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A vortex, a circulating flow around a void, is one of the basic topological phenomena in nature. Here we
show that vortices generally emerge in spin wave travelling upon topologically nontrivial magnetic texture, due
to the transverse precession of spin wave about the background magnetization. The winding number of each
spin wave vortex is equivalent to sign of the local topological density of magnetic texture at the vortex core, and
all winding numbers add up as twice the topological number of the magnetic texture. Based on the charts of
spin wave vortices, the magnetization profile of the magnetic texture is reversely constructed, and a universal
relation for the magnon topological Hall angle is theoretically proposed and numerically confirmed in vast types
of magnetic textures. The simple connection between dynamic and static magnetizations, promotes spin wave
vortex as a powerful tool to reveal the topology of the underlying magnetic texture.

Introduction. Vortex is a fundamental and ubiquitous con-
cept in both classical and quantum branches of physics,
which spans from galaxy in cosmology, typhoon in airflow,
whirlpool in fluids [1–6], fluxon in superconductors [7, 8] to
structured field in waves [9–13]. Depending on the timescale,
vortices generally divide into two categories, the static con-
figuration that hosts extra energy, and the dynamic struc-
ture that harbors additional information. Representatively, the
static vortex is a key ingredient in type II superconductivity
[14, 15] and the Berezinskii-Kosterlitz-Thouless phase transi-
tion [16, 17], and dynamic vortex is the primary carrier of or-
bital angular momentum in optical [18, 19] and electron beam
[20, 21].

Benefiting from the diverse timescales of magnetizations,
the static and dynamic phenomena coexist in the same mag-
netic system [22]. As spatial and temporal excitations in
magnets, the magnetic texture and spin wave, together with
their rich interaction scenarios, attract paramount interest for
both scientific explorations and industrial applications [23–
27]. The magnetic vortex [28, 29], along with magnetic do-
main wall [30, 31], skyrmion [32–34], bimeron [35] and hop-
fion [36, 37], serve as the basic storage units in racetrack
memories. In contrast, the spin wave vortex is still a missing
member in the vortex family, and its interplay with magnetic
texture remains elusive.

In this work, we show that vortices naturally develop in spin
wave, and capture the essential topology of its phase struc-
ture. The winding numbers of the spin wave vortices are inti-
mately connected to the topological number of magnetic tex-
ture, due to the topological connections between dynamic and
static magnetizations. From the charts of spin wave vortices,
the texture magnetization is reconstructed, and the magnon
topological Hall angles at vast types of magnetic textures are
evaluated in a unified way.

Singular points in spin wave profile. Consider a ferromag-
net film in x-y plane with its magnetization direction denoted
by unit vector m, as depicted in Fig. 1(a). The magnetiza-
tion naturally partitions into the static magnetic texture part
m0 and the dynamic spin wave part δm, m = m0 + δm.
In the small amplitude limit of spin wave |δm| ≪ 1, the

transverse condition is satisfied everywhere δm · m0 = 0,
as enforced by the unity constraint |m| = |m0| = 1. Hence,
by attaching spherical coordinates êr/θ/ϕ to background tex-
ture magnetization êr ≡ m0, the spin wave is described by
δm = δmθêθ + δmϕêϕ. Furthermore, the spin wave can be
always regarded as right circular about the static magnetiza-
tion in uniaxial ferromagnet [38, 39], and thus is rewritten as
δm ≡ Re[ψξ], where ψ = δmθ− iδmϕ and ξ = êθ+ iêϕ are
the complex wave component and basis [40, 41], respectively.

Due to its vectorial nature, the spin wave is typically pro-
jected into a specific direction for experimental observation
and theoretical inspection [42–45] (e.g., δmx along the x̂ di-
rection). Generally, along arbitrary direction p, the projected
spin wave component is δmp = δm·p, which follows relation
δmp = Re[ψξp] with ξp = ξ · p the projected basis. Con-
sequently, at some specific sites where the local texture mag-
netization aligns with the projection direction, m0 = ±p, the
projected basis becomes exactly zero ξp = 0. The vanishing
intensity (amplitude) of the spin wave component δmp, along
with the indetermined phase [9, 46–48], then lead to singular
points in the spin wave profile.

Spin wave vortex around a singular point. For convenience
of inspection, we define a fixed frame ê1/2/3, which coincides
with the co-rotating frame êr/θ/ϕ at a chosen singular point.
At vicinity of the singular point, the projected basis reads

ξp ≈ m2 + im3, (1)

where m2/3 = m0 · ê2/3 are static magnetization components
in the transverse direction of ê1. In above approximation, the
relations êθ · ê1 ≈ ê2 · êr and êϕ · ê1 ≈ ê3 · êr are invoked
for these two neighboring frames. Around the singular point,
the projected basis ξp expands as

ξp ≈
(
1 i
)
J
(
∆x
∆y

)
, (2)
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Figure 1. Spin wave vortices on a topologically nontrivial magnetic texture. (a) Schematics of a topologically nontrivial magnetic texture.
The texture magnetizations are represented by gray arrows, and the spin wave antenna is represented by the purple bar. (b) Spin wave profile
δmx extracted from micromagnetic simulations. The magnetic setup follows the schematics in (a), and the local regions around singular points
are highlighted by dashed rectangles. (c) Schematics of a magnetic Bloch sphere and its two tangent planes. The transverse magnetizations
projected into the tangent planes are depicted by blue arrows. (d) Vectorial representation of the projected basis ξp around two singular points
m0 = ±p. (e) Typical profiles and the corresponding phase structure of spin wave vortices for positive/negative winding number w = ±1.
(f) Typical profiles of the projected basis ξp for w = ±1.

where J is the Jacobian matrix given by

J =

(
∂m2

∂x
∂m2

∂y
∂m3

∂x
∂m3

∂y

)
, (3)

and (∆x,∆y) are the displacements from the singular point.
Without loss of generality, consider a planar spin wave ψ =

ceikx, where the complex amplitude c and the wave vector k
are both regarded as constants. Modulated by the projected
basis ξp with the typical profiles shown in Fig. 1(f), the spin
wave δmp forms a vortex around the singular point in Fig.
1(e). The topology of vortex is characterized by the winding
number

w ≡ 1

2π

∮
l

d arg(ψξp) ≡
1

2π

∮
l

d arg(ξp) = sgn(J), (4)

where l is a small loop enclosing the singular point, and J
is the Jacobian J ≡ det(J ). Excluding the laminar flow,
the vorticity of the spin wave flux circulating around the vor-
tex core is |c|2J ẑ. As a defining feature of a vortex, the
spin wave experiences a wavefront dislocation [49–53] with
an additional half-wavefront developed at the singular point,
as illustrated in Fig. 1(e). For vortices with winding number
w = ±1, an additional phase of ±2π is accumulated along
the loop l, and an extra half-wavefront is inserted from the
lower/upper side of the spin wave fringe.

As a representative example, consider that a planar spin

wave travels upon a magnetic skyrmion, as schematically de-
picted in Fig. 1(a). For projection direction p = x̂, there are
two points with local magnetization aligns with magnetiza-
tion m0 = ±x̂. In Fig. 1(d), the projected basis ξx becomes
zero at these two singular points, and forms two saddle-type
structures at the vicinity with winding number w = −1. Con-
sequently, two vortices are unambiguously identified by two
fork patterns in the fringe, at the spin wave profile δmx ex-
tracted from micromagnetic simulation in Fig. 1(b). More-
over, due to the insertion of two additional half-wavefronts
from the upper side, the fringe is squeezed to the lower side,
giving rise to an intensified beam toward the lower-right di-
rection.

Spin wave vortex and magnetic texture topology. The tex-
ture magnetization profile m0(x, y) can be deemed as a map
from the complex plane x + iy to a magnetic Bloch sphere
in Fig. 1(c), where the all peripheral region collapse to a sin-
gle ∞ point [54]. As a map between two compact manifolds
of the same dimension CP 1 → S2, the degree of map Q
(more known as topological number [55, 56]) is an integer,
which counts the number of times the complex plane wraps
the Bloch sphere under the mapping m0(x, y). In integral
form, the topological number (degree of map) is written as

Q =

∫∫
qdxdy =

∫∫ [
1

4π
m0 ·

(
∂m0

∂x
× ∂m0

∂y

)]
dxdy,

(5)
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Figure 2. Distributions of spin wave vortices and the correspond-
ing wavefront dislocations. (a) Distributions of spin wave vortices
in real space. (b) Distributions of singular points in mapped spin
space. Positive/negative signed circles indicate the inner/outer side of
the map pierced by the radial lines emanating from origin. (c)(d) The
wavefront dislocations along p and p′. Only the main wavefronts in
fork shape are sketched, and the background color encode the topo-
logical density q. In all figures, the solid/dashed (or filled/hollow)
elements are along the observation directions p and p′, respectively.

where q is the topological density (Gaussian curvature nor-
malized by 4π [54]).

For an arbitrary direction p, there are two points lying op-
positely on the Bloch sphere m0 = ±p, with the preimage
points in the x-y plane as the singular points. The local map-
ping from the region around a singular point in x-y plane to
the tangent plane in the Bloch sphere is governed by the Jaco-
bian matrix J in Eq. (3) [54]. Moreover, the sign of the Jaco-
bian sgn(J) determines the relative (same or opposite) orien-
tation between the x-y plane and the tangent plane, and thus
relates the original winding number w and the target winding
number w̃ via w = sgn(J)w̃. It is noteworthy that the Ja-
cobian in Eq. (4) is related to topological density in Eq. (5)
by J = 4πq, and the transverse magnetization in the tangent
plane m⊥

0 = p × (m0 × p) is the vectorial form of ξp in
Eq. (1). Hence, observing that the winding number of the
transverse magnetization is fixed to w̃ = 1 in Fig. 1(c), the
winding number of the spin wave vortex in the x-y plane is
then given by Eq. (4).

Global Aharonov-Bohm phase and local phase singulari-
ties. The spin wave dynamics in uniaxial ferromagnets is gen-
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Figure 3. Reconstruction of texture magnetization from spin
wave vortices. (a) Upper panels: Original spin wave projected
into x̂ and ŷ directions; Lower panels: Reconstructed spin wave pro-
jected into in-plane directions (±x̂ + ŷ)/

√
2. (b) Deduced texture

magnetizations along in-plane directions in 2-dimensions. (c) Upper
panel: Original spin wave projected into ẑ directions; Lower panels:
Reconstructed spin wave projected into directions (±x̂+ŷ+ẑ)/

√
3.

(d) Deduced texture magnetization along selected directions in full 3-
dimensions.

erally governed by a Schrodinger-like equation [23, 57–59]

i∂tψ = γA
[
(i∇− a)2

]
ψ, (6)

where γ is the gyromagnetic ratio, A is the exchange coupling
constant. Here, a is the fictitious vector potential mediated by
the magnetic topology [58–61], and b = (∇ × a)z = 4πq
is the fictitious magnetic field [62–65]. The Aharonov-Bohm
phase acquired by a spin wave along the loop enclosing the
whole magnetic texture is given by [62, 63, 66–68]

∆Φ =

∮
a · dr =

∫∫
bdxdy = 4πQ, (7)

which is quantized in 2π to ensure the single-valuedness of
spin wave.

Meanwhile, since the indeterminacy of phase is excluded
in regions with finite wave amplitude, a non-zero phase only
accumulates along the loops encircling spin wave vortices.
Hence, the Aharonov-Bohm phase in Eq. (7) divides into
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phase singularities in spin wave vortices,

∆Φ = 2π

∑
j

w+j +
∑
j′

w−j′

, (8)

where wj (w−j′ ) is the winding number of spin wave vortex
at r+j (r−j) with m0 = ±p. Alternatively, ∆Φ/2π measures
the relative shift between spin wave fringes in homogeneous
domains far above and below the magnetic texture, by count-
ing the number difference of half-wavefronts inserted from
upper and lower sides, as illustrated in Fig. 2(c)(d).

As two aspects of the same phase, the equivalence between
Eq. (7) and Eq. (8) are actually ensured by the identity [54]

Q =
∑
j

w+j =
∑
j′

w−j′ , (9)

which is the discrete form of the topological number (degree
of map). As schematically depicted in Fig. 2(b), rather than
integrating q throughout the whole map in Eq. (5), a more
straighforward evaluation of Q is to count the in/out sides of
the map pierced by a ray in arbitrary direction p, characterized
by wj = sgn[q(rj)] [69–71]. According to Eq. (9), the spin
wave vortices always emerge in pair, grouped in co-/counter-
rotating fashion with the same/opposite winding number. Par-
ticularly for |Q| = 1, there are at least one co-rotating pair of
spin wave vortices within the magnetic texture, as a manifesta-
tion of the Hopf-Poincare index (hairy ball) theorem [72]. As
the observation direction p varies, the positions and windings
of spin wave vortices change correspondingly in Fig. 2(a), but
their combinations are always subject to the constraints of the
topological number Q.

Texture magnetization from spin wave vortices. Based
on three independent profiles along orthogonal directions{
x̂1/2/3

}
, the spin wave profile along arbitrary direction p

can be generally synthesized, δm·p =
∑3

j=1(δm·x̂j)(x̂j ·p).
By treating the vortices as position indicators in the synthe-
sized spin wave profile along p, the texture magnetization
m0 = ±p is reversely identified in the magnetic film. Collect-
ing the 2D anatomy slices of spin wave profiles by sweeping
p, the 3D full figure of texture magnetization is reconstructed,
as illustrated in Fig. 3(c)(d).

Even when certain spin wave information is inevitably
missing in practice, the texture magnetization can still be par-
tially retrieved. In Fig. 3(a)(b), without out-of-plane spin
wave component δmz , the spin wave profile along arbitrary
in-plane direction is available from δmx and δmy , and all tex-
ture magnetizations residing in in-plane directions are identi-
fied in the magnetic film.

Magnon topological Hall angle. In a wave perspective, the
change of propagation direction is dictated by the transverse
shift ∆W and longitudinal shift ∆L associated with the wave-
front bending, as illustrated in Fig. 4(a). Translating each 2π
phase into a wavelength λ, the transverse shift is ∆W = 2λQ
according to Eq. (7). Meanwhile, the longitudinal shift is for-

Q = −1

Q = +1

∆W

∆L
β

Q = −1

Q = +1

σ = −1

σ = +1 Antiskyrmion

Bimeron

Normalized wavevector: kR

H
al
l
A
n
gl
e:
β

(a)

(b)

FM AFM

Skyrmion Q=1

FM

Skyrmion

Bimeron

Antiskyrmion

AFM Skyrmion

Figure 4. Spin wave vortices (a) and magnon topological Hall
angle (b) for vast types of magnetic textures with |Q| = 1. In
(a), the background red/blue color encodes the spin wave profile, the
dashed squares highlight the locations of spin wave vortices. In (b),
the dots are extracted from micromagnetic simulations, and the solid
lines represent the universal relation in Eq. (10).

mulated by ∆L = 2ηR, where R is the characteristic size
of the magnetic texture, and η is the shape factor that phe-
nomenologically characterizing spatial distributions of spin
wave vortices. With the geometry built upon above two per-
pendicular shifts, the magnon toplogical Hall angle is given
by

β = arctan
∆W

∆L
= arctan

(
πQ

η

1

kR

)
, (10)

which reduces to the inverse proportionality β ∝ 1/kR in
the short wavelength limit kR ≫ 1. Except the topological
number Q [55, 62, 63] and normalized wavevector kR [62],
the Hall angle β in Eq. (10) is solely determined by the shape
factor η of the magnetic texture. Although the shape factor
η varies per definition, the Hall angle β is only tunable via
changing the wavevector k of spin wave or the size R of mag-
netic texture, once a specific type of texture is chosen.
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The universal Hall angle β in Eq. (10) is verified by micro-
magnetic simulations using Mumax 3 [73] for vast types of
magnetic texture, as plotted in Fig. 4(b). Particularly for three
types of magnetic texture with |Q| = 1, magnetic skyrmion,
bimeron and anti-skyrmion, the Hall angle β as function of
normalized wavevector kR falls into the same line with shape
factor η ≈ 2.5, for a wide range of magnetic texture size R
and spin wave wavevector k. As anchors for the shape factor,
the co-rotating vortice pair always reside on a circle of radius
R within all these textures, when the observation direction is
perpendicular to the magnetization in homogeneous domain.
As the topological number Q increases to Q = 2 and further
Q = 3, the Hall angle increases only slightly, due to low effi-
ciency in assembling spin wave vortices to accommodate the
final wavefront bending [74].

In antiferromagnets and ferrimagnets, the texture magneti-
zations and the spin wave polarizations hosted by two mag-
netic sublattices are opposite [75–78]. Seeing opposite sub-
lattice magnetizations and topologies, the left-/right-circular
spin waves develop oppositely winding vortices across the
same antiferromagnetic texure, and thus exhibit polarization-
dependent Hall angles [58, 79] in Fig. 4.

Wave and particle perspectives. Focusing on the intensity
profile or phase structure of wave field, the particle/wave per-
spective lies at two opposite extremes in disentangling inten-
sity and phase degrees of freedom. As two complementary ap-
proaches, both perspectives are able to probe topological de-
fects: the former hinges on trajectory bending of wave packet
under emergent electromagnetic fields [59, 61, 80–82], while
the latter relies on the conversion from plane wave to vortex
under interference [51–53, 83–86]. Counting discrete phase
jumps around singular points, instead of scrutinizing contin-
uous intensity distortions in extended areas, the vortex pro-
vides a more compact and comprehensive toolkit to analyze
the wave scattering upon a given environment.

Conclusion. In conclusion, we demonstrate that spin wave
vortices are ubiquitous upon topologically nontrivial magnetic
textures, due to the intimate topological connection between
dynamic and static magnetizations. With wavefront geometry
built upon charts of spin wave vortices, a universal relation
for magnon topological Hall angle is revealed. The deep in-
terweaving between topology and phase, boosts vortex as a
vigorous turbo in exploring and analyzing the wave field.
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