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DIRICHLET PROBLEM FOR DEGENERATE HESSIAN QUOTIENT
TYPE CURVATURE EQUATIONS

XIAOJUAN CHEN, QIANG TU*, AND NI XIANG

ABSTRACT. In the paper, we prove the existence and uniqueness results of the C1:!
regular graphic hypersurface for Dirichlet problem of a class of degenerate Hessian
quotient type curvature equations under the condition 77[1ﬁ € CH1(Q xR x SM).
Specially, we also consider the second order derivative estimates for the corre-
sponding degenerate Hessian type curvature equations under the optimal condition
PFT € CLL(Q x R x SM).

1. INTRODUCTION

In this paper, we consider Dirichlet problem for the following degenerate Hessian
quotient type curvature equations

(1.1) COAGIMD) = 9(X,v), i@

with homogenous boundary data. Here 2 C R" is a bounded domain, M, =
{(z,u(x)); z € Q} is the graphic hypersurface defined by the function u, X = (z,u(x))
is the position vector of M,, v is the unit outward normal vector, oy is the k-th ele-
mentary symmetric function, A(n[M,]) = (A1, -+, \,) is the eigenvalue vector of g~'n
on M,. 1 > 0 is smooth enough with respect to every variable. The (0, 2)-tensor n
on M, is defined by

nij = Hgij — hij,

where g¢;; and h;; are the first and second fundamental forms of M,, respectively.
H is the mean curvature of M,. Actually, A\(n[M,]) in equation (II]) also arises
in complex geometry, which has attracted the interest of many authors due to its

geometric applications such as Gauduchon conjecture [9]. The admissible set for
equation (1)) is defined as follows.
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Definition 1.1. A C? regular hypersurface M, C R"! is called (7, k)-convex if its
principal curvature vector x(X) € I'y. Asin [5], 'y is defined by

(12)  Tp={r=(k1 k) ER 1 0;(An)) > 0, \i(n) = > k;,1 <i <k}

J#
for all X € M,. For 2 C R", a function u : 2 — R is called admissible if its graph is
(n, k)-convex.

If A(n[M,]) is replaced by the principal curvature x[M,] and [ = 0, equation (L)
becomes the classical k-curvature equations

(1.3) ox(K[Mu]) = V(X v).

For the non-degenerate case, Dirichlet problem for equation (L3]) has been achieved
fruitful results. When k = 1,2 and n, the left hand side of equation (I.3]) corresponds
to the mean, scalar and Gauss curvature of the hypersurface M, respectively. The
classical Dirichlet problem for the prescribed mean and Gauss curvature equations
has been extensively studied, which can refer to [1,[11.33,39]. For the intermediate
case 1 < k < n, the first breakthroughs were due to Caffarelli-Nirenberg-Spruck
[4] and Ivochkina [21,22] for Dirichlet problem of equation (I3]) with homogenous
boundary data when ¢ is independent of v. In fact, Ivochkina [21,22] treated the
case of gj. Caffaralli-Nirenberg-Spruck allowed for more general symmetric functions
than oy, but still excluded Hessian quotient 2. Then Lin-Trudinger [30] considered
Hessian quotient case ‘;—’l‘ with homogenous boundary date. Ivochkina-Lin-Trudinger
[23] extended Lin-Trudinger’s work to general boundary data but under exclusion of
the case k = n. For the case ‘;—’; with 0 < [ < n was subsequently studied by Ivochkina-
Tomi [24]. Recently, we considered Pogorelov type estimates of semi-convex solutions
for Dirichlet problem of equation (L3 with (k + 1)-convex boundary data in [7].
The readers can refer to [3,[13}17,[31]32,[3435,[37,38,[40] for more researches about
non-degenerate curvature equations.

The research of degenerate curvature equations can be tracked back to the de-
generate Weyl problem studied by Guan-Li [14] and Hong-Zuily [19]. Later on,
Guan-Li [15] studied the prescribed Gauss curvature problem. As we all know, for
degenerate curvature equations, C''! regularity of the solutions maybe the best reg-
ularity one can expect [41]. Guan-Zhang [18] established C'! estimates for a class
of curvature type equations which is the combination of o,. When ¢ = ¢(z,u) > 0
in equation (L3)), Jiao-Wang [27] proved the existence of C™! regular solutions for
Dirichlet problem of equation (L3]) with homogenous boundary data under the con-
dition 1 € C LIR"™ xR). Then Jiao-Jiao [25] established Pogorelov type estimates
for Dirichlet problem of equation (L3) with (k + 1)-convex boundary data under the
condition ¢/¥1 € CV1(Q x R).
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Now, we review some of the facts on the non-degenerate case of equation (L.I]).
Chu-Jiao [§ studied the following prescribed curvature equations

(1.4) ax(An)) = (X, v),

and they established curvature estimates for equation (L4). Then in [6], we gener-
alized Chu-Jiao’s results to Hessian quotient case. It is of interest to consider the
existence and regularity of solutions for curvature equations in graph form. Specifi-
cally, Jiao-Sun [20] considered Dirichlet problem for the following curvature equations

det(A(n[Mu])) = ¢ (X, v),

and they derived the existence of C*! regular graphic (1, n)-convex hypersurfaces. In-
spired by Jiao-Sun’s work, it is natural to study Dirichlet problem of Hessian quotient
type curvature equation (ILI]) for the degenerate case.

In order to deal with equation (LI]), we usually need some geometric conditions
on Q as in [22]. If k < n, a bounded domain 2 in R™ is called uniformly k-convex if
there exists a positive constant K such that for each x € 09,

(K?(I)a e >I{b (ZL’),K) € Flc—|-1>

n—1

where x%(z),---,k2_,(x) are the principal curvatures of 9Q at x and I'y is the
Garding’s cone defined by (2.1). If & = n, it is easy to see that n-convexity is
equivalent to strict convexity.

The main theorems are as follows.

Theorem 1.2. Let k> 2, 0 <1l < k <n, Q be a uniformly k-convex bounded domain
1 —

in R™ with 00 € C*'. Suppose that Y7 (x, z,v) € CLH( QA xR xS") > 0 and 1, > 0.

Assume that there exists an admissible subsolution uw € CYY(Q) satisfying k[M,] € Ty

and

(1.5) oy AOMLD) 2 $(X, v(X)), in O,
u=0, on 052,

where X = (z,u(x)) and v(X) is the unit outward normal vector at X € M,. Then
there exists a unique admissible solution u € CYY(Q) of Dirichlet problem
Ok .
— (A(n[M,])) =¢v(X,v), in Q,
e (M) = ¥(X. )
, on OS2,

u =

satisfying
[ullgri@) < C,

where C'is a positive constant depending on n, k, 1, €, ||u|lcor and ||1Dﬁ .
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Remark 1.3. The results of the classical degenerate curvature equations mainly focus
on the case ¥ = ¥(X). Compared to the classical conclusions, we consider the more
general right hand function ¢ = (X, v).

Remark 1.4. In the proof of the key Lemma 5.3 in Jiao-Sun [26], the special structure
of the (1, n)-curvature plays an important role. Our challenge is how to achieve the
similar result in the absence of that special structure.

In particular, we only need ¢&1 € C L@ x R x S") to establish second order
derivative estimates for solutions of equation (ILT) when [ = 0.

Theorem 1.5. Let Q be a uniformly k-convex bounded domain in R™ with 02 € C**.
Suppose 2 < k <n, 1 >0, i1 € CYH QA x R x S"). Let u € C4(Q) N C?(Q) be an
admissible solution of Dirichlet problem

{Uk()‘(n[Mu])) = P(X,v), in

(1.7) u=0, on O0S).

Then there ezists a positive constant C' depending on n, k, ||u||cr and ||¢ﬁ o1 sat-
1sfying

sup |D*u| < C.

Q

In fact, the condition ¢ﬁ € CHHQ x R x S") is optimal to derive the a priori
estimates, which is consist with classical case based on Wang’s counterexamples in
[41]. But up to now, we can only derive C'! estimates under the stronger condition

i € CH(Q xR xS, it is still an open problem for Dirichlet problem (I7) to derive

C" estimates under the condition &1 € CH1(QY x R x S").

The organization of the paper is as follows. Some preliminaries are given in Section
2. We obtain C! estimates in Section 3. In Section 4, we establish the global second
order derivative estimates. In Section 5, we deal with the boundary second order
derivative estimates and complete the proof of Theorem [[.2, Theorem [L.5l

2. PRELIMINARIES

2.1. k-th elementary symmetric functions. Let A = (\;,...,\,) € R, then we
recall the definition of elementary symmetric function for 1 < k <n

or(\) = D A A
1<t <ig<--<ip<n
Definition 2.1. For 1 < k < n, let I'; be a cone in R" determined by
(2.1) IMe={AeR":0;()\) >0, V1<i<Ek}.
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Denote o4,_1(A|i) = gi)\’: and oy_o(\|ij) = a‘?\jg’j\j. In the following, we list some alge-
braic equalities and inequalities of o,. Then we introduce some important properties

which will be used later.

(2.2) > o1 (Mi) = (n— k + Dog_1 (M),
=1
1— L (A
(2.3) k—1(N) > cooy, ’“’1()\)01’“’1( ),
and

1
o1(A) = ooy (A),
for any A € I'y and some positive constant ¢y depending on n and k.

Proposition 2.2. Let A = (A,...,\,) € R" and 1 < k < n, then we have
(I)FlDFQD"'DFn;
(2) op_1(A|i) >0 for N\ €Ty, and 1 <i < n;
(8) op(AN) = op(Al7) + Niok_1(A|7) for 1 <i<n;
1
ofoe]*T -
(4) i [”éi > [g_l] forxely and 0 <1< k;

1

(5) [‘(’7—’;} * are concave in T, for 0 <1l <k;

(6) If Ay > Xo > -+ > A\, then o1 (A1) < 0p_1(N2) < -+ < gp_1(A|n) for
AeTly.

Proof. All the properties are well known. For example, see Chapter XV in [28] or [20]
for proofs of (1), (2), (3) and (6); see Lemma 2.2.19 in [10] for the proof of (4); see [2]
and [2§] for the proof of (5). O

Proposition 2.3. Suppose W = {W,;} is diagonal and m (1 < m < n) is a positive
integer, then

8Um(W) . Um—l(W|i)7 { :jv

oWy o, otherwise.
G (W) om-2(Wlip), — i=j,p=qi#p,
W - _O-m—Z(W‘Zp)a i=¢q,] =p,i# ]

, otherwise.

The generalized Newton-MacLaurin inequality is as follows.
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Proposition 2.4. For A€l andn>k>1>0,n>r>s>0,k>r,1>s, we
have

Proof. See [30]. O

Next, we introduce a new cone fk defined by (L2) and list some important prop-
erties, more details can refer to [5].

Proposition 2.5. The following properties hold.
(1) Ty are convex cones and

(2.4) [ =0[>I>-->0, >0,
(2) If x= (A1, -+, \y) € Ty, then

L] 0t =0 < rstaipnta

o\~ k(n—=1) o o1(n)? ’
foranyi=1,2,--- . n, where 0 <1l <k <n. 1
(3) If X = (A1, -+, A\n) € L'y, then [Z’Z((Z))}m (0 <1l <k <n) are concave with
respect to A. Hence for any (&1, -+, &), we have

ai(n)
a(n)

oy 12
o2 [%(77)] 1 {ZZ 6<gl)\((:]))>€z}
(25) OO\ “anan, G S ( k— l) '

Proposition 2.6. Suppose that A = (Ay,-+-,\,) € Ty are ordered with A\; > Ay >
- > A\, then
(1) m <mp <+ <y and My—jqr > 0.
(2) or—1(njn —k +1) > c(n, k)og_1(n), for0 <l <k <n.

[ak(ﬂ)] Uk(n)] o5 (n)

(3) gi;:) > g%(;) 2...2#(7]) forr’0<l<kx<n
[?f((:f] Encl P01

(4) <Ll <L <O for0< I <k <.

(5) FOTO§l<k<n, we have

o k() ox(n) 1- L
(2.6) % > c(n, k1) % > e(n, k, 1) [:((Z))}  Vi1<i<n,

7
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2.2. Basic properties of graphic hypersurface. Let ¢; = 22 = ¢ Do =

dz; ] O0x;0x;’
(b1, -+, ¢n) and D?¢ = {¢;;} denote the first and second order derivatives, gradient
and Hessian of a function ¢ € C?(Q), respectively. A graphic hypersurface M, in
R™*! is a codimension one submanifold which can be written as a graph

M, = {X = (z,u(z))|z € R"}.

Let {€1, -+, €41} be the standard basis of R"!, then the height function of M, is
u(z) = (X, €,41). It is easy to see that the induced metric and second fundamental
form of M, are given by

Gij = 045 +ujuy;, 1<4,5<mn,

and
uij

hij =
1+ |[Dul?
The unit upward normal vector field to M, is
(_Duv 1)
1+ [Dul?

By straightforward calculations, we have the principle curvature of M, are eigenvalues
of the matrix

Du® Du

1
—(I- =

)D*u,

w
or the symmetric matrix Afu] = {a;;}

1 . .
Q5 = —WZkUkﬂl],
w
where v* = §;, — sors; and w = /1+ [Dul?>. Note that {7} is invertible with
inverse 7;; = 0;; + %, which is the square root of {g;;}.

Let {e1, -+ ,e,} be a local orthonormal frame field defined on T'M, and V be
the induced Levi-Civita connection on M,. For a function v on M,, we denote
Viv = Vv, Vv = V(e e;). Hence

— | Du|
Vu| = /g uu; = ————e—.
IVl g ! 1+ |Du|?

We list some well known fundamental equations for a hypersurface M, in R"*!,
which will be needed in our proof.

Vi X = hijv (Gauss formula),
Vv = —h;je; (Weingarten formula),
Vihij = V;hi  (Codazzi equation),
Rijst = hishjt — hiths  (Gauss equation),
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where h;; = (V.,e;,v), Rijs is the (4,0)-Riemannian curvature tensor of M, and the
derivative here is covariant derivative with respect to the metric on M,. Hence the
Ricci identity becomes

(2.7) ViVihs = ViVihij 4+ (hmihsi — Bumilst) Bmi + (Rmehig — Bunglie) Bons-

According to Lemma 3.2 of [16], we state the following proposition by observing
1
the concavity of (ox/01)%1, more details see [26,27].

Proposition 2.7. Let a = ﬁ If u is an admissible solution of Dirichlet problem
(L), then we get
ij V|2 Vy,VH VH|?
Zakmquhijvshpq <(1- O‘)‘ :;‘ + 20‘< ¢H ; - (1 O‘>¢‘H2 | 5
ijpqg _ 0%
where ;" = Tl

For p € R", define
nxmn X
Lu(p) = (7 € 57 M(rp) 1= AU~ 2570 € )

To establish second order estimates on the boundary, we need the proposition which
can be seen in [22]23].

Proposition 2.8. For any p € R", we have I'y11(0) C T'x(p). Assume that r € Ty
is an n X n matriz, then we have for 0 <1 < k <n,
O 1 Ok

(2.8) —A(rp) = 77— (Ar).

o o 1+|P‘2;1

3. C'!' ESTIMATES

In this section, we consider C' estimates for the admissible solution of Dirichlet
problem (L.6). Since M, is (n, k)-convex, then o1 (A(n[M,])) > 0, hence H[M,] > 0.
Combining with ¢, > 0, the subsolution condition (IL5]) and the maximum principle,
it is easy to derive that

sup |u| + sup | Du| < C.
Q o)

Then we establish the global gradient estimates.

Theorem 3.1. Let k > 2, 0 <l < k <n, ue€ C3(Q) NCHQ) be an admissible
solution of Dirichlet problem (L6)). Suppose that v, > 0 and wﬁ € CHOxRxS").

Then there exists a positive constant C' depending only on n, k, 1, ||ul|co and Hqﬁﬁ ||l
such that

sup | Du| < C(1 + sup | Dul).
Q 0
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Proof. Consider the following test function
P =logw + B(X,€,41) = logw + Bu,
where w = % = /14 |Dul? and B is a positive constant to be determined

V7E7L+1>
later. Suppose P attains its maximum at an interior point xg € 2. We rotate

the standard basis €, -+ , €, to satisfy u; = |Dul,u; = 0 for j > 2 at z. Define
e; = %01 =1,--- ,n, where 9, := €, +us€pqq for s =1,---  n. Then it is clear that
{e1,€2,, -+ ,e,} is an orthonormal frame on M, near Xy = (x, u(xo)) satisfying

|Vu| = Vlu, V,u = O, for ¢ >2
at Xy. Therefore by Weingarten formula,

V,w =
T (v eng)?

= wW?hip V.

Thus at X,

VP = whyViu+ BVu = 0.
Taking + = 1 and ¢ > 2 respectively, then at X,

whyy = —B, hj =0.

We rotate {eq,- -, e,} such that matrix {h;;} is diagonal at X,. Thus at X,
(3.1) ViP = W (him Vimu)? + wVihia Vit + whip Vit + BVu < 0.
Let Fi = a(%g””)
near (0,---,0,1). Then differentiating equation (I.I]) and using Weingarten formula
and Codazzi equation, we have at Xj,

F“Vlhll = F”Vlh“ = €1 (Ip)
= Yy, Viz; + . Viu+ 9, vV iy
& Bayllb
w w2
By (2.6), we know that for 0 <1 < k <mn,
Fll 2 C()wl_ﬁa
where Cj is a constant depending only on n, k and [.

According to (B10), B2) and ¢, > 0, = CHQ x R x S"), we obtain at X,

0 > WFMR(Viu)? +wViu(e)) + w?F 2 + B(k — )yw
Bayﬂ/}vlu
w

and {yx}}_, denote the standard local coordinate system on S"

(3.2) = + ¢, Viu+

> BzFll(V1U)2 + ¢x1V1u +

v

B 1
(B*Col Vul* — C|Vul(1+ —))¢' 77,
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which implies
B
0 > B%Cy|Vu| — C(1 + Z)'

By choosing B sufficiently large, the proof of Theorem [B.1lis completed. O

4. GLOBAL SECOND ORDER DERIVATIVE ESTIMATES

Theorem 4.1. Suppose wﬁ € CHMOXxRxSY. Letk >20<1<k<n,
u € CHQ) N C?3Q) be an admissible solution of Dirichlet problem (ILB). Then there

exists a positive constant C' depending on n, k, 1, ||ul|c1, Hwﬁ |c11 such that

sup |D*u| < C(1 + sup | D?ul).
Q 0

Proof. Let v := % = (v, €n41). There exists a positive constant a depending only on

|| Dul||co such that v > 2a. Assume that K., is the largest principle curvature, then
we consider the auxiliary function

Q = log Kmar — log(v — a).

Suppose that @ attains its maximum at a point Xo = (zg, u(g)) € My, xo € ), then
we can choose a local orthonormal frame {e;, ez, - ,e,} near Xy such that

hij = hiidij,  hit 2> hag > -+ > hyp
at Xo. Then n;; = Hg;; — hi; is also diagonal at X, and
M1 < Moz < - < Mg
We define a new function @ by

Q = log hy1 — log(v — a).
It obvious that @ also attains its maximum value at X. Denote
F = Uk()‘(n)) Fij _ OF Fij,rs _ 02F

—a(Am)’ ~ Ohy’ = OhyOhys
From now on, all calculations are performed at X,. Then
~ Vihll Vﬂ)
4.1 0=V,Q = - :
( ) Q hll v—a

F“V“hn F”(Vlhu)z F“(VZ’U)2 . F”VZZ’U

4.2 0> Fiv,Q = - :
(4.2) = IVl hi1 hi, (v —a)? v—a

By Weingarten formula,

(43) Vﬂ) = _him<em7 €n+1> = —hlmvmu, F”(Vﬂ))z S CF”}L?Z
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And by Gauss formula, Codazzi equation and @Z)ﬁ € C' QxR xS,
— (Ve Vu) — vFR2
(4.4) < —wFURE 4 O,

where C' is a constant depending on ||1Pﬁ||01 and [|ul/cr.
Differentiating equation (LI]) twice and using (2.7]),

F'Viihiy = F'Viihg + FU(h — hiha)hi + F* (hihay — hiy)ha
(4.5) = VuY — F9"V hjVih,s — FPhZhy + (k — Dyh3,.
Let @Z =% a= ﬁ Assume that hy; > 1. Then by direct calculations,

(Viy)?
v

1 ~
(4.6) Vi > —C'~*hi, — o Z Vohi (d)(e,)' ™ + (1 — )

p

Combining with (A1) and (@.3]),

(47) V;;ﬁ” (dsth) (ep)th' ™ < Chuyy' ™.

By @.3),

(4.8) F97, 1V 1 b < (1 — ﬁ) (V;W.
According to (4.0)-(Z9),

(4.9) %ﬁhu > —Chpp' ™ — F"RZ + (k — )Yhy.
Combining (2.6), (£1)), (4£2), (£4) and (4.9),

0 > O pipz - O Cht i (- Dha

v—a v—a

@ pUR2  Opy TR — Oyl

v—a

a 2 _ -4
(U _ G,C(n’ k? l)hll Ohll C) w )

v

which implies hy; < C. Then the proof is completed. O
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5. BOUNDARY SECOND ORDER DERIVATIVE ESTIMATES
Since equation (LI]) can be written as

(5.1) G(D*u, Du) = 2 (Mby}) = FNA)) = (. Du)

where G = G(r,p) is viewed as a function of (r,p) for r € ™", p € R", {b;;} =
T(A) = (traceA)I — A with A = {a;;}. Define

g - 0G 0
GY = gTGi;(Dzu, Du), G'= o, (D*u, Du), 1, = a—;i(a:,u,Du),
and
L =GY0;; — 1,,0;.
We need the following lemma in [13].
Lemma 5.1. We have
s Us 2 i sJ ts
G = —E Z:fllil — m ;F]ait(wuw J + Uj”)/ ),
where a;; = Ly*uy k= N{a;}), fi= g—i and F9 = afézif)).
Define

1 9 _

(5.2) W=V u-— 3 Z ug, on Ws

B<n—1
for some small §, where
Vi = ug + patin, for 1 <a<n-—1.

Then we prove an important lemma, which will be used to derive tangential-normal
estimates.

Lemma 5.2. If 0 is sufficiently small and @Dﬁ € CY(Q xR x SY), then
(5.3) LW <C (w—klz + Y| DW[+ > G+ GijWiwj> :

where C' is a positive constant depending on n, k, 1, ||ul|c1, ||¢ﬁ |lcr and 09).
Proof. By (5.2)) and differentiating equation (5.1I),
Wy +CW, = Vi — 3 ugds — > Glugug,
B<n—1 B<n—1

(54) +2Gijum-paj + unGijpaij + unGspas.
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1 —
Combining (5.4]) and ¢F71 € C*(Q2 x R x S"), it is easy to derive
1 ..
LW + GW, < Cy' 1 4+ 2Gu,,p4,
(55) — Z GijuBiUQj + unGijpaij + unGspas.
B<n—1

Since .

Gij = ; Z ,yistt,ytj and Ujj = W Z YisAstVtj»

st st

Z Glugiugy = w Z ZF 55V pesir;

B<n—1 B<n—1 s,t

By [13], we choose an orthogonal matrix B = {b;;} such that {a;;} and {F"} are
diagonalized at the same time

Fij = Z bisfsbjs and Q55 = Zbis’isbjs-

it follows that

Then

2
> Glugugi=w > Y (Zws sz) firs.

B<n—1 B<n—1 1
Let the matrix n = {n;;} = {>_, Visbs;}. It is clear that -1’ = g and |det(n)| =

/14 |Dul?. Therefore
(5.6) Z Gijuﬁiuﬁj =w Z Zn?azfmf

B<n—1 B<n—1 1

We also have
(5.7) GInipaj = Y fikiibsV btmipa < C_ filil.
it i
For any indices 7, t,
Fig; = thifilﬂbij < Z filkil.
From Lemma [5.1] Z Z
(5.8) |G Pas | SCZfi|f<ﬂi|-

By (G.5)-(E.3),
(5.9) LW +GW, <C( +ZG“+ZL|&, J—w > nhfikd.

B<n—1 1
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For the term G*W;, by Lemma [5.1] and the definition of the matrix {b;;},

_GSWS = — Z ( ¢u8 + 22.]02!{2 btlut b ) Ws
(5.10) < CyY|DW|+ — Z fi/fi(btiut)'VSjbjiWS'
Yo

Next we divide into two cases as follows:
Case(a) : Y 5., 13 > € for all i.

By (.4),
(5.11) > Glugug; > erZ

B<n—1

Using Cauchy-Schwarz inequality, we get
2 . c

(5.12) —Ki(byug) YV bWy < %KJ? + = (v b W,)2.
w €

Combining with (5.10) and (5.12]),

C )
—GW, < CUIDW]+ 53 il 4+ = Fi(r bW (b W)
€ s  C
(5.13) < c¢|DW|+§§i:f,ni +_GIWW;.

For any € > 0,

— ¢ i

By (5.9)-(5.14) and choosing € < §, it is easy to derive (5.3).

Case(b) : ZBSn_lngT < ¢ for some index 1 < r < n, where € is some positive
constant to be determined later.

As in [21],

1 < det(n) < - det(n’) + Cre < /1 + p?| det(n’)| + Che,

where 17 := {Naptasn gzr, 1 1= || Dul|co and C} is a positive constant depending on
n and p;. Set e small enough such that Cie < 1 , then

1

2\/1+u1

| det(n)] =
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On the other hand, for any fixed o # r, we derive

[det()] < C S sl < \/<n—1> S 2,

B<n—1 B<n—1

Hence for any i # r,

d iz,

B<n—1

where ¢; is a positive constant depending on n and . In view of (5.6,

(5.15) Z Gugiug; > ¢ Zf,n?.

B<n—1 i#£r

Next we divide into two cases of k, < 0 and k, > 0.
Case(bl) : k., < 0.
As Lemma 2.20 of [12], then

Zfi/‘f? > %HZfzf%z

i#£r

Similar to Case (a), we can prove (5.3]).

Case(b2) : k. > 0.

Without loss of generality, assume that k1 > -+ > k,. Let A = (A1,--+, \,) be the
eigenvalues of n[M,], then \; = Zj k; — k;. It follows that Ay < --- < A,. Then we
consider two subcases.

Case(b2 — 1) : K, > —¢€yk,-, where ¢ is a positive constant to be chosen later.

In order to derive (5.3]), the key is to prove the important inequality

(5.16) frkr < C.
Proof of (&10): If k, > —€ok,, then for any i # r, by choosing ¢, < m we
derive
1
(5.17) Ai:;@—m > [1 = (n = 2)ecltir > S > 0.

When r # 1, it is obvious that

1
)\nz"'ZMz[1—(n—2)eo]l-€r2§/€r>0.
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Thus
or—1(np)oi(n) — or(n)oi_1(n|p)
fr'%r - Z 2 T
N 01(77)
or-1(n)
S n—=k +1 T
( ) 01(77)
. k—1
(n—k+1)Cy NS
01(77)
2(n — k+ 1)Ck !
>~ (n ) z )\n o )\n—k+2)\n—k+l
01(77)
Uk(ﬁ)
5.18 < C = C.
( ) o o1(n) v

When r =1, i.e., k, > —¢ok1. By (5.17),
Ai > [1—(n—2)e|ky >0, Vi>2.

Similar to (5.I8)), it is easy to derive f.x, < Ct if Ay > 0. Hence we only consider
the case A\; < 0, then

0>M =Ko+ +K,>(n—1)k, > —(n—1)€eoky.
By A <0, we get ox—1(n) < ox—1(n|1). Thus

fikr < (n—k‘+1)ak_1(n) 1
01(77)
< (n—k+ 1)Uk_1(n|1)m

1 < A Ak 2 Akt 1 -
(5 9) = [1 — (n — 2>€0]Ul(7]) k+2 k+1
Note that

or(n) = ox(nll) + Mok-1(n[1)
Z )\n et )\n—k-‘rl + )\1 : Cs:%)\n T )\n—k+2
(5.20) = Mkt O I A2
Then L 2)
—(n—2)e
An—kt1 = [1 - (n - 2)50]’11 > _(71——1)600)\17
if n — k+1 > 2. Therefore by choosing ¢y < W sufficiently small, we get
n— n— n—1
1 _ 1-— (n — 2)60 _

21 Ao =N > -\ [ ——— 22— F 1) >o.

(5 ) 2)\71 k1 +Ch 1A > =\ < 2(n — 1)60 Cn—l) >0
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Combining with (5.19)-(5.21]), (5.16) still holds.
Similar to (B.13),

9 )
—-G*'W, < Cy|DW|+ ” tz firi(brug) v b Wi

IN

2 sj C sj
COIDWI+ 23 Ity bye Wi+ Z;fimnv bWl

IN

C
CHIDW| + ¢ ; firt + = Z JirPop W) (70 W7)
5.22 < CY|DW|+e€d  fir? + gG"J‘VI/;-W-,
€ J
i#r

where the third inequality comes from (5.10).
By (6.16),

~ C i
623) 3l = e+ 30 hbl < OO+ ER firt + 2 306

i#r i#r

for any € > 0. Then using (5.9), (5.15), (5.22) and (5.23), (5.3)) is proved by choosing
e+¢e <.

Case(b2 — 2) : Kk, < —€gk;-.

Since k, > 0, it is obvious that r # n. In this subcase, we get

’ysjbjTWs = ’}/sjbjr (uas + Pasln + Pallns — Z U5Ugs)
B<n—1

= W'Iir(nar + Palnr — Z uﬁnﬁr) + fVSjbjrpasun-
B<n—1

It follows that

(5.24) 1770, Wi| < Cwhi(€ + |pal) + C.



18

XIAOJUAN CHEN, QIANG TU*, AND NI XIANG

It is obvious that f.x, = (k — l)@b — D iz Jikii, thus by k2 > ik,

2 .
;fr’ir‘(zbtrut)fywbjrws‘ = Zfz"iz thrutv ber‘
t 1#r
< C¢|DW|+C(e+|pa|)Zf,~|m|/<r+CZf,~|m|
1#r 1#r
< CYIDW]+ Oy (e + [pal) D firf
i#£r
+C€0 €—|—‘pa Zle‘i +€12fz/€ + — Zfl
1F#r 1#r z#r
(5.25) < CYIDW|+ (Ceg (e + |pal) + €2) D fir] +— ZG“
i#£r

for any €; > 0. Here the last inequality comes from ), 4r fik? < Hfk? <
"6—%1 > iy Jikid with v # n.
Inserting (5.29) into (5.10),

(5.26)

€0

o, _
—G'W, < CY[DW|+ = filril|7b;iW,|
w 4
i#r
+H(Ce (e + Ipal) +€1) Y firi + — ZG“
i#£r
< CY|DW|+ (Cey e + |pal) +261)mei

iF#r
C C y
— (YT . —_ wu
o GIWIW Y G

i

Then using (5.6), (5.9), (E.15), (5.23) and (5.26), we derive

Lw

<

<

IA

RURCEE SCE SRR ) ST

B<n—1 1
C
Cy|DW| + - G”WW +(Ceg (e + |pal) + Cer — 1) > fir]
i#r

FOYET 4 ( 0+ ZG“

C('" %1 + | DW| + Z G + GIW,W),
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by choosing e, 6, €; sufficiently small such that Cey'(e + |pa|) + Cer < c;. O
Then we establish boundary second order derivative estimates.

Theorem 5.3. Suppose Q) is a uniformly k-convexr bounded domain in R™ with 0S) €
C21 ot € C' QxR xS"). Letk>2, 0<I<k<n, ueC3Q) be an admissible
solution of Dirichlet problem (IL6l), then there exists a positive constant C depending
on n, k,l, ||u|lcr, Hqﬁﬁﬂcl and 0S) such that

(5.27) max | D*u| < C.
B

Proof. For an arbitrary point x € 02, without loss of generality, we may assume that
x is the origin and that the positive x,-axis in the interior normal direction to 0f2
at the origin. For convenience, in the following we use the notation C' to represent
some positive constant depending on n, k, [, ||u|c1, ||¢ﬁ |cr and 0X2. The proof will
be divided into three steps.

Step 1 : Estimates of u,5(0), o, =1,--- ,n— 1.

Near the origin, the boundary 0f2 is represented by

(5.28) Ty, Zmbx2 +O(2']%),
O[<?’L
where k%, - -+ | k2 | are the principal curvatures of 9 at the origin and 2’ = (21, -+ , 2,,_1).

Differentiating the boundary condition u = 0 on 0f2 twice, then
luas(0)] < C, 1<a,f<n-—1.

Step 2 : Estimates of u,,(0), a =1,--- ;n—1.

Let ws = {x € Q: p(z') <z, < p(z')+ 62, |2'| < d}. Since Q is uniformly k-convex,
there exist two positive constants 6 and K satisfying
(5.29) (k) — 30, —30,2K) € T'ky1.
Define
(5.30) v=pla) -z, — 02> + Ka?.

Note that the boundary Ows consists of three parts: dws = 01ws U Orws U J3ws, where
O1ws, Osws are defined by {z, = p} Nws, {r, = p+ 6%} Nws respectively, and Azws
is defined by {|2'| = 6} Nws. When § depending on ¢ and K is sufficiently small, we
have

Kn—1

0
v < —§|x’|2, on dyws,
2
Ea on 62("}5’

052
v< ———

(5.31) v< —

, on Jyws.
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In view of (5.28)) and (5.:29)), v is (k + 1)-convex on ws. Thus there exists a uniform
constant 79 > 0 depending only on 6, 092 and K satisfying

MD?*v — 2nl) € Tyyy for k < n and A\(D*v — 2nl) € T, for k = n, on ws.
By Proposition 2.8,

1 . .
(5.32) A (;{vw(vst — 21705%)7”}) e I', on w;.

Then we consider the following barrier function on @y for sufficiently small 9,
N
(5.33) U i=v—td+ EdQ,

where v(z) is defined as (530), d(z) := dist(z,0R) is the distance from x to the
boundary 0, t, N are two positive constants to be determined later.
Let

(5.34) W=1-e"",

where W is defined as (5.2)), b is a sufficiently large positive constant to be determined
later.
Using (5.3]), we obtain

LW = be ™ LW — e GIW,W;
< Che ™ (W' F 1 4+ | DW| + D G+ GIWIW) — Ve W G,

IN

Cy' ™7 +y|DW[+ > G™),
by choosing b sufficiently large.
Next, we consider the function
(5.35) ®:= RU — W,

where R is a positive constant sufficiently large to be determined later. First choose
0 < % such that

N
(5.36) —td + 5d2 <0, on dws.
Then combining with (5.31]) and (5.36]), we have
® <0, on Jws.

In order to prove

(5.37) ® <0, on ws,
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we need to show that ® attains its maximum on dws. Suppose ® attains its maximum
at an interior point zy € ws. Using (1) of Proposition 2.2], (2.4]) and (5.32), we derive
for k > 2,

1 . , _
(5.38) A (a{fy“(vst — 277053t)fy”t}) eI, C Ty, on w;.

1

Since <”—k) " is concave and homogeneous of degree one, by ([28) and (5.38), we get

ol
at x,

GZ](D2U—T]0[)U > (k’ _%G%(D,U_UOI DU)
. ;%
> ( ) D*v — o)
> Oyt

where (" is a constant depending on k, [, ||u||c: and ny. Due to |Dd| = 1 on 09, we
can choose ¢ sufficiently small such that

(5.39) <|Dd| <1,V z € ws,

1
2
then at z,

Gidid; > CY G" > Cpl

It follows that

Gij\];’ij Gijvij — tGUdU + NGZJdZd] + NdGUdU

> O 4 Y G+ ONYTE + (Nd — 1)Gd,

v

-1 0 ii
CNg'TFT + 2y G,

)

by choosing ¢, § sufficiently small such that CNJ + Ct < . Note that at xo,

(5.40) %IDWI _ |DU| = |Dv — tDd + NdDd| < C(1 + 1) + CSN < C,
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by choosing ¢, § sufficiently small. Therefore at x,
0>L® = L(RV-—W)
— RGYV;; — R, U; — LW
> CONRyp' w1 4 20 "0 ZG“ CRy*#1| DY

—Cy' T — CY|DW| — CZG“
> ONRwl——z+%ZG“ CRYFT — CRy
4

> (CN +Cno— CpF1 — C)Ry' 771 > 0,

by choosing N, R sufficiently large which is a contradiction.

Hence the function ® can not attain its maximum at an interior point of ws when
R, N are large enough and ¢, ¢ are small enough. Thus (5.37) is proved. Since ®(0) =
0, by Hopf’s lemma, we get ®,(0) < 0. Then

Uan(0) > —C.

The above arguments also hold with respect to —V,u — %Z B<n—1 u% Hence we get
[uan (0)] < C. )

Step 3 : Estimates of u,,(0).

Since H[M,] > 0, it is sufficient to establish the upper bound of u,,(0). At the
origin,

Uap = _unﬁ'aéaﬁa for 1 S Oé,ﬁ S n—= 1’

and
y Du|2
i |
g J = 52']‘ 52n5]n-
Hence the matrix of {a;;} is
Up kY Uy
nivy n
_ 0 . 0 "
w b
Up Ky U2n
0 — 0 —
w
Up Y 1 Up—1
mn —_ n—in
0 0 cee = n
w w
Un1 Un2 Unpn—1 Unn
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By Lemma 1.2 of [2] and the estimates of u,3(0), uan(0), there exists a constant
Ry > 0 sufficiently large such that if u,, > R;, then

b

Xa:—unﬂa%—o(l), a=1,--- ,n—1,
(5.41) oo
A= — + O(1),

w3

where X(ai]—) = (A1, -+, \,) denotes the eigenvalues of A = {ai;}.
Since k < n, we have at the origin,

O' ~ ~ ~ ~ ~ ~
o= (SRR ,ZAZ-—A”_I,Z&—A”)
o " n—lN " n—2~ n—lN
= & >\n+ >\a7"'7>\n+z>\aaz)\a)
i a=2 a=1 a=1
= n Y y Ty A T o y T o
. a=2 w a=1 w a=1 w

et (ijl)

CiX, +0 (N1)

v

by choosing R; large enough. It implies the uniform upper bound of u,,(0). Hence

(527)) is proved. O

Proof of Theorem [L.2. Based on the a priori estimates for non-degenerate case,
O?“ estimates can be established by Evans-Krylov theory and higher order estimates
followed by Schauder theory. Then the existence result can be derived by the continu-
ity method and the uniqueness assertion is immediate from the maximum principle,
more details see [I1]. Then Theorem [[.2] can be proved by approximation as in [27].

Proof of Theorem [1.3. We only need to prove interior C? estimates and mixed
boundary estimates, the other estimates are same as Hessian quotient case in Theorem
B3

Interior estimates : Consider the auxiliary function Q@ = log H — log(v — a).
Applying the similar arguments in Theorem [£] and using (2.3]) and Proposition [2.7]
it is easy to derive interior estimates.

Mixed boundary estimates : The proof is similar to Step 2 in Theorem [5.3 we
only give the main ideas here. Consider the function ® defined by (5.35]) and assume
® attains its maximum at an interior point xg € ws. Let H denote the mean curvature
of M, at Xy = (zg,u(z0)). As in [27], we consider the following two cases:
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Case (i) H < 1. Let a;; = w'g"u;;. Then
@5 (z0)| < CH < C,
for each 1 < 1,7 < n. Here C' is some uniform positive constant. Then at x,
0 = & =(RV-W)
= R(v; — td; + Ndd;) — be™™ (tai + pating + Paitin — Z Ugug;),
B<n—1
fori=1,--- ,n. Hence we derive
Gno + Palnn + W g™ piatly, — Z UBana
B<n—1

-1 _ni

B<n—1

= Rb'ew (g™ — tg™d; + Ndg™d;).
Since v, (0) = —1 and v,(0) =0 for y =1,--- ,n, we get at xo,
ana S _5R + C;

by choosing ¢ and ¢ sufficiently small. Here ¢ and C' are positive constants depending
on |lullci. Then if R is sufficiently large, d,q (7o) is unbounded, which implies a

contradiction since |a,.(zo)| < C.

Case (ii) H > 1. According to the proof of Lemma[5.2] if wﬁ € CY QxR xS,
we derive

(5.42) LW <C <1p1—k11 + P DW[+ > G + GiﬂWin) .

Thus by (5.34)), (5.42) and choosing b sufficiently large,
(5.43) LW < Ot +y|DW|+ Y GY).

1
Since o} is concave and homogeneous of degree one, then by (2.8) and (5.38), we
get at xg,

3 N 1
(5.44) G (D> — ol )iy > Cp' kol (D20 — ol) > C*' 7,

where C* is a constant depending on k, ||u||c: and np.

Combining with (22)), [23) and (5.39), then at x,
(5.45) Gdid; > C Y opa(Ai) > Cojy > CHF 1! 1 > Ol
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Using (5.33), (5.44) and (5.45), it follows that at zo,
Gij\I/ij = Gij’l}ij — tGijdij + NGZ]dZd] + NdGUdU
> CWE Y G+ ONYITET 4 (Nd — 4)GYdy

(5.46)

vV

ONy'~#1 + 2 >oat

7

by choosing ¢, § sufficiently small such that CNo + Ct < 2.
Thus using (5.35), (£40), (543), (5-45), (540) and the condition YET € CH(Q x

R x S™), we have at xy,
0>L® = RGIV,; — Rip, V; — LW

B

> CONRp“#=1 4 :

S G~ CRy' | DY
—Cy T — Cy|DW| - C Y G

_ 1 Rng iy 1
1-775 (A -7
> CNRy #1 + e E G CRyY % CRy

> (CN +Cny— C$FT — C)RY' 7T > 0,

by choosing N, R sufficiently large which is a contradiction. Hence ® only attains its
maximum on dws and mixed boundary estimates are followed by Hopf’s lemma.
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