality of the problem and then use the
rank deviation procedures on the rotated data to identify the reference class. Combing
several reference variables by LARD is related to the k nearest neighbors algorithm which
is used in algorithmic pipelines with PCA, e.g., in facial recognition (Marcialis and Roli,
2004; Parveen and Thuraisingham, 2006). Although the union procedure allows different
sets of reference class candidates for each co-variate, this is no longer the case for PCA
preprocessing. Constructing the reference class based on principal components (PCs), all
variables must be available in order to rotate the original data matrix.

PCA is carried out on the original reference variables, a transformed set of reference
variables Xj,ζ:s or a subset C ′ of the candidate set C obtained by one of the following four
initial transformations: a) no inital transformation, i.e. Xj,ζ:s = Xj,ζ:s and Xi,ζ:t = Xi,τ :t;
b) use the initial transformation Xj,ζ:s = X

1/5
j,ζ:s and Xi,τ :t = X

1/5
i,ζ:t to mitigate skewness

effects in the data; c) compute ranks Xj,ζ:s = R(Xj,ζ:s) and Xi,τ :t = R(Xi,τ :t) for each
reference variable seperately; or d) trim the data for each reference variable across the
candidate set by 2.5% on each tail and then reduce the candidate set C by all candidates
that get trimmed in at least one reference variable such that all observations are complete
in the subset of remaining candidates C ′ ⊂ C, |C ′| = N ′.

Let X be the N × κ (or N ′ × κ) data matrix containing the potentially transformed
reference variables from the set of (remaining) candidates C (or C ′, respectively), and let
W be the κ×κ weight matrix whose columns are the eigenvectors of the correlation matrix
(X ′X )−1/2X ′X (X ′X )−1/2. The transformation X W maps the κ reference variables X
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to a new κ-dimensional space. As we use the correlation matrix, the largest variance
by scalar projection of X , standardized to variance 1 for each column, lies on the first
column of X W , the second largest variance lies on the second column of X W and so
forth up to the smallest variance on the last column (Jolliffe, 2002, p. 30). Finally, we
use W1:L, the matrix of the first L columns of W , to perform the rank deviation based
reference class selection on the dimension reduced matrix obtained as XL = X W1:L for
initial transformations a) - c), and XL = XW1:L for initial transformation d), where X is
the N × κ matrix of untransformed reference variables. Naturally, we need to calculate
Xi,tW1:L for the (potentially) transformed reference variables of the inital firm to assess
the rank deviations.

The number of principal components L is chosen by different strategies. On the one
hand, for the sake of interpretation we investigate simply using two or three PCs. On
the other hand, data driven criteria select the number of PCs that explain at least 75%
or 90% of the total variability, or that explain more variability than the mean variability
across all PCs Varµ.

3. Performance of Distributional or Probabilistic Forecasts

The resulting distributional information serve as forecasts and the suitability of reference
classes is assessed by the distributional forecast accuracy. Typically, forecast performance
is evaluated by measuring the distance between a forecast and the realized outcome
according to a loss function, taking the average loss across all forecast instances and
comparing forecast models by their mean loss. Distributional forecasting renders this
method infeasible as the realized outcome is not a cumulative distribution function
and a distance to the forecast cannot be calculated. We need to evaluate the forecast
performance with measures for this specific setting. In line with the prequential principle
(Dawid, 1984) we base the evaluation of the forecast model only on forecasts it actual
performed and the subsequent realized outcomes in a backtest on historical data.

Here, we must evaluate the forecast quality based on the forecast distribution F ∗
i,t;h and

the observed outcome yi,t+h of Yi,t+h with distribution function Fi,t;h for a fixed forecast
horizon h. Dawid (1984) and Diebold et al. (1998) propose to use the transformation

F ∗(yi,t+h) := n−1 ∑
(j,s)∈R

1{Yj,s+h ≤ yi,t+h} ≈ P(Yi,t+h ≤ yi,t+h) =: F (yi,t+h) (1)
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for forecast evaluation, where n = |R|. For an ideal forecast F ∗
i,t;h = Fi,t;h, (1) holds

exactly and F ∗(yi,t+h) is the probability integral transform (PIT) and thus uniformly
distributed on [0, 1]. Assuming a good forecast, (1) should at least hold approximately
which makes the approximate uniformity of F ∗(yi,t+h) a necessary condition for a good
forecast.

Repeatedly obtaining F ∗(yi,t+h) in a backtest for multiple individuals i and points in
time t results in a sample of PIT values {pk}k=1,...,m in the interval [0, 1], where m is the
number of forecast instances during the backtest. If the approximation of the distribution
is valid, we approximately have realizations from a uniform distribution on [0, 1]. The
PIT is useful for absolute assessment whether a predictive distribuion is suitable by
diagnosing misspecification (Diebold et al., 1998; Gneiting et al., 2007; Held et al., 2010)
because uniformity of the PIT values is essentially calibration (probabilistic calibration
in Gneiting et al., 2007) and refers to the statistical consistency between observations
and the respective distributional forecast. To assess the forecast ability of the different
algorithms and reference variables, we consider measures that determine how close
this approximation is by checking if it is reasonable to maintain the hypothesis that
{pk}k=1,...,m stem from a uniform distribution.

For a finite number of quantile levels {αj}j=1,...,l we rank models by a quantile comparision
through the absolute difference between the quantiles of {pk}k=1,...,m and the quantiles
of the uniform distribution on [0, 1]. These differences are summed up and ranked. The
absolute quantile difference ∆q as used in Theising et al. (2023) is bounded and enables
us to easily calculate an interpretable mean deviation from the theoretical quantiles but
is not adjusted for sample size. Admittedly, independent of the number of quantiles
there are plenty of distributions that have the same quantiles as the uniform distribution.
However, we are more interested in giving suitable reference classes and if a practitioner
is particularly interested in certain quantiles of the distribution and not so much in
anything else, the absolute quantile difference is feasible. The free choice of quantile levels
enables a flexible approach to highlight certain areas of the distribution that researchers or
forecasters are interested in the most. A visual inspection of histograms of the PIT values
is a common forecast assessment (Hamill, 2001) and equivalent to the absolute quantile
difference with bins chosen according to the quantiles. But while the PIT histogram
might be handy if a forecaster only considers a handful of models and or variable sets
the visual inspection remains qualitative in nature and is infeasible for large scale model
and variable selections.
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Statistical goodness-of-fit tests for uniformity are not applicable in this particular backtest
as sample sizes vary between 100, 000 and 300, 000, depending on hyper parameters,
and most p-values would be very small or even get reported as 0 by software (see
Theising et al., 2023). In this case, even the smallest forecast errors cause what Berkson
(1938) pointed out: “Any consistent test will detect any arbitrary small change in the
[distribution] if the sample size is sufficiently large”. Avoiding this problem, we report
the value of selected test statistics in addition to the absolute quantile difference. The
counterpart to a quantile comparision would be a χ2 goodness-of-fit test. But to offer a
different perspective, we focus on the Kolmogorov-Smirnov (KS) and Cramer-von-Mises
(CvM) tests - common choices for testing the equality of the complete distribution . Let
Gm be the empirical distribution function of {pk}k=1,...,m and let G0 be the distribution
function of the uniform distribution on [0, 1]. The corresponding test statistics are given
by

√
m supx∈[0,1] |Gm(x) − G0(x)| (KS) and m

∫ 1
0 [Gm(x) − G0(x)]2dF0(x) (CvM). These

tests for continuous distributions might not be suitable if, by construction, the distribution
forecast is based on the same number of observations for each forecast instance such that
{pk}k=1,...,m has a discrete distribution. In such cases and if Yi,t+h is discrete, a χ2-test
is more suitable to assess performance.

Given the difficulty of forecasting corporate sales growth we are mainly interested in
finding calibrated distributional forecasts if any exist, e.g. to correct potentially biased
point forecasts, and do not focus on maximizing the sharpness subject to calibration by
sharpness measures or proper scoring rules. Sharpness refers to the concentration of the
forecast characterized by scale parameters, is a property of the distributional forecast itself
and can be measured by the width of certain confidence intervals, boxplots, quantiles of
the distribution or scale parameters. A scoring rule is a real-valued function that assigns a
loss to a probabilistic forecast F ∗ if the value yi,t+h is observed. If a scoring rule is proper,
the true distribution has a smaller loss than any other forecast distribution such that
we check the equality of forecast distributions to the true distribution (Diebold et al.,
1998). Scoring rules are suitable for comparative assessment of multiple forecasting
schemes if they refer to exactly the same set of forecast situations (Gneiting and Raftery,
2007) which given the vast number of different reference variables and missing values
in our data set is infeasible. Providing the same set of forecast instances for each set
of reference variables would distort the data set systematically and lead to potentially
biased conclusions in the backtest.
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Figure 4: Number of companies over time as in Theising et al. (2023). The left vertical
axis shows the number of firms, i.e. observations, per year and the right vertical
axis covers the number of firms as a proportion of the total number of firms.

4. Data Set

In order to identify optimal combinations of reference variables and algorithm options
for reference class selection within a backtest we consider the historic data set used in
Theising et al. (2023). This data set consists of Compustat North America fundamentals
annual data from 1950 to 2019 by S&P Global Market Intelligence (2020) limited to US
firms and excluding companies from the financial and real-estate sector. Firms with none
or only one sales observation are omitted given the challenge to predict distributions
of sales growth. These data are merged with stock-exchange information from the
Center for Research in Security Prices (CRSP, 2020) daily stock of the University of
Chicago Booth School of Business. Variables measured in US dollar are adjusted to
1982 – 1984 US dollar using monthly inflation rate data from the consumer price index for
all urban consumers (all items in US city average) by the U.S. Bureau of Labor Statistics
(2020).

The data set contains 303,628 observations on 21,808 firms of which a total 206,221
observations on 17,099 firms provide CRSP stock exchange market information. There
is an influence of survivorship in the data set as the number of available observations
per year varies considerably (c.f. Figure 4) as well as the time series lengths of firms (c.f.
Figures 5 and 6). The survivorship rates for forecast horizons considered in our backtest
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observations of the firm, 3. the number of consecutive observations of the firm.
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Figure 6: This barplot shows the number of observations per firm in the data set, that is
the empirical distribution of time series length, as in Theising et al. (2023).
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Table 1: Description of reference variables. EBIT is the earning before interest and taxes, market
cap. is the market capitalization and pp is percentage points. A variable summary can
be found in Table 2.

Abbreviation Reference Variable Description

at total assets in million USD
opmar operating margin EBIT divided by sales (in %)
– sales in million USD
seq shareholder equity total assets minus total liabilities

(in million USD)
– major group first two digits of SIC, 63 groups
– industry group first three digits of SIC, 250 groups
– β slope of regressing daily return on market

return
P/B price-to-book ratio market cap. divided by shareholder equity
P/E price-to-earnings ratio market cap. divided by net income
salesGRτ τ -year past sales growth current sales divided by sales τ years ago (in %)
opmar∆τ τ -year past operating current operating margin minus operating

margin delta margin τ years ago (in pp)

are 97.25% for one year, 89.61% for three years, 76.12% for five years and 48.20% for 10
years.

As potential reference variables, we select key figures in fundamental analysis such as
sales, operating margin, total assets, shareholder equity, the SIC (standard industrial
classification), β, the price-to-earnings ratio and the price-to-book ratio. We additionally
construct one to 10 year past sales growth and one to 10 year past operating margin
delta where the necessary past data are available. For the group approach, we derive a
firm’s major and industry group from the SIC. Table 1 describes all potential reference
variables and Table 2 summarizes them including certain quantiles, their means and the
number of missing values in the data set. Note that we display compound annual sales
growth rates and annual means of operating margin deltas for comparision purposes
across lags but later use non averaged sales growth rates and operating margin deltas for
reference class selection. Given the overall frequency of missing values, e.g. more than
50% of the data for 10-year sales growth, handling only identical forecast challenges for
all different combinations of reference variables would reduce the number of forecast cases
too drastically and thereby generate issues regarding survivorship influence. Thus, scoring
rules are infeasible under these circumstances. In addition to Table 2, negative skew
occurs for reference variables operating margin, β, one and two year operating margin
delta and price-to-earnings ratio, as the smallest with roughly −167. All other reference
variables have a positive skew with up to roughly 400 in the case of price-to-book ratio.
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Table 2: Summary of reference variables (ref.var) from Table 1 as in Theising et al. (2023), where
qu. is quantile. salesGR is compound annual growth rate in % in this table and opmar∆
is the mean annual past operating margin delta to simplify comparision across lags.
The summary on major and industry groups covers the group sizes.

Ref.Var. 2.5% qu. 25% qu. Median Mean 75% qu. 97.5% qu. Missings

at 0.27 11.82 62.31 877.65 337.77 6767.24 2714
opmar -827.80 -1.19 6.01 -402.68 12.27 34.49 18532
sales 0.00 10.67 67.60 721.10 337.74 5345.51 0
seq -9.65 3.58 24.00 319.76 128.97 2478.79 19811
major group 10 895 2646 4819.49 5295 25617 0
industry group 38 283 622 1214.51 1248 6793 0
β -0.28 0.37 0.77 0.83 1.21 2.31 97469
P/B -6.00 0.59 1.34 2.65 2.57 11.70 100318
P/E -70.39 -3.45 8.34 11.24 17.69 104.99 98786
salesGR1 -100 -5.39 4.93 115.70 19.24 1465000 31591
salesGR2 -100 -4.18 4.55 17.07 16.33 19090 52164
salesGR3 -100 -3.31 4.32 10.41 14.51 3862 71103
salesGR4 -100 -2.71 4.21 7.90 13.17 1794 88572
salesGR5 -100 -2.22 4.13 6.52 12.23 1019 104702
salesGR6 -100 -1.87 4.05 5.62 11.44 609.50 119372
salesGR7 -100 -1.55 4.00 5.02 10.82 435.80 132772
salesGR8 -100 -1.29 3.98 4.59 10.38 333.90 145044
salesGR9 -100 -1.06 3.95 4.28 9.97 277.10 156300
salesGR10 -100 -0.87 3.91 4.03 9.58 205.30 166682
opmar∆1 -2824000 -2.73 0.04 -10.15 2.57 2823000 41527
opmar∆2 -1412000 -1.96 -0.03 -11.85 1.71 681300 62660
opmar∆3 -374800 -1.54 -0.07 4.04 1.26 951200 81829
opmar∆4 -326200 -1.27 -0.08 3.89 1.00 691100 99288
opmar∆5 -260800 -1.09 -0.08 3.19 0.82 523200 115291
opmar∆6 -217300 -0.95 -0.09 0.42 0.69 204400 129585
opmar∆7 -107800 -0.84 -0.09 3.81 0.60 185700 142583
opmar∆8 -89290 -0.76 -0.08 2.25 0.53 190800 154449
opmar∆9 -81610 -0.69 -0.08 3.21 0.46 335300 165288
opmar∆10 -75350 -0.64 -0.08 3.44 0.41 301700 175265
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Table 3: Compound annual sales growth rates for the whole data set as in Theising et al.
(2023). Mean and standard deviation are 2.5% trimmed on both tails, the
respective quantiles are in the table.

Full Universe Base Rates

CAGR (%) 1-Yr 3-Yr 5-Yr 10-Yr

≤ −25 8.70 5.44 4.00 2.38
] − 25, −20] 2.19 1.69 1.28 0.68
] − 20, −15] 3.18 2.65 2.13 1.37
] − 15, −10] 4.53 4.27 3.71 2.68
] − 10, −5] 7.06 7.28 7.11 6.12
] − 5, 0] 10.92 13.20 14.29 15.64
]0, 5] 13.59 17.82 21.17 27.25
]5, 10] 11.65 14.33 16.34 20.09
]10, 15] 8.24 9.06 9.70 9.95
]15, 20] 5.65 5.86 5.77 5.38
]20, 25] 4.08 3.95 3.61 2.92
]25, 30] 3.05 2.71 2.54 1.76
]30, 35] 2.31 2.04 1.73 1.14
]35, 40] 1.78 1.54 1.26 0.69
]40, 45] 1.46 1.17 0.93 0.48
> 45 11.58 6.99 4.42 1.46

mean 10.62 7.01 5.75 4.62

median 4.93 4.32 4.13 3.91

std 32.30 19.08 14.21 9.20

q0.025 -60.01 -44.75 -36.52 -23.91

q0.975 206.31 95.19 62.75 35.85

This supports the use of rank based methods to reduce skewness effects.

In the backtest, we consider one-, three-, five- and 10-year forecast horizons, construct
reference classes for sales growth and assess their quality by the forecast distributions.
Table 3 shows the estimated density of historical sales compound annual growth rate
(CAGR) for the complete data set. Here, the tails of the distribution get lighter, the
(2.5%-trimmed) standard deviation decreases, the (2.5%-trimmed) mean shifts towards
the median and the distribution gets more centered the longer the forecast horizon is,
as it is visible in Figure 7 as well. By a 2.5%-trimmed mean or standard deviation
we are referring to the arithmetic mean or standard deviation, respectively, where the
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Figure 7: Estimated densities of compound annual sales growth rate for horizons one,
three, five and 10 years as in Theising et al. (2023) using Gaussian kernel with
Silverman’s rule of thumb as bandwidth on support [−100, ∞).

Table 4: General hyper parameters for reference class selection.
Name Abbreviation Description

reference variables ref.var. see Tables 1
class size c relative size ∈ {0.050, 0.025, 0.010}
window length w number of past years ∈ {5, 10, 20, 30}

largest 2.5% and the smallest 2.5% of the data are excluded.7 The (2.5%-trimmed) means
of sales CAGR are larger than the respective medians since the growth rates are left
bounded, right unbounded and we observe a considerable amount of high values that
additionally render untrimmed mean and standard deviation little informative. Using
trimmed versions of these measures curbs the influence of these outliers and keeps them
informative. Summary statistics of sales CAGR can be found in Table 2 as future and
past growth rates in the full data set have identical distributions.
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Table 5: Different algorithm options and parameters (see Table 4). Param. is pa-
rameters, #PC is the criterioin to choose principal components and MC is
Mauboussin and Callahan (2015). Combination methods union and intersection
additionally offer to correct the reference class size by the number of reference
variables. Transformation for PCA rank deviation is the pre PCA transforma-
tion, the subsequent transformation uses ranks.

Algorithm Param. Ref.Var. Transformation Combination #PC

market climate w - - - -
group approach w SIC first two or - -

three digits
MC w sales - - -
rank deviations w, c all ranks LARD, union, -

intersection
PCA rank w, c all none, ranks, LARD, union, 2, 3, 75%
deviations trim, x1/5 intersection 90%, Varµ

5. Backtest

By means of a backtest we evaluate the performance of the new rank based methods
to construct reference classes of sales growth rate forecasts on a data set ranging from
1950 to 2019 for forecast horizons 1, 3, 5 and 10. Apart from the novel rank deviations
and PCA rank deviations based reference class selection, we include the market climate
reference class, the group approach and the approach by Mauboussin and Callahan
(2015) as benchmarks. Algorithm parameters are shown in Tables 4 and 5 and, for fixed
reference variables, rank deviation has 60 possible option combinations and there are
1,200 possible combinations for PCA rank deviation. Backtesting as a special case of
cross-validation in time series settings is out-of-sample by construction and involves, in
our case, distributional forecasts based on reference classes for inital firms on a historic
data set.

Observations from the data set qualify for the backtest as initial firms depending on the
forecast horizon h and the window length w that controls the number of past years to
provide candidates for the reference class. Assuming that at time t all information of the
financial year t is available, each firm i at each available point in time t is an initial case
if all used reference variables are observed, and if the full timeframe of candidates as

7For a vector of sorted observations {xi}i=1,...,n we compute any α-trimmed measure, 0 < α < 1, based
on the trimmed vector of observations {xi}i=[αn]+1,...,n−[αn], where [·] is the floor function.
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Figure 8: Illustration of the backtest timeline. Note, τ ≤ t − h is possible as well.

well as the h-year future sales growth is available, i.e. 1950 + w + h − 1 ≤ t ≤ 2019 − h

and firm i is in the data set at time t + h. For a fixed t, all firms j at times s serve as
candidates for the initial case’s reference class if they are within the window period of
candidates, i.e. t − h − w + 1 ≤ s ≤ t − h, and if the reference variables and h-year sales
growth are available (see Figure 8). Thus, the data set is restricted to all observations
without missing values with respect to sales growth rate and the used reference variables
with an exception for the rank deviation procedure and union of single reference classes.
Depending on the set of candidates, the size parameter c and the algorithm we construct
a reference class of at least 20 elements.

For each initial firm (i, t) we obtain a reference class, derive the base rates as the ECDF of
sales growth rates of the reference class elements {yj,s+h}(j,s)∈R and evaluate the ECDF
at the realized sales growth rate yi,t+h of the inital firm. Thus, we obtain a forecasted
probability of being less or equal to the inital firm’s realized sales growth. In total,
all inital cases produce a sample of PIT values {pk}k=1,...,m and we use them to assess
the forecast method and choice of reference variables. The sample size m depends on
the forecast horizon, the window length, the algorithm and the availability of reference
variables. As a measure of accuracy, we calculate the differences of the 1%, 5%, 10%, 25%,
50%, 75%, 90%, 95% and 99% quantiles of {pk}k=1,...,m and of the uniform distribution
on [0, 1], respectively, and sum up the absolute quantile difference ∆q with 0 ≤ ∆q ≤ 4.5
for our choice of quantile levels. The choice of quantiles is motivated by an emphasis
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on the distribution tails in contrast to a set of equidistant quantile levels. Further, we
report KS and CvM test statistics as accuracy measures of the whole distributional
approximation.

5.1. Variable and Model Selection Procedure

Finding appropriate reference classes is in essence a variable and model selection problem.
We systematically explore which reference variables contain information for a calibrated
distributional forecast based on rank deviations by a forward selection and brute force
approaches on all contemporaneous reference variables and on selected reference variable
subsets. PCA rank deviation applied on selected reference variable subsets completes the
procedure. Forecast horizons investigated are 1, 3, 5, and 10 years and for each horizon
we backtest 67, 420 different variable and model combinations.

For a systematic backtest of the rank deviation algorithm on multiple reference vari-
ables we use a forward selection to reduce the number of possible reference variable
combinations. We begin with the best three reference variables according to ∆q from
results in Theising et al. (2023) for each forecast horizon and combine them with each
of the remaining reference variables using 60 different algorithm options. We continue
with the three best reference variable pairs from the previous stage with two reference
variables and combine them with each of the remaining reference variables and all possible
algorithm options. Then, we repeat this for every stage by choosing the three best sets
of reference variables from the previous stage and combine them with another reference
variables for all possible options. We stop if adding another reference variable does not
improve the results anymore. However, if the forward selection comes to an early halt
we continue anyways in order to protect against finding a local minimum. The forward
selection terminates when results for none of the forecast horizons improve, that is after
using six reference variables. Thus, we backtest 21, 780 different combinations.

Further, we explore using exclusively contemporaneous reference variables due to the
lower data requirements opposed to lagged variables that are chosen by the forward
selection. Therefore, we brute force all combinations of seven contemporaneous reference
variables (except SIC) and additionally combine the contemporaneous balance sheet
variables and the full set of contemporaneous variables with up to 1, 3, 5 and 10 year
lagged sales growth and operating margin delta, respectively. This results in 127 variable
combinations for the brute force approach and eight sets of contemporaneous variables
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with different degrees of lagged variables and, thus, 8, 100 different combinations for each
forecast horizon.

Investigating the benefits of dimension reduction, we use PCA on different sets of
reference variables before applying the rank deviation methods. The 31 reference variable
subsets under consideration are all four contemporaneous balance sheet variables, all
contemporaneous variables, i.e. with added financial market variables, each of these
contemporaneous variable sets combined with up to 1, 3, 5 and 10 year lagged variables,
the combination of the 4, 5 and 6 best reference variables, respectively, from the single
reference variable approach, and each at a time the three best sets of 4, 5, and 6 best
reference variables from the brute force approach and from the forward selection.8 This
results in 37, 200 different combinations for each forecast horizon.

As a benchmark, the single reference variable approach of Theising et al. (2023) is
analyzed with regard to 27 reference variables with 12 algorithm options, resulting in
324 different combinations. While the market climate approach and the method of
Mauboussin and Callahan (2015) only depend on the window sizes, the group approach
uses two reference variables and four different window sizes. In total, there are 340
different benchmark combinations for each forecast horizon.

5.2. Results of Backtest

Tables 6 - 9 show a selection of our results9 on forecast horizons one, three, five and 10
years, each ranked by ∆q to compare the novel methods to results from Theising et al.
(2023). The rank deviation (RD) results reported are the three best overall combinations,
the best combination of contemporaneous reference variables and for both, in view of
the necessary data, the best combination using a five- and 10-year window, respectively.
For PCA rank deviation (PCARD) we show the same selection of results as for RD.
We additionally report the best market climate window, the best results for the group
approach, the best window for the method in Mauboussin and Callahan (2015) and the
best single reference variable overall as well as for a five- and 10-year window. Some of
these cases coincide, thus, each table has at most 22 rows. We give details on algorithm
options according to Tables 4 and 5 and on reference variables (see Table 1).10

8Results for these variable subsets can be found in Tables 12 - 19 in Appendix A.
9Full results are available upon request.

10Here, contemp. refers to all contemporaneous reference variables and in subscript s:t is {s, . . . , t}.
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Table 6: Comparison of reference variables (ref. var.) and algorithms for forecasting one-
year ahead sales growth. Alg. is algorithm, transf. is pre PCA transformation,
comb. is combination of reference variables and cor. is correction.

Alg. Ref. Var. Transf. #PC Comb. Cor. w Size ∆q KS CvM

PCA contemp., ranks 3/ union yes 30 0.01 0.0045 1.2002 0.1703
salesGR1, Varµ

opmar∆1
PCA contemp., ranks 3/ union yes 30 0.01 0.0046 1.3626 0.1857

salesGR1, Varµ

opmar∆1
PCA contemp., ranks 3/ union yes 30 0.025 0.0047 1.4200 0.1755

salesGR1, Varµ

opmar∆1
RD salesGR3,5:7, – – union no 30 0.05 0.0065 0.7191 0.0407

opmar∆5
RD salesGR5:7, – – union no 30 0.01 0.0066 0.7408 0.0448

opmar∆5
RD salesGR5:8, – – union no 30 0.05 0.0072 0.6475 0.0698

opmar∆5
PCA contemp., ranks 2 union no 10 0.01 0.0094 1.6183 0.5917

salesGR1,
opmar∆1

PCA contemp. trim 75% union no 30 0.025 0.0102 1.2817 0.1950
single opmar∆6 – – – – 30 0.025 0.0157 1.8644 0.8265
RD β, P/E – – union no 5 0.025 0.0158 2.7215 1.8060
PCA contemp., ranks 2 unio yes 5 0.025 0.0164 2.3868 1.3622

salesGR1,
opmar∆1

RD β, P/E – – union no 10 0.05 0.0213 3.9850 4.9765
PCA sales, at, seq, x1/5 90% union no 10 0.025 0.0217 2.6242 2.4904

P/E, P/B
PCA sales, opmar, trim 2/ union yes 5 0.025 0.0233 5.6027 7.1741

at, seq 75%
single opmar – – – – 10 0.05 0.0284 4.1500 6.1454
single opmar – – – – 5 0.05 0.0309 4.4533 4.8490
market – – – – – 5 – 0.0454 6.0073 11.1804
MC sales – – – – 5 – 0.0516 6.3825 12.7518
group major group – – – – 5 – 0.0653 8.6576 22.5482
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Across all forecast horizons the algorithms using several reference variables improve
distributional forecast performance reducing ∆q by between 38% and 71%. Generally,
the reduction is greater with shorter forecast horizons and overall the results improve
with a shorter forecast horizon. For all forecast horizons the best results are delivered
by PCARDs with a fixed number of PCs based on contemporaneous reference variables
combined with different degrees of lagged past operating margin deltas and past sales
growth rates. However, past reference variables do not exceed a lag of five years. All
reference variables should be either 2.5% trimmed on both tails before PCA or one should
use ranks for PCA. Overall a window length of 30 years is best, besides a 20-year window
for three-year horizon, while combining reference variables by union. The choices of
reference class size and correction vary among the best results. Under some constraints,
LARD and intersection are among the best combination versions and the number of PCs
gets chosen by a data driven criterion although the overall best results still use a fixed
number of PCs and union for combination.

All contemporaneous variables are used for the best combination and under certain
constraints the market parameters β, P/E and P/B are important. An exception is
the 10-year horizon where only balance sheet variables are selected with a possible
interpretation that market parameters better reflect short term expectations. The
concentrated information in past operating margin deltas reflects a company’s market
position and, thus, it is reasonable to assume a positive influence of growing operating
margin on future sales growth. For a discussion on reasons thereof, compare Theising et al.
(2023) and the literature mentioned there. The uncompetitive performance of sales may
be due to Gibrat’s law that states that firm growth is independent of firm size (Gibrat,
1931) but the excellent performance of past sales growth rates contradicts the part of
Gibrat’s law that claims growth rates are uncorrelated in time. Stanley et al. (1996) also
show that sales growth depends on past growth rates and that sales growth distributions
are similar across diverse firms which corresponds to the poor results of the group
approach here.

Using multiple reference variables with RD improves the results by between 58% and
12% compared to the single variable use. The past operating margin deltas and past
sales growth rates dominate the forward selection with lags mainly between three and
eight years, partially up to 10 years, a window length of 30 years and the number of
used reference variables in the best combination varies from two to five (c.f. Tables
12, 14, 16 and 18 in Appendix A). Taking more reference variables into consideration
does not yield better results in general which seems to be a feature of the specific
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rank based algorithms used here, e.g., combining contemporaneous variables with past
sales growth rates and past operating margin up to different lags performs substantially
worse compared to single reference variables with ∆q between 1.7 and 3.7 times higher
depending on forecast horizon (see Table 11 in Appendix A). However, this may partially
explain the outstanding performance of PCARD using a small fixed number of PCs. As
for PCARD, the best RD options vary across size and correction but all combine the
reference variables by union. To put this into perspective, union means that the reference
class members are similar to the initial firm in at least one reference variable in contrast
to similarity across variables when using LARD or intersection. This superiority reflects
the fact that the outside view, often seen as relying on only superficially similar instances,
produces more accurate predictions than a narrow-minded focus on the uniqueness and
complexity of a forecast challenge (c.f. Lovallo and Kahneman, 2003). The benchmarks
of market climate and group approach as well as of Mauboussin and Callahan (2015) are
clearly outperformed across all forecast horizons. There are some different rankings of
algorithms across accuracy measures which is natural as there is no universal ranking
of forecasts regardless of the accuracy measure (see Diebold et al., 1998) and given the
focus of KS and CvM on the complete distribution.

Considering the best results for forecasting 1-year sales growth from Table 6 we put the
accuracy measure ∆q into perspective. Here, we have the sum of nine absolute quantile
deviations ∆q = 0.0045 which means that according to the backtest we miss the quantile
levels of the distribution of one-year sales growth on average by 0.05 percentage points
when predicting on historical data. If a practioner, e.g., derives 90% confidence intervals
based on a reference class selection with the best algorithm options this average error
should be negligible.

With practical application in mind the amount of necessary data is important and consists
of two components, the years used to select a window of candidates and the lags of
past sales growth and operating margin delta. Collecting a smaller data basis is easier
to achieve in practice and further takes into account that practitioners might want to
assume a stable data generating mechanism of sales growth for only a few years. However,
smaller windows generate smaller candidate sets and ultimately smaller reference classes
in general. In particular, past operating margin deltas and past sales growth rates turn
out to be best in the forward selection but depend on a rather large amount of data.
The best performances by PCARDs need between 23 and 35 years of data while the
best RD and the best single variable combinations need between 36 and 40 years of data
despite performing worse. Remarkably, the use of dimension reduction via PCA enables
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Table 7: Comparison of reference variables (ref. var.) and algorithms for forecasting three-
years ahead sales growth. Alg. is algorithm, transf. is pre PCA transformation,
comb. is combination of reference variables, cor. is correction and inters. is
intersection.

Alg. Ref. Var. Transf. #PC Comb. Cor. w Size ∆q KS CvM

PCA contemp., trim 3 union yes 20 0.01 0.0146 2.2379 1.3913
salesGR1:3,
opmar∆1:3

PCA contemp., trim 3 union yes 20 0.01 0.0163 1.9873 1.1432
salesGR1:5,
opmar∆1:5

PCA contemp., trim 3 union no 20 0.05 0.0165 2.2956 1.4306
salesGR1:5,
opmar∆1:5

RD salesGR10, – – union no 30 0.01 0.0223 1.7135 0.7237
opmar∆8,9

RD salesGR10, – – union yes 30 0.01 0.0233 1.7000 0.6886
opmar∆8,10

PCA sales, opmar, trim Varµ union yes 30 0.01 0.0238 3.1099 2.3311
seq, β,
P/E, P/B

RD salesGR10, – – union yes 30 0.01 0.0239 1.4898 0.5776
opmar∆8

PCA opmar∆6:8,10 – 75% inters. no 10 0.01 0.0282 1.3639 0.3202
single opmar∆7 – – – – 30 0.025 0.0290 3.2390 2.8895
RD β, P/E, P/B – – LARD – 10 0.05 0.0319 4.7188 6.6191
RD β, P/E, P/B – – LARD – 5 0.025 0.0334 4.0785 3.7155
PCA opmar∆6:10 – 75% inters. no 5 0.025 0.0373 3.0515 2.6985
PCA sales, opmar, x1/5 2 union yes 5 0.05 0.0460 6.6272 12.6316

β, P/E
PCA sales, opmar, x1/5 2 union yes 10 0.05 0.0486 6.5503 12.6209

seq, β,
P/E, P/B

single opmar – – – – 30 0.01 0.0603 6.9167 16.7652
single opmar – – – – 5 0.05 0.0707 10.4687 33.6970
single opmar – – – – 10 0.05 0.0883 11.8219 55.6199
market – – – – – 5 – 0.0924 11.3359 45.3895
MC sales – – – – 5 – 0.1028 13.4856 61.3178
group major group – – – – 5 – 0.1423 17.9423 106.9768
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us to incorporate more reference variables while simultaneously needing less data and
improving the results substantially.

Further, the following results from Tables 6 - 9 stand out, where changes are reported
with respect to the best single reference variable for the respective forecast horizon. For
one-year forecast horizon (see Table 6) PCARD improves ∆q by 71% and RD improves
∆q by 58% while using five years less and one year more of data, respectively. There
is even a 39% improvement for PCARD with 25 years less of necessary data. Notably,
RD using β and P/E performs roughly the same as the best single reference variable
but needs only five instead of 36 years of data. Interestingly, for the three best PCARD
combinations the results for three PCs and all PCs that explain at least the mean variance
are identical. When forecasting three years ahead, Table 7 shows a reduction of ∆q by
50% and by 23% for PCARD and RD with 14 years less and three years more of data,
respectively. Even PCARD with using 17 years less of information is slightly better and
additionally, PCARD with only contemporaneous variables and a 30-year window is
better than the single variable method as well. Moreover, findings on five-year ahead
forecasting in Table 8 show an improvement of ∆q by 44% and by 28% for PCARD and
RD while needing five years less and the same amount of past data. In contrast, a PCARD
combination with contemporaneous variables and a 30-year window improves results by
18% while needing 10 years less of data. Finally, in Table 9 on 10-year forecast horizon
it stands out that contemporaneous balance sheet variables and past variables are the
best reference variables for PCARD and reduce ∆q by 38% with similar necessary data.
While the best RD combinations have a comparable data demand as the single variable
approach and improve ∆q by 12%, notably, a PCA combination using intersection on
only contemporaneous variables from a 20-year window improves results by 27% despite
using 16 years less of information.

6. Practical Application

In an actual forecast challenge in any field of application the resulting information
in terms of a distributional forecast can be used in several ways, from assessing an
existing forecast over providing confidence intervals and point estimates to calculating
moments and probabilities for intervals of possible outcomes. By means of the resulting
information we can assess predictions (e.g. model based or by experts, analysts) by
evaluating the ECDF of the reference class at the prediction, i.e. we calculate the PIT
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Table 8: Comparison of reference variables (ref. var.) and algorithms for forecasting five-
years ahead sales growth. Alg. is algorithm, transf. is pre PCA transformation,
comb. is combination of reference variables, cor. is correction and inters. is
intersection.

Alg. Ref. Var. Transf. #PC Comb. Cor. w Size ∆q KS CvM

PCA contemp., trim 2 union yes 30 0.01 0.0179 1.0948 0.2297
salesGR1:5,
opmar∆1:5

PCA contemp., trim 2 LARD – 30 0.01 0.0186 1.5236 0.8604
salesGR1:5,
opmar∆1:5

PCA contemp., trim 2 union yes 30 0.025 0.0207 1.1641 0.3481
salesGR1:5,
opmar∆1:5

RD salesGR10, – – union yes 30 0.01 0.0230 2.2279 1.0487
opmar∆6

RD salesGR10, – – union no 30 0.01 0.0261 2.1110 1.0450
opmar∆6

PCA sales, opmar, trim 90% union no 30 0.05 0.0261 3.0871 1.7590
seq, β,
P/E, P/B

RD salesGR6,10, – – union yes 30 0.01 0.0264 1.5280 0.6581
opmar∆6

single opmar∆10 – – – – 30 0.01 0.0320 2.2045 1.3087
PCA sales, opmar, trim Varµ inters. no 5 0.025 0.0394 1.3993 0.1071

at, seq,
salesGR1:5
opmar∆1:5

PCA opmar∆4:7,9,10 – Varµ inters. no 10 0.025 0.0399 4.2461 5.1859
PCA sales, opmar, trim 75% inters. yes 5 0.025 0.0484 1.2470 0.1948

β, P/E, P/B
RD β, P/E – – LARD – 30 0.05 0.0492 5.1695 6.0082
PCA sales, opmar, trim 2 inters. no 10 0.01 0.0559 1.7647 0.3353

β, P/E, P/B
RD opmar, – – inters. yes 5 0.01 0.0634 2.1629 0.4439

opmar∆6
RD opmar, – – inters. yes 10 0.01 0.0794 2.4536 0.3912

opmar∆10
RD β, P/E, P/B – – LARD – 5 0.05 0.0716 6.7605 12.5422
single opmar – – – – 30 0.01 0.0856 9.4768 32.0558
RD opmar, P/B – – inters. no 10 0.05 0.0863 1.3772 0.3369
single P/E – – – – 5 0.05 0.1113 9.1733 41.2639
market – – – – – 5 – 0.1428 15.2365 96.8583
single P/E – – – – 10 0.05 0.1497 13.1570 84.6791
MC sales – – – – 5 – 0.1600 19.0380 137.3940
group major group – – – – 30 – 0.2136 16.7058 106.9918
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Table 9: Comparison of reference variables (ref. var.) and algorithms for forecasting ten-
years ahead sales growth. Alg. is algorithm, transf. is pre PCA transformation,
comb. is combination of reference variables, cor. is correction and inters. is
intersection.

Alg. Ref. Var. Transf. #PC Comb. Cor. w Size ∆q KS CvM

PCA sales, opmar, trim 2 union yes 30 0.01 0.0275 1.5735 0.6993
at, seq,
salesGR1:5
opmar∆1:5

PCA sales, opmar, trim 2 LARD – 30 0.01 0.0284 1.7164 0.8456
at, seq,
salesGR1:5
opmar∆1:5

PCA sales, opmar, trim 2 union yes 30 0.025 0.0296 1.9586 0.7830
at, seq,
salesGR1:5
opmar∆1:5

PCA sales, opmar, trim Varµ inters. no 20 0.01 0.0323 1.5376 0.4871
at, seq, β

RD salesGR6,7, – – union yes 30 0.01 0.0388 3.0820 3.2019
opmar∆5,7

RD salesGR6, – – union yes 30 0.01 0.0401 3.1193 3.2598
opmar∆7

RD salesGR6:8, – – union yes 30 0.01 0.0403 2.9479 2.9308
opmar∆5,7,8

single opmar∆6 – – – – 30 0.025 0.0441 3.7773 4.1454
PCA opmar, β, trim 90% inters. no 5 0.05 0.0584 1.1665 0.2001

P/E, P/B
RD β, P/E – – LARD – 30 0.025 0.0679 4.1868 4.2020
PCA opmar, β, trim 3 inters. yes 10 0.01 0.0705 1.2347 0.4220

P/E, P/B
RD β, salesGR5, – – LARD – 10 0.05 0.0785 6.0266 10.9679

opmar∆7
RD salesGR7, – – inters. no 5 0.025 0.0998 1.0023 0.1382

opmar∆3,5,6
single opmar – – – – 30 0.01 0.1126 7.4249 20.6290
RD opmar, β, P/E – – LARD – 10 0.05 0.1147 8.6451 17.1154
RD opmar, β, P/E – – LARD – 5 0.05 0.1154 9.5327 24.3167
single opmar∆10 – – – – 10 0.025 0.2053 8.5536 31.8502
MC(15) sales – – – – 30 – 0.2270 11.2416 50.6546
group major group – – – – 30 – 0.2561 12.0198 61.4773
market – – – – – 30 – 0.2845 14.4029 74.5287
single opmar∆10 – – – – 5 0.025 0.2926 14.5939 94.3775
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value P(Yi,t+h ≤ yi,t+h) ≈ n−1 ∑
(j,s)∈R 1{Yj,s+h ≤ yi,t+h} for n = |R|. PIT values very

close to either 0 or 1 can serve as a warning signal to revisit a prediction and check
for arguments that may justify the prediction relative to the reference class or possibly
correct the prediction. Confidence intervals and point estimates can be directly calculated
from the ECDF as well as probabilities for intervals of possible outcomes. Here, we
provide an application of the reference class approach on forecasting sales growth for
firms over multiple years and additionally assess expert forecasts.

Comparing expert forecasts of corporate sales growth to base rates displays the practical
utility of reference classes. We compare the distributional forecasts based on the reference
classes to expert forecasts which infamously tend to neglect available data of similar
cases. As in Theising et al. (2023), we discuss two firms as an example of reference
class selection – 3M and Amazon. For both companies, we forecast the distribution of
one-year sales growth rate based on a reference class. The distributional forecasts are
then compared to analysts’ forecast from the FactSet (2021) estimates database. For both
forecasts 2018 is the base year and Figures 9 and 10 display the results. The reference
classes for one-year sales growth forecasts in this section are selected according to the best
result from our backtest in Table 6 using all contemporaneous variables, one-year past
sales growth and one-year operating margin delta as reference variables. The Selection is
based on a PCA rotation of the reference variables’ ranks with 3 PCs where candidates
are chosen from a 30 year window period and the reference classes for the individual PCs
have the size 0.33% of the candidate set due to correction and the three reference classes
are then unified.

Sales growth of 3M was predicted 15 times and Figure 9 shows that the expert forecasts
lie between -2.35% and 3.26% sales growth and range from the 28.31% to the 43.02%
quantile within the reference class. This indicates no sign of overoptimism as the expert
forecasts are close to the center of the distributional forecast. Thus, inside and outside
view roughly agree and classify 3M as an average company in terms of sales growth.
However, a low range of expert forecasts in comparision to the reference class forecast is
emphasized by a predicted coverage rate of only 14.71% that could lead to overconfidence
in the interval of expert forecasts. To put the size of the reference class into context,
there are 271,548 firm observations before 2018 available in our data set and restricting
them to all firms providing the necessary reference variables in a 30 year window shrinks
these to a set of 109,792 candidate firms. Out of these candidates, the algorithm chooses
1,074 observations or 0.98% of the candidates. To put this into perspective, the best
combination with a window 10-year in Table 6, a set of options with 20 years less data
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Figure 9: Forecasted density of one-year sales growth for 3M based on the best algorithm
options from Table 6 compared to experts’ estimates. Density estimation on
support [−100, ∞) is based on the Gaussian kernel and Silverman’s rule of
thumb provdies the bandwidth.
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Figure 10: Forecasted density of one-year sales growth for Amazon based the best algo-
rithm options from Table 6 compared to experts’ estimates. Density estimation
on support [−100, ∞) is based on the Gaussian kernel and Silverman’s rule of
thumb provdies the bandwidth.
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consumption, operates on a set of 27,346 candidates and selects only 541 of them, that is
1.98%, as candidates. Note that the former algorithm option used a size correction and
the latter not, resulting in a reference class twice as big as the size parameter suggested
as there are few observations that are chosen according to both PCs.

For Amazon, there are 43 expert forecasts and Figure 10 compares them to the distribution
within Amazon’s reference class. The forecasts vary more than for 3M, namely from
13.93% to 22.82%, and their relation to the reference class is different. Here, forecasts
correspond to quantiles between 72.79% and 80.34% and are more optimistic since only
one out of five firms in the reference class achieved the maximum predicted growth
of Amazon. The difference between inside and outside should prompt forecasters to
reconsider and question their predictions. Amazon is known for its capability of high
growth, however, there should be valid reasons for an optimistic forecast with respect to
the base rates. The outside view may at least protect against extreme and unrealistic
predictions. Again, we discuss the actual size of the reference class, where the set of
candidate firms is the same as for 3M because forecast horizon, base year and algorithm
options are identical. The reference class then consists of 1,073 firms, i.e. 0.98% of the
candidates, as opposed to selecting 542 firms or 1.98% of the candidates for the less data
consuming algorithm as for 3M using a 10-year window.

Table 10 shows base rates for one, three, five and 10 year forecasting horizons for 3M
and Amazon and underlines the higher growth chances of Amazon. We demonstrate the
usefulness of these base rates by considering, e.g., an entity that wants to invest their
money in rising buisnesses that have the highest probability of a long term sales growth
above 5% per year. Assuming 10 years to be long term, we can directly use the base rates
in Table 10 to predict such a probability for both companies by adding up the relevant
cells in the most right columns. That results in predicted probabilities of 24.2% and
41.4% for more than 5% compound annual sales growth for 3M and Amazon, respectively.
Especially the base rates for larger sales growth are higher for Amazon than for 3M, for
all forecast horizons and, in general, the predicted distribution has a higher variability
for the former. This may be interpreted as the higher risk that contemplates the higher
potential reward. Overall, the standard deviation declines with the forecast horizon as
we consider compound annual growth rates. Interestingly, for one-year forecast horizon
the base rates for 3M show less probability for sales decline than for Amazon and, except
for growth above 45%, 3M has higher base rates for sales increase. This contemplates
Figure 9 where the expert forecasts are roughly centered at unchanged sales but the
distributional reference class forecast shows a tendency to sales increase. However, the
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Table 10: Comparision of reference classes for forecasting compound annual sales growth
rates of 3M and Amazon with base year 2018. The choice of algorithm for
each forecast horizon is based on the results from the backtests in Tables 6 – 9.
Mean and standard deviation are 2.5% trimmed on both tails.

Base Rates

1-Yr 3-Yr 5-Yr 10-Yr
CAGR (%) 3M Amazon 3M Amazon 3M Amazon 3M Amazon

≤ −25 7.54 10.81 2.70 5.45 1.51 2.57 0.60 1.40
] − 25, −20] 2.05 2.52 1.98 1.64 1.06 0.76 0.20 0.40
] − 20, −15] 1.58 3.45 1.98 2.73 2.57 1.81 1.20 1.00
] − 15, −10] 4.00 3.45 5.41 2.73 3.78 4.23 2.80 3.00
] − 10, −5] 7.45 7.83 9.19 7.27 9.23 5.74 9.00 7.00
] − 5, 0] 11.17 13.05 17.84 11.45 19.97 14.50 23.80 18.80
]0, 5] 14.25 16.50 20.36 18.55 28.74 21.75 38.20 27.00
]5, 10] 10.89 9.23 13.15 13.09 16.34 15.26 14.00 14.80
]10, 15] 8.94 7.08 9.73 10.18 8.17 12.69 6.00 11.80
]15, 20] 6.15 4.75 6.67 6.91 4.39 6.50 2.40 5.40
]20, 25] 4.56 2.61 3.24 4.18 2.12 4.68 0.60 5.20
]25, 30] 3.91 2.52 0.90 3.27 1.06 3.47 0.60 1.80
]30, 35] 1.86 1.49 1.44 3.27 0.45 2.72 0.40 1.00
]35, 40] 2.33 1.21 1.44 2.00 0.30 0.60 0.20 0.40
]40, 45] 1.86 1.03 1.26 2.00 0.15 0.45 0.00 0.40
> 45 11.45 12.49 2.70 5.27 0.15 2.27 0.00 0.60

mean 10.63 11.98 4.13 7.16 2.23 6.16 1.63 4.57

median 5.99 2.73 2.81 5.08 2.36 4.65 1.38 3.21

std 26.40 47.85 12.57 16.95 8.09 11.55 5.85 8.75
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Figure 11: One year sales growth for Amazon from 1995 to 2017 compared to quantiles
of the reference class outcomes selected using the best algorithm options from
Table 6. The bold lines from bottom to top represent the 10%, 25%, 50%, 75%
and 90% quantiles of one year sales growth within the reference class. The
circles represent sales growth of Amazon which are 2,891% and 823% for base
years 1995 and 1996, respectively, and therefore not displayed in this graph.

base rates for one-year sales growth exhibit by far the most uncertainty, as can be seen
by the trimmed standard deviation, and also the highest predicted probabilites for sales
growth exceeding 45% and more than 25% probability of sales decline.

Moreover, we stick to the example of Amazon and present another useful application of
reference classes. Figure 11 follows Amazon’s one year ahead distibutional sales growth
forecasts through the base years 1995 – 2017 and compares these forecasts to the realized
sales growth. Here, it shows that Amazon is outperforming its reference class massively
in the first three years. After that, the realized sales growth rate is close to the 75%
quantile for most of the years, with some fluctuations up and down between the 50%
and 90% quantile of its reference classes. With respect to the situation in Figure 10 this
may serve as a validation of expert forecasts. More general, the dependence of reference
class selection on historic data gets evident as the distributional forecasts’ uncertainty
increases in the aftermath of well-known times of financial distress, here, the dotcom
crisis in 2000, the subprime bubble in 2007 and 2008, and the European debt crisis in
2009 and 2010. Overall, a practioner might conclude Amazon performs well compared
to peers and is in a good overall market position. On the one hand, this seems like old
news, but on the other hand it serves as an affirmation and a proof of concept: Reference
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class forecasting is well behaved and meets practical expectations in this case.

7. Concluding Remarks

In this paper, we extend the analysis of distributional reference class forecasting of
corporate sales growth with a focus on reference class selection. We provide a practical
solution to the well-known reference class problem (Venn, 1888) that arises in any
application of reference class forecasting as desribed in Kahneman and Tversky (1979).
The novel rank based methods allow several reference variables and include the option
of a dimension reduction based on principal components. In an extensive backtest on
corporate data from the USA covering several decades we conclude that especially principal
component analysis reduces the amount of necessary past data while simultaneously
improving previous approaches (Theising et al., 2023) substantially by between 38% and
71% depending on forecast horizon. Further, we illustrate the practical usefulness of the
new methods on two example firms, 3M and Amazon. The novel approaches need less
historic observations compared to existing methods, are easy to interpret and deliver
reasonable results making them useful for practical applications. However, there are
further extensions possible.

The method itself can be extended by using additional algorithms for reference class
selection. Other methods for dimension reductions are possible, e.g., the self-organizing
map (Kohonen, 1982), an artificial neural network using a two dimensional grid of neurons
for dimension reduction. On data sets with cluster structures, we could use the neurons
of the self-organizing map as cluster centers or other cluster algorithms. A parametric
model for the distribution of outcomes within the reference classes (as in Stanley et al.,
1996) could be used for reference class forecasting.

Within our method, it is crucial to rank the forecast ability of the different algorithms
and reference variables. We have not answered whether the results on calibration differ
statistically significantly between the forecasts and acceptable numerical regions of the
accuracy measures for generating appropriate reference classes are unknown, yet. The
only indication so far is given by the results of the market climate approach that can be
interpreted as a prediction of the marginal distribution but it would be quite useful to
know which forecasts are in fact calibrated. Given a data set with less missing values, we
could then use scoring rules that additionally assess the sharpness of forecasts and are
more suitable for comparative assessment (Gneiting and Raftery, 2007).
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It is yet open, whether reference classes can identify underlying distributions which could
be answered in a simulation study to deepen the unterstanding of the mechanism behind
reference class selection. A study on similarity based forecasting using a weighted mean
of reference class outcomes to issue point forecasts is also possible. On a similar line of
thought, correcting potentially biased expert (or model based) forecasts with the outside
views can be investigated as the original corrective procedure in Kahneman and Tversky
(1979) suggested. This means that expert forecasts would be combined with a reference
class forecasts and a backtest could check for forecast improvement.

Investigations on other data sets beyond the presented case are necessary to further
advocate the utility of the approach. Additional possible applications are characterized
by availability of sufficient data on past outcomes and by the fact that forecasts should
typically be hard to issue. Ideally, no models producing calibrated (distributional)
forecasts directly should be known in the literature or existing models should be very
complicated and/or not accepted by a broad audience of practitioners and thus sparsely
used. In the field of finance, forecasting of cash flow items (in corporate value theory),
bankruptcy probabilities (or credit rating) and financial returns to assess value at risk
may be possible further applications.
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Data Availability

The “CRSP daily stock” and “Compustat daily updates - fundamentals annual” data
that support the findings of this study are available from Wharton Research Data
Services and were downloaded on 28 and 30 January, 2020, respectively. Restrictions
apply to the availability of these data, which were used under license for this study.
Data are available at https://wrds-www.wharton.upenn.edu/ with the permission of
Wharton Research Data Services. The consumer price index data that support the
findings of this study are openly available at FRED (Federal Reserve Economic Data) at
https://fred.stlouisfed.org/series/CPIAUCSL/, reference CPIAUCSL, and were down-
loaded on 29 January, 2020. The “Core company data - estimates data” that support the
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findings of this study are available from FactSet and were downloaded on 7 January, 2021.
Restrictions apply to the availability of these data, which were used under license for
this study. Data are available at http://factset.com/ with the permission of FactSet.
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A. Supporting Tables

This section contains tables with supporting results from the backtest in Section 5. Table
11 shows that more reference variables do not necessarily improve reference class selection
based on rank deviation (c.f. the discussion in Section 5.2). Tables 12, 14, 16 and 18
contain the best results from the forward selection of the rank deviation procedure for
all considered forecast horizons as described in Section 5.1. The best three sets of four,
five and six reference variables from the forward selection are used in backtesting PCA
rank deviation, see Section 5.1. Tables 13, 15, 17 and 19 contain the best results from
the brute force backtest of rank deviation on contemporaneous reference variables for
all considered forecast horizons as described in Section 5.1. The best three sets of four,
five and six reference variables from the brute force approach are used in the backtest of
PCA rank deviation as well, see Section 5.1.
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Table 11: Best results for combining contemporaneous reference variables with past sales
growth rates and past operating margin deltas up to different lags for horizons
one, three, five and ten.

Horizon Ref.Var. Comb. Cor. w Size ∆q KS CvM

1
contemp., union no 30 0.05 0.0584 7.0061 15.9007
salesGR1,
opmar∆1

3
contemp., union no 30 0.01 0.0773 8.0135 24.0522
salesGR1,
opmar∆1

5
contemp., union yes 30 0.01 0.0886 8.4625 26.1944
salesGR1,
opmar∆1

10
contemp., union yes 30 0.01 0.0758 4.7809 6.7344
salesGR1:5,
opmar∆1:5
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Table 12: Forward selection results for forecasting 1-year sales growth. The three best
sets of four, five and six reference variable, respectively, are used in the backtest
of PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best single

opmar∆6 – – 30 0.025 0.0157 1.8644 0.8256
opmar∆7 – – 30 0.025 0.0159 2.2179 1.0808
opmar∆5 – – 30 0.01 0.0171 2.3873 1.2154
opmar∆9 – – 30 0.025 0.0187 2.4281 1.1636
opmar∆10 – – 30 0.01 0.0188 2.0381 0.7830
opmar∆3 – – 30 0.01 0.0202 2.5357 1.6515

Best 2

salesGR7, union no 30 0.05 0.0114 1.6476 0.5886
opmar∆5
salesGR8, union no 30 0.05 0.0114 1.5929 0.5830
opmar∆6
salesGR5, union yes 30 0.05 0.0115 0.9091 0.1290
opmar∆7

Best 3

salesGR5,6, union yes 30 0.01 0.0087 0.8496 0.1021
opmar∆7
salesGR5,7, union no 30 0.025 0.0098 0.8259 0.0843
opmar∆5
salesGR5,7, union yes 30 0.01 0.0098 0.9199 0.1943
opmar∆7

Best 4

salesGR5:7, union yes 30 0.01 0.0066 0.7408 0.0448
opmar∆5
salesGR5,7,8, union no 30 0 0.0072 0.6538 0.0717
opmar∆5
salesGR3,5,6, union no 30 0 0.0086 0.8131 0.1163
opmar∆7

Best 5

salesGR3,5:7, union no 30 0.05 0.0065 0.7191 0.0407
opmar∆5
salesGR5:8, union no 30 0.05 0.0072 0.6475 0.0698
opmar∆5
salesGR3:6, union no 30 0.05 0.0084 0.6955 0.0546
opmar∆7

Best 6

salesGR3:7, union no 30 0.05 0.0076 0.7212 0.0628
opmar∆5
salesGR3:7, union no 30 0.025 0.0093 0.7668 0.1116
opmar∆7
salesGR5:8, union no 30 0.05 0.0093 0.8306 0.1569
opmar∆5,6
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Table 13: Brute force results for forecasting 1-year sales growth. The three best sets of
four, five and six reference variable, respectively, are used in the backtest of
PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best
β, P/E union yes 5 0.05 0.0158 2.7215 1.8060
β, P/E, P/B union no 5 0.05 0.0199 2.4706 1.5982
P/E, P/B union no 5 0.05 0.0251 3.0271 2.8965

Best 4
at, β, P/E, P/B union no 5 0.05 0.0306 4.3259 4.4872
seq, β, P/E, P/B union no 5 0.05 0.0316 4.1763 4.4604
at, seq, β, P/E union no 5 0.05 0.0320 5.0380 6.2068

Best 5
at, seq, β, P/E, P/B union no 5 0.05 0.0323 4.6028 5.0844
sales, at, seq, P/E, P/B union no 5 0.05 0.0374 5.0118 6.1482
sales, at, β, P/E, P/B union yes 5 0.01 0.0379 5.4581 7.0826

Best 6

sales, at, seq, β union no 5 0.05 0.0377 4.9120 6.0955
P/E, P/B
sales, opmar, at, β, union yes 5 0.01 0.0437 5.2103 7.8767
P/E, P/B
sales, opmar, at, seq, union yes 5 0.01 0.0447 5.2960 8.0278
P/E, P/B
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Table 14: Forward selection results for forecasting 3-year sales growth. The three best
sets of four, five and six reference variable, respectively, are used in the backtest
of PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best single

opmar∆6 – – 30 0.025 0.0157 1.8644 0.8256
opmar∆8 – – 30 0.025 0.0296 2.0007 1.0991
opmar∆10 – – 30 0.01 0.0319 2.0996 1.1686
opmar∆7 – – 30 0.01 0.0321 3.4675 3.4485
opmar∆9 – – 30 0.01 0.0348 2.1389 1.1537
opmar∆5 – – 30 0.01 0.0363 5.5770 8.9425

Best 2

salesGR10, union yes 30 0.01 0.0239 1.4898 0.5776
opmar∆8
opmar, inters. no 30 0.05 0.0242 1.8007 0.7059
opmar∆7
opmar∆8,10 union no 30 0.05 0.0260 2.0310 1.0684

Best 3

salesGR10, union yes 30 0.01 0.0223 1.7135 0.7237
opmar∆8,9
salesGR10, union yes 30 0.01 0.0255 1.7001 0.6329
opmar∆8,10
opmar∆8:10 union no 30 0.05 0.0261 1.9815 0.9914

Best 4

salesGR10, union yes 30 0.01 0.0233 1.7000 0.6886
opmar∆8:10
salesGR9, union yes 30 0.01 0.0257 1.8971 0.7147
opmar∆8:10
salesGR8, union no 30 0.01 0.0269 1.7087 0.7064
opmar∆8:10

Best 5

salesGR9,10, union yes 30 0.01 0.0268 1.6305 0.6640
opmar∆8:10
salesGR8,9, union yes 30 0.01 0.0279 1.7261 0.6208
opmar∆8:10
salesGR8,10, union yes 30 0.025 0.0283 1.6882 0.7032
opmar∆8:10

Best 6

salesGR8:10, union yes 30 0.01 0.0293 1.7441 0.8076
opmar∆8:10
salesGR7,9,10, union yes 30 0.01 0.0299 2.5688 1.7311
opmar∆8:10
salesGR7,8,10, union yes 30 0.01 0.0306 2.5785 1.8136
opmar∆8:10
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Table 15: Brute force results for forecasting 3-year sales growth. The three best sets of
four, five and six reference variable, respectively, are used in the backtest of
PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best
β, P/E, P/B LARD – 10 0.05 0.0319 4.7188 6.6191
β, P/E LARD – 30 0.05 0.0388 4.5036 6.1123
opmar, β union yes 30 0.01 0.0392 4.7713 7.8706

Best 4
at, β, P/E, P/B union no 5 0.05 0.0594 9.4340 23.8707
sales, β, P/E, P/B union no 5 0.05 0.0655 9.1517 21.6102
sales, opmar, β, P/E union yes 30 0.01 0.0670 7.0775 18.7256

Best 5

at, seq, β, P/E, P/B union no 5 0.05 0.0680 9.9804 28.7600
sales, at, β, union no 5 0.05 0.0688 10.1119 27.1444
P/E, P/B
sales, opmar, β, union no 5 0.05 0.0738 9.3260 24.5716
P/E, P/B

Best 6

sales, at, seq, β, union no 5 0.05 0.0753 10.4470 30.4821
P/E, P/B
sales, opmar, at, β, union no 5 0.05 0.0769 10.2567 29.2024
P/E, P/B
sales, opmar, seq, β, union yes 30 0.01 0.0816 8.8320 28.1591
P/E, P/B
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Table 16: Forward selection results for forecasting 5-year sales growth. The three best
sets of four, five and six reference variable, respectively, are used in the backtest
of PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best single

opmar∆6 – – 30 0.025 0.0157 1.8644 0.8256
opmar∆10 – – 30 0.025 0.0337 1.7525 0.9926
opmar∆5 – – 30 0.01 0.0371 3.8690 4.0986
opmar∆9 – – 30 0.01 0.0375 2.0446 1.4290
opmar∆7 – – 30 0.01 0.0409 2.5724 1.7135
opmar∆4 – – 30 0.01 0.0417 4.9117 7.5028

Best 2

salesGR10, union yes 30 0.01 0.0230 2.2279 1.0487
opmar∆6
salesGR9, union yes 30 0.01 0.0271 1.9119 0.9894
opmar∆6
salesGR10, union yes 30 0.01 0.0272 1.7697 1.0131
opmar∆10

Best 3

salesGR6,10, union yes 30 0.01 0.0264 1.5280 0.6581
opmar∆6
salesGR8,10, union yes 30 0.01 0.0265 1.7605 0.7962
opmar∆6
salesGR7,10, union yes 30 0.01 0.0275 1.5368 0.6862
opmar∆6

Best 4

salesGR5,8,10, union yes 30 0.01 0.0265 2.3651 1.4054
opmar∆6
salesGR5,6,10, union yes 30 0.05 0.0267 2.4667 1.6128
opmar∆6
salesGR5,7,10, union yes 30 0.01 0.0267 2.5496 1.5178
opmar∆6

Best 5

salesGR5:7,10, union yes 30 0.05 0.0271 2.3006 1.3987
opmar∆6
salesGR5,6,8,10, union yes 30 0.025 0.0271 2.1439 1.2915
opmar∆6
salesGR5,6,9,10, union yes 30 0.01 0.0279 2.1598 1.2389
opmar∆6

Best 6

salesGR5,6,9,10, union yes 30 0.01 0.0275 2.5795 1.5061
opmar∆6,8
salesGR5:7,9,10, union yes 30 0.01 0.0277 1.9939 1.2312
opmar∆6
salesGR5:7,10, union yes 30 0.01 0.0279 2.5866 1.6759
opmar∆6,8
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Table 17: Brute force results for forecasting 5-year sales growth. The three best sets of
four, five and six reference variable, respectively, are used in the backtest of
PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best
β, P/E LARD – 30 0.05 0.0492 5.1695 6.0082
opmar, β union yes 30 0.01 0.0525 5.7728 10.7982
opmar, seq, P/B inters. no 30 0.025 0.0543 0.6534 0.0646

Best 4

sales, opmar, union yes 30 0.025 0.0781 7.6348 21.5909
β, P/E
sales, opmar, union yes 30 0.01 0.0864 8.0867 26.1398
seq, P/E
sales, opmar, union yes 30 0.01 0.0871 9.0112 25.3800
β, P/B

Best 5

sales, opmar, β, union yes 30 0.01 0.0894 8.8936 25.6606
P/E, P/B
sales, opmar, at, union yes 30 0.01 0.0931 8.5649 29.8700
β, P/E
sales, opmar, seq, union yes 30 0.01 0.0943 8.2488 29.5979
β, P/E

Best 6

sales, opmar, seq, union yes 30 0.01 0.0975 9.0194 30.8282
β, P/E, P/B
sales, opmar, at, union yes 30 0.01 0.1000 9.3992 31.4917
β, P/E, P/B
sales, opmar, at, union yes 30 0.01 0.1045 9.0507 36.2843
seq, β, P/E
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Table 18: Forward selection results for forecasting 10-year sales growth. The three best
sets of four, five and six reference variable, respectively, are used in the backtest
of PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best single

opmar∆6 – – 30 0.025 0.0157 1.8644 0.8256
opmar∆7 – – 30 0.025 0.0461 3.5950 3.8367
opmar∆5 – – 30 0.025 0.0482 4.1254 5.0874
opmar∆4 – – 30 0.01 0.0510 4.7700 6.4086
opmar∆8 – – 30 0.025 0.0520 3.8959 4.4523
opmar∆9 – – 30 0.05 0.0585 3.8342 4.8646

Best 2

salesGR6, union yes 30 0.01 0.0401 3.1193 3.2598
opmar∆7
opmar∆5,6 union yes 30 0.05 0.0415 4.1217 4.9332
salesGR5, union yes 30 0.01 0.0424 3.2929 3.3610
opmar∆7

Best 3

salesGR6, union yes 30 0.05 0.0409 3.5038 3.7480
opmar∆5,7
salesGR7, union yes 30 0.05 0.0410 3.5776 3.9702
opmar∆5,6
salesGR6, union yes 30 0.01 0.0416 3.6444 3.8220
opmar∆5,6

Best 4

salesGR6,7, union yes 30 0.01 0.0388 3.0820 3.2019
opmar∆5,7
salesGR7, union yes 30 0.05 0.0411 3.4968 3.5954
opmar∆5:7
salesGR5,6, union yes 30 0.01 0.0423 3.4630 3.6062
opmar∆5,6

Best 5

salesGR5:7, union yes 30 0.025 0.0419 3.2042 3.3900
opmar∆5,7
salesGR6:8, union yes 30 0.01 0.0422 3.0932 3.3684
opmar∆5,7
salesGR5,6, union yes 30 0.01 0.0425 3.7850 4.3952
opmar∆4:6

Best 6

salesGR6:8, union yes 30 0.01 0.0403 2.9479 2.9308
opmar∆5,7,8
salesGR5:7, union yes 30 0.025 0.0420 3.4675 3.5151
opmar∆5:7
salesGR6:9, union yes 30 0.01 0.0432 3.0288 3.4022
opmar∆5,7
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Table 19: Brute force results for forecasting 10-year sales growth. The three best sets of
four, five and six reference variable, respectively, are used in the backtest of
PCA rank deviation.

Choice Ref.Var. Comb. Cor. w Size ∆q KS CvM

Best
β, P/E LARD – 30 0.025 0.0680 4.1868 4.2020
opmar, P/E union yes 30 0.01 0.0698 4.5438 7.8400
at, β, P/E, P/B LARD – 30 0.05 0.0774 6.1698 10.9065

Best 4

opmar, β, P/E, LARD – 20 0.025 0.0804 9.2137 19.5756
P/B
opmar, at, β, P/E LARD – 20 0.05 0.0941 11.6692 31.5442
sales, β, P/E, P/B LARD – 30 0.05 0.0956 7.3187 16.8942

Best 5

opmar, at, β, LARD – 20 0.05 0.0989 8.7529 21.4948
P/E, P/B
sales, opmar, at, inters. yes 30 0.05 0.1059 4.1239 6.7161
seq, β
sales, opmar, β, union yes 30 0.01 0.1217 8.2634 22.2247
P/E, P/B

Best 6

sales, opmar, at, union yes 30 0.01 0.1389 9.1815 26.8634
β, P/E, P/B
sales, opmar, seq, union yes 30 0.025 0.1414 9.7186 28.1473
β, P/E, P/B
sales, opmar, at, union yes 30 0.01 0.1443 9.2700 28.0870
seq, P/E, P/B
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