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Van der Waals (vdW) assembly allows for the creation of Josephson junctions in an atomically sharp interface between
two exfoliated Bi2Sr2CaCu2O8+δ (Bi-2212) flakes that are twisted relative to each other. In a narrow range of angles
close to 45◦, the junction exhibits a regime where time-reversal symmetry can be spontaneously broken and it can be
used to encode an inherently protected qubit called flowermon. In this work we investigate the physics emerging when
two such junctions are integrated in a SQuID circuit threaded by a magnetic flux. We show that the flowermon qubit
regime is maintained up to a finite critical value of the magnetic field and, under appropriate conditions, it is protected
against both charge and flux noise. For larger external fluxes, the interplay between the inherent twisted d-wave nature
of the order parameter and the external magnetic flux enables the implementation of different artificial atoms, including
a flux-biased protected qubit and a supersymmetric quantum circuit.

Van der Waals (vdW) heterostructures, realized through the
exfoliation and assembly of single atomic layers, are artificial
quantum materials having widely tunable electronic and opti-
cal properties. Within these structures, the interplay of topo-
logical effects, strong correlation, and confinement can be pre-
cisely controlled by adjusting the interlayer twist angle yield-
ing a wealth of interesting phenomena including unconven-
tional superconductivity,1 topological ferromagnetic order,2

and correlated insulating states3 just to mention a few.
Recently, the development of innovative fabrica-

tion techniques allowed the isolation of atomically thin
Bi2Sr2CaCu2O8+δ (Bi-2212) crystals4–6 with near-perfect
superconductivity and lattice structure, and paved the way to
the realization7–9 of vdW heterostructures between twisted
cuprate layers showing a strong dependence of the Josephson
energy on the twist angle. The applied stacking technologies
freeze the chemistry of the cuprate crystals below 200 K (-73
◦C) in ultra-pure argon atmosphere, and preserve the intrinsic
and spatially-competing striped orders made of oxygen
interstitials,10 incommensurate local lattice distortions and
charge modulations11 as found in pristine cuprate single
crystals.12,13

In these junctions, where detrimental disorder is reduced to
a minimum, the d-wave nature of the superconducting state
has significant effects on the junction characteristics. Particu-
larly, within a narrow range of twist angles close to 45◦, it re-
sults in a strong suppression of single Cooper pair tunneling,9

consequently making the contribution of two-Cooper-pair tun-
neling dominant. In this regime, the Josephson energy has
a leading cos(2ϕ̂) dependence on the superconducting phase
difference ϕ̂ and the junction14 hosts a peculiar superconduct-
ing state where time-reversal symmetry can be spontaneously
broken, in agreement with the experimental work in Ref. 7.
Further interesting topological phases were predicted at lower
twist angles15,16 away from optimal doping or in more com-

plex trilayer structures.17

Very recently, it was proposed to utilize such twisted
vdW cuprate junctions to realize novel superconducting quan-
tum devices.18,19 Specifically, the circuit design proposed in
Ref. 18, nicknamed ’flowermon’, consists of a single vdW
cuprate junction with a twist angle θ in the range 42◦− 48◦,
shunted by a capacitor and coupled to a control and readout
resonator in a circuit QED architecture.20 The flowermon ex-
ploits the peculiar cos(2ϕ̂) dependence of the Josephson en-
ergy, stemming from the twisted d-wave nature of the order
parameter, to encode a qubit inherently protected against ca-
pacitive noise.

Capacitive fluctuations, arising from charge noise or stray
electric fields, stand out as one of the most critical sources
of noise limiting the coherence of many currently used super-
conducting qubits such as the transmon.21 Over the years, sig-
nificant research efforts focused on understanding and char-
acterizing dielectric properties of materials22–24 to reduce ca-
pacitive losses as well as on the development of alternative
qubit designs exploiting external magnetic fluxes or gates to
drive the qubit to regimes with vanishing sensitivity to this
kind of noise. Notable examples are the rhombus chain,25–28

the 0−π ,29–31 the bifluxon,32 the blochnium,33 the KITE,34,35

and semiconductor-superconductor36–39 qubits, that can be
employed also for hybrid topological protection schemes.40,41

A crucial difference between these qubits and the flower-
mon is that in the latter protection originates from the d-
wave nature of the order parameter while in the former it is
achieved through circuit engineering. In this regard, the con-
cept of flowermon is closely linked to the pioneering theoret-
ical 25,42,43 and experimental44 research, which first explored
the suppression of tunneling in d-wave based Josephson junc-
tions to realize superconducting qubits.

In this Letter, we present a novel quantum device illus-
trated in Fig. 1(a), comprising two twisted cuprate junctions
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integrated in a Superconducting Quantum Interference De-
vice (SQuID) loop and threaded by an external magnetic flux.
By adjusting the external flux and the twist angle, this de-
vice can be tuned into various regimes hosting respectively:
a symmetric, "twist-based", double-well potential, a “plas-
monic” potential, and a “flux-biased” double-well potential,
as illustrated in Fig. 1(b). Below, we show how the struc-
ture of the low-energy spectrum changes across the differ-
ent regimes leading to distinct sensitivities to charge and flux
noise fluctuations. The high-tunability of the device also en-
ables the realization of a supersymmetric Hamiltonian where
the spectrum has one non-degenerate ground-state and all
other states are degenerate in pairs. Supersymmetric spec-
tra arise in superconducting circuits due to the non-trivial in-
terplay of different tunneling mechanisms, such as rhombus
elements,45 Majorana quasi-particles,46 or the charging en-
ergy spectrum of a single junction.47 Here we show that su-
persymmetry marks the transition between the plasmonic and
the flux-biased regimes, triggering significant changes in the
coherence properties of the circuit.

To derive the circuit’s Hamiltonian, we begin by expressing
the Josephson potential of a single vdW cuprate Josephson
junction with an interlayer twist angle θ as the sum of the first
and second harmonic Josephson tunneling as follows

−EJθ cos ϕ̂ +Eκ cos2ϕ̂ . (1)

Here, ϕ̂ indicates the superconducting phase difference across
the junction and higher-order harmonics are neglected assum-
ing a weak tunnel coupling between the two flakes. In the
above equation, EJθ quantifies the energy associated with the
tunneling of one Cooper pair across the junction. As discussed
in Refs. 14 and 48 and confirmed experimentally in Ref. 7,
EJθ exhibits a strong dependence on θ :

EJθ = EJ cos(2θ) . (2)

Additionally, Eκ quantifies the energy associated with two
Cooper pair tunneling. This term does not vanish at θ = 45◦

and is predicted to have a weaker dependence on the twist an-
gle,14 that we neglect for simplicity.

When two twisted Josephson junctions are integrated in a
SQuID loop threaded by an external flux, Φx, the Josephson’s
potential features four terms

Uφx(ϕ̂) =−
[
EJ1θ1 cos(ϕ̂ −φx)+EJ2θ2 cos(ϕ̂ +φx)

]

+
[
Eκ1 cos(2(ϕ̂ −φx))+Eκ2 cos(2(ϕ̂ +φx))

]
, (3)

where EJiθi and Eκi with i = 1,2 quantifying the tunnelling
amplitudes of junctions 1 and 2, respectively, and φx =
πΦx/Φ0 denotes the normalized flux with Φ0 = h/2e indi-
cating the flux quantum. Note that EJ1θ1 and EJ2θ2 depend on
the corresponding twist angles as dictated by Eq. (2), i.e.

EJ1θ1 = EJ1 cos(2θ1), EJ2θ2 = EJ2 cos(2θ2) . (4)

In Eq. (3), the phase ϕ̂ denotes a symmetric gauge choice be-
tween the phases of the two junctions. Utilizing Eq. (3), the
whole circuit’s Hamiltonian can be cast as

Ĥ = 4EC (n̂−δng(t))2 +Uφx(ϕ̂) , (5)

FIG. 1. (a) Circuit scheme of the split-flowermon featuring two
twisted BSCCO junctions in a SQuID loop threaded by an exter-
nal magnetic flux. (b) Scheme illustrating the different regimes as a
function of the twist angle, θ and the external flux Φx.

where the charging energy reads EC = e2/(2C), C being the
shunting capacitance (see Fig. 1(a)) which dominates over the
internal capacitances, n̂ indicates the charge conjugate to ϕ̂
and δng(t) accounts for charge fluctuations induced by ex-
ternal electric fields. Throughout this work we assume that
the capacitance is sufficiently large that the charging energy
satisfies the relation EC ≪ EJ , Eκ , this condition defines the
transmonic regime. Furthermore, we set Eκ/EJ = 0.1 follow-
ing the prediction of Ref. 14. As discussed in more detail in
Ref. 18, the value of Eκ/EJ is crucially relevant to observe
the double-well structure for a wide range of angles. Eventu-
ally, we set ⟨δng⟩= 0: though our results should remain valid
for the low energy levels of the spectrum regardless of charge
bias, in this case, in the idealized situation of identical junc-
tions, the circuit’s Hamiltonian possesses various symmetries
that enhance qubit coherence and simplify the analysis of the
spectrum.49

To explore both this idealized scenario and the more real-
istic case of small junctions asymmetry, it is advantageous to
introduce the average twist angle, 2θ = θ2 +θ1, and the total
tunneling energies, EJ = EJ2 +EJ1 and Eκ = Eκ2 +Eκ1 . Re-
casting the Josephson potential accordingly yields:

Uφx(ϕ̂) ≃ −ẼJ cos(ϕ̂ −ϕ0)+ Ẽκ cos(2(ϕ̂ −ϕ0κ))+

− 2EJdθ sin2θ
[

sinφx sin ϕ̂ −d cosφx cos ϕ̂
]

(6)

valid up to second-order corrections in the twist angle asym-
metry dθ = (θ2 −θ1)/2. In the above equation we introduced
the effective tunneling energies,

ẼJ = EJ cos(2θ)cosφx

√
1+d2 tan2 φx (7)
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FIG. 2. Symmetrical flowermon SQuID potential and energy lev-
els. Shape of the potential for α = 0.1, θ = 43◦ and (a) Φx = 0.1 Φ0,
(b) Φx = 0.25 Φ0, (c) Φx = 0.4 Φ0 and (d) Φx = 0.5 Φ0 together with
the corresponding energy levels for EJ/EC = 2000.

and

Ẽκ = Eκ cos2φx

√
1+d2

κ tan2 2φx (8)

where we denoted the asymmetry between the junctions as
d = (EJ2 −EJ1)/EJ and dκ = (Eκ2 −Eκ1)/Eκ , and the angles
ϕ0 and ϕ0κ are defined by the following equations: tanϕ0 =
−d tanφx and tan2ϕ0κ =−dκ tan2φx.

To keep the discussion simple, we first consider the case
of identical junctions: d = dκ = 0, dθ = 0. In this idealized
situation the external flux controls the strength and sign of the
effective Josephson tunnelings, ẼJ , Ẽκ , and, depending on the
twist angle θ and on the ratio α = Eκ/EJ , it can be used to
tune the Josephson potential. Specifically, setting

Y =
4α cos(2φx)

cos(2θ)cos(φx)
(9)

and assuming φx ∈ [0,π/2], we obtain that49 (i) for Y > 1,
the potential exhibits a symmetric double-well structure with
minima at ϕ = ±arccos(1/Y ) as displayed in Fig. 2(a); (ii)
for |Y |< 1, the potential features a single minimum at ϕ = 0,
as shown in Fig. 2(b) and (iii) for Y <−1, it displays an asym-
metric double-well structure with minima at 0 and π , as illus-
trated in Figs 2(c)-(d). As a result, the parameter Y controls
the symmetry of the low-energy eigenstates and the structure
of the spectrum. This dependence gives rise to the regimes in-
troduced in Fig. 1(b) and underpins significant changes in the
system dynamics and susceptibility to external fluctuations.

The “twist-based” regime, realized at small external fluxes
and high twist angles, corresponds to Y > 1 and it is charac-
terized by a robust quasi-degeneracy of the low-energy levels
as shown in Fig. 3(a). In this regime two Cooper pair tunnel-
ing processes dominate the Josephson energy and the ground
and first excited state have a well-defined Cooper pair number
parity. In particular, analogous to what occurs in the flower-
mon,18 the ground-state, |ψ0⟩, contains mostly even Cooper

FIG. 3. Energy spectrum, flux dephasing rate and charge relax-
ation rate (a) Low-energy spectrum as function of Φx. (b) Matrix
element |n01| governing dielectric relaxation rate. In the central re-
gion it vanishes due to symmetry reason. (c) Absolute value |∂Φx ω01|
governing flux-dephasing normalized to EJ/Φ0. In all panels back-
ground colors highlight the regimes of Fig. 1(b).

pair number states while the first excited state, |ψ1⟩, con-
tains mostly odd Cooper-pair-number states. |ψ0⟩ and |ψ1⟩
thus have very small overlap in the charge basis, yielding (see
green shaded area in Fig. 3(b)) an exponential suppression of
the matrix element n01 = ⟨ψ0|n̂|ψ1⟩. This leads to the expo-
nential suppression of the relaxation rate induced by capaci-
tive losses, Γ1,ng , that can be estimated as

Γ1,ng =
(8EC)

2

h̄2 Sng(ω01) |n01|2 (10)

where h̄ω01 is the qubit energy splitting and Sng(ω) the spec-
tral density of the capacitive noise. Furthermore, since the
flux does not substantially affect the quasi-degeneracy of the
levels, flux-noise induced dephasing,

Γϕ,Φx = SΦx(0) |∂Φx ω01|2 , (11)

where SΦx(ω) is the spectral density of the flux-noise, is also
exponentially suppressed in this region,49 as illustrated by the
plot of |∂Φx ω01| shown in Fig. 3(c).

As the external flux increases above a threshold value cor-
responding to Y = 1, indicated by the green curve in Fig. 1(b),
the system enters the “plasmonic” regime.49 In this regime,
the low-energy eigenstates are confined within a single-well
centered around ϕ = 0 and the charge relaxation matrix ele-
ment becomes finite analogous to what happens in the trans-
mon.21 At even higher flux values, when Y < −1 (dashed
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FIG. 4. The role of the asymmetries between the junctions. (a) Low-energy spectrum as a function of Φx for α = 0.1, θ = 43◦, d = 10%
and dθ = 0. (b) Low-energy spectrum as a function of Φx with dθ = 5% and other parameters as in panel (a). (c) Matrix element of the
charge operator governing dielectric relaxation between the two qubit states as a function of Φx. (d) Absolute value of |∂Φx ω01| governing flux
induced dephasing normalized to EJ/Φ0. In all panels, lines and background colors indicate the regimes for d = 0, as in Fig. 1(b).

black curve in Fig. 1(b)) a second local minimum centered
around ϕ = π appears in the potential. As long as this mini-
mum is at high-energy, the structure of the low-energy spec-
trum does not change. Correspondingly, the system remains
in the plasmonic regime that thus includes the whole orange-
shaded region in Fig. 1(b).

The important change in the dynamics of the system hap-
pens when the external flux crosses a threshold value in which
the second minimum at ϕ = π begins to significantly affect the
lowest excitation of the qubit (see Fig. 2(c)). This threshold
flux,

ΦSUSY
x =

Φ0

2π
arccos

( −1
1+16αEC/(EJ cos2(2θ))

)
, (12)

is of special significance as it corresponds to a supersymmetry
point of the Hamiltonian. At this point, the spectrum decom-
poses into two decoupled subspaces having opposite symme-
tries under the parity operator K̂ which satisfies K̂ϕ̂K̂ = −ϕ̂
and implements the time-reversal symmetry for Φx = 0. The
ground-state is K̂-symmetric and non-degenerate while all ex-
cited levels feature a pair of degenerate states with opposite
symmetry. Specifically, the two lowest excited states, with
wavefunctions corresponding to a plasmonic first excited state
centered in the ϕ = 0 well, and a Gaussian-like state centered
at the ϕ = π well, are exactly degenerate at this point.

For flux values above the supersymmetry point, Φx >
ΦSUSY

x , the ground state remains a Guassian around the ϕ = 0
well while the first excited state becomes a Gaussian centered
at the ϕ = π well. This marks the flux-biased region, in which
the ground and first excited states are both symmetric under
the parity operator K̂ and the matrix element n01 vanishes
exactly. For similar reasons, however, the flux-derivative of
the qubit frequency becomes finite, yielding a finite Γϕ,Φx as
shown in Fig. 3(c). This problem is general to all flux-biased
cos(2ϕ̂) qubits shunted by a large capacitor, as thoroughly il-
lustrated in Ref. 50.

It is worth noticing that in all regimes, the dephasing in-
duced by charge noise and the relaxation induced by flux-
noise are suppressed by the large shunt capacitance and sym-
metry considerations,49 and therefore in the manuscript we fo-

cused on charge-induced relaxation and flux-induced dephas-
ing, which are the dominant loss mechanisms.

We now consider the role of the asymmetries between the
junctions described by the parameters d, dκ and dθ accord-
ing to Eq. (6). Since the asymmetries in the tunneling en-
ergies are mostly due to geometric factors, we set dκ = d.
However, we separately consider the effect of the twist angle
asymmetry dθ . Furthermore, as in the symmetric case, we
focus on the matrix elements governing charge-induced relax-
ation and flux-induced dephasing since these are the dominant
loss mechanisms in the asymmetric case as well, as described
in the supplementary material. There are two interesting fea-
tures to be underlined in the results shown in Fig. 4. First,
we note that d and dκ do not undermine the inherent pro-
tection against charge and flux noise characterizing the twist-
based regime, especially compared to an asymmetric trans-
mon, see Fig. 4(c)-(d). Furthermore, while introducing small
d = dκ breaks the supersymmetry, it still preserves the quasi-
degeneracy of the low energy states. Second, dθ is much
more detrimental and it leads to a strong enhancement of both
charge-induced relaxation and flux-induced dephasing across
a wide range of fluxes. The sharp features in the flux depen-
dence of the flux-induced dephasing with finite dθ shown in
Fig. 4(d) are not universal but related to the specific choice of
the parameters.

In conclusion, we developed a novel device based on a
SQuID loop of two junctions formed by twisted cuprate
heterostructures. By manipulating the external flux in the
loop, the device can be tuned to substantially different
regimes and it features the interplay of different mechanisms
of protection against decoherence. At low values of the
external flux the circuit maintains the protection against
charge noise offered by a single-junction flowermon with the
added benefit of tunable energy levels. This protection can
be traced back to the inherent d-wave nature of the junctions
which preserves the double-well structure and symmetry of
the potential even in the presence of external flux. At flux
values close to Φx = Φ0/2, the circuit develops a double-well
potential by a more conventional flux-biased mechanism.
This regime also shows significant protection from charge
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noise, but dephasing due to flux fluctuations in the loop is
not suppressed. The critical flux at which the circuit enters
the flux-biased regime is a special point where the spectrum
exhibits a supersymmetric structure. We demonstrated that
this point marks a change in the symmetry properties of the
excited state and yields sharp modifications in the system’s
coupling to external noise fluctuations and, consequently, in
the decoherence rates. The role of imperfections in junction
fabrication was also investigated leading to the discovery that
the system is robust to the asymmetry between the energy
of the junctions but highly sensitive to the asymmetry in the
twist angles. This circuit therefore offers the opportunity to
explore fundamental problems in quantum physics and to
develop new devices for quantum technology. Furthermore,
it contributes to illustrate how integrating new materials and
heterostructures into quantum superconducting circuits can
unveil intriguing and novel phenomena opening new research
pathways and triggering further progresses in fabrication
technology. The possibility to experimentally realize the
device proposed in the present work critically depends on
the ability to fabricate high-quality twisted interfaces and
to integrate them in quantum superconducting nanocircuits.
A first advancement in this direction discussed in Ref. 51
and 52, proposes to decouple the circuit fabrication from
the twisted vdW junction fabrication process harnessing
integration within a silicon nitride membrane.
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I. THE JOSEPHSON POTENTIAL FOR IDENTICAL JUNCTIONS

In this section we study the Josephson potential describing the device introduced in the main text, that is a SQuID comprising
two twisted cuprate junctions. In particular, we here consider identical junctions and we investigate the change in the potential
shape when the parameter Y (see Eq. (3) below) is varied. Let us start by writing the expression of the potential as follows

Uφx(ϕ̂) =−ẼJ cos(ϕ̂)+ Ẽκ cos(2ϕ̂) with ẼJ = EJ cos(2θ)cos(φx) , Ẽκ = Eκ cos(2φx) . (1)

Here, as in the main text, ϕ̂ denotes a symmetric gauge choice between the superconducting phases of the two junctions, EJ and
Eκ quantify the energies associated with the one and two Cooper pairs tunneling, θ is the interlayer twist angle and φx/π the
external flux Φx normalized with the flux quantum Φ0. In this section we analyze the analytical structure of Uφx(ϕ̂). We start by
noting that, since

Uπ±φx(ϕ) =Uφx(ϕ +π) , (2)

we can consider 0 ≤ φx ≤ π/2. For similar reasons we can set 0 ≤ θ ≤ 45◦. Within these assumptions we have ẼJ > 0 and we
can recast Eq. (1) for θ ̸= 45◦ and φx ̸= π/2 as

U(ϕ) =
ẼJ

4
[
−4cos(ϕ)+Y cos(2ϕ)

]
where Y =

4Ẽκ

ẼJ
=

4α cos(2φx)

cos(2θ)cos(φx)
. (3)

with α = Eκ/EJ . The cases θ = 45◦ and φx = π/2 will be discussed in Sec. V. The first and second derivatives of U(ϕ) can be
then expressed as

U ′(ϕ) = ẼJ sin(ϕ)
[
1−Y cos(ϕ)

]
, (4)

U ′′(ϕ) = ẼJ
[

cos(ϕ)−Y cos(2ϕ)
]
. (5)

The above equations yield stationary points at ϕ = 0, ϕ = π and, for |Y |> 1, also at ϕ =±ϕ∗ with ϕ∗ = arccos(1/Y ). Evaluating
the corresponding second derivatives

U ′′(0) = ẼJ (1−Y ) , (6)

U ′′(±π) =−ẼJ (Y +1) , (7)

U ′′(±ϕ∗) = ẼJ (Y 2 −1)/Y , (8)

we easily show that:

(i) for Y > 1 it has minima at ϕ =±ϕ∗ with ϕ∗ < π/2 and maxima at ϕ = 0 and ϕ = π;
(ii) for |Y | ≤ 1 it has a minimum at ϕ = 0 and a maximum at ϕ = π;

(iii) for Y <−1 the potential has minima at ϕ = 0 and ϕ = π and maxima at ϕ =±ϕ∗ with ϕ∗ > π/2.
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We therefore introduce the critical flux values φ±
x such that Y (φ±

x ) =∓1 given by

φ±
x = arccos

(√
1+2a2 ∓1

2a

)
with a = 8α/cos(2θ), (9)

satisfying φ−
x < π/4 < φ+

x and we distinguish three cases, as depicted in Fig. 1. For 0 ≤ φx < φ−
x the potential has a symmetric

double-well structure; for φ−
x ≤ φx ≤ φ+

x it is single-well and for φ+
x < φx < π/2 it yields an asymmetric double-well. The solid

green line and the dashed black line of Fig. 1(b) of main text represent respectively φ−
x and φ+

x . Note that, while the asymmetric
double-well regime only requires a sufficiently large flux, the symmetric double-well regime can be achieved only for θ ≥ θc,
with

θc =

{
arccos(4α)/2 if α < 1/4 ,

0 if α ≥ 1/4 .
(10)

For this reason we refer to this regime as twist-based.

FIG. 1. Shape of the Josephson potential for increasing external flux.

II. SYMMETRY PROPERTIES OF THE QUBIT EIGENSTATES

The circuit Hamiltonian can be cast as

Ĥ = 4EC (n̂−δng(t))2 +UΦx(ϕ̂) , (11)

where EC is the charging energy, n̂ indicates the charge conjugate to ϕ̂ and δng(t) accounts for charge fluctuations due to external
electric fields. In this section we set the average ⟨δng⟩ at zero. In order to discuss the relaxation and dephasing rates induced by
charge and flux-noise, we focus on the first two energy levels h̄ω0 and h̄ω1 and the corresponding wavefunctions |Ψ0⟩ and |Ψ1⟩
shown in Fig. 2. We assume that the charging energy EC is sufficiently small to keep the two levels inside the well and below
the barrier.

FIG. 2. First two energy levels and wavefunctions for increasing external flux; the solid red lines identify ω0 and |Ψ0⟩, while the dashed blue
ones ω1 and |Ψ1⟩. The plots frames are coloured according to the different regimes as in Fig. 1(b) of the main text.
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For increasing external flux the device enters the regimes introduced in the main text (see Fig. 1(b) of the main text), namely, the
twist-based, the plasmonic and the flux biased regimes.

• Twist-based regime
In the twist-based regime the qubit wavefunctions are localized inside a symmetric double-well with a barrier that de-
creases with increasing flux as shown in Fig. 3(a) and have an exponentially small frequency splitting ω01 = ω1 −ω0 as
shown in Fig. 3(b). Since the Hamiltonian commutes with the parity operator K̂, satisfying K̂ϕ̂K̂ = −ϕ̂ , non-degenerate
states have definite parity w.r.t. ϕ = 0. In particular |Ψ0⟩ is K̂-symmetric and |Ψ1⟩ is K̂-antisymmetric. A further conse-
quence of the structure of the potential, having minima at ϕ = ±ϕ∗ ∼ π/2 is that the wavefunctions are approximately
π-periodic and π-antiperiodic . This in turn implies that they have a well-defined Cooper pair number parity in the charge
basis, i.e. |Ψ0⟩ contains mostly even Cooper pair number states and |Ψ1⟩ odd Cooper pair number states. This is illus-
trated in Fig. 3(c) where we plot the projection of |Ψ0⟩ and |Ψ1⟩ on even Cooper pair number states, ∑n | ⟨2n|Ψ⟩ |2, with
|n⟩ denoting the eigenstates of the charge operator n̂.

FIG. 3. (a) The height ∆UJ of the barrier, (b) the splitting ω01 and (c) the scalar product ∑n | ⟨2n|Ψ⟩ |2 for the first two levels
(|Ψ0⟩ red curve, |Ψ1⟩ blue curve) in the twist-based regime. On the horizontal axes the external flux increases up to φx = φ−

x ,
where the double-well closes. The twist angle, the tunnelling energies and the charging one are as in the main text, i.e. θ = 43◦,
α = 0.1 and EJ/EC = 2000 for which φ−

x ∼ 0.229π .

• Plasmonic regime
The regime depicted by Fig. 2(b)-(c) is governed by a plasmonic potential with low-energy eigenstates confined within
a single-well centered around the minimum at ϕ = 0. The lowest-energy eigenstates |Ψ0⟩ and |Ψ1⟩ are, as in the twist-
based regime, K̂-symmetric and K̂-antisymmetric, but they have a finite energy splitting. For φx = φ+

x a second local
minimum centered around ϕ = π appears. This condition is indicated by the dashed black line in Fig. 1(b) of the main
text. Nevertheless, the presence of this local high-energy minimum does not influence the properties of the low-energy
spectrum as long as φx < φ SUSY

x .

• Flux-biased regime
As the flux overcomes the threshold value φ SUSY

x the system enters the flux-biased regime and the spectrum undergoes
significant changes. Namely, the lowest excited state becomes K̂-symmetric and its center moves from ϕ = 0 to ϕ = π . As
stated in the main text, and demonstrated in Sec. IV, φ SUSY

x is a supersymmetry point. As shown in Fig. 4(a), the splitting
ω01 decreases with φx following the energy of the local potential minimum. Note that in the flux-biased regime, if φx is
sufficiently close to π/2, the wavefunctions |Ψ0⟩ and |Ψ1⟩ are substantially equal up to a translation by π as illustrated in
Fig. 4(b)-(c) where we plot the imbalance σ01 = 2(σ1 −σ0)/(σ1 +σ0) between their standard deviations σ0, σ1 and the
scalar product C01 =

∫
dϕ ψ0(ϕ)ψ1(ϕ −π). As a consequence these wavefunctions are thus equal on even Cooper pair

number states and differ by a sign on odd ones. Moreover if EC ≪ EJ they stay also localized around ϕ = 0 and ϕ = π as
shown by Fig. 4(d).

FIG. 4. (a) The splitting ω01, (b) the standard deviations imbalance σ01, (c) the scalar product C01 and (d) the half width half
maximum (HWHM) for the first two levels in the flux-biased regime. On the horizontal axes the external flux increases from
φ SUSY

x to π/2. All the panels are obtained for the parameters θ , α and EJ/EC set as in Fig. 3 for which φ SUSY
x ∼ 0.414π .
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Notice that, being EC sufficiently small to prevent h̄ω0 and h̄ω1 from approaching the top of the well, we can obtain
the plots in Fig. 4 by means of a Gaussian approximation. In particular, according to θ ∼ 45◦ and φx ∼ π/2, it is
h̄ω01 ∼ EJ(4−

√
2Eκ/EC)(45◦−θ)(π/2−φx) i.e. ω01 scales linearly with φx.

III. THE RATES INDUCED BY CHARGE AND FLUX-NOISE

The relaxation and the dephasing rates Γ1 and Γϕ induced by charge and flux-noise can be estimated within Fermi’s golden rule
as





Γ1,ng =
(8EC)

2

h̄2 Sng(ω01) |n01|2 ,

Γϕ,ng =
(8EC)

2

h̄2 Sng(0) |n11 −n00|2 ,
and

{
Γ1,Φx = SΦx(ω01) | f01|2 ,
Γϕ,Φx = SΦx(0) | f11 − f00|2 ,

(12)

with Sng(ω) and SΦx(ω) denoting the noise spectral densities and ni j = ⟨Ψi|n̂|Ψ j⟩, fi j = ⟨Ψi|∂ΦxÛ |Ψ j⟩ with i, j ∈ {0,1}. The
behavior of the rates in the different regimes is therefore strongly influenced by the matrix elements fi j and ni j that in turn
depend on the symmetry and shape of the wavefunctions.

FIG. 5. The matrix elements governing the rates induced by charge and flux-noise for ⟨ng⟩= 0 (solid black curves) and for ⟨ng⟩= 0.25 (dashed
gray curves). In all panels, lines and background colors indicate the regimes for ⟨ng⟩= 0, as in Fig. 1(b) of the main text.

• Dielectric relaxation Γ1,ng ∝ |n01|
In the twist-based regime n01 is exponentially suppressed by the quasi-localization of |Ψ0⟩ and |Ψ1⟩ in the charge basis.
In order to discuss the behavior of n01 in the other regimes, let us remark that the charge operator n̂ anticommutes with
K̂, {K̂, n̂} = 0, i.e. it is K̂-antisymmetric. Therefore since in the flux-biased regime the two wavefunctions are both K̂-
symmetric, n01 is cancelled out by parity. On the other hand it stays significantly different from zero in the plasmonic
regime. If the average ⟨ng⟩ does not vanish the symmetry of the wavefunctions changes but, as shown in Fig. 5(a), we still
find an exponential suppression of n01 in the flux-biased and twist-based regimes.

• Charge dephasing Γϕ,ng ∝ |n11 −n00|
At ⟨ng⟩ = 0 the matrix element |n11 − n00| vanishes in all the regimes since | ⟨n|Ψ0⟩ |2 and | ⟨n|Ψ1⟩ |2 are K̂-symmetric.
Away from ⟨ng⟩= 0 the protection against charge-induced dephasing is granted by EC ≪ EJ ,Eκ for which the dependence
of the spectrum on ⟨ng⟩ is exponentially suppressed in EJ/EC. See Fig. 5(b).

• Flux dephasing Γϕ,Φx ∝ | f11 − f00|
According to the Hellmann–Feynman theorem, f11− f00 = ∂Φx(h̄ω01). Therefore, analogous to ω01, f11− f00 is exponen-
tially suppressed in the twist-based regime and significantly different from zero in the other ones. Moreover, it has a jump
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at φ SUSY
x since ω01 has a cusp at this point. Finally, | f11 − f00| is approximately constant in the flux-biased regime since

ω01 is linear for φ SUSY
x ∼ π/2. The behavior seems essentially the same also for ⟨ng⟩ ̸= 0 as shown Fig. 5(c).

• Flux relaxation Γ1,Φx ∝ | f01|
Being ∂ΦxÛ ∼ (cos ϕ̂ +cos2ϕ̂) a K̂-symmetric operator, the matrix element f01 vanishes in the twist-based regime and in
the plasmonic one for ⟨ng⟩ = 0. In the flux-biased regime, for EC ≪ EJ , it is also suppressed due to the localization of
the wavefunctions around ϕ = 0 and ϕ = π as shown in Fig. 4(d). More specifically, in this regime, the dominant term
in f01 is cos2ϕ̂ . The contribution of cos ϕ̂ almost cancels out since the two wavefunctions are substantially equal up to a
π-translation and they are both K̂-symmetric, while cos ϕ̂ changes sign at ϕ = π/2. Analogously, f01 stays exponentially
suppressed for EC ≪ EJ and ⟨ng⟩ ̸= 0, see Fig. 5(d). A significant increase of f01 is instead found for asymmetric junctions
even at ⟨ng⟩= 0. Nevertheless we note that f01 remains at least one order of magnitude smaller than f11 − f00, see Fig. 6.

FIG. 6. The matrix element | f01| governing flux re-
laxation for ⟨ng⟩ = 0 and d = dκ = 10% (solid yellow
curve), d = dκ = 10%, dθ = 5% (dashed purple curve)
compared to the case d = dθ = dκ = 0 (shaded thick
gray curve) and to the standard asymmetric transmon
with d = 10% (thin gray curve). The parameters d, dκ
and dθ are defined as in the main text.

IV. SUPERSYMMETRY

For a specific value φ SUSY
x of the external flux all the excited levels of the Hamiltonian (11) become degenerate due to the

emergence of a supersymmetry. In this section we give an analitic expression of φ SUSY
x which, as pointed out in Sec. II, is the

threshold value separating the plasmonic regime from the flux-biased one.

FIG. 7. Spectrum for ⟨ng⟩= 0.25 showing that the degeneracy associated with supersymmetry is lifted in the high-energy levels.

A given Hamiltonian Ĥ is said to be supersymmetric if there exists a Hermitian supercharge Q̂ such that Ĥ = Q̂2 + c with
c ∈ R, and if there exists a Hermitian involution K̂, with K̂2 = 1, that anticommutes with Q̂, {K̂, Q̂} = 0. It then follows that
the involution K̂ commutes with the Hamiltonian and that the spectrum can be split in the direct sum of two sectors, each one
having a definite eigenvalue of K̂, so that Ĥ = P̂+ĤP̂++ P̂−ĤP̂−, with P̂± = (1± K̂)/2. The two sectors are exchanged through
P̂±Q̂ = Q̂P̂∓ in a way that, for every state |ψi⟩ of Ĥ with eigenvalue h̄ωi, Ĥ |ψi⟩= h̄ωi |ψi⟩, there exists a supersymmetric partner
Q̂ |ψi⟩ at the same energy. To be specific, let us consider the Hamiltonian describing the device presented in this work for
⟨ng⟩= 0,

Ĥ = 4ECn̂2 −EJ cos(2θ)cos(φx)cos(ϕ̂)+Eκ cos(2φx)cos(2ϕ̂) . (13)
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Following the route outlined in Refs. [1, 2] it is possible to show that this Hamiltonian can be written as Ĥ ∼ Q̂2, defining Q̂ as

Q̂ = 2
√

EC


n̂+ i

√
−Eκ cos(2φx)

2EC
sin(ϕ̂)


(−1)n̂ . (14)

and fixing the flux so that the following condition is satisfied

EJ cos(2θ)cos(φx) =
√

−8ECEκ cos(2φx) . (15)

It is important to note that the operator Q̂ is Hermitian only if
√

−Eκ cos(2φx) is real, therefore, independently on the value of
EC and Eκ , for Eq. 15 to hold we must have π/4 < φx < π/2. It then follows that

φ SUSY
x =

1
2

arccos
( −1

1+16Eκ EC/(E2
J cos2(2θ))

)
. (16)

In particular for θ = 43◦, α = 0.1 and EJ/EC = 2000 as in the main text, φ SUSY
x ∼ 0.414π in accordance with Fig. 4. It is

worth noting that supersymmetry guarantees doubly degeneracy of the spectrum a part from the ground state. The operator Q̂
is Hermitian and therefore eigenstates of Q̂ with eigenvalue qi, Q̂ |ψi⟩ = qi |ψi⟩, are also eigenstates of the Hamiltonian with
energy h̄ωi = q2

i a part from an overall shift of the zero energy. It follows that a state for which Q̂ |ψ0⟩ = 0 is the ground state.
Its non degeneracy comes from the fact that it can only belong to the K̂-symmetric sector. As shown by Fig. 7, if ⟨ng⟩ ≠ 0
supersymmetry is broken, however the quasi-degeneracy of the low energy states is preserved.

V. ±π/2 QUBIT AND 0−π QUBIT

Here we consider the structure of the spectrum and the symmetry of the eigenstates at θ ∼ 45◦, φx = 0 and at φx = π/2. In both
these situations the first harmonic Josephson tunneling vanishes while the second remains finite and dominates over the charging
energy so that the circuit implements, respectively, a ±π/2 and a 0−π qubit. The ±π/2 Hamiltonian can be cast as

Ĥ±π/2 = 4ECn̂2 +Eκ cos(2ϕ̂) , (17)

while the 0−π Hamiltonian reads

Ĥ0−π = 4ECn̂2 −Eκ cos(2ϕ̂) . (18)

The π-periodicity of the potential implies that the Hamiltonian commutes with the Hermitian operator Π̂ = (−1)n̂ = eiπ n̂. This
property yields a separation of the Hilbert space in eigenstates that are composed by superposition of even charge states, sym-
metric under Π̂, and eigenstates featuring only odd charge states, antisymmetric under Π̂. In addition, the invariance of the
potential under K̂ forces the eigenstates to have a definite K̂-parity. Summarizing for both Hamiltonians we have the following
symmetries:

Π̂ = (−1)n̂ = eiπ n̂ and K̂ such that K̂ϕ̂K̂ =−ϕ̂ . (19)

In both cases we can therefore label every eigenstate by a principal quantum number m, the parity sp under Π̂, and the parity sk
under K̂, so that

Π̂ |m,sp,sk⟩= sp |m,sp,sk⟩ , K̂ |m,sp,sk⟩= sk |m,sp,sk⟩ , (20)

with sp,sk ∈ {−1,+1}. These properties hold true for both the ±π/2 and the 0−π Hamiltonians hinting at a one-to-one corre-
spondence between their eigenstates. The two Hamiltonians are indeed connected by a unitary transformation Û = eiπ n̂/2 such
that Ĥ0−π = Û†Ĥ±π/2Û . We thus have that, given an eigenstate |m,sp,sk⟩ of Ĥ0−π with eigenvalue ωm, i.e. Ĥ0−π |m,sp,sk⟩ =
h̄ωm |m,sp,sk⟩, the state Û |m,sp,sk⟩ is eigenstate of Ĥ±π/2 with the same eigenvalue ωm, i.e. Ĥ±π/2Û |m,sp,sk⟩= h̄ωmÛ |m,sp,sk⟩.
In addition, we have that K̂Û = Û†K̂ and Û2 = Π̂. It follows that, given an eigenstate |m,sp,sk⟩ of Ĥ0−π we have

K̂Û |m,sp,sk⟩ = Û†K̂ |m,sp,sk⟩
= skÛ† |m,sp,sk⟩
= skÛ3 |m,sp,sk⟩
= skspÛ |m,sp,sk⟩ (21)
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where we used (Û†)4 = Û4 = 1. Eventually, using Û2 = Π̂, we obtain

Û |m,sp,sk⟩= |m,sp,sksp⟩ . (22)

Finally in Fig. 8 we plot the wavefunctions |Ψ0⟩ and |Ψ1⟩ together with the potential in both cases.

FIG. 8. First two levels and wavefunctions for (a) ±π/2 and (b) 0−π qubit. The solid red lines identify ω0 and |Ψ0⟩, while the dashed blue
ones ω1 and |Ψ1⟩.
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