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E-CONVEX HYPERSURFACES WITH PRESCRIBED WEINGARTEN
CURVATURE IN WARPED PRODUCT MANIFOLDS

XIAOJUAN CHEN, QIANG TU*, AND NI XIANG

ABSTRACT. In this paper, we consider Weingarten curvature equations for k-convex
hypersurfaces with n < 2k in a warped product manifold M = I x, M. Based on
the conjecture proposed by Ren-Wang in [26], which is valid for & > n — 2, we derive
curvature estimates for equation oy (k) = (V,v(V)) through a straightforward proof.
Furthermore, we also obtain an existence result for the star-shaped compact hyper-
surface ¥ satisfying the above equation by the degree theory under some sufficient
conditions.

1. INTRODUCTION

Let (M, g¢’) be a compact Riemannian manifold and I be an open interval in R. The

warped product manifold M = I x, M is endowed with the metric
(1.1) G = dr* + N (r)g,

where \ : I — R* is a positive C? differential function. Let ¥ be a compact star-shaped
hypersurface in M, thus ¥ can be parametrized as a radial graph over M. Specifically
speaking, there exists a differentiable function r : M — I such that the graph of ¥ can
be represented by

Y =A{X(u)=(r(u),u) | ue M}.

In this paper, we consider the following prescribed Weingarten curvature equation in

warped product manifold M
(1.2) or(k(V)) =¢(V,v(V)), VVEE,

where V = )\% is the position vector field of hypersurface ¥ in M, o} is the k-th

elementary symmetric function, v(V') is the outward unit normal vector field along the
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hypersurface 3 and (V') = (K1, -+, k,) are the principle curvatures of hypersurface >
at V.

Curvature estimates for equation (L2) in R has been studied extensively. When
k =1 and k = n, the equation is quasi-linear equation and Gauss curvature equation
respectively, then the corresponding curvature estimates follow from the classical theory
of quasi-linear PDEs and Monge-Ampere type equations in [3]. When 1 is independent
of v, curvature estimates were proved by Caffarelli-Nirenberg-Spruck [4] for a general
class of fully nonlinear operators F', including F' = o} and F' = C;—I; When v depends only
on v, curvature estimates were proved by Guan-Guan [10]. Curvature estimates were
also proved for equation of prescribing curvature measures problem in [11l [12], where
(X, v) = (X, v)p(X). Ivochkina [I5] 16] considered the Dirichlet problem of equation
(C2) and obtained curvatute estimates under some extra conditions on the dependence

of ¢ on v.

In recent years, there are many progresses on establishing curvature estimates for
equation (L2)) in case 2 < k <n — 1. When k = 2, curvature estimates for admissible
solutions of equation (2] were obtained by Guan-Ren-Wang [I3]. They also established
curvature estimates of convex solutions for general k, see a simpler proof in Chu [7].
Subsequently, Spruck-Xiao [27] extended 2-convex case to space forms and gave a simple
proof for the Euclidean case. In [24] 25], Ren-Wang proved curvature estimates for
k' =n—1 and n — 2, respectively. They also proved curvature estimates for equation

(L2) with n < 2k in [26] based on a concavity conjecture.

Moreover, some results have been obtained by Li-Oliker [2I] on unit sphere, Barbosa-
de Lira-Oliker [2] on space forms, Jin-Li [I7] on hyperbolic space, Andrade-Barbosa-de
Lira [I] on warped product manifolds, Li-Sheng [19] for Riemannain manifold equipped
with a global normal Gaussian coordinate system. In particular, Chen-Li-Wang [0]
generalized the results in [I3, 24] to (n — 1)-convex hypersurfaces in warped product

manifolds.

Inspired by the above works, it is natural to consider extending Ren-Wang’s results
in [24] 25, 26] from Euclidean space to warped product manifolds. Here we introduce

the following conjecture:

Conjecture 1.1. Let k = (K1, ,ky) € 'y with K1 > Ky > -+ > kK, and n < 2k.
Assume that there exist constants No, N1 such that Ny < ogx(k) < Ny. If there exist



PRESCRIBED WEINGARTEN CURVATURES 3
constants K and B such that k1 > B, then
K1 <K<Z of (1)&;)" — ai”’%)»gpgq) — i (R)E + ) &l >0,
J J#1
for any & = (&,---,&,) € R". Here a; = Uij(li) + (k1 + fij)a,il’jj(fi).

The main theorem is as follows.

Theorem 1.1. Let ri, ry be constants with r < ry, M be a compact Riemannian
manifold, M be the warped product manifold with the metric (I1) and I be an open
neighborhood of unit normal bundle of M in M x S™. Assume that \ is a positive C?
differential function with N > 0 and Conjecture [I1 holds. Suppose 1 satisfies

(1.3) W(V,v) > CECH(r) Vor<r,
(1.4) W) <O Yz
and

(1.5) %(A%(V, v)) <0 Vo <r<r,,

where V.= AL and ((r) = N(r)/\(r). Then there exists a C**, k-convez, star-shaped
and closed hypersurface ¥ in the annulus domain {(r,u) € M | ry < r < 1y} that
satisfies equation (L2) for any o € (0,1).

Remark 1.2. The key to prove Theorem[L1l is to obtain curvature estimates (Theorem
[34)) for this Hessian type equation in warped product manifold. Compared to the proof in
Euclidean space by Ren-Wang [26], we give a straightforward proof. Note that Congecture
1l is weaker than the one proposed by Ren-Wang in [24], 25 26].

It is worth noting that Conjecture [LI] holds for & > n — 2, which was proved in
Ren-Wang [24, 25| 26]. Thus we can directly get the following results.

Corollary 1.1. Letk >n—2. M, M, T, X\ and ¢ are proposed in Theorem [I1, then
there exists a C**, k-convex, star-shaped and closed hypersurface ¥ in {(r,u) € M |
r1 <1 < ro} that satisfies equation ([L2) for a € (0,1).
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The organization of the paper is as follows. In Sect. 2 we start with some preliminaries.

C° C' and C? estimates are given in Sect. 3. In Sect. 4 we prove theorem 1]

After we completed our paper, we found that Wang independently proved the corre-
sponding curvature estimates for k = n—1,n—2 in Theorem 4.1 of [29]. It also provides

a new perspective to prove the global curvature estimates.

2. PRELIMINARIES

2.1. Star-shaped hypersurfaces in the warped product manifold. Let M be
a compact Riemannian manifold with the metric ¢’ and I be an open interval in R.
Assuming A : I — RT is a positive differential function and A > 0, the manifold

M =1 x, M is called the warped product if it is endowed with the metric
g =dr* + \*(r)g'.

The metric in M is denoted by (-,-). The corresponding Riemannian connection in M
will be denoted by V. The usual connection in M will be denoted by V’. The curvature
tensors in M and M will be denoted by R and R, respectively.

Let {e1, -+ ,e,_1} be an orthonormal frame field in M and let {6, --,6,_1} be the
associated dual frame. The connection forms 6;; and curvature forms ©;; in M satisfy

the structural equations

(2.1) db; = Z 0ij N0, Oy = 05,

J

1

k.l

An orthonormal frame in M may be defined by & = %e,-, 1<i<n-—1,and ey = %.

The associated dual frame is that 6, = \d; for 1 <i <mn—1 and 0y = dr. Then we have
the following lemma (See [14]).

Lemma 2.1. Given a differentiable function r : M — I, its graph is defined by the

hypersurface
Y ={(r(u),u):u e M}.
Then the tangential vector takes the form

Xi = )\él -+ Tiéo,
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where 1; are the components of the differential dr = r;0*. The induced metric on ¥ has
2
9ij = N (r)dij + rrj,

and its inverse is given by
1 rtrd

g7 = 320 = ).

We also have the outward unit normal vector of X

1 )
V= —— ()\éo — ’l“léi),
v

where v = /X2 + |V'r|2 with V'r = r'e;. Let h;; be the second fundamental form of ¥
in term of the tangential vector fields { Xy, ..., X,,}. Then,

— 1
hij = —<vXsz', I/> = ; < — )\’l“ij + 2)\/’/“i’l“j + )\2)\,52']')
and -
; 1 r'r

"= e~

) ( — Ary; + 2\ + AQX(SM) :
where r;; are the components of the Hessian V'"™*r = V'dr of r in M.
The Codazzi equation is a commutation formula for the first order derivative of h;;
given by
(2.3) hijk — hir; = Roijk
and the Ricci identity is a commutation formula for the second order derivative of h;;

given by

Lemma 2.2. Let X be a point of ¥ and {Ey = v, Ey,---,E,} be an adapted frame
field such that each E; is a principal direction and w¥ =0 at X. Let (h;;) be the second
quadratic form of ¥.. Then, at the point X, we have

(24) Riiny—havi = hanhg—hiyhi+2(hig— o) Riva +bay Rioio — hai Raono + Rivio — Ruinos-
Proof. See [0, Lemma 2.2]. O

Consider the function
T=(V,v), A(r) = / A(s)ds
0

with the position vector field
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Then we need the following lemma for 7 and A.

Lemma 2.3.

(2.6) Vg, = Z Vi Ahij,
J
(2.7) Vi A = Ngi; —Thy
and
(2.8) szthT =—-7 Z hihgy + XNhi; + Z (hiji — Roiji) Ve A
% k

Proof. See Lemma 2.2, Lemma 2.6 and Lemma 2.3 in [9], [I7] or [6] for the proof. [

2.2. k-th elementary symmetric functions. Let k = (ky,...,K,) € R™, then we
recall the definition of elementary symmetric function for 1 < k <n
or(Kk) = Z KiyKiy * +* Ki -
1< <ig<--<ip<n
Definition 2.1. A C? reqular hypersurface M C R"! is called k-convex if its principal
curvature vector k(X) € Ty, for all X € M. For a domain Q C R", a function u € C?(Q)

is called admissible if its graph is k-convex. Here I'y is the Garding’s cone
I'e={keR":0,(k) >0, m=1,--- k}.

. .. 2 . .
Denote oy_1(k|1) = g%’z and oy_o(k|1j) = aiigzjv then we list some properties of oy,

which will be used later.
Lemma 2.4. Ifk €'y and k1 > -+ > K, > -+ > Ky, then we have
(a) For any 1 <1 < k, we have
o1(K) > Kikg -+ Ky,
(b)
op(r) < C*ky - Ky,

(c)
ok—1(klk) > C(n, k)og—1(k),
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(d)

(n —k)ky
ki < ’ ,
if k; <0,1<i<n,
(e) .
> o (kli)k} > el OLAGE

Proof. See Proposition 1.2.7, 1.2.9, Corollary 1.2.11 in [5], Lemma 2.2 in [22] and Lemma

8, 9 in [20] for the proof. O
Lemma 2.5. Assume that k = (K1, , k) € I'x. Then for any given indices 1 < i,j <
n, if k; > Kj, we have

o (slid)] < 1/ =P (i),
Proof. See Lemma 6 in [26] and the proof was given in [23]. O
Lemma 2.6. Let k = (K, ,ky) € Iy with K1 > ky > -+ > K, and n < 2k. Assume

that o (k) > No > 0. Then for any 1 < i,j < n with i # j, if k; > k1 — @, we have
2k;(1 — efi—hi)

I{Z’—I{j

ol (k) > o} (k) + (ki + 1)y (k)
when k1 18 sufficiently large.
Proof. See Lemma 13 in [26]. O

Lemma 2.7. For any € € (0,1), there ezists a positive constant § < 4e such that the
function f(x) =z — (1 —€)(1 —e®)(x+ ) >0 for any x € (0,+00).

Proof. See Lemma 2.9 in [2§]. O

3. THE PRIORI ESTIMATES

In order to prove Theorem [I.1], we use the degree theory for nonlinear elliptic equation
developed in [20] and the proof here is similar to |21} 17, [} 19]. First, we consider the
family of equations for 0 <t <1, n < 2k

(3.1) ox(hy) = v,
where 1) = th(r,u, v) + (1 —=1)p(r)CFCH(r), (r) = N(r)/A(r) and ¢ is a positive function

which satisfies the following conditions:
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(a) p(r) >0,
(b) @(r) > 1 for r <7y,
(c) o(r) <1 forr > ro,
(d) ¢'(r) <0

3.1. C° Estimates. Now, we can prove the following proposition which asserts that the

solution of equation (B have uniform C° bound.

Proposition 3.1. Under the assumptions (L3) and (L4) mentioned in Theorem [I]],
if the k-convex hypersurface ¥ = {(r(u),u) | u € M} C M satisfies the equation (B.1])
for a given t € (0,1], then

r<r(u)<ry, Y ué€ M.

Proof. Assume r(u) attains its maximum at ug € M and r(ug) > ro, then recalling

% 1 Tirk l 2/
h]:E(élk—?) —>\Tkj+2)\7”k’/’j+>\ )\(5]@ s
which implies together with the fact the matrix r;; is non-positive definite at w
i 1 2y/ N
hj(uo) = F — )\T’Z’j + A 5ij Z X(Sw

Thus, we have at uy
O'k(h;') > Cick(r).
So, we arrive at ug
t(r,u,v) + (1= )p(r)Cact(r) = Cheh(r).
Thus, we obtain at g
b(r,u,v) > Crch(r),

which is in contradiction with ([L4]). Thus, we have r(u) < ry for u € M. Similarly, we
can obtain r(u) > r; for u € M. O

Now, we prove the following uniqueness result.

Proposition 3.2. Fort = 0, there exists an unique k-convex solution of the equation
BI), namely Yo = {(r(u),u) € M | r(u) = ro}, where o satisfies o(ry) = 1.
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Proof. Let ¥y be a solution of (B1) for ¢ = 0, then
ar(h) = @(r)Ch¢k(r) = 0.
Assume 7(u) attains its maximum 7, at ug € M, then we have at ug

)\3

which implies together with the fact the matrix r;; is non-positive definite at v,

- 1
h; = — < - )\Tij + >\2>\/5ij)7

ar(h5) = ChcH(r).

Thus, we have by the equation (B.1I)

@(Tmae) = 1.
Similarly,

O(Pmin) < 1.
Thus, since ¢ is a decreasing function, we obtain

@(Fmin) = ¢(rmaz) = 1.
We conclude
r(u) =ro

for any (r(u),u) € M, where 7 is the unique solution of ¢(rg) = 1. O

3.2. C'' Estimates. In this section, we establish gradient estimates for equation (B.J]).

Theorem 3.3. Under the assumption (L), if the closed star-shaped k-convex hyper-
surface ¥ = {(r(u),u) € M | uw € M} satisfying the curvature equation [BI) and
has positive upper and lower bound. Then there exists a constant C' depending only on

n, k, | Allcr, inf r, sup 7, inf ¥, ||¢]|cr and the curvature R such that

Vr| < C.

Proof. As the treatment in [6], it is sufficient to obtain a positive lower bound of 7. If
V' is parallel to the normal direction v of at ug, we can obtain the lower bound of 7.
Thus, our result holds. So we assume V' is not parallel to the normal direction v at wug

and derive a contradiction. More details can refer to Lemma 3.1 in [6]. O
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3.3. C*? Estimates. Under the assumptions (L3)-(LH), from Theorem 3] and we
know that there exists a positive constant Cy depending on infy, r and ||7||c: such that
1
— <infsr <7 <supt < ().
Co >

Theorem 3.4. Let 3 be a closed star-shaped k-convex hypersurface satisfying equation
BI) and the assumptions of Theorem L1 with n < 2k. Then there exists a constant C
depending only on n, k, | Al|c1, |[|7||c1, inf X, inf r, sup 7, inf ¢, ||¢]|c1 and the curvature R
such that for 1 <i<mn

|ki(u)| < C, YV ue M.

Proof. Taking the allxillary function
Q =logk, — AT + BA,

where A, B > 1 are constants to be determined later. Suppose () attains its maximum
at V5. We can choose a local orthonormal frame {E;, Fs,---, E,} near V4 such that
(hij) is diagonalized. Without loss of generality, we may assume r; has multiplicity m,
then

hij = Kibij, K1 =+ "= HKpn > Kpy1 = - > Ky, at Vp.
As the perturbation argument in [7], we need to perturb h;; by a diagonal matrix T
which satisfies
Tij =06;;(1 = 61;), Tijp=Tnuw=0 atlp,
0 < 11is a sufficiently small constant to be determined later. Thus we define TLU = hy;j—T;;

and denote its eigenvalues by k1 > kg > --- > K,. It then follows that x; > K; near Vj

and
N Ko, ifi=1,
K; = at V4.
’ {ni —45, ifi>1, ’
Thus k1 > kg at Vj, then k; is smooth at V5. We consider the new function

@:logf%]—ATjLBA.

It still attains its maximum at Vj. Since k1 = k1 at Vj, then at V we have

~ /’%li %li
(3.2) Q = T + = Ej N+
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and
0> 0iiQy = oli(logky)i — Aol + BoliAy
= 0} (log k)i — Aoy {—7h% + Nhyi + > (hig — Rowu) i}
l
(3.3) +Bo (N gii — Thii).
Note that

(3.4) hii = hiinn + hflhu' - h?ihll + FOiil;l + ROlz’l;i + hi1 Roior + hai Rovio
—2hy1 Ry + han Roiio — 2hii Rivin + hii Roon -
We divide our proof in three steps. For convenience, we will use a unified notation C

to denote a constant depending on n, k, | A||c1, ||7||ct, inf X', inf r, sup r, inf 0, ||1ZH02 and

the curvature R.

Step 1: We show that

pp 1152
- L S Uk hlpp o hiy O 11,pp
P Ok pp1llqql 5 O

Iil K1 — Rp) K3 K1

P#q p>m

(3.5) +(AT — 1)o¥h% + (BN — CA — — Z ol —C(hyy + A+ B).

(Slil

The following calculations are all at V5. By Lemma 3.1 in [7], we know that

12
Kii = hi,  Kig = R +2 Z o im&p
p>1
Differentiating ([B]) twice, we obtain
(36) U hu] de(v V) + d,/’l?b(v V) )‘ dV’lvD( ) + h]ldl/,lvb(El)
and
(3.7)

U/ifhiill + Uzj’pqhijlh'pql
—de(VnV) -+ d w(V V AV V) + ded,ﬂﬂ(v V VlV) -+ d ¢(V1V Vlu) + d,ﬂb(Vny)
> —C—Chi + Y hid,(E).
l
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Without loss of generality, we assume that x; > 1, then by (B84 and (B.1)

i 1122
i (oo 7 _ OpRui 9Kk
oy (logk1)i = = — =
i1 7,2 i1, 2
_ o} hivii 19 03 M Ukhlli
= E : 2
K1 o K1(K1 — Rp) Ki
]2
o h
zglh'pql 1pz
> + 2 E E h111d,,¢ (E))
Iil K1 — Iip
i 1,2
T hllz

(3.8)

— ”hz C Z O' Chll —

K’l

Combining ([32), (3:6) and Codazzi equation, we get
1 ~ 1 _ ~
— Y hnmdyY(E) = — h d,(E,
o ; md, (k) s Z( 1+ Roun ) dy(E))
= Z AZhUA — BA)d, ) (E)) Z Romdqul)

:AZU hiigh; — AA’ZdV¢ A — BZAl d, ()

: 1z d,Y(E).
(3.9) + Z o Roun ¢( 1)
Putting [B38)-(39) into (BEI), we obtain
0 > P hijihpg 49 Z U”him Ulififﬁli
K1 e K1(K1 — Rp) K1
+(AT = 1)oi’h? — (AN + Br)ky
(3.10) +(BXN — CA)> o — Chyy — C(A+ B).
Since
Phij1hpgt oy hi
3 11 Jj1/%pq + 2 pi
( ) K1 Z K1(K1 — Rp)
hi oy bty
S h PPaap,2 9 pp 9 p
= ;U hpprfigqr + — ;qak pgl T Zm (K1 — Fp) + Zm (k1 — Rp)

v

Z Z Z h3 Z o Wiy
11

— O— pplhqql + — 0- pph’%pl + 2 pp 2 p

K1 /€1 R1 — K,p /€1 R1 — K,p

pF#q 1 ysm
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When &, > 0, then by choosing x; > 20, we have
%Iil—i‘f:‘:&p o %Iil—i‘lip—(s >0
Iil—fl\i/p Iil—/ip‘i‘é_ )
When &, < 0, then by choosing x; > gkzk‘; we have
1 ~ 1
=K1+ R k14 Ky, —0 3 3
2 P2 P — 14+ — > 1+ > — > 0.
K1 — Rp K1 —Kp+0 2(1_5_1"‘,?1) 2(1 -~ +———)
Hence by Cauchy-Schwarz inequality, Codazzi equation and choosing 1 > max{24, %
we derive
2 ollh? at?h?
1,ppy 2 k Mpl k "11p
(3.12) po" o) h1p1+22/€ K_K)—Z p
Lpsm 1 (K1 P 1 1
2 11,pp Uk hllp + ROlpl) O-th'%lp
— /{— Uk (h11p+R01p1 +QZ o (/{ —l{‘,) —Z 1{2
1 p>m p>1 1 1 P p>1 1
B2 1172 PPy 2
- _Z (o} _Uk 11p+§z o My _Zak iy,
> = 2
= k1(k1 — /-zp) 2 K1(K1 — Rp) = A
c ol
PP
—— ot
K1 pom T 5%1 Z
2
- Z"llhup S O S U Qzan
- FoR? g — Rp K1 k Ky k
p>m 1 p>m [
1lpp i
> —— o,
- K1 Z fil Z F
p>m )

Putting (B.11)-(B.12) into (3.10), we obtain (3.3]).

Step 2: Next we show that

Zan’pp < C’Za

p>m

We shall discuss into two cases.

Case 1. If 041 > 0j—2. Accorrding to Lemma [2.5] since x; > k, for p > m, then we

have

3ol < Sl < 5 S < [

p>m p>m

Case 2. If 0,1 < 0j_o, by Lemma [2.4] we know that

k2
Kio K1 < 01 S 00 < CF 7Ky - - Kg—a,

2
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which implies that x;_; < C. Then we divide into two sub-cases to discuss for p > m.
Without loss of generality, we assume that x; > 1.

Subcase 2.1: If 2k, < k1, then for p > m

pp 11
o, —0 o’ — ol
U}il,pp: k ko < k k <2 pp<cv§:a
- K1
R1 — Rp B

Subcase 2.2: For sufficiently large k1, if 2k, > k1, by k1 < C, wehave m < p < k—1,
then by Lemma 2.4]

a,il’pp = op_2(k|1p) < oz h < Cky kg1 < Copq < Cop_q(klk) < C’Za,if.

1
Step 3: By concavity of o}, we get

k=1 ()
(3.13) —— ngp, hpprhggn > —¢€ (Qﬁl) > —Ceky.
! p#a v

According to Conjecture [LT], we have

oPP 1172
1 —€ PPN Bygt + 2 hl:n:n O hiy
E , hppihqq E :/‘?1 (k1 2

P#q B I{p) "
K(l — 6) ij 1-— € 2 1pp
2 _T( 7 hin)? — ;%hgﬂ oy hin + 2 Z ko (Kn — 7o)
> —OK(1 ) - TEb g 5 Tt Z—%
a 1<p<m p>m /{1(/{1 - K'p)

1—¢
(3.14) 3 Z aphppl Z:otphpp1

1 1<p<m p>m
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Lemma implies that a, = o' + 2;@10,11’1”’ < 2k10%" for 1 < p < m. Hence by

Cauchy-Schwarz inequality and choosing § < %, we derive

ox hlpy 1-—c¢ 2
2 Z o 2 Z pliypy
1<p<m 1 L qcp<m
3 oth2,  CY ol 11—«
> — — ? _ h2
) Z dk1 SKq K3 Z @1
1<p<m 1<p<m
2
3 C>y o
11 "“ppl i Yk
A TO RO
- 1;7” k K1 <2(5 ( >) (Slil
O3, of
3.15 > — L
(3.15) > o

For p > m, according to Lemma 2.6] when k; is sufficiently large, we get

2 (1 — errrn)

R1 — Rp

pp pp 11,pp __
ok > 0 + (k1 + kK)o, T = a,.

Then choosing # =1 — /1 — €, we have

(3.16) 9 Z Uiph%pp l—e Z B2
) — — a
= k1 (k1 — Kp) ki o m vt
s Wl (2120)  20=90 =) G g
- K1 K1 — Ky +0 K1 — K 0Kk, & k
p>m p p ;

- Z ki(k1 — Kp) (K1 — Kp + 0

(1= = (1= B)(L = €)1 = iy + 6)

p>m
LS
5/'{1 k
> —— ) oy,
5/'{1

i

the last inequality comes from Lemma 2.7] by choosing § < 46. Here Cj is a constant
depending only on 6.
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Using ([B.2) and Cauchy-Schwarz inequality, we derive

Uiilh%n 11 2
/{% = €0 (AZ hlej — BAl)
J
< CeA? Z oi'h? + CeB%o}!
A .
(3.17) < oA Zgl?h?ia

2Cy

by choosing hy; > €F and € < z7—. Then combining Step 1-Step 2, (BI3)-BI7) and
the fact that oi'h?, > Ck;, we obtain

0 > ( 1) agh;+<BA'—CA—C”C> o

20, 3k
~C(K+ 1)k —C(A+ B+ K)
> k1 —C(A+B+K),

7

by choosing x; > C‘);rc, B > %, A > 26’0(% + K + 2). Then we can derive
T'l_T'_’f'z

k1 < C(A+ B+ K), the proof is completed. O

4. THE PROOF OF THEOREM [I.1]

In this section, we use the degree theory for nonlinear elliptic equation developed in
[20] to prove Theorem [Tl The proof here is similar to [II, 17, [19]. So, only sketch will

be given below.

After establishing the priori estimates in Theorem [3.I, Theorem and Theorem
B4, we know that the equation (B.I]) is uniformly elliptic. From [§], [I8], and Schauder

estimates, we have
(41) |7"C4,a(M) S C

for any k-convex solution M to the equation (BI), where the position vector of ¥ is
X = (r(u),u) for u € M. We define

Cy*(M) = {r € C**(M) : ¥ is k-convex}.

Let us consider

F(;t): Cg™(M) = C**(M),
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which is defined by

F(r,u;t) = ox(h) — ti(r,u,v) — (1= t)p(r)Crct(r).
Let
O = {r € CL*(M) : Irlesnqun < R},
which clearly is an open set of C*(M). Moreover, if R is sufficiently large, F(r,u;t) = 0
has no solution on 0Op by the priori estimate established in (41]). Therefore the degree
deg(F(.;t), Og,0) is well-defined for 0 <t < 1. Using the homotopic invariance of the

degree, we have
deg(F'(.;1),ORr,0) = deg(F(.;0),Og,0).

Theorem shows that rq which satisfies ¢(rg) = 1 is the unique solution to the above

equation for ¢ = 0. Direct calculation shows that

F(sro,u;0) = (1 — @(s10))C*CF(s10).
Then

d
6ro F (10, u;0) = %|S:1F(sr0,u;0) = 1o (19)CF ¢ (ry),

where 0 F'(rg,u;0) is the linearized operator of F' at rq. Clearly, d,,F (1o, u;0) takes the

form
6w F (1o, u;0) = —awy; + bw; — ¢ (10) CECF (ro)w,

where (a%) is a positive definite matrix. Since —¢'(ro)C*¢*(ro) > 0, thus §F(rg, u;0) is

an invertible operator. Therefore,

So, we obtain a solution at ¢ = 1. This completes the proof of Theorem [I.1
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