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DIRICHLET PROBLEM FOR DEGENERATE HESSIAN QUOTIENT

TYPE CURVATURE EQUATIONS

XIAOJUAN CHEN, QIANG TU∗, AND NI XIANG

Abstract. In the paper, we prove the existence and uniqueness results of the C1,1

regular graphic hypersurface for Dirichlet problem of a class of degenerate Hessian

quotient type curvature equations under the condition ψ
1

k−l ∈ C1,1(Ω × R × S
n).

Specially, we also consider the second order derivative estimates for the corre-
sponding degenerate Hessian type curvature equations under the optimal condition

ψ
1

k−1 ∈ C1,1(Ω× R× S
n).

1. Introduction

In this paper, we consider Dirichlet problem for the following degenerate Hessian
quotient type curvature equations

(1.1)
σk
σl

(λ(η[Mu])) = ψ(X, ν), in Ω

with homogenous boundary data. Here Ω ⊂ R
n is a bounded domain, Mu =

{(x, u(x)); x ∈ Ω} is the graphic hypersurface defined by the function u, X = (x, u(x))
is the position vector of Mu, ν is the unit outward normal vector, σk is the k-th ele-
mentary symmetric function, λ(η[Mu]) = (λ1, · · · , λn) is the eigenvalue vector of g

−1η
on Mu. ψ ≥ 0 is smooth enough with respect to every variable. The (0, 2)-tensor η
on Mu is defined by

ηij = Hgij − hij,

where gij and hij are the first and second fundamental forms of Mu, respectively.
H is the mean curvature of Mu. Actually, λ(η[Mu]) in equation (1.1) also arises
in complex geometry, which has attracted the interest of many authors due to its
geometric applications such as Gauduchon conjecture [9]. The admissible set for
equation (1.1) is defined as follows.
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Definition 1.1. A C2 regular hypersurface Mu ⊂ R
n+1 is called (η, k)-convex if its

principal curvature vector κ(X) ∈ Γ̃k. As in [5], Γ̃k is defined by

(1.2) Γ̃k := {κ = (κ1, · · · , κn) ∈ R
n : σi(λ(η)) > 0, λi(η) =

∑

j 6=i

κj, 1 ≤ i ≤ k}

for all X ∈Mu. For Ω ⊂ R
n, a function u : Ω → R is called admissible if its graph is

(η, k)-convex.

If λ(η[Mu]) is replaced by the principal curvature κ[Mu] and l = 0, equation (1.1)
becomes the classical k-curvature equations

(1.3) σk(κ[Mu]) = ψ(X, ν).

For the non-degenerate case, Dirichlet problem for equation (1.3) has been achieved
fruitful results. When k = 1, 2 and n, the left hand side of equation (1.3) corresponds
to the mean, scalar and Gauss curvature of the hypersurface Mu respectively. The
classical Dirichlet problem for the prescribed mean and Gauss curvature equations
has been extensively studied, which can refer to [1, 11, 33, 39]. For the intermediate
case 1 < k < n, the first breakthroughs were due to Caffarelli-Nirenberg-Spruck
[4] and Ivochkina [21, 22] for Dirichlet problem of equation (1.3) with homogenous
boundary data when ψ is independent of ν. In fact, Ivochkina [21, 22] treated the
case of σk. Caffaralli-Nirenberg-Spruck allowed for more general symmetric functions
than σk, but still excluded Hessian quotient σk

σl
. Then Lin-Trudinger [30] considered

Hessian quotient case σk

σl
with homogenous boundary date. Ivochkina-Lin-Trudinger

[23] extended Lin-Trudinger’s work to general boundary data but under exclusion of
the case k = n. For the case σn

σl
with 0 ≤ l < n was subsequently studied by Ivochkina-

Tomi [24]. Recently, we considered Pogorelov type estimates of semi-convex solutions
for Dirichlet problem of equation (1.3) with (k + 1)-convex boundary data in [7].
The readers can refer to [3, 13, 17, 31, 32, 34, 35, 37, 38, 40] for more researches about
non-degenerate curvature equations.
The research of degenerate curvature equations can be tracked back to the de-

generate Weyl problem studied by Guan-Li [14] and Hong-Zuily [19]. Later on,
Guan-Li [15] studied the prescribed Gauss curvature problem. As we all know, for
degenerate curvature equations, C1,1 regularity of the solutions maybe the best reg-
ularity one can expect [41]. Guan-Zhang [18] established C1,1 estimates for a class
of curvature type equations which is the combination of σk. When ψ = ψ(x, u) ≥ 0
in equation (1.3), Jiao-Wang [27] proved the existence of C1,1 regular solutions for
Dirichlet problem of equation (1.3) with homogenous boundary data under the con-

dition ψ
1

k−1 ∈ C1,1(Rn×R). Then Jiao-Jiao [25] established Pogorelov type estimates
for Dirichlet problem of equation (1.3) with (k + 1)-convex boundary data under the

condition ψ
1

k−1 ∈ C1,1(Ω× R).
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Now, we review some of the facts on the non-degenerate case of equation (1.1).
Chu-Jiao [8] studied the following prescribed curvature equations

(1.4) σk(λ(η)) = ψ(X, ν),

and they established curvature estimates for equation (1.4). Then in [6], we gener-
alized Chu-Jiao’s results to Hessian quotient case. It is of interest to consider the
existence and regularity of solutions for curvature equations in graph form. Specifi-
cally, Jiao-Sun [26] considered Dirichlet problem for the following curvature equations

det(λ(η[Mu])) = ψ(X, ν),

and they derived the existence of C1,1 regular graphic (η, n)-convex hypersurfaces. In-
spired by Jiao-Sun’s work, it is natural to study Dirichlet problem of Hessian quotient
type curvature equation (1.1) for the degenerate case.
In order to deal with equation (1.1), we usually need some geometric conditions

on Ω as in [22]. If k < n, a bounded domain Ω in R
n is called uniformly k-convex if

there exists a positive constant K such that for each x ∈ ∂Ω,

(κb1(x), · · · , κ
b
n−1(x), K) ∈ Γk+1,

where κb1(x), · · · , κ
b
n−1(x) are the principal curvatures of ∂Ω at x and Γk is the

G̊arding’s cone defined by (2.1). If k = n, it is easy to see that n-convexity is
equivalent to strict convexity.
The main theorems are as follows.

Theorem 1.2. Let k ≥ 2, 0 ≤ l < k < n, Ω be a uniformly k-convex bounded domain

in R
n with ∂Ω ∈ C2,1. Suppose that ψ

1
k−l (x, z, ν) ∈ C1,1(Ω×R×S

n) ≥ 0 and ψz ≥ 0.

Assume that there exists an admissible subsolution u ∈ C1,1(Ω) satisfying κ[Mu] ∈ Γ̃k

and

(1.5)





σk
σl

(λ(η[Mu])) ≥ ψ(X, ν(X)), in Ω,

u = 0, on ∂Ω,

where X = (x, u(x)) and ν(X) is the unit outward normal vector at X ∈ Mu. Then

there exists a unique admissible solution u ∈ C1,1(Ω) of Dirichlet problem

(1.6)





σk
σl

(λ(η[Mu])) = ψ(X, ν), in Ω,

u = 0, on ∂Ω,

satisfying

‖u‖C1,1(Ω) ≤ C,

where C is a positive constant depending on n, k, l,Ω, ‖u‖C0,1 and ‖ψ
1

k−l‖C1,1.
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Remark 1.3. The results of the classical degenerate curvature equations mainly focus
on the case ψ = ψ(X). Compared to the classical conclusions, we consider the more
general right hand function ψ = ψ(X, ν).

Remark 1.4. In the proof of the key Lemma 5.3 in Jiao-Sun [26], the special structure
of the (η, n)-curvature plays an important role. Our challenge is how to achieve the
similar result in the absence of that special structure.

In particular, we only need ψ
1

k−1 ∈ C1,1(Ω × R × S
n) to establish second order

derivative estimates for solutions of equation (1.1) when l = 0.

Theorem 1.5. Let Ω be a uniformly k-convex bounded domain in R
n with ∂Ω ∈ C2,1.

Suppose 2 ≤ k < n, ψ ≥ 0, ψ
1

k−1 ∈ C1,1(Ω× R× S
n). Let u ∈ C4(Ω) ∩ C2(Ω) be an

admissible solution of Dirichlet problem

(1.7)

{
σk(λ(η[Mu])) = ψ(X, ν), in Ω,

u = 0, on ∂Ω.

Then there exists a positive constant C depending on n, k, ‖u‖C1 and ‖ψ
1

k−1‖C1,1 sat-
isfying

sup
Ω

|D2u| ≤ C.

In fact, the condition ψ
1

k−1 ∈ C1,1(Ω × R × S
n) is optimal to derive the a priori

estimates, which is consist with classical case based on Wang’s counterexamples in
[41]. But up to now, we can only derive C1 estimates under the stronger condition

ψ
1
k ∈ C1,1(Ω×R×S

n), it is still an open problem for Dirichlet problem (1.7) to derive

C1 estimates under the condition ψ
1

k−1 ∈ C1,1(Ω× R× S
n).

The organization of the paper is as follows. Some preliminaries are given in Section
2. We obtain C1 estimates in Section 3. In Section 4, we establish the global second
order derivative estimates. In Section 5, we deal with the boundary second order
derivative estimates and complete the proof of Theorem 1.2, Theorem 1.5.

2. Preliminaries

2.1. k-th elementary symmetric functions. Let λ = (λ1, . . . , λn) ∈ R
n, then we

recall the definition of elementary symmetric function for 1 ≤ k ≤ n

σk(λ) =
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik .

Definition 2.1. For 1 ≤ k ≤ n, let Γk be a cone in R
n determined by

(2.1) Γk = {λ ∈ R
n : σi(λ) > 0, ∀ 1 ≤ i ≤ k}.
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Denote σk−1(λ|i) =
∂σk

∂λi
and σk−2(λ|ij) =

∂2σk

∂λi∂λj
. In the following, we list some alge-

braic equalities and inequalities of σk. Then we introduce some important properties
which will be used later.

(2.2)
n∑

i=1

σk−1(λ|i) = (n− k + 1)σk−1(λ),

(2.3) σk−1(λ) ≥ c0σ
1− 1

k−1

k (λ)σ
1

k−1
(λ)

1 ,

and

σ1(λ) ≥ c0σ
1
k

k (λ),

for any λ ∈ Γk and some positive constant c0 depending on n and k.

Proposition 2.2. Let λ = (λ1, . . . , λn) ∈ R
n and 1 ≤ k ≤ n, then we have

(1) Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γn;
(2) σk−1(λ|i) > 0 for λ ∈ Γk and 1 ≤ i ≤ n;
(3) σk(λ) = σk(λ|i) + λiσk−1(λ|i) for 1 ≤ i ≤ n;

(4)
∑n

i=1

∂
[

σk
σl

] 1
k−l

∂λi
≥
[
Ck

n

Cl
n

] 1
k−l

for λ ∈ Γk and 0 ≤ l < k;

(5)
[
σk

σl

] 1
k−l

are concave in Γk for 0 ≤ l < k;

(6) If λ1 ≥ λ2 ≥ · · · ≥ λn, then σk−1(λ|1) ≤ σk−1(λ|2) ≤ · · · ≤ σk−1(λ|n) for
λ ∈ Γk.

Proof. All the properties are well known. For example, see Chapter XV in [28] or [20]
for proofs of (1), (2), (3) and (6); see Lemma 2.2.19 in [10] for the proof of (4); see [2]
and [28] for the proof of (5). �

Proposition 2.3. Suppose W = {Wij} is diagonal and m (1 ≤ m ≤ n) is a positive
integer, then

∂σm(W )

∂Wij

=

{
σm−1(W |i), i = j,

0, otherwise.

∂2σm(W )

∂Wij∂Wpq

=





σm−2(W |ip), i = j, p = q, i 6= p,

−σm−2(W |ip), i = q, j = p, i 6= j,

0, otherwise.

The generalized Newton-MacLaurin inequality is as follows.
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Proposition 2.4. For λ ∈ Γk and n ≥ k > l ≥ 0, n ≥ r > s ≥ 0, k ≥ r, l ≥ s, we
have

[
σk(λ)/C

k
n

σl(λ)/C l
n

] 1
k−l

≤

[
σr(λ)/C

r
n

σs(λ)/Cs
n

] 1
r−s

.

Proof. See [36]. �

Next, we introduce a new cone Γ̃k defined by (1.2) and list some important prop-
erties, more details can refer to [5].

Proposition 2.5. The following properties hold.

(1) Γ̃k are convex cones and

(2.4) Γ1 = Γ̃1 ⊃ Γ̃2 ⊃ · · · ⊃ Γ̃n ⊃ Γ2.

(2) If λ = (λ1, · · · , λn) ∈ Γ̃k, then

∂
[
σk(η)
σl(η)

]

∂λi
≥
n(k − l)

k(n− l)

∑

p 6=i

σk−1(η|p)σl(η|p)

σl(η)2
,

for any i = 1, 2, · · · , n, where 0 ≤ l < k ≤ n.

(3) If λ = (λ1, · · · , λn) ∈ Γ̃k, then
[
σk(η)
σl(η)

] 1
k−l

(0 ≤ l < k ≤ n) are concave with

respect to λ. Hence for any (ξ1, · · · , ξn), we have

(2.5)
∑

i,j

∂2
[
σk(η)
σl(η)

]

∂λi∂λj
ξiξj ≤

(
1−

1

k − l

)
[∑

i

∂
(

σk(η)

σl(η)

)

∂λi
ξi

]2

σk(η)
σl(η)

.

Proposition 2.6. Suppose that λ = (λ1, · · · , λn) ∈ Γ̃k are ordered with λ1 ≥ λ2 ≥
· · · ≥ λn, then
(1) η1 ≤ η2 ≤ · · · ≤ ηn and ηn−k+1 > 0.
(2) σk−1(η|n− k + 1) ≥ c(n, k)σk−1(η), for 0 ≤ l < k ≤ n.

(3)
∂
[

σk(η)

σl(η)

]

∂η1
≥

∂
[

σk(η)

σl(η)

]

∂η2
≥ · · · ≥

∂
[

σk(η)

σl(η)

]

∂ηn
, for 0 ≤ l < k ≤ n.

(4)
∂
[

σk(η)

σl(η)

]

∂λ1
≤

∂
[

σk(η)

σl(η)

]

∂λ2
≤ · · · ≤

∂
[

σk(η)

σl(η)

]

∂λn
, for 0 ≤ l < k ≤ n.

(5) For 0 ≤ l < k < n, we have

(2.6)
∂
[
σk(η)
σl(η)

]

∂λi
≥ c(n, k, l)

∑

i

∂
[
σk(η)
σl(η)

]

∂λi
≥ c(n, k, l)

[
σk(η)

σl(η)

]1− 1
k−l

, ∀ 1 ≤ i ≤ n.
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2.2. Basic properties of graphic hypersurface. Let φi =
∂φ

∂xi
, φij =

∂2φ

∂xi∂xj
, Dφ =

(φ1, · · · , φn) and D
2φ = {φij} denote the first and second order derivatives, gradient

and Hessian of a function φ ∈ C2(Ω), respectively. A graphic hypersurface Mu in
R

n+1 is a codimension one submanifold which can be written as a graph

Mu = {X = (x, u(x))|x ∈ R
n}.

Let {ǫ1, · · · , ǫn+1} be the standard basis of Rn+1, then the height function of Mu is
u(x) = 〈X, ǫn+1〉. It is easy to see that the induced metric and second fundamental
form of Mu are given by

gij = δij + uiuj, 1 ≤ i, j ≤ n,

and
hij =

uij√
1 + |Du|2

.

The unit upward normal vector field to Mu is

ν =
(−Du, 1)√
1 + |Du|2

.

By straightforward calculations, we have the principle curvature ofMu are eigenvalues
of the matrix

1

ω
(I −

Du⊗Du

ω2
)D2u,

or the symmetric matrix A[u] = {aij}

aij =
1

ω
γikuklγ

lj,

where γik = δik − uiuk

ω(1+ω)
and ω =

√
1 + |Du|2. Note that {γij} is invertible with

inverse γij = δij +
uiuj

1+ω
, which is the square root of {gij}.

Let {e1, · · · , en} be a local orthonormal frame field defined on TMu and ∇ be
the induced Levi-Civita connection on Mu. For a function v on Mu, we denote
∇iv = ∇eiv, ∇ijv = ∇2v(ei, ej). Hence

|∇u| =
√
gijuiuj =

|Du|√
1 + |Du|2

.

We list some well known fundamental equations for a hypersurface Mu in R
n+1,

which will be needed in our proof.

∇ijX = hijν (Gauss formula),

∇iν = −hijej (Weingarten formula),

∇khij = ∇jhik (Codazzi equation),

Rijst = hishjt − hithjs (Gauss equation),
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where hij = 〈∇eiej , ν〉, Rijst is the (4, 0)-Riemannian curvature tensor of Mu and the
derivative here is covariant derivative with respect to the metric on Mu. Hence the
Ricci identity becomes

(2.7) ∇i∇jhst = ∇s∇thij + (hmthsj − hmjhst)hmi + (hmthij − hmjhit)hms.

According to Lemma 3.2 of [16], we state the following proposition by observing

the concavity of (σk/σ1)
1

k−1 , more details see [26, 27].

Proposition 2.7. Let α = 1
k−1

. If u is an admissible solution of Dirichlet problem
(1.7), then we get

∑

s

σij,pq
k ∇shij∇shpq ≤ (1− α)

|∇ψ|2

ψ
+ 2α

〈∇ψ,∇H〉

H
− (1 + α)

ψ|∇H|2

H2
,

where σij,pq
k = ∂2σk

∂hij∂hpq
.

For p ∈ R
n, define

Γk(p) := {r ∈ Sn×n : λ(r, p) := λ((I −
p⊗ p

1 + |p|2
)r) ∈ Γk}.

To establish second order estimates on the boundary, we need the proposition which
can be seen in [22, 23].

Proposition 2.8. For any p ∈ R
n, we have Γk+1(0) ⊂ Γk(p). Assume that r ∈ Γk+1

is an n× n matrix, then we have for 0 ≤ l < k < n,

(2.8)
σk
σl

(λ(r, p)) ≥
1

1 + |p|2
σk
σl

(λ(r)).

3. C1 estimates

In this section, we consider C1 estimates for the admissible solution of Dirichlet
problem (1.6). Since Mu is (η, k)-convex, then σ1(λ(η[Mu])) > 0, hence H [Mu] > 0.
Combining with ψz ≥ 0, the subsolution condition (1.5) and the maximum principle,
it is easy to derive that

sup
Ω

|u|+ sup
∂Ω

|Du| ≤ C.

Then we establish the global gradient estimates.

Theorem 3.1. Let k ≥ 2, 0 ≤ l < k < n, u ∈ C3(Ω) ∩ C1(Ω) be an admissible

solution of Dirichlet problem (1.6). Suppose that ψz ≥ 0 and ψ
1

k−l ∈ C1(Ω×R× S
n).

Then there exists a positive constant C depending only on n, k, l, ‖u‖C0 and ‖ψ
1

k−l‖C1

such that
sup
Ω

|Du| ≤ C(1 + sup
∂Ω

|Du|).
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Proof. Consider the following test function

P = logω +B〈X, ǫn+1〉 = log ω +Bu,

where ω = 1
〈ν,ǫn+1〉

=
√
1 + |Du|2 and B is a positive constant to be determined

later. Suppose P attains its maximum at an interior point x0 ∈ Ω. We rotate
the standard basis ǫ1, · · · , ǫn to satisfy u1 = |Du|, uj = 0 for j ≥ 2 at x0. Define

ei = γis∂̃s, i = 1, · · · , n, where ∂̃s := ǫs+usǫn+1 for s = 1, · · · , n. Then it is clear that
{e1, e2, , · · · , en} is an orthonormal frame on Mu near X0 = (x0, u(x0)) satisfying

|∇u| = ∇1u, ∇iu = 0, for i ≥ 2

at X0. Therefore by Weingarten formula,

∇iω =
him∇mu

〈ν, ǫn+1〉2
= ω2him∇mu.

Thus at X0,
∇iP = ωhi1∇1u+B∇iu = 0.

Taking i = 1 and i ≥ 2 respectively, then at X0,

ωh11 = −B, hi1 = 0.

We rotate {e2, · · · , en} such that matrix {hij} is diagonal at X0. Thus at X0,

(3.1) ∇iiP = ω2(him∇mu)
2 + ω∇ihi1∇1u+ ωhim∇miu+B∇iiu ≤ 0.

Let F ij =
∂
(

σk
σl

(λ(η))
)

∂hij
and {yk}

n
k=1 denote the standard local coordinate system on S

n

near (0, · · · , 0, 1). Then differentiating equation (1.1) and using Weingarten formula
and Codazzi equation, we have at X0,

F ii∇ihi1 = F ii∇1hii = e1(ψ)

= ψxj
∇1xj + ψz∇1u+ ∂ykψ∇1νk

=
ψx1

ω
+ ψz∇1u+

B∂y1ψ

ω2
.(3.2)

By (2.6), we know that for 0 ≤ l < k < n,

F 11 ≥ C0ψ
1− 1

k−l ,

where C0 is a constant depending only on n, k and l.

According to (3.1), (3.2) and ψz ≥ 0, ψ
1

k−l ∈ C1(Ω× R× S
n), we obtain at X0,

0 ≥ ω2F 11h211(∇1u)
2 + ω∇1u(e1ψ) + ω2F iih2ii +B(k − l)ψω

≥ B2F 11(∇1u)
2 + ψx1∇1u+

B∂y1ψ∇1u

ω

≥ (B2C0|∇u|
2 − C|∇u|(1 +

B

ω
))ψ1− 1

k−l ,
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which implies

0 ≥ B2C0|∇u| − C(1 +
B

ω
).

By choosing B sufficiently large, the proof of Theorem 3.1 is completed. �

4. Global second order derivative estimates

Theorem 4.1. Suppose ψ
1

k−l ∈ C1,1(Ω × R × S
n). Let k ≥ 2, 0 ≤ l < k < n,

u ∈ C4(Ω) ∩ C2(Ω) be an admissible solution of Dirichlet problem (1.6). Then there

exists a positive constant C depending on n, k, l, ‖u‖C1, ‖ψ
1

k−l‖C1,1 such that

sup
Ω

|D2u| ≤ C(1 + sup
∂Ω

|D2u|).

Proof. Let v := 1
ω
= 〈ν, ǫn+1〉. There exists a positive constant a depending only on

‖Du‖C0 such that v ≥ 2a. Assume that κmax is the largest principle curvature, then
we consider the auxiliary function

Q = log κmax − log(v − a).

Suppose that Q attains its maximum at a point X0 = (x0, u(x0)) ∈Mu, x0 ∈ Ω, then
we can choose a local orthonormal frame {e1, e2, · · · , en} near X0 such that

hij = hiiδij , h11 ≥ h22 ≥ · · · ≥ hnn

at X0. Then ηij = Hgij − hij is also diagonal at X0 and

η11 ≤ η22 ≤ · · · ≤ ηnn.

We define a new function Q̃ by

Q̃ = log h11 − log(v − a).

It obvious that Q̃ also attains its maximum value at X0. Denote

F =
σk(λ(η))

σl(λ(η))
, F ij =

∂F

∂hij
, F ij,rs =

∂2F

∂hij∂hrs
.

From now on, all calculations are performed at X0. Then

(4.1) 0 = ∇iQ̃ =
∇ih11
h11

−
∇iv

v − a
,

(4.2) 0 ≥ F ii∇iiQ̃ =
F ii∇iih11

h11
−
F ii(∇ih11)

2

h211
+
F ii(∇iv)

2

(v − a)2
−
F ii∇iiv

v − a
.

By Weingarten formula,

(4.3) ∇iv = −him〈em, ǫn+1〉 = −him∇mu, F ii(∇iv)
2 ≤ CF iih2ii.
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And by Gauss formula, Codazzi equation and ψ
1

k−l ∈ C1(Ω× R× S
n),

F ii∇iiv = −F ii∇mhii∇mu− F iih2iiv

= −〈∇ψ,∇u〉 − vF iih2ii

≤ −vF iih2ii + Cψ1− 1
k−l ,(4.4)

where C is a constant depending on ‖ψ
1

k−l‖C1 and ‖u‖C1.
Differentiating equation (1.1) twice and using (2.7),

F ii∇iih11 = F ii∇11hii + F ii(h2i1 − hiih11)hii + F ii(hiih11 − h2i1)h11

= F ii∇11hii − F iih2iih11 + F iihiih
2
11

= ∇11ψ − F ij,rs∇1hij∇1hrs − F iih2iih11 + (k − l)ψh211.(4.5)

Let ψ̃ = ψα, α = 1
k−l

. Assume that h11 ≥ 1. Then by direct calculations,

(4.6) ∇11ψ ≥ −Cψ1−αh211 −
1

α

∑

p

∇ph11(dνψ̃)(ep)ψ
1−α + (1− α)

(∇1ψ)
2

ψ
.

Combining with (4.1) and (4.3),

(4.7)
∇ph11
h11

(dνψ̃)(ep)ψ
1−α ≤ Ch11ψ

1−α.

By (2.5),

(4.8) F ij,rs∇1hij∇1hrs ≤ (1−
1

k − l
)
(∇1ψ)

2

ψ
.

According to (4.6)-(4.8),

(4.9)
F ii∇iih11

h11
≥ −Ch11ψ

1−α − F iih2ii + (k − l)ψh11.

Combining (2.6), (4.1), (4.2), (4.4) and (4.9),

0 ≥
a

v − a
F iih2ii −

C

v − a
ψ1− 1

k−l − Ch11ψ
1− 1

k−l + (k − l)ψh11

≥
a

v − a
F 11h211 − Ch11ψ

1− 1
k−l − Cψ1− 1

k−l

≥

(
a

v − a
c(n, k, l)h211 − Ch11 − C

)
ψ1− 1

k−l ,

which implies h11 ≤ C. Then the proof is completed. �
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5. Boundary second order derivative estimates

Since equation (1.1) can be written as

(5.1) G(D2u,Du) =
σk
σl

(λ{bij}) = f(λ(A)) = ψ(x, u,Du),

where G = G(r, p) is viewed as a function of (r, p) for r ∈ S
n×n, p ∈ R

n, {bij} =
T (A) = (traceA)I − A with A = {aij}. Define

Gij =
∂G

∂rij
(D2u,Du), Gi =

∂G

∂pi
(D2u,Du), ψui

=
∂ψ

∂ui
(x, u,Du),

and

L = Gij∂ij − ψui
∂i.

We need the following lemma in [13].

Lemma 5.1. We have

Gs = −
us
ω2

∑

i

fiκi −
2

ω(ω + 1)

∑

t,j

F ijait(ωutγ
sj + ujγ

ts),

where aij =
1
ω
γikuklγ

lj, κ = λ({aij}), fi =
∂f

∂κi
and F ij = ∂f(λ(A))

∂aij
.

Define

(5.2) W := ∇′
αu−

1

2

∑

β≤n−1

u2β, on ωδ

for some small δ, where

∇′
αu := uα + ραun, for 1 ≤ α ≤ n− 1.

Then we prove an important lemma, which will be used to derive tangential-normal
estimates.

Lemma 5.2. If δ is sufficiently small and ψ
1

k−l ∈ C1(Ω× R× S
n), then

(5.3) LW ≤ C

(
ψ1− 1

k−l + ψ|DW |+
∑

i

Gii +GijWiWj

)
,

where C is a positive constant depending on n, k, l, ‖u‖C1, ‖ψ
1

k−l‖C1 and ∂Ω.

Proof. By (5.2) and differentiating equation (5.1),

GijWij +GsWs = ∇′
αψ −

∑

β≤n−1

uβψβ −
∑

β≤n−1

Gijuβiuβj

+2Gijuniραj + unG
ijραij + unG

sραs.(5.4)
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Combining (5.4) and ψ
1

k−l ∈ C1(Ω× R× S
n), it is easy to derive

LW +GsWs ≤ Cψ1− 1
k−l + 2Gijuniραj

−
∑

β≤n−1

Gijuβiuβj + unG
ijραij + unG

sραs.(5.5)

Since

Gij =
1

ω

∑

s,t

γisF stγtj and uij = ω
∑

s,t

γisastγtj,

it follows that ∑

β≤n−1

Gijuβiuβj = ω
∑

β≤n−1

∑

s,t

F ijγβsγβtasiatj .

By [13], we choose an orthogonal matrix B = {bij} such that {aij} and {F ij} are
diagonalized at the same time

F ij =
∑

s

bisfsbjs and aij =
∑

s

bisκsbjs.

Then
∑

β≤n−1

Gijuβiuβj = ω
∑

β≤n−1

∑

i

(
∑

s

γβsbsi

)2

fiκ
2
i .

Let the matrix η = {ηij} = {
∑

s γisbsj}. It is clear that η · ηT = g and | det(η)| =√
1 + |Du|2. Therefore

(5.6)
∑

β≤n−1

Gijuβiuβj = ω
∑

β≤n−1

∑

i

η2βifiκ
2
i .

We also have

(5.7) Gijuniραj =
∑

i,t

fiκibsiγ
jsbtiγntραj ≤ C

∑

i

fi|κi|.

For any indices j, t,

F ijait =
∑

i

btifiκibij ≤
∑

i

fi|κi|.

From Lemma 5.1,

(5.8) |Gsραs| ≤ C
∑

i

fi|κi|.

By (5.5)-(5.8),

(5.9) LW +GsWs ≤ C(ψ1− 1
k−l +

∑

i

Gii +
∑

i

fi|κi|)− ω
∑

β≤n−1

∑

i

η2βifiκ
2
i .
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For the term GsWs, by Lemma 5.1 and the definition of the matrix {bij},

−GsWs =
1

ω

∑

s

(
(k − l)ψus

ω
+ 2

∑

t,i

fiκi(btiut)γ
sjbji

)
Ws

≤ Cψ|DW |+
2

ω

∑

t,i

fiκi(btiut)γ
sjbjiWs.(5.10)

Next we divide into two cases as follows:
Case(a) :

∑
β≤n−1 η

2
βi ≥ ǫ for all i.

By (5.6),

(5.11)
∑

β≤n−1

Gijuβiuβj ≥ ǫ
∑

i

fiκ
2
i .

Using Cauchy-Schwarz inequality, we get

(5.12)
2

ω
κi(btiut)γ

sjbjiWs ≤
ǫ

2
κ2i +

C

ǫ
(γsjbjiWs)

2.

Combining with (5.10) and (5.12),

−GsWs ≤ Cψ|DW |+
ǫ

2

∑

i

fiκ
2
i +

C

ǫ
fi(γ

sjbjiWs)(γ
tmbmiWt)

≤ Cψ|DW |+
ǫ

2

∑

i

fiκ
2
i +

C

ǫ
GijWiWj .(5.13)

For any ε > 0,

(5.14)
∑

i

fi|κi| ≤ ε
∑

i

fiκ
2
i +

C

ε

∑

i

Gii.

By (5.9)-(5.14) and choosing ε ≤ ǫ
2
, it is easy to derive (5.3).

Case(b) :
∑

β≤n−1 η
2
βr < ǫ for some index 1 ≤ r ≤ n, where ǫ is some positive

constant to be determined later.
As in [21],

1 ≤ det(η) ≤ ηnr det(η
′) + C1ǫ ≤

√
1 + µ2

1| det(η
′)|+ C1ǫ,

where η′ := {ηαβ}α6=n,β 6=r, µ1 := ‖Du‖C0 and C1 is a positive constant depending on
n and µ1. Set ǫ small enough such that C1ǫ <

1
2
, then

| det(η′)| ≥
1

2
√
1 + µ2

1

.
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On the other hand, for any fixed α 6= r, we derive

| det(η′)| ≤ C
∑

β≤n−1

|ηαβ | ≤

√
(n− 1)

∑

β≤n−1

η2αβ.

Hence for any i 6= r,
∑

β≤n−1

η2βi ≥ c1,

where c1 is a positive constant depending on n and µ1. In view of (5.6),

(5.15)
∑

β≤n−1

Gijuβiuβj ≥ c1
∑

i 6=r

fiκ
2
i .

Next we divide into two cases of κr ≤ 0 and κr > 0.
Case(b1) : κr ≤ 0.
As Lemma 2.20 of [12], then

∑

i 6=r

fiκ
2
i ≥

1

n+ 1

∑

i

fiκ
2
i .

Similar to Case (a), we can prove (5.3).
Case(b2) : κr > 0.
Without loss of generality, assume that κ1 ≥ · · · ≥ κn. Let λ = (λ1, · · · , λn) be the

eigenvalues of η[Mu], then λi =
∑

j κj − κi. It follows that λ1 ≤ · · · ≤ λn. Then we
consider two subcases.
Case(b2− 1) : κn ≥ −ǫ0κr, where ǫ0 is a positive constant to be chosen later.
In order to derive (5.3), the key is to prove the important inequality

(5.16) frκr ≤ Cψ.

Proof of (5.16): If κn ≥ −ǫ0κr, then for any i 6= r, by choosing ǫ0 ≤ 1
2(n−2)

we

derive

(5.17) λi =
∑

j

κj − κi ≥ [1− (n− 2)ǫ0]κr ≥
1

2
κr > 0.

When r 6= 1, it is obvious that

λn ≥ · · · ≥ λ1 ≥ [1− (n− 2)ǫ0]κr ≥
1

2
κr > 0.
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Thus

frκr =
∑

p 6=r

σk−1(η|p)σl(η)− σk(η)σl−1(η|p)

σl(η)2
κr

≤ (n− k + 1)
σk−1(η)

σl(η)
κr

≤
(n− k + 1)Ck−1

n

σl(η)
λn · · ·λn−k+2κr

≤
2(n− k + 1)Ck−1

n

σl(η)
λn · · ·λn−k+2λn−k+1

≤ C
σk(η)

σl(η)
= Cψ.(5.18)

When r = 1, i.e., κn ≥ −ǫ0κ1. By (5.17),

λi ≥ [1− (n− 2)ǫ0]κ1 > 0, ∀ i ≥ 2.

Similar to (5.18), it is easy to derive frκr ≤ Cψ if λ1 ≥ 0. Hence we only consider
the case λ1 < 0, then

0 > λ1 = κ2 + · · ·+ κn ≥ (n− 1)κn ≥ −(n− 1)ǫ0κ1.

By λ1 < 0, we get σk−1(η) ≤ σk−1(η|1). Thus

f1κ1 ≤ (n− k + 1)
σk−1(η)

σl(η)
κ1

≤ (n− k + 1)
σk−1(η|1)

σl(η)
κ1

≤
(n− k + 1)Ck−1

n−1

[1− (n− 2)ǫ0]σl(η)
λn · · ·λn−k+2λn−k+1.(5.19)

Note that

σk(η) = σk(η|1) + λ1σk−1(η|1)

≥ λn · · ·λn−k+1 + λ1 · C
k−1
n−1λn · · ·λn−k+2

= (λn−k+1 + Ck−1
n−1λ1)λn · · ·λn−k+2.(5.20)

Then

λn−k+1 ≥ [1− (n− 2)ǫ0]κ1 ≥ −
1− (n− 2)ǫ0
(n− 1)ǫ0

λ1,

if n− k + 1 ≥ 2. Therefore by choosing ǫ0 ≤
1

n−2+2(n−1)Ck−1
n−1

sufficiently small, we get

(5.21)
1

2
λn−k+1 + Ck−1

n−1λ1 ≥ −λ1

(
1− (n− 2)ǫ0
2(n− 1)ǫ0

− Ck−1
n−1

)
≥ 0.
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Combining with (5.19)-(5.21), (5.16) still holds.
Similar to (5.13),

−GsWs ≤ Cψ|DW |+
2

ω

∑

t,i

fiκi(btiut)γ
sjbjiWs

≤ Cψ|DW |+
2

ω

∑

t

frκr(btrut)γ
sjbjrWs +

C

ω

∑

i 6=r

fi|κi||γ
sjbjiWs|

≤ Cψ|DW |+ ǫ
∑

i 6=r

fiκ
2
i +

C

ǫ

∑

i

fi(γ
spbpiWs)(γ

tqbqiWt)

≤ Cψ|DW |+ ǫ
∑

i 6=r

fiκ
2
i +

C

ǫ
GijWiWj,(5.22)

where the third inequality comes from (5.16).
By (5.16),

(5.23)
∑

i

fi|κi| = frκr +
∑

i 6=r

fi|κi| ≤ Cψ + ε̃
∑

i 6=r

fiκ
2
i +

C

ε̃

∑

i

Gii,

for any ε̃ > 0. Then using (5.9), (5.15), (5.22) and (5.23), (5.3) is proved by choosing
ǫ+ ε̃ ≤ c1.
Case(b2− 2) : κn < −ǫ0κr.
Since κr > 0, it is obvious that r 6= n. In this subcase, we get

γsjbjrWs = γsjbjr(uαs + ραsun + ραuns −
∑

β≤n−1

uβuβs)

= ωκr(ηαr + ραηnr −
∑

β≤n−1

uβηβr) + γsjbjrραsun.

It follows that

(5.24) |γsjbjrWs| ≤ Cωκr(ǫ+ |ρα|) + C.
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It is obvious that frκr = (k − l)ψ −
∑

i 6=r fiκi, thus by κ
2
n > ǫ20κ

2
r,

2

ω
frκr|(

∑

t

btrut)γ
sjbjrWs| =

2

ω
[(k − l)ψ −

∑

i 6=r

fiκi]|(
∑

t

btrut)γ
sjbjrWs|

≤ Cψ|DW |+ C(ǫ+ |ρα|)
∑

i 6=r

fi|κi|κr + C
∑

i 6=r

fi|κi|

≤ Cψ|DW |+ Cǫ−1
0 (ǫ+ |ρα|)

∑

i 6=r

fiκ
2
i

+Cǫ0(ǫ+ |ρα|)
∑

i 6=r

fiκ
2
r + ǫ1

∑

i 6=r

fiκ
2
i +

C

ǫ1

∑

i 6=r

fi

≤ Cψ|DW |+ (Cǫ−1
0 (ǫ+ |ρα|) + ǫ1)

∑

i 6=r

fiκ
2
i +

C

ǫ1

∑

i

Gii,(5.25)

for any ǫ1 > 0. Here the last inequality comes from
∑

i 6=r fiκ
2
r ≤ n−1

ǫ20
fnκ

2
n ≤

n−1
ǫ20

∑
i 6=r fiκ

2
i with r 6= n.

Inserting (5.25) into (5.10),

−GsWs ≤ Cψ|DW |+
C

ω

∑

i 6=r

fi|κi||γ
sjbjiWs|

+(Cǫ−1
0 (ǫ+ |ρα|) + ǫ1)

∑

i 6=r

fiκ
2
i +

C

ǫ1

∑

i

Gii

≤ Cψ|DW |+ (Cǫ−1
0 (ǫ+ |ρα|) + 2ǫ1)

∑

i 6=r

fiκ
2
i

+
C

ǫ1
GijWiWj +

C

ǫ1

∑

i

Gii.(5.26)

Then using (5.6), (5.9), (5.15), (5.23) and (5.26), we derive

LW ≤ −GsWs + C(ψ1− 1
k−l +

∑

i

Gii +
∑

i

fi|κi|)− ω
∑

β≤n−1

∑

i

η2βifiκ
2
i

≤ Cψ|DW |+
C

ǫ1
GijWiWj + (Cǫ−1

0 (ǫ+ |ρα|) + Cǫ1 − c1)
∑

i 6=r

fiκ
2
i

+Cψ1− 1
k−l + (C +

C

ǫ1
)
∑

i

Gii

≤ C(ψ1− 1
k−l + ψ|DW |+

∑

i

Gii +GijWiWj),



DIRICHLET PROBLEM FOR DEGENERATE HESSIAN QUOTIENT TYPE CURVATURE EQUATIONS19

by choosing ǫ, δ, ǫ1 sufficiently small such that Cǫ−1
0 (ǫ+ |ρα|) + Cǫ1 ≤ c1. �

Then we establish boundary second order derivative estimates.

Theorem 5.3. Suppose Ω is a uniformly k-convex bounded domain in R
n with ∂Ω ∈

C2,1, ψ
1

k−l ∈ C1(Ω×R× S
n). Let k ≥ 2, 0 ≤ l < k < n, u ∈ C3(Ω) be an admissible

solution of Dirichlet problem (1.6), then there exists a positive constant C depending

on n, k, l, ‖u‖C1, ‖ψ
1

k−l‖C1 and ∂Ω such that

(5.27) max
∂Ω

|D2u| ≤ C.

Proof. For an arbitrary point x ∈ ∂Ω, without loss of generality, we may assume that
x is the origin and that the positive xn-axis in the interior normal direction to ∂Ω
at the origin. For convenience, in the following we use the notation C to represent

some positive constant depending on n, k, l, ‖u‖C1, ‖ψ
1

k−l‖C1 and ∂Ω. The proof will
be divided into three steps.
Step 1 : Estimates of uαβ(0), α, β = 1, · · · , n− 1.
Near the origin, the boundary ∂Ω is represented by

(5.28) xn = ρ(x′) =
1

2

∑

α<n

κbαx
2
α +O(|x′|3),

where κb1, · · · , κ
b
n−1 are the principal curvatures of ∂Ω at the origin and x′ = (x1, · · · , xn−1).

Differentiating the boundary condition u = 0 on ∂Ω twice, then

|uαβ(0)| ≤ C, 1 ≤ α, β ≤ n− 1.

Step 2 : Estimates of uαn(0), α = 1, · · · , n− 1.
Let ωδ = {x ∈ Ω : ρ(x′) < xn < ρ(x′)+ δ2, |x′| < δ}. Since Ω is uniformly k-convex,

there exist two positive constants θ and K satisfying

(5.29) (κb1 − 3θ, · · · , κbn−1 − 3θ, 2K) ∈ Γk+1.

Define

(5.30) v = ρ(x′)− xn − θ|x′|2 +Kx2n.

Note that the boundary ∂ωδ consists of three parts: ∂ωδ = ∂1ωδ ∪ ∂2ωδ ∪ ∂3ωδ, where
∂1ωδ, ∂2ωδ are defined by {xn = ρ} ∩ ωδ, {xn = ρ + δ2} ∩ ωδ respectively, and ∂3ωδ

is defined by {|x′| = δ} ∩ ωδ. When δ depending on θ and K is sufficiently small, we
have

v ≤ −
θ

2
|x′|2, on ∂1ωδ,

v ≤ −
δ2

2
, on ∂2ωδ,

v ≤ −
θδ2

2
, on ∂3ωδ.

(5.31)
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In view of (5.28) and (5.29), v is (k + 1)-convex on ωδ. Thus there exists a uniform
constant η0 > 0 depending only on θ, ∂Ω and K satisfying

λ(D2v − 2η0I) ∈ Γk+1 for k < n and λ(D2v − 2η0I) ∈ Γn for k = n, on ωδ.

By Proposition 2.8,

(5.32) λ

(
1

ω
{γis(vst − 2η0δst)γ

jt}

)
∈ Γk, on ωδ.

Then we consider the following barrier function on ωδ for sufficiently small δ,

(5.33) Ψ := v − td+
N

2
d2,

where v(x) is defined as (5.30), d(x) := dist(x, ∂Ω) is the distance from x to the
boundary ∂Ω, t, N are two positive constants to be determined later.
Let

(5.34) W̃ = 1− e−bW ,

whereW is defined as (5.2), b is a sufficiently large positive constant to be determined
later.
Using (5.3), we obtain

LW̃ = be−bWLW − b2e−bWGijWiWj

≤ Cbe−bW (ψ1− 1
k−l + ψ|DW |+

∑

i

Gii +GijWiWj)− b2e−bWGijWiWj

≤ C(ψ1− 1
k−l + ψ|DW̃ |+

∑

i

Gii),

by choosing b sufficiently large.
Next, we consider the function

(5.35) Φ := RΨ− W̃ ,

where R is a positive constant sufficiently large to be determined later. First choose
δ ≤ 2t

N
such that

(5.36) −td+
N

2
d2 ≤ 0, on ∂ωδ.

Then combining with (5.31) and (5.36), we have

Φ ≤ 0, on ∂ωδ.

In order to prove

(5.37) Φ ≤ 0, on ωδ,
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we need to show that Φ attains its maximum on ∂ωδ. Suppose Φ attains its maximum
at an interior point x0 ∈ ωδ. Using (1) of Proposition 2.2, (2.4) and (5.32), we derive
for k ≥ 2,

(5.38) λ

(
1

ω
{γis(vst − 2η0δst)γ

jt}

)
∈ Γk ⊂ Γ̃k, on ωδ.

Since
(

σk

σl

) 1
k−l

is concave and homogeneous of degree one, by (2.8) and (5.38), we get

at x0,

Gij(D2v − η0I)ij ≥ (k − l)ψ1− 1
k−lG

1
k−l (D2v − η0I,Du)

≥ Cψ1− 1
k−l

(
σk
σl

) 1
k−l

(D2v − η0I)

≥ C ′ψ1− 1
k−l ,

where C ′ is a constant depending on k, l, ‖u‖C1 and η0. Due to |Dd| = 1 on ∂Ω, we
can choose δ sufficiently small such that

(5.39)
1

2
≤ |Dd| ≤ 1, ∀ x ∈ ωδ,

then at x0,

Gijdidj ≥ C
∑

i

Gii ≥ Cψ1− 1
k−l .

It follows that

GijΨij = Gijvij − tGijdij +NGijdidj +NdGijdij

≥ C ′ψ1− 1
k−l + η0

∑

i

Gii + CNψ1− 1
k−l + (Nd− t)Gijdij

≥ CNψ1− 1
k−l +

η0
2

∑

i

Gii,

by choosing t, δ sufficiently small such that CNδ + Ct ≤ η0
2
. Note that at x0,

(5.40)
1

R
|DW̃ | = |DΨ| = |Dv − tDd+NdDd| ≤ C(1 + t) + CδN ≤ C,
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by choosing t, δ sufficiently small. Therefore at x0,

0 ≥ LΦ = L(RΨ− W̃ )

= RGijΨij −Rψui
Ψi − LW̃

≥ CNRψ1− 1
k−l +

Rη0
2

∑

i

Gii − CRψ1− 1
k−l |DΨ|

−Cψ1− 1
k−l − Cψ|DW̃ | − C

∑

i

Gii

> CNRψ1− 1
k−l +

Rη0
4

∑

i

Gii − CRψ1− 1
k−l − CRψ

≥ (CN + Cη0 − Cψ
1

k−l − C)Rψ1− 1
k−l > 0,

by choosing N,R sufficiently large which is a contradiction.
Hence the function Φ can not attain its maximum at an interior point of ωδ when

R,N are large enough and δ, t are small enough. Thus (5.37) is proved. Since Φ(0) =
0, by Hopf’s lemma, we get Φn(0) ≤ 0. Then

uαn(0) ≥ −C.

The above arguments also hold with respect to −∇′
αu − 1

2

∑
β≤n−1 u

2
β. Hence we get

|uαn(0)| ≤ C.
Step 3 : Estimates of unn(0).
Since H [Mu] > 0, it is sufficient to establish the upper bound of unn(0). At the

origin,

uαβ = −unκ
b
αδαβ , for 1 ≤ α, β ≤ n− 1,

and

gij = δij −
|Du|2

ω2
δinδjn.

Hence the matrix of {aij} is




−
unκ

b
1

ω
0 · · · 0

u1n

ω

0 −
unκ

b
2

ω
· · · 0

u2n

ω
...

...
. . .

...
...

0 0 · · · −
unκ

b
n−1

ω

un−1n

ω
un1

ω

un2

ω
· · ·

unn−1

ω

unn

ω3




.
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By Lemma 1.2 of [2] and the estimates of uαβ(0), uαn(0), there exists a constant
R1 > 0 sufficiently large such that if unn > R1, then

(5.41)





λ̃α = −
unκ

b
α

ω
+ o(1), α = 1, · · · , n− 1,

λ̃n =
unn
ω3

+O(1),

where λ̃(aij) = (λ̃1, · · · , λ̃n) denotes the eigenvalues of A = {aij}.
Since k < n, we have at the origin,

ψ =
σk
σl

(
∑

i

λ̃i − λ̃1, · · · ,
∑

i

λ̃i − λ̃n−1,
∑

i

λ̃i − λ̃n

)

=
σk
σl

(
λ̃n +

n−1∑

α=2

λ̃α, · · · , λ̃n +

n−2∑

α=1

λ̃α,

n−1∑

α=1

λ̃α

)

=
σk
σl

(
λ̃n −

n−1∑

α=2

unκ
b
α

ω
+ o(1), · · · , λ̃n −

n−2∑

α=1

unκ
b
α

ω
+ o(1),−

n−1∑

α=1

unκ
b
α

ω
+ o(1)

)

≥
λ̃kn + o

(
λ̃k−1
n

)

C l
nλ̃

l
n +O

(
λ̃l−1
n

) ,

by choosing R1 large enough. It implies the uniform upper bound of unn(0). Hence
(5.27) is proved. �

Proof of Theorem 1.2. Based on the a priori estimates for non-degenerate case,
C2,α estimates can be established by Evans-Krylov theory and higher order estimates
followed by Schauder theory. Then the existence result can be derived by the continu-
ity method and the uniqueness assertion is immediate from the maximum principle,
more details see [11]. Then Theorem 1.2 can be proved by approximation as in [27].
Proof of Theorem 1.5. We only need to prove interior C2 estimates and mixed

boundary estimates, the other estimates are same as Hessian quotient case in Theorem
5.3.
Interior estimates : Consider the auxiliary function Q = logH − log(v − a).

Applying the similar arguments in Theorem 4.1 and using (2.3) and Proposition 2.7,
it is easy to derive interior estimates.
Mixed boundary estimates : The proof is similar to Step 2 in Theorem 5.3, we

only give the main ideas here. Consider the function Φ defined by (5.35) and assume
Φ attains its maximum at an interior point x0 ∈ ωδ. Let H denote the mean curvature
of Mu at X0 = (x0, u(x0)). As in [27], we consider the following two cases:
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Case (i) H ≤ 1. Let ãij = ω−1gilulj. Then

|ãij(x0)| ≤ C̃H ≤ C̃,

for each 1 ≤ i, j ≤ n. Here C̃ is some uniform positive constant. Then at x0,

0 = Φi = (RΨ− W̃ )i

= R(vi − tdi +Nddi)− be−bW (uαi + ραuni + ραiun −
∑

β≤n−1

uβuβi),

for i = 1, · · · , n. Hence we derive

ãnα + ραãnn + ω−1gniρiαun −
∑

β≤n−1

uβãnβ

= ω−1gni(uiα + ραuin + ρiαun −
∑

β≤n−1

uβuiβ)

= Rb−1ebWω−1(gnivi − tgnidi +Ndgnidi).

Since vn(0) = −1 and vγ(0) = 0 for γ = 1, · · · , n, we get at x0,

ãnα ≤ −c̃R + C,

by choosing δ and t sufficiently small. Here c̃ and C are positive constants depending
on ‖u‖C1. Then if R is sufficiently large, ãnα(x0) is unbounded, which implies a

contradiction since |ãnα(x0)| ≤ C̃.

Case (ii) H > 1. According to the proof of Lemma 5.2, if ψ
1

k−1 ∈ C1(Ω×R× S
n),

we derive

(5.42) LW ≤ C

(
ψ1− 1

k−1 + ψ|DW |+
∑

i

Gii +GijWiWj

)
.

Thus by (5.34), (5.42) and choosing b sufficiently large,

(5.43) LW̃ ≤ C(ψ1− 1
k−1 + ψ|DW̃ |+

∑

i

Gii).

Since σ
1
k

k is concave and homogeneous of degree one, then by (2.8) and (5.38), we
get at x0,

(5.44) Gij(D2v − η0I)ij ≥ Cψ1− 1
kσ

1
k

k (D
2v − η0I) ≥ C∗ψ1− 1

k ,

where C∗ is a constant depending on k, ‖u‖C1 and η0.
Combining with (2.2), (2.3) and (5.39), then at x0,

(5.45) Gijdidj ≥ C
∑

i

σk−1(λ|i) ≥ Cσk−1 ≥ CH
1

k−1ψ1− 1
k−1 ≥ Cψ1− 1

k−1 .
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Using (5.33), (5.44) and (5.45), it follows that at x0,

GijΨij = Gijvij − tGijdij +NGijdidj +NdGijdij

≥ C∗ψ1− 1
k + η0

∑

i

Gii + CNψ1− 1
k−1 + (Nd − t)Gijdij

≥ CNψ1− 1
k−1 +

η0
2

∑

i

Gii,(5.46)

by choosing t, δ sufficiently small such that CNδ + Ct ≤ η0
2
.

Thus using (5.35), (5.40), (5.43), (5.45), (5.46) and the condition ψ
1

k−1 ∈ C1,1(Ω×
R× S

n), we have at x0,

0 ≥ LΦ = RGijΨij − Rψui
Ψi − LW̃

≥ CNRψ1− 1
k−1 +

Rη0
2

∑

i

Gii − CRψ1− 1
k−1 |DΨ|

−Cψ1− 1
k−1 − Cψ|DW̃ | − C

∑

i

Gii

> CNRψ1− 1
k−1 +

Rη0
4

∑

i

Gii − CRψ1− 1
k−1 − CRψ

≥ (CN + Cη0 − Cψ
1

k−1 − C)Rψ1− 1
k−1 > 0,

by choosing N,R sufficiently large which is a contradiction. Hence Φ only attains its
maximum on ∂ωδ and mixed boundary estimates are followed by Hopf’s lemma.
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