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Abstract—Numerous Deep Learning (DL)-based approaches
have garnered considerable attention in the field of software
Log Anomaly Detection (LAD). However, a practical challenge
persists: the prevalent issue of class imbalance in the public
data commonly used to train the DL models. This imbalance
is characterized by a substantial disparity in the number of
abnormal log sequences compared to normal ones, for example,
anomalies represent less than 1% of one of the most popular
datasets, namely the Thunderbird dataset. Previous research
has indicated that existing DLLAD approaches may exhibit
unsatisfactory performance, particularly when confronted with
datasets featuring severe class imbalances. Mitigating class im-
balance through data resampling has proven effective for other
software engineering tasks, however, it has been unexplored for
LAD thus far. This study aims to fill this gap by providing
an in-depth analysis of the impact of diverse data resampling
methods on existing DLLAD approaches from two distinct
perspectives. Firstly, we assess the performance of these DLLAD
approaches across three datasets, and explore the impact of
resampling ratios of normal to abnormal data on ten data
resampling methods. Secondly, we evaluate the effectiveness of
the data resampling methods when utilizing optimal resampling
ratios of normal to abnormal data. Our findings indicate that
oversampling methods generally outperform undersampling and
hybrid sampling methods. Data resampling on raw data yields
superior results compared to data resampling in the feature
space. In most cases, certain undersampling and hybrid methods
(e.g., SMOTEENN and InstanceHardnessThreshold) show limited
effectiveness. Additionally, by exploring the resampling ratio of
normal to abnormal data, we suggest generating more data for
minority classes through oversampling while removing less data
from majority classes through undersampling. In conclusion, our
study provides valuable insights into the intricate relationship
between data resampling methods and DLLAD. By addressing
the challenge of class imbalance, researchers and practitioners
can enhance the model performance in DLLAD.

Index Terms—Deep Learning-Based Log Anomaly Detection,
Data Resampling Methods, Class Imbalance, Empirical Analysis
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SOFTWARE-intensive systems, which cater to a wide user
base [1], are susceptible to minor issues that can lead to

adverse consequences such as data corruption and performance
degradation [2]. In this context, logs play a crucial role in
system maintenance [3]–[6], as they capture essential runtime
information required for troubleshooting and performance
monitoring [7]. Consequently, there is a considerable interest
in utilizing logs for anomaly detection. Recently, many Deep
Learning-based Log Anomaly Detection (DLLAD) approaches
[2], [8]–[13] have been proposed to automatically identify
system anomalies, showing promising results.

In real-world scenarios in DLLAD, the proportion of nor-
mal data significantly outweighs that of abnormal data. For
instance, consider the Thunderbird dataset in Table I, one of
the commonly used public datasets where logs are grouped
into log sequences (with 20, 50, or 100 logs constituting a
sequence) for data analysis. In this dataset, anomalies only
account for 0.16%–0.35% of the total, highlighting the serious
imbalance in the data distribution. Le et al. [1] have revealed
that DLLAD models trained on highly imbalanced datasets
exhibit low precision or recall values. Low recall leads to
missed anomalies, leaving potential threats undetected, while
low precision generates numerous false alarms, causing alert
fatigue and resource wastage on normal logs [1], [12], [13].

Nonetheless, the issue of class imbalance in DLLAD has
remained unaddressed. Data resampling offers an alternative
by generating abnormal data or removing normal data, thereby
enabling the model to learn from a more balanced repre-
sentation of both classes. In this study, we aim to assess
the impact of data resampling on the performance of ex-
isting DLLAD approaches and explore the optimal ratio of
normal to abnormal data for data resampling. To achieve
these goals, we conduct an extensive empirical study by em-
ploying three oversampling methods (Random OverSampling
(ROS), SMOTE [14], and ADASYN [15]), three undersampling
methods (Random UnderSampling (RUS), NearMiss [16], and
InstanceHardnessThreshold [17]), and two hybrid sampling
methods (SMOTEENN [18] and SMOTETomek [18]) to DL-
LAD approaches (CNN [9], LogRobust [10], NeuralLog [2])
across three publicly available datasets. We compare the results
with DLLAD approaches with NoSampling (using the original
dataset). Furthermore, the data resampling methods can also
be categorized into resampling on raw data and resampling
in the feature space. It is important to note that many data
resampling methods are designed for application only within
the feature space, as they rely on distance computations.
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Simpler methods, like ROS and RUS, can be applied to both
raw data (duplicating/removing log sequences with identical
texts) and feature space (duplicating/removing sequences with
the same embedding vectors). We structure our study with the
following research questions:

• RQ1: Do the existing DLLAD approaches perform
well enough with varying degrees of class imbalance?
We first evaluate the performance of existing DLLAD
approaches across datasets with diverse levels of class
imbalance. Findings: The performance of DLLAD ap-
proaches is significantly influenced by the degree of class
imbalance, with their effectiveness notably decreasing
when faced with severe data imbalance.

• RQ2: How does the resampling ratio of normal to
abnormal data affect the ability of data resampling?
We explore how varying the resampling ratio of normal
to abnormal data impacts the results by using quarter-
based multipliers of the original ratio of normal to
abnormal log sequences. Findings: The effectiveness of
oversampling methods on DLLAD approaches is max-
imized when generating more abnormal log sequences.
Conversely, removing fewer normal log sequences en-
hances the effectiveness of undersampling methods on
DLLAD approaches. When DLLAD approaches already
perform well on specific datasets without applying data
resampling methods, they become less sensitive to the
choice of the resampling ratio.

• RQ3: Does data resampling improve the effectiveness
of existing DLLAD approaches?
We assess the effectiveness of data resampling on DL-
LAD approaches utilizing an optimal resampling ra-
tio (obtained from RQ2) of normal to abnormal data.
Findings: Overall, oversampling methods demonstrate
superior performance compared to undersampling and hy-
brid sampling methods. Remarkably, the straightforward
methods applied directly to raw data outperform other
methods applied within the feature space. Surprisingly,
in many scenarios, some more advanced undersampling
methods (i.e., NearMiss and InstanceHardnessThresh-
old), and even a hybrid sampling method SMOTEENN
aimed at mitigating data imbalance, fail to effectively
enhance the performance of DLLAD approaches.

In summary, our study makes the following two contribu-
tions.

• To the best of our knowledge, we undertake the first
extensive study aimed at systematically assessing the im-
pact of data resampling methods on model performance
in DLLAD. Our study encompasses a total of 4,185
experiments, wherein we employ ten data resampling
methods to existing DLLAD approaches and provide a
comprehensive evaluation and statistical analysis across
three publicly available benchmark datasets.

• Based on the empirical results, we conclude the findings
and provide recommendations to researchers and software
developers in the field of anomaly detection. We recom-
mend that practitioners 1) prefer oversampling with gen-
erating more abnormal log sequences over undersampling

and hybrid sampling and 2) prioritize data resampling
on raw data over data resampling within the feature
space. However, we do not recommend practitioners
use SMOTEENN for datasets with extremely high class
imbalance.

II. BACKGROUND

A. Overview of DLLAD Models

The typical workflow of DLLAD approaches (shown in Fig-
ure 1) consists of four phases: 1) log parsing, 2) log grouping,
3) log embedding, and 4) model training and prediction.

To effectively extract valuable information for analysis,
previous studies [2], [8], [10], [11], [19] convert the un-
structured log messages generated during system operation
into structured log events. Each log message comprises a
header and content, where the header includes information
like timestamps, typically omitted from analysis [2]. The log
content is then segmented into constant and variable sections
[2]. By replacing variable elements with a special symbol,
the original log messages are converted into log events as
illustrated in Figure 1. To group log events into log sequences,
we adopt the fixed window strategy used in prior studies [8],
[11], [12]. If an abnormal log event is part of a log sequence,
the log sequence is labeled as abnormal. Conversely, if the
log sequence comprises solely normal log events, it is labeled
as normal. These log sequences are subsequently transformed
into embedding vectors and used as input for training a
classification model to predict whether a log sequence is
abnormal.

B. Existing DLLAD Approaches

Recent DL approaches for anomaly detection can be cate-
gorized into three main groups (as discussed in Section VI):
Convolutional Neural Network (CNN)-based models, Long
Short-Term Memory-based models, and Transformer-based
models. To select the most suitable DLLAD approaches,
we take two factors into consideration. Firstly, we look for
models that are representative of the DL models described in
Section VI. Secondly, we aim to include models that have
been recently proposed. Therefore, we choose the following
models:

CNN. Lu et al. [9] adopted a CNN-based model to au-
tomatically detect log anomalies. Logs were parsed based
on log keys, which were then encoded using logkey2vec.
These embeddings were structured into a trainable matrix,
simplifying neural network training. The model architecture
comprised three convolutional layers, a dropout layer, and
max-pooling layers.

LogRobust. Zhang et al. [10] employed Drain [20] for
log parsing and integrated the FastText [21], a pre-trained
Word2vec model, with TF-IDF weights [22] to represent log
events as semantic vectors. Subsequently, these vectors are
utilized as input to an attention-based Bi-directional LSTM
(Bi-LSTM) model for detecting anomalies.

NeuralLog. Le et al. [2] preprocessed log messages without
log parsing and encoded them into vector representations
via a pre-trained Transformer-based language model BERT
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Fig. 1: The common workflow of DLLAD approaches.

[23]. Then, they apply a transformer encoder to classify log
sequences, with the primary objective of capturing semantic
information comprehensively.

C. Data Resampling

We make use of commonly adopted data resampling meth-
ods in the software engineering domain [24]–[27]. These meth-
ods are classified into three primary categories: oversampling,
undersampling, and hybrid sampling. As depicted by two
arrows in Figure 1, certain resampling methods are tailored
for use exclusively within the feature space, while others,
such as random oversampling and undersampling [25], can
be applied to both the raw data and the feature space. Data
resampling methods applied to raw data focus on directly
modifying the distribution of log sequences in the training set
to address class imbalance, thereby altering the number of log
sequences belonging to each class and subsequently impacting
the embedding vectors derived from them. In contrast, data
resampling methods within the feature space involve first
embedding the original log sequences and then resampling
based on these embedding vectors.

(1) Random OverSampling (ROS) randomly replicates log
sequences of the minority class without generating new ones.
These replicated abnormal sequences are then added to the
original dataset. This method, when applied to raw data and
feature space, is denoted as ROSR and ROSF , respectively.

(2) Random UnderSampling (RUS) randomly selects log
sequences from the majority class and subsequently removes
them from the original dataset. This method, when applied to
raw data and feature space, is denoted as RUSR and RUSF ,
respectively.

(3) Synthetic Minority Oversampling Technique (SMOTE)
[14] is an oversampling method applied to the feature space.
It augments the minority class by generating synthetic log
sequences instead of duplications. This method first randomly
selects log sequences from the minority class. For each
selected abnormal log sequence MA, one of its k nearest
neighbors MB are randomly chosen. The embedding vector of
the synthetic log sequence MS is calculated with the formula
xs = xA + Random(0, 1)(xB − xA), where xA and xB

represent the embedding vectors of MA and MB , separately.
These newly generated synthetic abnormal log sequences are
subsequently added to the original dataset.

(4) Adaptive Synthetic Sampling Approach [15] (ADASYN)
serves as an extension of SMOTE. Unlike SMOTE, ADASYN
generates new synthetic abnormal log sequences near the
class boundary instead of within the abnormal log sequences
themselves.

(5) NearMiss [16] operates as an undersampling method.
It calculates the distance between two classes and randomly
removes normal log sequences based on the distance. In our
evaluation, we adopt NearMiss-3, which has demonstrated
superior performance compared to NearMiss-1 and NearMiss-
2. Specifically, NearMiss-3 selects a number of the nearest
normal log sequences for each abnormal log sequence and
removes them from the dataset.

(6) Instance Hardness Threshold (IHT) [17] involves the
application of a classifier to the dataset, followed by the
removal of log sequences that are hard to classify. The Random
Forest (RF) [28] algorithm serves as the default estimator for
estimating the Instance Hardness (IH) [17] of individual log
sequences.

(7) SMOTEENN [18] is a hybrid sampling method that
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combines the oversampling method SMOTE and the un-
dersampling method Edited Nearest Neighbour (ENN) [29].
SMOTE generates abnormal log sequences that can sometimes
overlap with the majority class, making classification challeng-
ing. ENN, acting as a data cleaning method, helps address this
issue. For a normal log sequence, if more than half of its k
neighbor log sequences do not belong to the majority class,
then the log sequence is removed.

(8) SMOTETomek [18] is a hybrid sampling method that
shares similarities with SMOTEENN. It incorporates Tomek
links [30] for data cleaning, defined by the distances between
log sequences Mi and Mj from different two classes. A pair
(Mi, Mj) forms a Tomek link if no log sequence M exists
with d(Mi,M) < d(Mi,Mj) or d(Mj ,M) < d(Mi,Mj).
After oversampling by SMOTE, the log sequences that form
Tomek links are then removed to help reduce potential noise
or borderline log sequences that may affect classification
performance.

III. STUDY DESIGN

A. Datasets

To assess the performance of the log anomaly detection
approaches with the data resampling methods, there are four
widely-used publicly available datasets [31], [32], namely
HDFS, BGL, Thunderbird, and Spirit. However, since most
existing approaches (e.g., LogRobust and NeuralLog) have
already achieved satisfactory results on the HDFS dataset (e.g.,
F1 exceeding 0.98), we exclude it from our evaluation. BGL
dataset [31] is a collection of supercomputing system log data
gathered by Lawrence Livermore National Labs. Thunderbird
and Spirit datasets [31] are acquired from two real-world
supercomputers at Sandia National Labs. These log datasets
consist of both normal and abnormal log messages, which have
been manually identified.

TABLE I: The statistics of the three public datasets. TB, Msg,
Seq, and A are the abbreviations of Thunderbird, Messages,
Sequences, and Anomalies, respectively.

Dataset # of Msg ws
Training Data Testing Data

# of Seq # of A # of Seq # of A

BGL 4,713,493
20 188,540 17,252 47,134 3,006
50 75,416 7,415 18,853 1,383

100 37,708 4,009 9,425 817

TB 5,000,000
20 200,000 328 50,000 37
50 79,999 195 19,999 29

100 39,999 138 9,999 23

Spirit 5,000,000
20 200,000 8,817 50,000 290
50 79,999 4,275 19,999 270

100 39,999 2,577 9,999 250

To group log events into a log sequence, a fixed window
grouping strategy is commonly used [8], [11], [12]. However,
choosing an appropriate window size (ws) is challenging.
A small ws makes it difficult for log anomaly detection
models to capture anomalies that span multiple log sequences
[1]. Additionally, employing smaller ws results in more log
sequences containing fewer log events, ultimately leading to
slower training speed. On the other hand, if ws is large, log

sequences may include multiple anomalies and confuse the
detection scheme [1], [33]. In the majority of prior research
studies [2], [8], [11], [12], [34], a single window size is
typically employed to evaluate the proposed approaches, with
ws=20 being the most common choice. A few studies [1],
[13] have investigated multiple window sizes including 20,
100, and 200. In most cases, the F1 performance is found to
be better at ws=20 and 100 compared to ws=200. However,
there is no consistent pattern regarding which performs better
between ws=20 and ws=100. Our experiment results (shown
in Table III) also emphasize the absence of a universally
optimal window size across all DLLAD datasets. For instance,
LogRobust exhibits superior F1 and MCC performance on
the Thunderbird dataset at ws=100, while achieving better
performance on other datasets at ws=20. As a result, in
our experiments, we consider both ws=20 and ws=100 as
window sizes to account for potential variations in perfor-
mance. Additionally, we introduce a ws of 50 to provide a
balanced perspective between the shorter and longer sequences
analyzed. By including this intermediate window size, we aim
to uncover a more nuanced understanding of how log sequence
length impacts DLLAD performance, and whether the effects
of data resampling across datasets with different window sizes
are robust.

In Table I, we present the number of log sequences (# of
Sequences) in each dataset across various window sizes, as
well as recording the number of abnormal sequences within
all sequences (# of Anomalies) in both the training and
test sets. In Table II, we report the proportions of abnormal
sequences within all sequences (% of Anomalies) before and
after employing data resampling methods. The proportions
of anomalies are determined based on the resampling ratios
of normal to abnormal log sequences, which are calculated
by multiplying the original ratio of normal to abnormal log
sequences by quarter-based constants. The original datasets
exhibit very small proportions of anomalies, ranging from
0.16% to 10.63%. Moreover, enlarging the window size has
minimal impact on the level of class imbalance across each
dataset (for example, in BGL, the proportion of abnormal
sequences is 9.15% with ws=20 and 10.63% with ws=100.).
Upon implementing the specified resampling ratios, the pro-
portions of abnormal sequences have shown increases: 9.15%
to 40.29% (BGL dataset with ws=20), 9.83% to 43.62% (BGL
dataset with ws=50), 10.63% to 49.33% (BGL dataset with
ws=100), 0.16% to 0.66% (Thunderbird dataset with ws=20),
0.24% to 0.98% (Thunderbird dataset with ws=50), 0.35% to
1.38% (Thunderbird dataset with ws=100), 4.41% to 18.50%
(Spirit dataset with ws=20), 5.34% to 22.58% (Spirit dataset
with ws=50), 6.44% to 27.55% (Spirit dataset with ws=100),
respectively.

B. Evaluation

We use four commonly used evaluation metrics Recall,
Precision, Specificity, and F1-score in previous DLLAD stud-
ies [1], [2], [12], [35]. Given that Matthews Correlation
Coefficient (MCC) and Area Under the Curve (AUC) are
recommended for evaluating software engineering tasks with
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TABLE II: The proportion of abnormal sequences within all log sequences before and after over-/under-/hybrid sampling. r
denotes the original ratio of normal to abnormal log sequences in the training dataset, and quarter-based constants are represented
as 1/4, 1/2, and 3/4. The last nine columns correspond to the proportion of abnormal sequences after data resampling.

Dataset ws % of Anomalies
% of Anomalies

After Oversampling
% of Anomalies

After Undersampling
% of Anomalies

After hybrid sampling

r*1/4 r*1/2 r*3/4 r*1/4 r*1/2 r*3/4 r*1/4 r*1/2 r*3/4

BGL
20 9.15% 40.29% 20.14% 13.43% 28.72% 16.77% 11.84% 38.84% 19.36% 12.90%
50 9.83% 43.62% 21.81% 14.54% 30.37% 17.90% 12.69% 43.27% 21.62% 14.39%

100 10.63% 47.59% 23.79% 15.86% 32.24% 19.22% 13.69% 49.33% 21.98% 13.53%

TB
20 0.16% 0.66% 0.33% 0.22% 0.65% 0.33% 0.22% 0.58% 0.29% 0.20%
50 0.24% 0.98% 0.49% 0.33% 0.97% 0.49% 0.32% 0.85% 0.43% 0.32%

100 0.35% 1.38% 0.69% 0.46% 1.37% 0.69% 0.46% 1.36% 0.67% 0.46%

Spirit
20 4.41% 18.45% 9.22% 6.15% 15.57% 8.44% 5.79% 18.50% 9.20% 6.17%
50 5.34% 22.58% 11.29% 7.53% 18.42% 10.15% 7.00% 17.70% 10.50% 7.81%

100 6.44% 27.55% 13.77% 9.18% 21.60% 12.11% 8.41% 22.44% 11.16% 7.39%

class imbalance [36]–[40], we include both MCC and AUC
in our evaluation to provide a comprehensive assessment of
DLLAD model performance. The commonly used four metrics
originate from the confusion matrix, which describes four
types of instances: TP (True Positives) represents the number
of abnormal log sequences correctly predicted as anomalies,
TN (True Negatives) represents the number of normal log
sequences correctly predicted as normal, FP (False Positives)
represents the number of normal log sequences incorrectly
predicted as anomalies, and FN (False Negatives) represents
the number of abnormal log sequences incorrectly predicted
as normal. The definitions of these metrics are as follows:

(1) Recall= TP
TP+FN represents the proportion of actual

anomalies that are correctly predicted by DLLAD models
out of all actual anomalies present in the testing dataset. It
indicates DLLAD models’ ability to capture all abnormal log
sequences correctly.

(2) Precision= TP
TP+FP measures the proportion of pre-

dicted anomalies by DLLAD models that are actual anomalies
out of all anomalies predicted by the models. It indicates
the accuracy of the DLLAD models in identifying actual
anomalies without falsely labeling normal log sequences as
anomalies.

(3) Specificity= TN
TN+FP represents the proportion of actual

normal log sequences that are correctly predicted as normal
by DLLAD models out of all actual normal log sequences. It
indicates the ability of the DLLAD models to correctly identify
normal log sequences as normal.

(4) F1-score= 2×(Recall×Precision)
Recall+Precision calculates the harmonic

mean of Recall and Precision. It provides a balanced measure
between Precision and Recall, giving equal weight to false
positives and false negatives.

(5) MCC= TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

is a

fully symmetric metric that takes into account all four values
(TP, TN, FP, and FN) in the confusion matrix when calculating
the correlation between ground truth and predicted values.

(6) AUC is a threshold-independent measure that can be
calculated by assessing the area under the Receiver Operating
Characteristic (ROC) curve, which plots the true positive rate
(Sensitivity) against the false positive rate (1 - Specificity)
at various threshold settings. Unlike other metrics such as

Precision, Recall, F1-score, and MCC, which depend on the
choice of a threshold, AUC evaluates the classifier’s perfor-
mance across all possible threshold values.

To determine the statistical significance of the observed
performance differences among these data resampling meth-
ods, we employ the Scott-Knott Effect Size Difference (ESD)
test [41] based on the assumptions of ANalysis Of VAriance
(ANOVA). The Scott-Knott ESD test is a multiple comparison
approach that leverages hierarchical clustering to partition
these data resampling methods into distinct groups, exhibiting
statistically significant differences at the predetermined signif-
icance level of 0.05 (α=0.05). There are no statistically signif-
icant differences between data resampling methods within the
same group, but significant differences are observed between
data resampling methods located in different groups.

C. Research Questions

RQ1. Do the existing DLLAD approaches perform well
enough with varying degrees of class imbalance? In this
RQ, we evaluate the performance of existing DLLAD ap-
proaches in detecting log sequence anomalies across datasets
with different levels of class imbalance. Specifically, our
objective is to understand whether significant differences in
class imbalance have a notable influence on the effectiveness
of these DLLAD approaches. In cases where the achieved
performance is unsatisfactory, especially when dealing with
extreme class imbalance, the utilization of data resampling
methods becomes essential to address data imbalance issues
prior to model training. Consequently, in RQ2, our primary
focus is to explore the optimal resampling ratios of normal to
abnormal data. Subsequently, based on these ratios, in RQ3,
we discuss the effectiveness of data resampling methods in
enhancing the capabilities of DLLAD models.

RQ2. How does the resampling ratio of normal to
abnormal data affect the ability of data resampling?
Due to the varying levels of class imbalance in the different
datasets, it is challenging to establish a fixed resampling ratio
of normal to abnormal data, such as maintaining a consistent
10:1 ratio of normal to abnormal log sequences across all
datasets. Conducting an exhaustive exploration of countless
potential ratios to identify an optimal resampling ratio for each



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

dataset is not practically feasible. Considering the substantial
data imbalance, we avoid pursuing a 1:1 ratio of normal to
abnormal data during the data resampling process. This is
particularly evident in the Thunderbird dataset, where the
training set has a mere 0.16% anomaly rate with a window
size of 20. Applying a 1:1 ratio in such cases would result
in excessive data removal during undersampling, leading to a
significant loss of information. Thus, this resampling ratio is
not considered. Instead, we adopt the quarter as a foundational
unit for our empirical investigations in a flexible and adaptive
manner, as shown in Table II.

RQ3. Does data resampling improve the effectiveness
of existing DLLAD approaches? In this RQ, we utilize the
recommended resampling ratios of normal to abnormal data
observed in RQ2 within evaluated data resampling methods.
Subsequently, we assess the effectiveness of these resampling
methods when applied to existing DLLAD approaches.

D. Implementations

We implement the existing approaches introduced in Sec-
tion II-B using their respective GitHub repositories or repro-
duced codebases. Following previous works [1], [2], in our
dataset setup, the training set comprises the first 80% of raw
logs, while the remaining 20% is allocated for testing. To
reduce computational complexity and memory demands during
data resampling operations, for NeuralLog [2], we reduce the
embedding dimension from 768 to 256. For CNN [9] and
LogRobust [10], we utilize the implementations [1], adhering
to the instructions provided by the authors. The implementa-
tion of data resampling methods is carried out using the Python
toolbox [42] Imbalanced-learn1. Our experiments encompass
27 distinct instances, resulting from the combination of 3
DLLAD approaches, 3 datasets, and 3 window sizes. For
each experimental instance, we investigate 10 data resampling
methods with 3 different resampling ratios of normal to
abnormal data and NoSampling. As a result, we have a total of
3 × 3 × 3 × ( 10 × 3 + 1) combinations, summing up to 837
unique scenarios. To mitigate the variations in performance
across different runs, we perform five runs for each data
resampling method (including NoSampling), culminating in a
total of 4,185 experiments conducted in this study. These five-
run results are utilized for statistical significance analysis using
the Scott-Knott ESD test, which calculates the group ranking
of each data resampling method across different datasets.
Furthermore, the averages of the five-run results are provided
in Tables III–VI in Section IV. We run our experiments on a
Linux server with an Intel Xeon Silver 4210 CPU and four
Nvidia GeForce RTX 3090-Ti GPUs.

IV. RESULTS AND ANALYSIS

A. RQ1. Do the existing DLLAD approaches perform well
enough with varying degrees of class imbalance?

Table III provides an overview of the performance of CNN,
LogRobust, and NeuralLog on the BGL, Thunderbird, and
Spirit datasets with three window sizes. On the BGL and

1https://imbalanced-learn.org/stable/references/index.html

Thunderbird datasets, the best values for all evaluation metrics
are attained with a window size of 20 or 50. Specifically, on
the BGL dataset, except for NeuralLog achieving the highest
Precision and Specificity with ws=50, setting ws=20 yields the
best values for all evaluation metrics. Regarding the Thunder-
bird dataset, LogRobust exhibits notably low precision with
ws=20, resulting in subpar performance in terms of F1 and
MCC. However, LogRobust demonstrates better performance
with ws=50 than ws=100 in terms of all evaluation metrics.
CNN and NeuralLog follow a similar pattern, with all eval-
uation metrics achieving optimal results when ws=20, except
for NeuralLog achieving the highest AUC with ws=50. On the
Spirit dataset, CNN achieves similar performance with ws=20
and ws=100 in terms of F1 and MCC, outperforming ws=50.
LogRobust’s best performance is observed with ws=20 in
terms of Precision, Specificity, F1, and MCC, while LogRobust
performs best in Recall and AUC with ws=100. NeuralLog
demonstrates comparable performance with ws=20 and 50,
with slight variations < 0.001 in Specificity, F1, and MCC,
but superior to ws=100.

Regarding the Thunderbird dataset, it is notable that all
three approaches demonstrate relatively poor performance,
particularly CNN and LogRobust, which exhibit F1 and MCC
values below 0.5. Although NeuralLog performs better with an
F1 of 0.760 at ws=20, its performance remains unsatisfactory.
This subpar performance may be attributed to the dataset’s
extreme imbalance across three window sizes, compromising
the models’ ability to accurately detect both normal and
abnormal log sequences.

Finding 1: When the log sequence contains fewer
logs, DLLAD approaches tend to perform better since
abnormal logs are more easily noticed in shorter se-
quences.
Finding 2: When there is a severe data imbalance
(e.g., Thunderbird dataset), DLLAD approaches tend
to perform poorly because a significant class imbalance
can lead to the models becoming biased.

B. RQ2. How does the resampling ratio of normal to abnormal
data affect the ability of data resampling?

We comprehensively evaluate the ten data resampling meth-
ods for each dataset using quarter-based resampling ratios
obtained by multiplying the original ratio of normal data to ab-
normal data by 1/4, 1/2, and 3/4, as described in Section III-A.
The employed data resampling methods are categorized into
three distinct groups: OverSampling (comprising SMOTE,
ADASYN, ROSF , and ROSR), UnderSampling (encompassing
NearMiss, IHT, RUSF , and RUSR), and HybridSampling,
represented by SMOTEENN and SMOTETomek. In Figure 2a,
the three DLLAD approaches utilizing the ten data resampling
methods with the three resampling ratios are described through
heatmaps, with a special focus on the MCC metric, since MCC
is a fully symmetric metric that takes into account all four
values (TP, TN, FP, and FN) in the confusion matrix. We
adopt an enumeration of “hits”, signifying instances where
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TABLE III: The Recall, Precision, Specificity, F1-score, MCC, and AUC values of the three DLLAD approaches across the
three datasets, each with three different window sizes. Bold font highlights the best performance among the three window
sizes.

BGL TB Spirit
Model Metric ws=20 ws=50 ws=100 ws=20 ws=50 ws=100 ws=20 ws=50 ws=100

CNN

R 0.948 0.907 0.916 0.495 0.460 0.304 0.815 0.893 0.909
P 0.985 0.708 0.362 0.443 0.169 0.213 0.797 0.582 0.726
S 0.999 0.965 0.827 0.999 0.997 0.997 0.999 0.991 0.991
F1 0.966 0.787 0.510 0.441 0.247 0.241 0.806 0.704 0.807
MCC 0.964 0.779 0.509 0.454 0.277 0.247 0.805 0.716 0.807
AUC 0.977 0.919 0.903 0.866 0.812 0.786 0.967 0.996 0.995

LogRobust

R 0.949 0.911 0.903 0.766 0.609 0.449 0.892 0.910 0.918
P 0.860 0.709 0.793 0.084 0.317 0.277 0.973 0.805 0.863
S 0.989 0.968 0.978 0.994 0.998 0.997 1.000 0.997 0.994
F1 0.903 0.792 0.844 0.151 0.415 0.340 0.930 0.832 0.889
MCC 0.897 0.783 0.831 0.252 0.437 0.350 0.931 0.854 0.885
AUC 0.970 0.960 0.954 0.915 0.861 0.826 0.991 0.990 0.997

NeuralLog

R 0.896 0.627 0.598 0.772 0.730 0.756 0.899 0.931 0.938
P 0.852 0.872 0.671 0.758 0.469 0.470 0.899 0.864 0.800
S 0.989 0.991 0.878 1.000 0.999 0.999 0.999 0.999 0.999
F1 0.872 0.721 0.496 0.760 0.571 0.579 0.895 0.896 0.862
MCC 0.864 0.718 0.511 0.762 0.585 0.596 0.897 0.896 0.865
AUC 0.943 0.809 0.738 0.856 0.865 0.828 0.949 0.965 0.964

a particular resampling ratio maximizes the performance of
these DLLAD approaches.

In Figures 2a–2c, the analytical scope centers on three
datasets that use the same window size of 20. As an illustrative
example, the MCC values for NeuralLog’s performance using
SMOTE with three resampling ratios on the BGL dataset
(ws=20) are 0.947, 0.939, and 0.937, respectively. In this
specific case, the resampling ratio equal to one-quarter of
the original data ratio of normal to abnormal data yields
the highest MCC value. Consequently, a “hit” is recorded
for the corresponding entry, aligning with the cell marked
with a count of 8 in the lower left corner. If all three
MCC values were identical, there would be no hits recorded.
In Figure 2a, oversampling methods demonstrate superior
performance when the resampling ratio is one-quarter of the
original ratio of normal to abnormal data. This phenomenon
is particularly pronounced in BGL and Thunderbird datasets,
both yielding 8 hits out of a total of 12. Regarding the Spirit
dataset, the DLLAD approaches with NoSampling exhibit
strong performance in accurately detecting anomalies, with
the MCC ranging from 0.716 to 0.931. Interestingly, for this
dataset, the selected resampling ratio of normal to abnormal
data appears to have less impact on the performance of over-
sampling methods. When considering undersampling methods,
removing a smaller amount of original normal log sequences
can enhance the effectiveness of these methods. This effect
is particularly prominent when examining the Spirit dataset,
yielding 8 out of 12 hits. For hybrid sampling methods, it is
difficult to determine the most appropriate resampling ratio of
normal to abnormal data for the studied approaches. Especially
in the Thunderbird dataset, both one-quarter and three-quarter
resampling ratios exhibit an equal likelihood of achieving the
best DLLAD performance.

In Figures 2b and 2c, our findings exhibit a remarkable
consistency with those presented in Figure 2a. When the
resampling ratio is set to one-quarter of the original ratio of

normal to abnormal data, employing oversampling methods
on the three datasets demonstrates the highest likelihood
of achieving optimal performance, particularly in the BGL
dataset, with 8 or 9 out of 12 hits. Conversely, when the
resampling ratio is adjusted to three-quarters of the original
ratio of normal to abnormal data, the effectiveness of under-
sampling methods is maximized. This is notable in the Spirit
dataset, where 8 or 9 out of 12 hits are observed, signifying
optimal performance. Concerning hybrid sampling methods,
offering robust recommendations regarding the optimal resam-
pling ratio of normal to abnormal data remains a challenging
task. The effectiveness varies inconsistently across the three
datasets. Specifically, the most suitable resampling ratio within
the predefined range is three-quarters of the original ratio
for the BGL dataset, one-quarter of the original ratio for the
Thunderbird dataset, and one-second of the original ratio for
the Spirit dataset, respectively.

Finding 3: DLLAD approaches tend to show robust
initial performance (i.e., Figure III) on certain datasets
(i.e., Spirit), making the chosen resampling ratio of
normal to abnormal data for oversampling relatively
less sensitive in these cases.
Finding 4: In general, to enhance the performance
of DLLAD approaches with oversampling, it is rec-
ommended to increase the degree of minority class
amplification (i.e., generating more abnormal log se-
quences). Conversely, for DLLAD approaches employ-
ing undersampling, it is advisable to reduce the de-
gree of majority class reduction (i.e., removing fewer
normal log sequences). Notably, there is no specific
recommended resampling ratio preference for hybrid
sampling methods.

The effectiveness of this finding is mainly attributed to
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(a) ws=20 (b) ws=50 (c) ws=100

Fig. 2: The heatmap depicting the statistics of the best performance of the data resampling methods (including OverSampling
(OS), UnderSampling (US), and HybridSampling (HS)) with the three resampling ratios (r representing the original ratio of
normal to abnormal data) across the three datasets with different window sizes. (a) ws=20. (b) ws=50. (c) ws=100.

two aspects: 1) the introduction of diverse features through
extensive oversampling of abnormal log sequences, and 2)
the retention of valuable information from the original data
while efficiently removing a limited number of normal log
sequences. Oversampling and undersampling under these spe-
cific conditions contribute to enhancing the classification ca-
pabilities of DLLAD approaches.

C. RQ3. Does data resampling improve the effectiveness of
existing DLLAD approaches?

Tables IV–VI present the results of the three DLLAD
approaches with ten data resampling methods and NoSampling
on the three datasets. We utilize three distinct colors to
underscore the statistical differences among data resampling
methods and NoSampling in terms of all evaluation metrics:
Recall, Precision, Specificity, F1, MCC, and AUC. These
methods are categorized into multiple groups using the Scott-
Knott ESD test, often resulting in more than six groups.

Darker colors indicate higher-ranked groups, with each color
representing two groups (i.e., the darkest purple denotes the
first and second groups, moderate purple indicates the third
and fourth groups, and the lightest purple represents the
fifth and sixth groups). If some data resampling methods
fall outside the top six groups but significantly outperform
NoSampling, the results of these data resampling methods will
be bolded.

In general, our analysis reveals consistent patterns in the
performance of ten data resampling methods across different
DLLAD approaches in terms of comprehensive metrics F1,
MCC, and AUC. For instance, in Table IV, oversampling
methods (SMOTE and ADASYN) and the oversampling method
ROSR applied to raw data, significantly enhance the overall
performance of CNN across datasets, with improvements
ranging from 0.1% to 102.7% in F1, 0.5% to 103.2% in MCC,
and 0.1% to 6.6% in AUC. Table V illustrates that utilizing
SMOTE, ROSF , and RUSF within the feature space, in addition
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TABLE IV: The Recall, Precision, Specificity, F1-score, MCC, and AUC values of CNN when employing various data
resampling methods (i.e., NoSampling (NS), SMOTE (SMO), ADASYN (ADA), NearMiss (NM), InstanceHardnessThreshold
(IHT), SMOTEENN (SE), SMOTETomek (ST), RandomOverSampling in the feature space (ROSF ), RandomUnderSampling
in the feature space (RUSF ), RandomOverSampling applied to raw data (ROSR), and RandomUnderSampling applied to raw
data (RUSR)) to the three datasets, each with the three different window sizes. Darker cells signify superior performance,
while various colors denote statistical significance among data resampling methods for each evaluation metric (determined by
the Scott-Knott ESD test with a p-value<0.05), as observed in the subsequent tables.

Dataset ws Metric NS SMO ADA NM IHT SE ST ROSF RUSF ROSR RUSR

R 0.948 0.963 0.962 0.956 0.967 0.961 0.962 0.962 0.960 0.961 0.961
P 0.985 0.978 0.982 0.989 0.945 0.995 0.989 0.984 0.986 0.984 0.986
S 0.999 0.999 0.999 0.999 0.996 1.000 0.999 0.999 0.999 0.992 0.999
F1 0.966 0.970 0.972 0.972 0.956 0.977 0.975 0.973 0.973 0.972 0.974
MCC 0.964 0.968 0.970 0.970 0.953 0.976 0.973 0.971 0.971 0.972 0.972

20

AUC 0.977 0.982 0.978 0.978 0.974 0.977 0.979 0.984 0.974 0.984 0.983

R 0.907 0.910 0.912 0.898 0.944 0.896 0.915 0.931 0.915 0.918 0.899
P 0.708 0.853 0.877 0.895 0.192 0.882 0.761 0.538 0.205 0.885 0.885
S 0.965 0.987 0.990 0.991 0.684 0.990 0.971 0.916 0.717 0.990 0.991
F1 0.787 0.880 0.894 0.896 0.319 0.888 0.820 0.665 0.335 0.901 0.892
MCC 0.779 0.871 0.886 0.888 0.341 0.880 0.814 0.665 0.352 0.893 0.883

50

AUC 0.919 0.941 0.959 0.952 0.824 0.937 0.943 0.929 0.857 0.944 0.951

R 0.916 0.930 0.900 0.911 0.937 0.894 0.902 0.927 0.901 0.907 0.898
P 0.362 0.857 0.832 0.923 0.218 0.885 0.665 0.905 0.798 0.928 0.613
S 0.827 0.996 0.983 0.993 0.681 0.989 0.920 0.991 0.977 0.993 0.945
F1 0.510 0.891 0.865 0.917 0.353 0.888 0.729 0.916 0.844 0.917 0.727
MCC 0.509 0.889 0.852 0.909 0.359 0.878 0.722 0.908 0.831 0.910 0.713

BGL

100

AUC 0.903 0.962 0.928 0.958 0.837 0.953 0.912 0.954 0.929 0.953 0.907

R 0.495 0.495 0.532 0.532 0.550 0.000 0.495 0.568 0.541 0.550 0.495
P 0.443 0.821 0.426 0.123 0.185 1.000 0.821 0.154 0.230 0.825 0.817
S 0.999 1.000 0.999 0.997 0.998 1.000 1.000 0.998 0.998 1.000 1.000
F1 0.441 0.618 0.443 0.198 0.274 0.000 0.618 0.241 0.315 0.659 0.613
MCC 0.454 0.637 0.460 0.253 0.316 0.000 0.638 0.293 0.347 0.673 0.634

20

AUC 0.866 0.840 0.873 0.880 0.894 0.545 0.839 0.894 0.865 0.881 0.843

R 0.460 0.379 0.414 0.000 0.391 0.000 0.345 0.402 0.000 0.345 0.000
P 0.169 0.800 0.315 0.000 0.255 0.000 0.537 0.481 0.000 0.923 0.000
S 0.997 1.000 0.999 1.000 0.998 1.000 0.999 0.999 1.000 1.000 1.000
F1 0.247 0.490 0.355 0.000 0.299 0.000 0.383 0.376 0.000 0.501 0.000
MCC 0.277 0.536 0.359 0.000 0.309 0.000 0.410 0.406 0.000 0.563 0.000

50

AUC 0.812 0.799 0.826 0.713 0.816 0.638 0.793 0.810 0.725 0.841 0.738

R 0.304 0.290 0.348 0.043 0.261 0.000 0.319 0.348 0.000 0.348 0.000
P 0.213 0.326 0.447 0.333 0.092 0.000 0.465 0.463 0.000 0.600 0.000
S 0.997 0.998 0.999 1.000 0.996 1.000 0.998 0.999 1.000 0.999 1.000
F1 0.241 0.276 0.391 0.077 0.136 0.000 0.334 0.397 0.000 0.420 0.000
MCC 0.247 0.290 0.393 0.120 0.153 0.000 0.360 0.400 0.000 0.444 0.000

TB

100

AUC 0.786 0.788 0.776 0.736 0.786 0.656 0.788 0.801 0.733 0.802 0.730

R 0.815 0.822 0.814 0.822 0.851 0.614 0.823 0.826 0.808 0.823 0.800
P 0.797 0.922 0.864 0.797 0.482 0.845 0.934 0.975 0.975 0.991 0.946
S 0.999 1.000 0.999 0.999 0.995 0.999 1.000 1.000 1.000 1.000 1.000
F1 0.806 0.868 0.837 0.806 0.615 0.646 0.875 0.894 0.884 0.899 0.866
MCC 0.805 0.869 0.837 0.807 0.638 0.681 0.876 0.897 0.887 0.902 0.869

20

AUC 0.967 0.969 0.968 0.968 0.974 0.963 0.969 0.971 0.973 0.972 0.971

R 0.893 0.907 0.888 0.908 0.963 0.065 0.893 0.935 0.903 0.908 0.889
P 0.582 0.677 0.769 0.415 0.243 0.080 0.592 0.873 0.510 0.786 0.618
S 0.991 0.994 0.996 0.983 0.959 0.990 0.992 0.998 0.988 0.997 0.992
F1 0.704 0.774 0.823 0.570 0.388 0.071 0.712 0.903 0.652 0.842 0.728
MCC 0.716 0.780 0.823 0.607 0.472 0.060 0.723 0.902 0.673 0.842 0.737

50

AUC 0.996 0.997 0.997 0.993 0.978 0.921 0.996 0.998 0.995 0.998 0.997

R 0.909 0.919 0.919 0.899 0.961 0.888 0.908 0.931 0.907 0.925 0.924
P 0.726 0.853 0.771 0.510 0.311 0.623 0.657 0.904 0.784 0.880 0.803
S 0.991 0.996 0.993 0.977 0.945 0.986 0.988 0.997 0.994 0.997 0.994
F1 0.807 0.882 0.838 0.649 0.470 0.730 0.762 0.917 0.841 0.902 0.858
MCC 0.807 0.881 0.837 0.666 0.530 0.735 0.765 0.915 0.839 0.899 0.857

Spirit

100

AUC 0.995 0.998 0.998 0.992 0.976 0.994 0.997 0.999 0.988 0.998 0.988

to the resampling methods applied directly to raw data (ROSR

and RUSR), leads to significant performance improvements
for LogRobust across all datasets. These methods demonstrate
notable enhancements in F1 (improved by 1.3% to 252.3%),
MCC (improved by 1.3% to 121.0%), and AUC (improved
by 0.3% to 5.1%). Additionally, in many cases, ADASYN
and SMOTETomek significantly perform better than NoSam-
pling. Similarly, Table VI highlights the effectiveness of data
resampling for NeuralLog. Most data resampling methods,
including SMOTE, SMOTETomek, ROSF , ROSR, and RUSR,
can achieve significantly better performance than NoSampling
across all datasets with improvements ranging from 1.1% to
77.0% in F1, 1.8% to 69.5% in MCC, and 0.1% to 25.6% in

AUC. In summary, SMOTE, ROSF , ROSR, and RUSR applied
to DLLAD approaches significantly outperform NoSampling.
Additionally, improvements are observed in other metrics such
as Recall and Precision.

In addition, we observe that employing ROSR on all three
DLLAD approaches consistently yields superior performance.
Specifically, ROSR ranks within the top two groups (repre-
sented by the darkest purple color) in all 27 cases (3 DLLAD
approaches × 3 datasets × 3 window sizes) in terms of at least
two comprehensive metrics. SMOTE emerges as the second
recommended data resampling method, demonstrating signif-
icantly better performance than NoSampling in 26 out of 27
cases across all datasets in terms of at least two comprehensive
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TABLE V: The Recall, Precision, Specificity, F1-score, MCC, and AUC values of LogRobust when employing various data
resampling methods to the three datasets, each with the three different window sizes.

Dataset ws Metric NS SMO ADA NM IHT SE ST ROSF RUSF ROSR RUSR

R 0.949 0.958 0.955 0.951 0.952 0.952 0.956 0.938 0.942 0.951 0.948
P 0.860 0.885 0.889 0.882 0.858 0.887 0.889 0.892 0.892 0.912 0.904
S 0.989 0.992 0.992 0.991 0.989 0.992 0.992 0.992 0.992 0.994 0.993
F1 0.903 0.920 0.921 0.915 0.903 0.918 0.921 0.914 0.916 0.931 0.925
MCC 0.897 0.915 0.916 0.910 0.897 0.913 0.916 0.909 0.911 0.926 0.920

20

AUC 0.970 0.985 0.988 0.980 0.974 0.983 0.982 0.974 0.975 0.980 0.982

R 0.911 0.901 0.920 0.871 0.940 0.944 0.904 0.919 0.901 0.901 0.898
P 0.709 0.895 0.879 0.648 0.565 0.821 0.823 0.891 0.872 0.902 0.896
S 0.968 0.992 0.990 0.953 0.942 0.983 0.983 0.991 0.989 0.992 0.992
F1 0.792 0.898 0.899 0.726 0.706 0.877 0.859 0.905 0.886 0.901 0.897
MCC 0.783 0.890 0.891 0.718 0.703 0.869 0.849 0.897 0.877 0.893 0.889

50

AUC 0.960 0.966 0.966 0.964 0.962 0.960 0.942 0.966 0.965 0.963 0.966

R 0.903 0.928 0.878 0.917 0.945 0.887 0.908 0.889 0.900 0.936 0.887
P 0.793 0.892 0.908 0.870 0.803 0.896 0.957 0.914 0.900 0.894 0.896
S 0.978 0.989 0.992 0.987 0.978 0.990 0.996 0.992 0.990 0.989 0.990
F1 0.844 0.909 0.892 0.893 0.868 0.892 0.932 0.901 0.900 0.915 0.892
MCC 0.831 0.901 0.882 0.883 0.858 0.882 0.926 0.892 0.890 0.907 0.882

BGL

100

AUC 0.954 0.963 0.961 0.959 0.961 0.961 0.971 0.967 0.964 0.966 0.961

R 0.766 0.459 0.641 0.775 0.811 0.000 0.775 0.802 0.703 0.652 0.529
P 0.084 0.708 0.218 0.108 0.127 0.000 0.111 0.141 0.313 0.285 0.352
S 0.994 1.000 0.998 0.995 0.996 1.000 0.995 0.996 0.997 0.998 0.998
F1 0.151 0.532 0.313 0.189 0.220 0.000 0.193 0.239 0.368 0.376 0.371
MCC 0.252 0.557 0.364 0.286 0.319 0.000 0.290 0.335 0.425 0.415 0.403

20

AUC 0.915 0.849 0.903 0.920 0.933 0.544 0.916 0.922 0.905 0.685 0.870

R 0.609 0.529 0.598 0.347 0.644 0.000 0.540 0.552 0.425 0.598 0.425
P 0.317 0.804 0.433 0.647 0.236 0.000 0.271 0.404 0.636 0.852 0.805
S 0.998 1.000 0.999 1.000 0.996 1.000 0.998 0.998 1.000 1.000 1.000
F1 0.415 0.637 0.481 0.450 0.333 0.000 0.355 0.444 0.497 0.703 0.554
MCC 0.437 0.651 0.497 0.473 0.379 0.000 0.378 0.459 0.513 0.713 0.583

50

AUC 0.861 0.881 0.864 0.847 0.885 0.524 0.872 0.854 0.860 0.870 0.865

R 0.449 0.464 0.435 0.536 0.565 0.029 0.485 0.435 0.507 0.464 0.420
P 0.277 0.436 0.510 0.216 0.146 0.667 0.374 0.597 0.469 0.655 0.488
S 0.997 0.998 0.999 0.995 0.992 1.000 0.998 0.999 0.999 0.999 0.999
F1 0.340 0.429 0.457 0.297 0.232 0.056 0.418 0.501 0.484 0.526 0.450
MCC 0.350 0.438 0.463 0.331 0.284 0.139 0.422 0.507 0.485 0.541 0.451

TB

100

AUC 0.826 0.868 0.846 0.851 0.848 0.727 0.859 0.865 0.864 0.831 0.837

R 0.892 0.910 0.914 0.910 0.937 0.791 0.913 0.913 0.915 0.918 0.915
P 0.973 0.991 0.990 0.836 0.510 0.547 0.975 0.993 0.996 0.990 0.989
S 1.000 1.000 1.000 0.999 0.995 0.992 1.000 1.000 1.000 1.000 1.000
F1 0.930 0.949 0.950 0.862 0.660 0.542 0.943 0.951 0.954 0.953 0.950
MCC 0.931 0.950 0.951 0.867 0.689 0.599 0.943 0.951 0.954 0.953 0.951

20

AUC 0.991 0.990 0.993 0.988 0.991 0.980 0.992 0.993 0.994 0.993 0.992

R 0.910 0.903 0.914 0.896 0.974 0.899 0.903 0.907 0.910 0.925 0.907
P 0.805 0.949 0.763 0.736 0.218 0.717 0.893 0.957 0.884 0.905 0.917
S 0.997 0.999 0.996 0.996 0.952 0.995 0.999 0.999 0.998 0.999 0.999
F1 0.832 0.925 0.832 0.808 0.356 0.798 0.898 0.931 0.897 0.915 0.912
MCC 0.854 0.925 0.833 0.809 0.449 0.800 0.897 0.930 0.896 0.914 0.911

50

AUC 0.990 0.990 0.990 0.989 0.967 0.989 0.990 0.990 0.990 0.991 0.990

R 0.918 0.923 0.920 0.925 0.981 0.765 0.913 0.939 0.923 0.909 0.916
P 0.863 0.945 0.904 0.609 0.330 0.725 0.644 0.972 0.895 0.983 0.950
S 0.994 0.999 0.996 0.984 0.949 0.991 0.987 0.999 0.997 1.000 0.999
F1 0.889 0.933 0.911 0.733 0.493 0.717 0.753 0.955 0.908 0.945 0.932
MCC 0.885 0.932 0.908 0.742 0.553 0.725 0.759 0.954 0.906 0.944 0.931

Spirit

100

AUC 0.996 0.999 0.997 0.993 0.982 0.994 0.995 0.998 0.997 0.997 0.996

metrics. Similarly, ROSF and RUSR outperform NoSampling
in 25 out of 27 cases, followed by ADASYN in 24 out of 27
cases. In contrast, NearMiss, IHT, and SMOTEENN exhibit
poor performance, succeeding in only 10 out of 27, 4 out of
27, and 13 out of 27 cases, respectively.

Finding 5: Employing SMOTE, ROSF , ROSR, and
RUSR to alleviate the class imbalance can yield better
results compared to NoSampling in DLLAD. ↗
Finding 6: Data resampling on the raw data (ROSR

and RUSR) tends to outperform data resampling in
the feature space (including the advanced hybrid one
SMOTETomek), particularly in the case of undersam-
pling. ↗
Finding 7: In general, oversampling exhibits better
performance compared to undersampling and hybrid
sampling.

In datasets characterized by moderate imbalance, such as
BGL and Spirit, several data resampling methods contribute to
improved performance in DLLAD approaches. Given the con-
sistent results between F1 and MCC, and the minimal changes
in AUC in certain cases, our analysis primarily focuses on the
outcomes of MCC, a recommended symmetric metric. For the
BGL dataset with a ws of 20, CNN achieves high performance
with an MCC of 0.964 (as shown in Table IV). Most data
resampling methods, excluding IHT, contribute to a slight
improvement of 0.4%–1.2%. When the ws is set to 100, the
impact of data resampling methods becomes more significant,
with enhancements ranging from 40.1% to 78.8%. The Recall
is increased by the reduction in false positives, leading to
a higher percentage of accurately predicted anomalies and
an overall enhancement in the comprehensive metric MCC.
With ws=50, IHT, ROSF , and RUSF perform inferiorly to
NoSampling, while others improve NoSampling by 5.5%–
14.6%. Similarly, for the same dataset with ws=20, most data
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TABLE VI: The Recall, Precision, Specificity, F1-score, MCC, and AUC values of NeuralLog when employing various data
resampling methods to the three datasets, each with the three different window sizes.

Dataset ws Metric NS SMO ADA NM IHT SE ST ROSF RUSF ROSR RUSR

R 0.896 0.951 0.929 0.842 0.766 0.867 0.875 0.939 0.897 0.937 0.925
P 0.852 0.932 0.908 0.166 0.818 0.908 0.925 0.894 0.958 0.923 0.910
S 0.989 0.995 0.994 0.691 0.987 0.994 0.995 0.992 0.997 0.995 0.994
F1 0.872 0.941 0.918 0.275 0.788 0.886 0.899 0.915 0.926 0.930 0.917
MCC 0.864 0.937 0.913 0.282 0.776 0.880 0.893 0.910 0.922 0.925 0.912

20

AUC 0.943 0.971 0.956 0.767 0.877 0.930 0.935 0.966 0.947 0.966 0.955

R 0.627 0.753 0.891 0.755 0.732 0.645 0.675 0.899 0.680 0.880 0.807
P 0.872 0.825 0.840 0.284 0.740 0.900 0.888 0.844 0.956 0.897 0.903
S 0.991 0.985 0.984 0.621 0.979 0.992 0.990 0.986 0.998 0.992 0.992
F1 0.721 0.770 0.854 0.325 0.735 0.739 0.747 0.869 0.794 0.888 0.837
MCC 0.718 0.763 0.849 0.297 0.715 0.740 0.749 0.860 0.794 0.879 0.836

50

AUC 0.809 0.869 0.937 0.688 0.856 0.819 0.833 0.943 0.839 0.936 0.899

R 0.598 0.892 0.828 0.640 0.874 0.755 0.713 0.842 0.520 0.878 0.656
P 0.671 0.715 0.831 0.323 0.190 0.799 0.887 0.883 0.808 0.879 0.904
S 0.878 0.963 0.982 0.601 0.650 0.980 0.991 0.989 0.985 0.989 0.993
F1 0.496 0.787 0.818 0.336 0.312 0.767 0.789 0.859 0.603 0.878 0.759
MCC 0.511 0.774 0.807 0.259 0.300 0.751 0.778 0.848 0.608 0.866 0.752

BGL

100

AUC 0.738 0.919 0.916 0.620 0.763 0.890 0.852 0.905 0.753 0.927 0.829

R 0.772 0.862 0.561 0.821 0.683 0.496 0.691 0.772 0.683 0.756 0.740
P 0.758 0.800 0.852 0.717 0.825 0.886 0.869 0.842 0.886 0.942 0.883
S 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F1 0.760 0.827 0.676 0.765 0.738 0.635 0.770 0.805 0.771 0.838 0.805
MCC 0.762 0.829 0.691 0.766 0.745 0.662 0.775 0.806 0.778 0.843 0.808

20

AUC 0.856 0.931 0.780 0.910 0.841 0.748 0.845 0.886 0.841 0.886 0.878

R 0.730 0.854 0.805 0.854 0.748 0.537 0.748 0.813 0.813 0.879 0.715
P 0.469 0.788 0.797 0.700 0.803 0.880 0.671 0.808 0.603 0.986 0.935
S 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000
F1 0.571 0.812 0.797 0.769 0.770 0.667 0.686 0.808 0.683 0.928 0.811
MCC 0.585 0.816 0.799 0.773 0.773 0.687 0.697 0.809 0.695 0.930 0.818

50

AUC 0.865 0.927 0.902 0.927 0.874 0.768 0.874 0.906 0.906 0.939 0.899

R 0.756 0.756 0.911 0.683 0.732 0.512 0.618 0.805 0.780 0.813 0.732
P 0.470 0.697 0.497 0.583 0.698 0.778 0.790 0.750 0.681 0.828 0.882
S 0.999 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
F1 0.579 0.718 0.641 0.629 0.714 0.618 0.642 0.776 0.727 0.820 0.800
MCC 0.596 0.722 0.671 0.631 0.714 0.631 0.672 0.777 0.729 0.820 0.803

TB

100

AUC 0.828 0.878 0.955 0.841 0.866 0.756 0.832 0.902 0.890 0.906 0.866

R 0.899 0.919 0.929 0.950 0.940 0.881 0.925 0.939 0.920 0.919 0.924
P 0.899 0.969 0.902 0.380 0.510 0.976 0.945 0.928 0.800 0.976 0.889
S 0.999 1.000 0.999 0.990 0.995 1.000 1.000 1.000 0.999 1.000 0.999
F1 0.895 0.943 0.915 0.534 0.661 0.925 0.935 0.933 0.855 0.946 0.905
MCC 0.897 0.943 0.915 0.591 0.690 0.927 0.935 0.933 0.857 0.947 0.905

20

AUC 0.949 0.959 0.964 0.970 0.968 0.940 0.962 0.969 0.960 0.960 0.962

R 0.931 0.913 0.937 0.944 0.946 0.889 0.919 0.932 0.933 0.923 0.919
P 0.864 0.975 0.921 0.446 0.588 0.969 0.957 0.947 0.921 0.997 0.997
S 0.999 1.000 1.000 0.993 0.996 1.000 1.000 1.000 1.000 1.000 1.000
F1 0.896 0.943 0.929 0.603 0.724 0.926 0.937 0.939 0.927 0.959 0.957
MCC 0.896 0.943 0.928 0.644 0.743 0.927 0.937 0.939 0.926 0.959 0.957

50

AUC 0.965 0.962 0.968 0.968 0.971 0.944 0.960 0.966 0.966 0.962 0.961

R 0.938 0.930 0.937 0.829 0.951 0.853 0.937 0.923 0.926 0.937 0.937
P 0.800 0.985 0.989 0.810 0.556 0.938 0.927 0.989 0.974 0.996 0.947
S 0.999 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000 1.000
F1 0.862 0.957 0.962 0.819 0.702 0.893 0.932 0.955 0.950 0.966 0.942
MCC 0.865 0.957 0.962 0.819 0.726 0.894 0.932 0.955 0.950 0.966 0.941

Spirit

100

AUC 0.964 0.965 0.968 0.915 0.973 0.926 0.968 0.961 0.963 0.968 0.964

resampling methods, except for IHT, enhance the performance
of LogRobust (Table V), with improvements ranging from
1.3% to 3.2%. At ws=50, aside from undersampling methods
applied to the feature space (i.e., NearMiss and IHT), all
other methods positively impact the performance, with im-
provements of 8.4%–14.6%. At ws=100, all data resampling
methods enhance NoSampling with an increase of 3.2%–
11.4%. In the case of NeuralLog, data resampling methods
consistently show improvement trends, as shown in Table VI.
Except for NearMiss and IHT, all other resampling methods
lead to improvements ranging from 1.9% to 69.5% across three
window sizes.

For the Spirit dataset with ws=20, Table IV illustrates that
most data resampling methods, except for NearMiss, IHT, and
SMOTEENN, contribute to an improvement in the performance
of CNN, with enhancements ranging from 4.0% to 12.0% in
MCC. With ws=50, except for NearMiss, IHT, SMOTEENN,
and RUSR, other methods show positive effects, resulting

in improvements of 1.0% to 26.0%. At ws=100, except for
NearMiss, IHT, SMOTEENN, and SMOTETomek, other meth-
ods enhance NoSampling by 3.7% to 13.4%. Table V indicates
that data resampling on LogRobust has a comparable impact to
data resampling on CNN. With the exception of undersampling
and hybrid sampling methods applied within the feature space,
other methods excluding ADASYN contribute to an increase
in NoSampling by 1.3% to 8.9% across three window sizes.
When applying data resampling to NeuralLog, only NearMiss,
IHT, and RUSF do not enhance its performance across window
sizes, as demonstrated in Table VI. Other data resampling
methods show improvements of 0.9% to 11.7% compared to
NoSampling.

In the highly imbalanced Thunderbird dataset, both ROSR

and SMOTE demonstrate overall performance enhancements
for DLLAD approaches, with ROSR showing statistically
significant improvements across all cases. When applying
data resampling methods to CNN on this dataset, unexpected
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results appear. Undersampling methods, such as RUSF , RUSR,
NearMiss, as well as the hybrid sampling method SMO-
TEENN, uniformly cause the CNN to classify all log se-
quences as normal sequences, resulting in performance metrics
(i.e., Recall, Precision, F1, and MCC) being reduced to 0.
Conversely, ROSR improves NoSampling by 48.2%, 103.2%,
and 79.8% for ws set to 20, 50, and 100, respectively.
Surprisingly, a statistically significant difference in CNN per-
formance is only observed with SMOTETomek and ROSR.
Table V demonstrates that when applying data resampling
to LogRobust on this dataset, all data resampling methods
except for NearMiss, IHT, SMOTEENN, and SMOTETomek
yield improvements ranging from 5.0% to 121.0% across three
window sizes. In contrast to the effects observed on CNN, it
is worth noting that undersampling, oversampling, and hybrid
sampling methods except for ADASYN, IHT, and SMOTEENN,
can positively impact NeuralLog (as shown in Table VI).
Particularly, random sampling applied to raw data (i.e., ROSR

and RUSR) substantially enhances the MCC of NoSampling
by 6.0% to 59.0%. In addition, concerning other metrics such
as Recall and Precision, data resampling methods (except for
NearMiss, IHT, and SMOTEENN) significantly outperform
NoSampling across all datasets in most cases.

Finding 8: In cases of severe class imbalance (e.g.,
the abnormal proportion is less than 1%), ROSR

consistently enhances the effectiveness of DLLAD
approaches. In cases of moderate class imbalance,
SMOTE, ROSF , ROSR, and RUSR exhibit effectiveness
improvements across DLLAD approaches. ↗

Furthermore, there are other noteworthy observations from
the analysis. Some undersampling methods (i.e., NearMiss and
IHT) might not perform well in many cases, particularly in the
dataset with severe class imbalance. The limited performance
of these methods can be attributed to the significant reduction
of the majority class while addressing class imbalance. This
reduction poses a risk of losing vital information present in the
log data. Hybrid sampling methods like SMOTEENN attempt
to address class imbalance by generating synthetic abnormal
sequences and subsequently eliminating normal log sequences
that share overlapping features with another class. Similarly,
SMOTEENN cannot effectively improve the performance of
DLLAD approaches. One potential reason for this limitation
is that removing normal log sequences based on overlapping
features between the synthetic abnormal sequences (which
may contain noise) and the normal data may also result in the
loss of crucial information. In contrast, oversampling methods,
which focus on generating additional log sequences of the
minority class, effectively mitigate the class imbalance issue.
While this process may introduce some level of noise due
to the replication and generation of abnormal log sequences,
it seems to be a more effective strategy for preserving crucial
information within log data. These observations emphasize the
trade-off between addressing class imbalance and retaining
critical data information when applying the data resampling
methods in DLLAD.

Finding 9: Undersampling methods NearMiss and IHT
are often ineffective in addressing the data imbalance
problem. In addition, the hybrid method SMOTEENN
generally does not improve the performance of DL-
LAD approaches. ↘

V. DISCUSSION

A. Why Do(not) Data Resampling Methods Work?

In RQ3, we investigate the impact of various data resam-
pling methods on the performance of DLLAD approaches. To
enhance the interpretability of their performance, we utilize
Local Interpretable Model-agnostic Explanations (LIME) [43],
which is a widely-used model-agnostic explainable algorithm
for explaining deep learning models in software engineering
[44]–[49]. LIME can identify the most important tokens in a
log sequence that contribute to the DLLAD model’s prediction.

In Tables VII and VIII, we present two examples showcas-
ing the LIME results for an actual abnormal and normal log
sequence, both with and without employing data resampling
methods. The first column denotes the number of log events
in the log sequence, while the second column describes the
specific content of each log event. The last column displays the
top five tokens contributing to the LogRobust prediction with
various data resampling methods. (1) The example in Table VII
is derived from the Spirit dataset with ws=20, where certain
data resampling methods perform better than NoSampling
in terms of Recall. The second log event, highlighted in
orange, signifies its abnormal nature. This event signifies the
attempt to open a port for debugging purposes, which is
typically considered an abnormal operation in a production
environment. Such an action may suggest a potential security
risk or an effort to troubleshoot an issue. LogRobust with
NoSampling erroneously predicts the actual abnormal log se-
quence as normal. Examining the top five tokens reveals none
of them appearing in the abnormal log event, thereby failing to
accurately capture any abnormal information. However, when
employing data resampling methods except for SMOTEENN,
LogRobust correctly predicts the abnormal sequence based
on highlighted abnormal tokens. Notably, with ROSR, three
tokens overlap with the abnormal log event, suggesting that
properly duplicated log sequences in the raw data could
positively influence DLLAD models in learning real patterns
for detecting anomalies. (2) The example in Table VIII is
derived from the Thunderbird dataset with ws=20, where
certain data resampling methods substantially improve the
Precision values compared to NoSampling. LogRobust with
NoSampling erroneously predicts the actual normal log event
as abnormal. The top five tokens extracted by LogRobust
with NoSampling primarily focus on the sixth and seventh log
events. These events describe the unavailability of an IP ad-
dress for allocation. While this repetition of log messages may
imply network configuration or capacity planning issues, it is
important to consider that in a dynamically changing network
environment, especially with a large number of temporary
devices or clients, such occurrences may be anticipated. After
employing data resampling methods, except for NearMiss,
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TABLE VII: An example of an abnormal log sequence from the Spirit dataset with ws=20, where the second log event is
highlighted in orange as it represents an anomaly (left), and the top five tokens in the log sequence contributing to the DLLAD
model’s correct prediction are highlighted in orange (right).

# Log event Top five tokens

1 publickey for < ∗ > from < ∗ > port < ∗ > ssh< ∗ > NoSampling é: publickey, opened, closed, port, user

2 LANai is not running. Allowing port=< ∗ > open for debugging SMOTE Ë: publickey, debugging , LANai , opened, user
3 NOTICE: < ∗ >

4 closed for user < ∗ > ADASYN Ë: publickey, debugging , opened, user, ssh
5 opened for user < ∗ > by < ∗ >

6 publickey for < ∗ > from < ∗ > port < ∗ > ssh< ∗ > NearMiss Ë: publickey, opened, closed, user, debugging
7 opened for user < ∗ > by < ∗ >

8 publickey for < ∗ > from < ∗ > port < ∗ > ssh< ∗ > IHT Ë: publickey, debugging , LANai , opened, user
9 opened for user < ∗ > by < ∗ >

10 publickey for < ∗ > from < ∗ > port < ∗ > ssh< ∗ > SMOTEENN é: publickey, closed, opened, user, NOTICE
11 opened for user < ∗ > by < ∗ >

12 publickey for < ∗ > from < ∗ > port < ∗ > ssh< ∗ > SMOTETomek Ë: publickey, opened, NOTICE, debugging , closed
13 opened for user < ∗ > by < ∗ >

14 publickey for < ∗ > from < ∗ > port < ∗ > ssh< ∗ > ROSF Ë: publickey, debugging , NOTICE, LANai , closed
15 opened for user < ∗ > by < ∗ >

16 publickey for < ∗ > from < ∗ > port < ∗ > ssh< ∗ > RUSF Ë: publickey, debugging , LANai , NOTICE, closed
17 opened for user < ∗ > by < ∗ >

18 publickey for < ∗ > from < ∗ > port < ∗ > ssh< ∗ > ROSR Ë: debugging , port , open , publickey, NOTICE
19 opened for user < ∗ > by < ∗ >

20 publickey for < ∗ > from < ∗ > port < ∗ > ssh< ∗ > RUSR Ë: debugging , NOTICE, port , user, publickey

TABLE VIII: An example of a normal log sequence from the Thunderbird dataset with ws=20, along with the top five tokens
in the log sequence contributing to the DLLAD model’s prediction (right).

# Log event Top five tokens
1 client does not accept options NoSampling é: client, no, free, leases, options
2 client does not accept options SMOTE Ë: client, options, Temperature, changed, stratum
3 client does not accept options
4 client does not accept options ADASYN Ë: client, options, Temperature, Celsius, stratum
5 client does not accept options
6 from < ∗ > via eth1: network < ∗ > no free leases NearMiss é: client, options, no, free, leases
7 from < ∗ > via eth1: network < ∗ > no free leases
8 /dev/sda, Temperature changed < ∗ > Celsius to < ∗ > Celsius since last report IHT Ë: client, options, Temperature, stratum, network
9 /dev/sda, Temperature changed < ∗ > Celsius to < ∗ > Celsius since last report

10 to < ∗ > stratum < ∗ > SMOTEENN Ë: client, options, Celsius, Temperature, network
11 to < ∗ > stratum < ∗ >
12 to < ∗ > stratum < ∗ > SMOTETomek Ë: client, options, Celsius, Temperature, stratum
13 /dev/sda, Temperature changed < ∗ > Celsius to < ∗ > Celsius since last report
14 client does not accept options ROSF Ë: client, options, Temperature, Celsius, stratum
15 client does not accept options
16 client does not accept options RUSF Ë: client, options, Celsius, Temperature, stratum
17 client does not accept options
18 client does not accept options ROSR Ë: client, options, Temperature, Celsius, stratum
19 client does not accept options
20 client does not accept options RUSR Ë: client, options, Temperature, Celsius, stratum

the LogRobust model shifts its attention to different tokens,
such as “Temperature”, “changed”, and “Celsius”, and predicts
the actual normal log event as normal. In summary, certain
data resampling methods can prioritize crucial tokens in log
sequences, aiding DLLAD models in making more accurate
predictions than NoSampling. Consequently, DLLAD mod-
els utilizing data resampling methods demonstrate improved
prediction capabilities for both abnormal and normal log
sequences. These advancements may result from the enhanced
distribution of training data achieved through data resampling
methods, enabling the model to better distinguish between
normal and abnormal log sequences based on learned patterns.

B. Implications of Our Findings

The analysis of the experiments demonstrated the superi-
ority of SMOTE, ROSF , ROSR, and RUSR over other data
resampling methods in most cases. The choice of window size
and DLLAD model significantly influence the comparative
outcomes. This research carries several practical implications
for practitioners.

(1) Efficiency prioritization: Practitioners typically aim
to efficiently train DLLAD models to identify log anomalies
within a short timeframe. In this regard, CNN and LogRobust
require less training time, and larger window sizes can notably
reduce costly processing time. Additionally, applying ROS and
RUS methods on raw data for data duplication and removal
before embedding takes considerably less time than data
resampling methods in feature spaces. Based on our experi-
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mental findings, LogRobust outperforms CNN overall. Hence,
employing ROSR and RUSR with LogRobust is recommended
for efficient prediction.

(2) Effectiveness prioritization: For non-urgently training
DLLAD models to detect log anomalies, practitioners priori-
tize high accuracy in predicted results. In datasets with smaller
window sizes and more balanced distributions (e.g., BGL and
Spirit), the difference between LogRobust and NeuralLog is
not significant. However, for highly imbalanced datasets (e.g.,
Thunderbird), NeuralLog noticeably outperforms LogRobust.
Thus, it is advisable to adopt these data resampling methods
(SMOTE, ROSF , ROSR, and RUSR) with NeuralLog for ef-
fective prediction.

C. Threats to Validity
(1) Limited models and datasets. One potential concern

pertains to our selection of DLLAD approaches, we adapted
existing supervised approaches for our empirical investigation.
This choice is motivated by several factors: Semi-supervised
approaches leverage only a fraction of normal logs, whereas
unsupervised methods assume datasets lack labels, diverging
from our fully supervised data scenario. Furthermore, some
unsupervised and semi-supervised approaches share a model
structure similar to NeuralLog, as observed in LAnoBERT
[34] and Hades [35]. Previous empirical studies [1], [2]
have consistently shown inferior performance of unsuper-
vised and semi-supervised approaches compared to supervised
ones. Hence, we deliberately include the latest supervised
approaches as our evaluated DLLAD approaches. Another
concern arises from the limited availability of datasets. Given
that there are currently only several public datasets available
(i.e., HDFS, BGL, Thunderbird, and Spirit), approaches have
already demonstrated good performance on HDFS, we have
chosen to exclusively use the remaining three datasets for our
experimental analysis. In future work, we intend to investigate
the generalizability of our conclusions across more datasets.

(2) Hyperparameter settings. The selection of an appro-
priate resampling ratio of normal to abnormal data constitutes
a threat when assessing the effectiveness of data resampling
methods. Considering numerous data resampling methods and
the impracticality of evaluating all of them across diverse
datasets with exhaustive resampling ratio variations, it is cru-
cial to systematically choose the resampling ratio. To address
this challenge, we introduce a standardized quarter-based unit
for a consistent benchmark across various data resampling
methods. On this basis, the general conclusions obtained aid
researchers in narrowing their focus for subsequent study
phases.

(3) Generalizability. To enhance the generalizability of
our findings, we intentionally select three distinct categories
encompassing a total of ten data resampling methods. These
data resampling methods are systematically applied to three
existing DLLAD approaches on publicly available datasets.
Our objective does not compare the effectiveness of those
DLLAD approaches but rather focuses on evaluating the
capabilities of different data resampling methods applied to
those approaches. As such, our findings aim to highlight gen-
eral trends in how data resampling affects different DLLAD

approaches, with the ultimate goal of offering valuable insights
to inform future research endeavors.

VI. RELATED WORK

A. Deep Learning-Based Log Anomaly Detection

Numerous DLLAD models have been proposed and typ-
ically fall into several categories, including CNN-based,
LSTM-based, and Transformer-based models. Lu et al. [9]
employed CNN with three filters to extract local semantic
information from log data. Zhang et al. [50], Du et al. [8],
and Meng et al. [11] adopted LSTM [51] to capture long-
term dependencies in log sequences and learn log patterns for
predicting the next log. Vinayakumar et al. [52] employed a
stacked-LSTM model to learn temporal patterns using sparse
representations. Zhang et al. [10] proposed the LogRobust
method that integrated the attention mechanism with a Bi-
LSTM model, enabling comprehensive sequence information
capture in both directions. Li et al. [53] employed a uni-
fied attention-based Bi-LSTM model to learn the patterns
for sequential anomaly detection. Le et al. [2] introduced
NeuralLog, utilizing BERT for embedding representation and a
Transformer encoder for log anomaly detection classification.
To the best of our knowledge, only the work by Le et al. [1] has
highlighted that DLLAD models trained on highly imbalanced
datasets exhibit low precision or recall values. Yet, there is
currently no research exploring whether data resampling meth-
ods can mitigate class imbalance issues and improve DLLAD
model performance. Subsequent work, such as unsupervised
approach LAnoBERT [34], and semi-supervised approaches
like PLELog [12], AdaLog [13], and Hades [35], have emerged
to alleviate the potential difficulty of acquiring large labeled
log datasets for training supervised learning models in log
anomaly detection. However, we chose to focus on CNN [9],
LogRobust [10], and NeuralLog [2] as the DLLAD models in
our study, instead of these recently proposed semi-supervised
or unsupervised methods. Our rationale behind this decision is
based on the following reasons. (1) Different data scenarios:
semi-supervised approaches use only a portion of the normal
logs, and unsupervised approaches assume datasets have no
labels, which differs from our fully supervised data hypothesis
scenario. (2) Similar model structure: some unsupervised and
semi-supervised approaches share a model structure similar
to NeuralLog [2]. For example, LAnoBERT [34] employed
pre-trained BERT for unsupervised learning with a masked
language modeling loss function, and Hades utilized Fast-
Text for semantic vector representation and Transformer for
classification. (3) Performance disparities: previous empirical
studies [1], [2] have indicated notably inferior performance
of unsupervised and semi-supervised approaches compared to
supervised approaches.

B. Data Resampling for Software Engineering.

Data resampling has been widely applied to address the
class imbalance issue in the field of software engineering, such
as quality prediction [54], bug classification [55], [56], defect
prediction [26], [39], [57]–[62], and code smell detection [63],
[64]. For example, Zheng et al. [55] analyzed the impact of
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six data resampling methods (e.g., SMOTE, Mahakil [65], and
Rose [66]) on multiple classifiers for bug report classification.
They found that the combination of Rose with random forest
yielded the best performance. Bennin et al. [59] observed
that while their investigated data resampling methods have
no statistically significant effect on defect prioritization, these
methods improve the defect classification performance with
regard to Recall and G-mean. Subsequently, they [39] demon-
strated that random undersampling and borderline-SMOTE
are the more stable data resampling methods in software
defect prediction. Li et al. [64] investigated the effects of 31
imbalanced learning methods on machine learning classifiers
for code smell detection. Their study revealed varied impacts
of these methods across different code smells, with deep forest
consistently enhancing performance. Additionally, certain data
resampling methods such as CNN, ENN, BSMOTE, and
ROS showed superior performance compared to SMOTE.
Differently from prior work, in the context of log anomaly
detection, which poses unique challenges such as the need for
careful selection of window sizes, our research conducts an
extensive analysis to explore the influence of data resampling
methods on model performance across various window sizes.
Furthermore, our study delves into the effects of some data
resampling methods on both raw data and the feature space,
providing valuable insights for practitioners in this field.

C. Deep Learning-Based Anomaly Detection in Other Fields.

Deep learning-based anomaly detection is applicable not
only in software log anomaly detection but also in diverse
fields like fraud detection [67]–[70], medical diagnosis [71]–
[74], manufacturing defect detection [75], and network intru-
sion detection [76]. While the workflow for anomaly detection
in these domains shares similarities with the depicted Figure 1,
specific data preprocessing steps, such as log parsing and
grouping, may not be applicable. In these fields, class imbal-
ance also presents a significant challenge that can affect the
performance of anomaly detection models. Various data resam-
pling methods have been employed to address this issue. For
example, Heryadi et al. [67] utilized RUS on non-fraudulent
transactions and adopted a hybrid CNN-LSTM model to
capture both short and long-term financial transaction features.
Similarly, Roy et al. [68] implemented RUS with a recom-
mended resampling ratio [77] of 10:1 for non-fraudulent to
fraudulent credit card transaction data, followed by an LSTM
model for detecting fraud in credit card transactions. In med-
ical anomaly detection, imbalanced datasets pose challenges,
leading to sensitivity issues during supervised training [74].
Common strategies, such as data resampling and cost-sensitive
training [72], are employed to mitigate these challenges.
Li et al. [73] employed a CNN-based model with adjusted
class weights to analyze phonocardiograms for abnormal heart
sound detection. In network intrusion detection, Abdelkhalek
et al. [76] proposed a data resampling approach combining
ADASYN and Tomek Links in conjunction with diverse deep
learning models (such as LSTM and CNN) for improved
detection of malicious attacks, aiming to address the class
imbalance issue between normal traffic and attack samples. In

summary, the aforementioned studies suggest that certain data
resampling methods can enhance model performance, aligning
with our findings. However, empirical research regarding the
most effective data resampling methods, optimal resampling
ratio, and their impacts on both raw data and the feature space
is currently lacking in these fields.

VII. CONCLUSION

Our study represents a pioneering effort in comprehensively
assessing the impact of ten data resampling methods on allevi-
ating class imbalance in DLLAD. Through empirical analysis,
we have derived several critical insights. Firstly, severe data
imbalances, like in the Thunderbird dataset, often lead to poor
performance in DLLAD approaches. Secondly, oversampling
methods generally outperform both undersampling and hybrid
sampling methods. Moreover, data resampling on raw data
yields superior results compared to data resampling in the fea-
ture space. Notably, ROSR exhibits outstanding performance,
particularly in scenarios characterized by severe class imbal-
ances. Thirdly, certain undersampling and hybrid sampling
methods, such as SMOTEENN and IHT, show limited effec-
tiveness in most cases. Furthermore, our exploration of dif-
ferent resampling ratios of normal to abnormal data provides
actionable recommendations for optimizing the impact of data
resampling on DLLAD approaches. We suggest generating
more data for minority classes (oversampling) to significantly
reduce class imbalance while removing less data from majority
classes (undersampling). In summary, our findings provide a
valuable roadmap for researchers seeking to address the issue
of data imbalance in DLLAD. By adopting the recommended
strategies for data resampling, researchers can enhance the
performance and effectiveness of DLLAD approaches.

Data Availability. Our source-code and data are publicly
available2.
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