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I confirm that the thesis reports original researchworkdone bymyself during the programme

of study. The thesis has not been submitted elsewhere for examination for a PhDdegree. Part

of the thesis is adapted from research papers that I first-authored and published during the

programme of study. They are listed in Section 1.4 and stated at the beginning of relevant

chapters where applicable. In addition, I have appropriately referenced ideas from others in

the thesis and sought the necessary permission to use copyrighted materials.

The thesis is written at a time when large languagemodels (LLMs) are sufficiently advanced

to produce ”human-like” writing on an arbitrary topic and refine the text based on exter-

nal prompts. I see much potential with such technology in research and industry practice.

That said, the use of LLMs in academic writing remains highly controversial as of 2023, with

many unresolved issues on correctness, academic integrity and plagiarism, and publishing

ethics [2].

As such, I also confirm that I did not use any LLMs or services derived from them to write

this thesis. That said, I used (the non-LLM part of) Grammarly, an online contextual proof-

reading platform, to help correct the written text’s spelling, punctuation, and grammar. The

platform also flags redundant, overused, or informal phrases and sentences based on set

rules to help improve the overall delivery of the thesis. However, the decision to incorporate

the suggestions solely rests with me.
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The copyright of this thesis rests with the author. Unless otherwise indicated, its contents

are licensed under a Creative Commons Attribution 4.0 International Licence (CC BY 4.0).

Under this licence, you may copy and redistribute the material in any medium or format for

both commercial and non-commercial purposes. You may also create and distribute modi-

fied versions of the work. This on the condition that you credit the author.

When reusing or sharing this work, ensure you make the licence terms clear to others by

naming the licence and linking to the licence text. Where a work has been adapted, you

should indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included

in this licence or permitted under UK Copyright Law.
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Abstract

Digital experimentation and measurement (DEM) capabilities – the knowledge and tools

necessary to run experiments with digital products, services, or experiences and measure

their impact – are fast becoming part of the standard toolkit of digital/data-driven organ-

isations in guiding business decisions. Many large technology companies report having

mature DEM capabilities, and several businesses have been established purely to manage

experiments for others. Given the growing evidence that data-driven organisations tend to

outperform their non-data-driven counterparts, there has never been a greater need for or-

ganisations to build/acquire DEM capabilities to thrive in the current digital era.

This thesis presents several novel approaches to statistical and data challenges for organi-

sations building DEM capabilities. We focus on the fundamentals associated with building

DEM capabilities, which lead to a richer understanding of the underlying assumptions and

thus enable us to develop more appropriate capabilities. We addresswhy one should engage

in DEM by quantifying the benefits and risks of acquiring DEM capabilities. This is done us-

ing a ranking under lower uncertainty model, enabling one to construct a business case. We

also examine what ingredients are necessary to run digital experiments. In addition to clar-

ifying the existing literature around statistical tests, datasets, and methods in experimental

design and causal inference, we construct an additional dataset and detailed case studies on

applying state-of-the-art methods. Finally, we investigate when a digital experiment design

would outperform another, leading to an evaluation framework that compares competing

designs’ data efficiency.

These approaches aim to enable one to run experiments that produce less biased estimates

more quickly and adapt to various business constraints. As we maintain the theoretical

rigour, we also emphasise applied use cases, interpretable processes/results, and practical

tradeoffs, all to ensure that the contributions are accessible to researchers and practitioners

from diverse scientific backgrounds.
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“The true method of knowledge is experiment.”

– William Blake

“Negative results are just what I want. They’re just as valuable to me as positive results.

I can never find the thing that does the job best until I find the ones that don’t.”

– Thomas A. Edison

“An experiment is a question which science poses to Nature and a measurement is the

recording of Nature’s answer.”

– Max Planck

“Measurement is the first step that leads to control and eventually to improvement. If you

can’t measure something, you can’t understand it. If you can’t understand it, you can’t

control it. If you can’t control it, you can’t improve it.”

– H. James Harrington
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Chapter 1

Introduction

1.1 Motivation

The value of making data-driven or data-informed decisions has become increasingly clear

in recent years [187, 256]. Key to making data-driven decisions is the ability to accurately

measure a given choice’s impact and experimentwith possible alternatives. We define digital

experimentation andmeasurement (DEM) capabilities as the knowledge and tools necessary

to run experiments (controlled or otherwise) with different digital products, services, or ex-

periences andmeasure their impact. The capabilitiesmay be an online controlled experiment

framework, a team of analysts, or a system capable of performing machine learning-aided

causal inference.

The simplest example of a digital experiment iswhat is commonly knownas anA/B test [155].

Suppose we are interested in whether offering free delivery to users of an e-commerce web-

site will lead tomore of themmaking a purchase (i.e., an increased conversion rate in business

speak). We set up an experiment where incoming users are randomly split into two groups,

where one group is shown a ”free delivery” banner on the website (the treatment), while the

other acts as the control – being shown the original website without anymention of free deliv-

ery (see Figure 1.1). We calculate a decision metric (here, the conversion rate) for both groups

based on responses from their members and compare the decision metrics using a statisti-

cal test to draw causal statements about the treatment. The approach is popular in digital

organisations, with the largest technology companies having reported running hundreds or

17
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F R E E  D E L I V E R Y ! ! ! ! ! !

Control (A) Treatment (B)

Figure 1.1: Illustration of anA/B test (a randomised controlled trialwith twoparallel groups)
designed to test the claim that “offering free delivery to users of an e-commerce website will
lead to a larger proportion of the said users making a purchase.” Incoming users are split
randomly into two groups, where one group (A) acts as the control, and the other group (B)
is shown a ”free delivery” banner on the website as the treatment.

thousands of experiments at any given time [149, 260, 288].

From a statistical point of view, digital experimentation and measurement is essentially the

application of experimental design and causal inference methods in a digital setting. Like-

wise, the free delivery experiment mentioned above is an online randomised controlled trial.

Readers will agree that the underlying experimental design and causal inference methods

have been established and frequently applied in agriculture, medicine, and economics for

decades.

That said, the arrival of the Web and, subsequently, the ability to run an experiment end-

to-end online have brought different opportunities and challenges. The differences are well

documented in [156], which necessitate the development of a different set of tools and pro-

cesses exclusively for digital experiments. In some cases, they also require a complete rethink

of how we approach experiment design and analysis. Under such premises, we examine the

statistical and data challenges one faces when building DEM capabilities.
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Guiding Principles Before we state the research questions in detail (see section below),

we outline the three guiding principles that lead us to the questions. Firstly, similar to many

contemporaries in digital experimentation, we seek methods that enable one to make bet-

ter decisions more quickly and thus drive business/organisational growth. The methods

may be those that produce less biased estimates, generate measurements more quickly, or

give alternatives that can measure the impact of an intervention under various constraints

in practice (e.g., inability to perform user-level random assignment in the “free delivery”

example above).

Secondly, we seek interpretable processes and results alongside performance to maintain

engagement from those beyond our field. We, humans, value the understanding of why a

decision is made as such, and the use of black-box models or overly complex procedures in

decision-making often faces additional barriers in gaining trust from stakeholders despite its

potential to improve performance [237].

Lastly, and perhaps more importantly, we seek to make the knowledge and tools involved in

digital experimentation accessible, thus ensuring widened participation.1 Many recent ad-

vances in digital experimentation are proposed by researchers and practitioners who operate

in an environment with mature capabilities. Focusing on those works may give the impres-

sion that mature capabilities are the norm and that we only need a little work to explain the

basics on top of what is already available. Both are not true – the DEM capabilities of many

individuals and organisations are still in their infancy. These individuals and organisations

will benefit from us continuing to consolidate and clarify the building blocks in digital ex-

periments, e.g., statistical tests, datasets, and decision metrics.

1.2 Key Research Questions

The thesis aims to address digital experimenters’ and organisations’ challenges as they build

DEM capabilities. As the thesis title suggests, most of the work concerns statistical and data

challenges one encounters at the early stage of the process. It also touches upon topics en-

1 Clearly, a PhD thesis is a poor medium to engage with a non-technical audience. We thus limit the scope
of “widened participation” to include researchers and practitioners with diverse academic backgrounds.
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countered by those with established capabilities, enabling readers to take away something

wherever they are on the experimentation maturity spectrum [90]. We ask the following

questions:

Why should one engage in digital experimentation and measurement? While running

experiment(s) to evaluate a hypothesis is second nature to scientists, it is unnatural in the

business world. Business decision-makers prefer having business cases, ideally complete

with a cost-benefit analysis. The ability to quantify the benefits of acquiring DEM capabil-

ities (the knowledge and tools necessary to experiment and measure) will strengthen our

business case. It enables us to speak in the language of the business and thus stand a better

chance of garnering their support.

What ingredients dowe require to run experiments successfully in adigital setting? Com-

mitting to investing in DEM capabilities is the first of many steps to reap the benefits. To run

their first experiment successfully, organisations require, at a minimum, a clear hypothe-

sis and evaluation criteria, detailed procedures to deliver different treatments to and collect

responses from experiment participants, plus basic knowledge in data processing and sta-

tistical testing. They would also require knowledge of advanced mathematical and statisti-

cal methods, powerful computer systems with sufficient computing power and data storage

capacity, and a growth mindset organisational culture that embraces scientific, data-driven

discoveries to scale their experiment operations. Each topic, whilst important, warrants ex-

tensive consideration. The thesis will focus on statistical testing, data, and advanced meth-

ods. Wewill provide a brief overview and pointers to relevant work for other topics for those

interested.

When would an experiment design outperform another? In the parable of two wood-

cutters, the more experienced woodcutter emerged victorious in a woodchopping contest by

spendingmost of their time sharpening their axe. In the same spirit, it is vital to continuously

improve our tools, one of which is experiment designs, as we engage in experimentation ef-

forts. While there are many qualities that we can use to compare two experiment designs,

in digital experimentation, we usually care about data efficiency. This is represented by the
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minimum number of experiment participants required to reach a statistically sound conclu-

sion.2 Increasing the data efficiency (i.e., requiring fewer experiment participants) enables

experimenters to make decisions sooner, leading to better organisational performance as one

can deploy improvements and roll back harmful changes more quickly.

1.3 Contributions and Chapter Organisation

The thesis is divided into seven chapters, each detailing contributions to a different statistical

and data topic necessitated by developing early-stage DEM capabilities. The broad coverage

of topics means the thesis embeds the background knowledge required for each topic within

the individual chapters.

The remainder ofChapter 1 covers housekeeping items: a list of publications from the research

programme and a list of mathematical symbols and the quantities/concepts they represent.

Chapter 2 introduces the ranking under lower uncertainty problem as a novel model to value

DEM capabilities. This arises from the observation that DEM capabilities reduce measure-

ment uncertainty on the value of individual business propositions, improving the inherent

value of business propositions chosen during prioritisation. We derive the expected gain

and the variance of our gain estimate and provide case studies based on large-scale meta-

analyses. This addresses the first research question and enables one to build a quantitative

business case to justify investment in the capabilities.

Chapter 3 provides an introduction to statistical testing in digital experimentation that is both

mathematically rigorous and accessible to researchers and practitioners with different back-

grounds. It starts from the very beginning of a statistical test (i.e., specifying the statistical

hypotheses), provides a detailed treatment on the popular null hypothesis significance test-

ing (NHST) framework, and involves other more advanced test paradigms (e.g., sequential

and Bayesian testing) and alternatives. It aims to provide a sufficient theoretical ground-

ing to appreciate what is happening behind the scenes while highlighting the pitfalls in test

design and interpretation that can trap even the most experienced.

2 This is closely related to optimal design [8] and the asymptotic efficiency of a statistical test [254] in the
statistical theory literature. We will approach the challenge from a more applied point of view.



22 Chapter 1. Introduction

Chapter 4 describes a systemic investigation of datasets in digital experiments. We create the

first ever taxonomy for digital experiment datasets and compile the first ever survey for pub-

licly available online controlled experiment datasets. We also map the relationship between

the dataset taxonomy and statistical tests discussed in Chapter 3. The taxonomy and survey

also identify gaps in dataset availability, leading to the development of the ASOS Digital Ex-

periments Dataset. This first real, multi-experiment time series dataset enables the design

and running of experiments with adaptive stopping.

Chapter 5 reviews existing challenges in digital experimentation and the established and

emerging methods that address such challenges. We also complement the review by view-

ing some of the reported methodological advances through a practical lens. This is done by

interleaving the reviewwith case studies on randomised controlled trials with dependent re-

sponses and quasi-experiments with geographical regions as treatment units. They provide

evidence on the extent of reported challenges and practical considerations when implement-

ing relevant methods. Together with Chapters 3 and 4, these chapters address the second

research question.

Chapter 6 develops an evaluation framework for personalisation strategy experiment designs.

These experiment designs face unique challenges, such as low test power and partial non-

compliance from users, issues that we will cover in Chapters 3 and 5. The evaluation frame-

work enables one to compare two experiment setups given the circumstances they face with

their target audience, thus addressing the third research question. We also derive inter-

pretable rules of thumb from the framework to enable experimenters to compare typical

experiment setups quickly.

We conclude in Chapter 7 with an outline of promising investigation pathways arising from

each workstream. In addition, we make all the code used for experiments and simulations

described in the thesis, as well as the ASOS Digital Experiment Dataset, publicly available.

Readers can find the links to the code repositories and the dataset at the bottom of this page3

3 The link to code repositories and the dataset are as follows:

• Code repository associated with the ranking under lower uncertainty framework (as described in
Chapter 2): https://github.com/liuchbryan/ranking_under_lower_uncertainty;

• ASOSDigital Experiments Dataset and accompanying datasheet (as described in Chapter 4): https:
//osf.io/64jsb/. The OSF project also embeds a code repository with experiments on the dataset
(https://github.com/liuchbryan/oce-dataset/);

https://github.com/liuchbryan/ranking_under_lower_uncertainty
https://osf.io/64jsb/
https://osf.io/64jsb/
https://github.com/liuchbryan/oce-dataset/
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and again in the footnotes of the relevant chapters.

1.4 Publications

This thesis contains research that has been published during PhD study. We list where read-

ers can find them in the thesis, together with details of the associated conference and journal

papers, below:

• Chapter 2 and Appendix A.1: C. H. B. Liu and B. P. Chamberlain (2019). What is the Value

of Experimentation &Measurement? In: 2019 IEEE International Conference on DataMining

(ICDM ’19), 1222–1227. DOI: 10.1109/ICDM.2019.00151.

• Chapter 2 andAppendixA.1: C. H. B. Liu, B. P. Chamberlain and E. J.McCoy (2020). What

is the Value of Experimentation and Measurement? Data Science and Engineering 5, 152–

167. DOI: 10.1007/s41019-020-00121-5. Part of Special Issue: Highly-Rated Short Papers

of ICDM 2019.

• Chapter 4: C. H. B. Liu, Â. Cardoso, P. Couturier and E. J. McCoy (2021). Datasets for

Online Controlled Experiments. In: Proceedings of the Neural Information Processing Sys-

tems Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks ’21). URL:

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/

274ad4786c3abca69fa097b85867d9a4-Paper-round2.pdf.

• Chapter 5 (Section 5.5): C. H. B. Liu and E. J. McCoy (2023). Measuring e-CommerceMet-

ric Changes in Online Experiments. In: Companion Proceedings of the ACM Web Conference

2023 (WWW ’23 Companion). DOI: 10.1145/3543873.3584654.

• Chapter 6, AppendixA.2, andAppendixA.3: C.H. B. Liu and E. J.McCoy (2020). An Eval-

uation Framework for Personalization Strategy Experiment Designs. arXiv: 2007.11638

• Code repository and results on the twopublicly available datasets associatedwith e-commerce exper-
iments with dependent responses (as described in Section 5.5): https://github.com/liuchbryan/
oce-ecomm-abv-calculation; and

• Code repository associated with the evaluation framework for personalisation strategy experi-
ment designs (as described in Chapter 6): https://github.com/liuchbryan/experiment_design_
evaluation.

https://doi.org/10.1109/ICDM.2019.00151
https://doi.org/10.1007/s41019-020-00121-5
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/274ad4786c3abca69fa097b85867d9a4-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/274ad4786c3abca69fa097b85867d9a4-Paper-round2.pdf
https://doi.org/10.1145/3543873.3584654
https://arxiv.org/abs/2007.11638
https://github.com/liuchbryan/oce-ecomm-abv-calculation
https://github.com/liuchbryan/oce-ecomm-abv-calculation
https://github.com/liuchbryan/experiment_design_evaluation
https://github.com/liuchbryan/experiment_design_evaluation
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[stat.ME]. Presented in AdKDD ’20 Workshop (in conjunction with KDD ’20),

awarded Best Student Paper.

1.5 List of Acronyms and Mathematical Symbols

Readers may encounter the following acronyms recurring in multiple thesis sections. We

will define the acronyms in the main text at least once before referring to the acronyms.

• ATE: Average treatment effect

• CATE: Conditional average treatment effect

• CI: Confidence interval

• CDF: Cumulative density function

• CLT: Central limit Theorem

• CVR: Conversion rate

• DEM: Digital experimentation and measurement (usually followed by the word “capabil-

ity/capabilities”)

• MDE: Minimum detectable effect

• NHST: Null hypothesis significance test(ing)

• OCE: Online controlled experiment

• PDF: Probability density function

• RCT: Randomised controlled trial

We also list the mathematical symbols and the quantities/concepts they represent below.

Each entry is indexed by the leading symbol and follows the following format:

(Applicable chapter(s)) Symbol(s) – (Type) Quantity/concept the symbol represents.
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Applicable chapter(s) This states the thesis chapter(s) that a notation applies to. The no-

tations used in Chapter 2 also apply to Appendix A.1, and those used in Chapter 6 also apply

to Appendices A.2 and A.3.

Symbol(s) The thesis covers topics traditionally belonging tomultiple statistical disciplines.

Thus, it is inevitable to see some notation clash. We follow the order set out below when de-

ciding which set of notations takes precedence:

1. Elementary statistical constructs found in introductory statistical texts (e.g., X for a ran-

dom variable, fX(·) for the probability density function of X , and E(X) = µX for the

expected value of X);

2. Notation specific to statistical testing (e.g.,H0 andH1 for null and alternate hypotheses, α

for the significance level, β for the power);

3. Common notation in other sub-fields, including causal inference, order statistics, and

econometrics; and

4. Specific notation introduced by individual research articles.

Notations with lower precedence are generally assigned a new symbol to minimise confu-

sion. That said, in a couple of cases, the same symbol may represent two different quan-

tities/concepts in the same chapter – their meaning should be apparent given the context

surrounding its use.

Type We also abbreviate the types of quantities and concepts in the tables as follows:

• calc.: calculated quantity,

• const.: constant,

• dist.: distribution,

• func.: function,

• id.: identifier, and

• r.v.: random variable.
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Table 1.1: List of mathematical symbols and the quantity/concept represented by them
(seven pages). See Section 1.5 for further information.

Leading
Symbol

Quantity/Concept Represented

A/a (Chapter 5) A – (r.v.) Treatment Assignment variable in the potential out-
comes framework, with realised values denoted a.

(Chapter 6) A (and A1, A2) – (id.) An Analysis group in a personalisation
strategy experiment, often referenced together with B.

B/b (Chapter 3) B – (calc. / r.v.) Binomial test of proportion statistic.

(Chapters 3–4)BFn,m – (calc.) Bayes Factor (in a Bayesian test, upon observing
first n andm items in the first and second sample, respectively).

(Chapter 6) B (and B1, B2) – (id.) An analysis group in a personalisation
strategy experiment, often referenced together with A.

C/c (All chapters) Cov(· , ·) – (func.) Covariance.

(Chapter 2) c – (const.) Adjustment to the quantile of an order statistic.

(Chapter 2) c – (const.) Risk-free value in the Sharpe ratio.

(Chapter 3) C2 – (calc. / r.v.) χ2 goodness-of-fit test statistic.

(Chapter 5) C – (r.v.) Covariate(s) under the potential outcomes framework.

(Chapter 6) C0, C1, C2, C3 – (id.) User groups in a personalisation strategy
experiment that acts as Control.

(Appendix A.1) C – (r.v.) Count.

D/d (Chapter 2)D – (r.v.) Difference in value of items selected in the ranking under
lower uncertainty problem.

(Chapters 3–4) d – (calc.) Cohen’s d.

E/e (All chapters) E(·) – (func.) Expected value.

(Chapter 2) Ei / E(r) – (r.v.) Estimated value of item i / rth-ranked item under
estimation uncertainty in the ranking under lower uncertainty problem, often
referenced together with Vi / VI(r).

(Chapters 3) Ei – (r.v.) Expected frequency for category i in a χ2 goodness-of-
fit test.

(Chapters 3–4) En,m – (calc.) Effective sample size (in a Bayesian test, upon
observing first n andm items in the first and second sample, respectively).
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Leading
Symbol

Quantity/Concept Represented

F/f (All chapters) FX(·) – (func.) Cumulative density function (CDF) of an r.v. X .

(All chapters) fX(·) – (func.) Probability density function (PDF) of an r.v. X .

(All chapters) f ′
X(·) – (func.) Derivative of the PDF of an r.v. X .

(All chapters) f(· | ·) – (func.) Conditional PDF.

G/g (Chapter 5) g(·) – (func.) A generic function that maps the treatment and
covariate(s) to the observed/potential response under the potential outcomes
framework.

(Chapter 6)G – (id.) A generic userGroup-scenario combination in a person-
alisation strategy experiment. See Table 6.1 for possible values.

H/h (Chapter 2)Hi /H(r) – (r.v.) Estimated value of item i / rth-ranked item under
high estimation noise in the ranking under lower uncertainty problem, often
referenced together with Vi / VI(r) and Lj / L(s).

(Chapters 3–6) H0, H1 – (id.) Null and alternate hypotheses.

(Chapters 3–4) H – (id.) The mixing distribution in a mixed Sequential

Probability Ratio Test (mSPRT).

(Chapters 3–4) H – (id.) A generic statistical hypothesis in a Bayesian test.

I/i (All chapters) i – (id.) Index identifying an r.v. within a set of i.i.d. r.v.’s, often
referenced together with j.

(Chapter 2) I(·) – (func.) Index function that maps the rank of an r.v. within
a set of independently identically distributed (i.i.d.) r.v.’s E / H to its index,
often referenced together with J (·).

(Chapter 6) I1, I2, Iϕ, Iψ – (id.) User groups in a personalisation strategy ex-
periment under Intervention.

(Chapter A.1) I – (r.v.) Indicator variable, often with the condition expressed
as a subscript.
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Leading
Symbol

Quantity/Concept Represented

J/j (All chapters) j – (id.) Index identifying an r.v. within a set of i.i.d. r.v.’s, often
referenced together with i.

(Chapter 2) J (·) – (func.) Index function that maps the rank of an r.v. within
a set of independently identically distributed (i.i.d.) r.v.’s. L to its index, often
referenced together with I(·).

L/l (Chapter 2) Li / L(s) – (r.v.) Estimated value of item i / sth-ranked item under
low estimation noise in the ranking under lower uncertainty problem, often
referenced together with Vi / VJ (s) and Hi /H(r).

(Appendix A.1) L∗ – (r.v.) LI(r) normalised by the mean and variance of Lj
under normal assumptions.

M/m (Chapter 2)M – (const.) Number of items one can select (i.e., capacity) in the
ranking under lower uncertainty problem.

(Chapters 3–6) m – (const.) Number of items in (or size of) a statistical sam-
ple Y , either total or that observed so far within a sequential/Bayesian test set-
ting; often referenced together with n.

N/n (All chapters) N (· , ·) – (dist.) A normal distribution, with its mean and vari-
ance as parameters.

(Chapter 2)N – (const.) Number of items available for selection in the ranking
under lower uncertainty problem.

(Chapters 3–6) n – (const.) Number of items in (or size of) a statistical sam-
ple X , either total or that observed so far within a sequential/Bayesian test
setting; often referenced together withm.

(Chapter 6)nG – (const.) Number of samples in a user/analysis groupG, where
G ∈ {0, 1, 2, 3, A,B,A1, A2, B1, B2}, in a personalisation strategy experiment.

O/o (Chapters 3) Oi – (r.v.) Observed frequency for category i in a χ2 goodness-
of-fit test.

(Chapter 6) O(·) – (func.) Big-O notation describing a function’s limiting be-
haviour.

P/p (Chapter 2) P(·) – (func.) Probability.

(Chapters 3–6) p – (calc.) p-value of a null hypothesis significance test.
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Leading
Symbol

Quantity/Concept Represented

R/r (Chapter 2) r – (id.) Rank of an r.v. (in order statistics terms) within a set of
r.v.’s E /H, often referenced together with s.

(Chapter 6) R – (id.) A personalisation strategy experiment setup, often ref-
erenced together with S.

S/s (Chapter 2) s – (id.) Rank of an r.v. (in order statistics terms) within a set of
r.v.’s L, often referenced together with r.

(Chapters 3) Sn – (r.v.) Sequential probability ratio test (SPRT) statistic.

(Chapters 3–4) S(· , ·) – (func.) Sign function (in a Mann-Whitney U test).

(Chapters 3–6) s2X – (calc.) Sample variance of a sample X .

(Chapter 6) S – (id.) A personalisation strategy experiment Setup, often ref-
erenced together with R.

T/t (All chapters) tν – (dist.) A Student’s t distribution with ν degrees of freedom.

(All chapters) Tν(·) – (func.) CDF of a Student’s t-distribution with ν d.f.

(All chapters) tν,q – (calc.) qth quantile of a Student’s t-distribution with ν d.f.

(Chapter 2) Ti / T ′
i – (r.v.) Student’s t-distributed r.v.’s.

(Chapters 3–6) T – (calc. / r.v.) Test statistic (generic, or that of a t-test).

(Chapter 4) t, t + 1, ... – (id.) Points in time (in statistical tests with adaptive
stopping).

(Appendix A.1) T (· , ·) – (func.) Owen’s T -function.

U/u (Chapters 2 & 6) U(a, b) – (dist.) A uniform distribution with bounds a and b.

(Chapters 3–4) U – (calc. / r.v.) Mann-Whitney U -test statistic.

V/v (All chapters) Var(·) – (func.) Variance.

(Chapter 2) Vi, VI(r), VJ (s) – (r.v.) True Value of items i, I(r), and J (s) in the
ranking under lower uncertainty problem, often referenced together with Ei /
E(r),Hi /H(r), and Lj / L(s).

(Chapters 3–4) V 2 – (const.) Hyperparameter, in a Bayesian test, which repre-
sents the variance of the effect size prior.
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Leading
Symbol

Quantity/Concept Represented

W/w (Chapter 2) W , W1, W2 – (r.v.) Average true value of items selected under
some estimation uncertainty, high estimation noise, and low estimation noise,
respectively, in the ranking under lower uncertainty problem.

(Chapters 3–4)Wn,m – (calc. / r.v.) Wald test statistic (in a sequential/Bayesian
test, upon observing first n andm items in the first and second sample, respec-
tively.

X/x (Chapters 3–6) Xi – (r.v.) Item i in a sample X , often referenced together
with Yj in two-sample testing.

(Chapters 3–6) X̄ – (r.v.) Sample mean of a sample X .

(Chapters 3–6) X̄n – (r.v.) Sample mean of a sample X (in a sequen-
tial/Bayesian test, upon observing the first n items in the sample).

(Chapters 3–6) x̄ – (calc.) Realised sample mean of a sample X .

(Chapters 5) X(a) / Xi(a) – (r.v.) Potential response/outcome of X/Xi under
the treatment assignment a ∈ {0, 1, ...} in the potential outcomes framework,
often referenced together with Y (a) / Yj(a).

Y/y (Chapters 3–6) Yj – (r.v.) Item j in a sample Y , often referenced together with
Xi in two-sample testing.

(Chapters 3–6) Ȳ – (r.v.) Sample mean of a sample Y .

(Chapters 3–6) Ȳn – (r.v.) Sample mean of a sample Y (in a sequential/

Bayesian test, upon observing the first n items in the sample).

(Chapters 5) Y (a) / Yj(a) – (r.v.) Potential response/outcome of Y /Yj under
the treatment assignment a ∈ {0, 1, ...} in the potential outcomes framework,
often referenced together with X(a) / Xi(a).

Z/z (Chapters 3–6) zq – (calc.) qth quantile of a standard normal r.v.

(Chapter 3) Z – (calc. / r.v.) Standard score / z-test statistic.

(Chapter 6) z – (id.) Mathematical shorthand – the difference between two
normal quantiles (see Equation (6.14)).

(Appendix A.1) Z – (r.v.) A standard normal r.v.
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Leading
Symbol

Quantity/Concept Represented

α (Chapters 3–6) α – (const.) Significance level of a statistical test.

(Appendix A.1) αP – (const.) Beta distribution parameter, often referenced
together with βP .

β (Chapters 3–6) βθ – (const.) Power of a statistical test under a specific hypoth-
esis with parameter θ.

(Appendix A.1) βP – (const.) Beta distribution parameter, often referenced
together with αP .

∆/δ (All chapters) ∆ – (calc. / r.v.) Effect size.

(Chapters 3–4)∆◦ – (calc. / r.v.) Effect size standardised by the pooled variance
in a Bayesian test.

(Chapters 3–4) δn,m – (calc. / r.v.) “Test statistic” of a Bayesian test, upon ob-
serving the first n andm items in the first and second sample, respectively.

(Chapter 6)∆S – (calc.) Actual effect size of a personalisation strategy setup S.

ϵ (Chapter 2) – ϵ, ϵ1, ϵ2 – (r.v.) Estimation noise.

η (Chapter 6) η – (id.) Mathematical shorthand (see Equation (6.14)).

Θ/θ (All chapters) θ – (const.) Parameter of interest in a hypothesis test.

(All chapters) θ0 – (const.) Value of the parameter of interest under the null
hypothesis.

(All chapters) θ∗ – (const.) A specific parameter of interest.

(Chapter 6) θ∗S – (const.) Minimum detectable effect size of a personalisation
strategy experiment setup S.

Λ/λ (Chapters 3–4) ΛH,θ0n / Λ̃H,θ0n – (calc. / r.v.) One-sample / two-sample mixed
sequential probability ratio test (mSPRT) statistic with mixing distribution H
and null hypothesis parameter θ0.

µ (All chapters) µX – (const.) Mean of an r.v., a population, or a group X .

ν (All chapters) ν – (const.) Degrees of freedom (d.f.).

Ξ/ξ (Chapter 6) ξ – (id.) Mathematical shorthand (see Equation (6.14)).
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Leading
Symbol

Quantity/Concept Represented

Π/π (Chapter 3) πX – (const.) Success rate of a Bernoulli distributed r.v. X .

(Chapter 6) πmin – (const.) Minimum test power.

ρ (All chapters) ρXY – (func.) Correlation between two r.v.’s X and Y .

Σ/σ (All chapters) σX – (const.) Standard deviation of an r.v., a population, or a
group X .

(All chapters) σ2
X – (const.) Variance of an r.v., a population, or a group X .

τ (Chapters 3–4) τ 2 – (const.) Hyperparameter in amixed sequential probability
ratio test (mSPRT), representing the variance of the mixture distribution.

Φ/ϕ (All chapters) Φ(·) – (func.) Cumulative density function (CDF) of a standard
normal r.v.

(All chapters) ϕ(·) / ϕ( · ;µ, σ2) – (func.) Probability density function (PDF) of
a standard normal r.v. / a normal r.v. with mean µ and variance σ2.

χ (Chapter 3) χ2
ν – (dist.) A χ2-distribution with ν d.f.



Chapter 2

What is the Value of Digital

Experimentation and Measurement

Capabilities?

From the thesis title, it is reasonable for readers to expect content covering methodological

advances in statistical tests, experiment design, and causal inference. While we will address

such mainstream topics in later chapters of the thesis, we first present a ranking under lower

uncertainty problem as an application of order statistics to motivate our topics. As the chap-

ter title suggests, addressing the problem enables us to value digital experimentation and

measurement (DEM) capabilities quantitatively, which, in turn, helps us to answer why we

require such capabilities in the first place.

This chapter is adapted from the research paper “What is the Value of Experimentation & Mea-

surement?” It was first presented at the 2019 IEEE International Conference on Data Mining

(ICDM) [174] and later extended and published in Data Science and Engineering as part of a

special issue on Highly-Rated Short Papers of ICDM 2019 [175]. In Sections 2.1 and 2.2, as

well as introducing related work, we will motivate how the requirement to value DEM capa-

bilities arises and leads to our upcoming ranking under lower uncertainty problem. Readers

who are more interested in the mathematical formulation of the ranking under lower uncer-

tainty problem can skip straight to Section 2.3, though theymay find the chapter organisation

at the end of Section 2.1 useful.

33
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2.1 Motivation

The value of DEM capabilities is currently best reflected in the success of organisations that

have adopted and advocated for them in the past decade. Many major technology com-

panies report having mature infrastructure for online controlled experiments (OCEs, e.g.,

Google [260], Linkedin [288], and Microsoft [149]) or are heavily investing in state-of-the-

art techniques (e.g., Airbnb [161], Netflix [286], and Yandex [222]), or both. Amazon [123],

Facebook [105], and Uber [20] have also reported the use of various causal inference tech-

niques to measure the incrementality of advertising campaigns. Several start-ups (e.g. Op-

timizely [134] and Qubit [30]) have also recently been established purely to manage OCEs

for businesses.

While mature DEM capabilities can quantify the value of a business proposition, it remains

a substantial challenge to “measure the measurer” – to quantify the value of the DEM capa-

bilities themselves. To the best of our knowledge, no work addresses the question, “Should

we invest in DEM capabilities?” or how to value these capabilities when we first present our

ideas. The lack of prior work makes it hard to build a compelling business case to justify in-

vestment in the related personnel and infrastructure. We address this problem by calculating

both the expected value and the risk, allowing the Sharpe ratio [246] for a DEM capability

to be calculated and compared to other potential investments.

The value created by DEM capabilities comes from the following three sources:

1. Recognising value: DEM capabilities enable one to attribute value to a digital product,

business proposition or service. They also prevent damage from business propositions

that have a negative value. This is important for dynamic organisations with large num-

bers of business propositions, as the damage caused by individual rollouts can be com-

partmentalised and contained in a similar fashion, similar to unit and integration testing

in software development.

2. Prioritisation: Without DEM capabilities, one prioritises based on back-of-envelope esti-

mates or gut feel, which has high uncertainty. DEM reduces the magnitude of the noise

arising from estimation, enabling prioritisation based on estimates closer to the true val-

ues and improving long-term decision-making (see Figure 2.1).



2.1. Motivation 35

Value

Selected items (by noisy observed value)

(a) High estimation noise

Value

Selected items (by noisy observed value)

(b) Low estimation noise

Figure 2.1: Prioritising four projects (the fruits) according to their value (x-axes). The semi-
opaque icons represent the projects’ true value, and the solid icons represent possible project
value estimates under some level of uncertainty (horizontal lines) in the estimation process.
(Top) Under a noisy estimation process, projects with a low true value (e.g., project apple)
may appear to have a high value and be prioritised erroneously. (Bottom) DEM reduces the
estimation noise, enabling a better prioritisation with value estimates closer to the truth. The
figures include icons designed by Smashicons from Flaticon.com.
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3. Optimisation: DEM capabilities allow one to evaluate large numbers of variants against

each other and the best to be selected efficiently. Without such capabilities, we can still

experiment with different business propositions sequentially, though it is slow and intro-

duces noise from the changing environment.

Quantifying the value of a DEM capability is relatively straightforward once it is in place.

For example, the value of Item 1 comes from rolling back negative business propositions:

we can calculate it by summing the negative contributions of unsuccessful business propo-

sitions. Likewise, we can calculate the value of Item 3 by summing the difference between

the maximum and the mean value for each variant over the business propositions. Indeed,

these are the approaches taken by [182] when valuing LinkedIn’s experimentation platform

using past experiment data.

The approaches above are not feasible for organisations building DEM capabilities from

scratch. One can attempt to estimate the values from Items 1 and 3 using generic value dis-

tribution across business propositions, which is given across industries in [136] and [30],

though these estimates are generally no better than back-of-envelope calculations. Without

an accurate valuation, organisations remain in a chicken and egg situation – no valuation, no

investment; no investment, no capability; no capability, no valuation.

Given the above, we see quantifying the value of Item 2 as the less explored yet more com-

pelling approach and the subject of the remainder of this chapter. DEM capabilities improve

prioritisation by reducing uncertainty in the value estimates of each business proposition.

This is a form of ranking under uncertainty, a well-studied problem in statistics and opera-

tions research. However, in all previous work, the variance is assumed to be a fixed constant

or changed without measuring the corresponding change in the value of the ranked items.

Here, we wish to understand the value of ranking under lower uncertainty through DEM

capabilities.

Our contribution is as follows. We

1. Specify the first model that values the contribution of a DEM capability in terms of bet-

ter prioritisation due to reduced estimation noise for business propositions (Sections 2.3

and 2.4);
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2. Derive the variance of our estimator, allowing one to calculate a Sharpe ratio to guide

organisations considering an investment in DEM (Section 2.5); and finally

3. Provide two case studies based on large-scalemeta-analyses that reflect howone can apply

our model to real-world practice (Section 2.7) and two extensions that open the door to

future work in this area (Section 2.8).

2.2 Related work

There is a vast literature on using controlled or natural experiments in a digital technology

context. In addition to that mentioned in Section 2.1, there are works dedicated to running

trustworthy online controlled experiments [74], choosing good metrics [126] and design-

ing experiments where samples are dependent due to external confounders [18, 19].1 How-

ever, these works all assume the existence of DEM capabilities, and to the best of our knowl-

edge, no literature that helps organisations justify the acquisition of DEM capabilities exists.

While [182] asked a similar question as this chapter does, they aimed to value an experimen-

tation platform, i.e., an existing DEM capability. We believe that filling this gap is necessary

for widespread adoption and that increased participation will accelerate the development of

the field.

This chapter is related to existing work in statistics and operations research, particularly on

decision-making under uncertainty, which has been extensively studied since the 1980s. No-

table work includes proposals for additional components in a decision maker’s utility func-

tion [22], alternate risk measures [289], and a general framework for decision-making with

incomplete information (i.e., uncertainty) [278]. These works assume the inability to change

the noise associated with estimation or measurement (or both).

The sub-problem of ranking under uncertainty has also attracted considerable attention, par-

tially due to the advent of large databases and the requirement to rank results with a certain

ambiguity in relevance [255]. While [298] measured the influence of noise levels in their

work, they focused on the quality of the ranks themselves but not the value associated with

the ranks.

1 We will describe the works in greater detail in Chapter 5.
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The project selection problem is a related topic in optimisation, where the goal is to find

the optimal set of business propositions using mixed integer linear programming, possibly

under uncertainty. Work in this domain generally seeks methods that cope with existing

risk/noise [186], and to the best of our knowledge, no work considers the value of reducing

risk. While [245] have discussed lowering the uncertainty level during the selection process,

they refer to the uncertainty of decision parameters instead of the general noise level.

2.3 Mathematical Formulation

We formulate the ranking under lower uncertainty problem, which has a wide variety of

important applications in its own right [251, 298], as follows. Consider the scenario where

we selectM business propositions from N candidates, whereM < N . The Estimated value

of each business proposition is given by Ei = Vi + ϵi, where Vi are the true yet unobserved

Values estimated with error ϵi. The business propositions are labelled in ascending order of

estimated value Ei to get the order statistics E(1), E(2), ..., E(N), and we select the M business

propositionwith the highest estimated values: E(N−M+1), E(N−M+2), ..., E(N). We are interested

in the true value of the selected business propositions, given by

VI(N−M+1),VI(N−M+2), ...,VI(N) , (2.1)

where I(·) denotes the index function that maps the ranking to the index of the business

proposition. Note one should not confuse the set in Expression (2.1) with the set {V(N−M+1),

V(N−M+2), ...,V(N)} – the latter denotes the topM business propositions ranked by their true

value and are likely to be different [298].

We define the mean true value of theM selected business propositions as

W ≜
1

M

(
VI(N−M+1) + VI(N−M+2) + ...+ VI(N)

)
, (2.2)

where the best prioritisation maximisesW .2

2 Readers can internalise theW notation by drawing parallels between the name of the letter in French (double
vé) and Spanish (doble ve) – both literally meaning “double v” – and the fact that we use W to denote an
aggregation of two or more V .
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Part of the value of ranking under lower uncertainty, which DEM capabilities help bring,

arises from the observation thatW increaseswhen themagnitude of the uncertainties arising

from estimation (ϵi) decreases. We are interested in the value gained by reducing estimation

uncertaintywithout changing the set of business propositions (i.e., retaining all Vi), as the

true value of the business propositions does not depend on the measurement method used:

D ≜ W | lower noise −W | higher noise . (2.3)

Obtaining the value gained (D) enables us to compare DEM capabilities with other potential

investments. The Sharpe ratio is a standard quantity used in finance to compare different in-

vestments. This standard score-like ratio represents the risk-adjusted expected excess return

on investment compared to a risk-free investment [246]. In our case, E(D) represents the

expected return on investment of DEM capabilities, Var(D) represents the risk, and we can

specify the return on investment of the risk-free investment as a constant c. This enables us

to calculate the Sharpe ratio as

E(D)− c√
Var(D)

. (2.4)

2.3.1 Modelling values with statistical distributions

To value a DEM capability using such a generic framework that one can apply in many dif-

ferent ways across diverse organisations, it is first necessary to make some simplifying as-

sumptions about the statistical properties of the business propositions under consideration.

We assume the value of the business propositions (Vi) and the estimation noises (ϵi) are

randomly distributed:

Vi
i.i.d.∼ FV(·) , where E(Vi) = µV ,Var(Vi) = σ2

V ,

ϵi
i.i.d.∼ Fϵ(·) , where E(ϵi) = µϵ,Var(ϵi) = σ2

ϵ , (2.5)

where Vi ⊥ ϵj ∀ i, j (see Figure 2.2).

We note two special cases, one when both the value and the noises are assumed to be nor-
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Figure 2.2: The generative model in the ranking under lower uncertainty problem in plate
notation. Vi represents the true, unobserved values of the items to be ranked. Ei represents
the observed values under some estimation noise level σ2

ϵ .

mally distributed:

Vi
i.i.d.∼ N (µV , σ

2
V) , ϵi

i.i.d.∼ N (µϵ, σ
2
ϵ ) ; (2.6)

and the other when both the value and the noises are assumed to follow some Generalized

Student’s t-distributions:

Vi = µV + σV

√
(ν − 2)

ν
Ti , Ti

i.i.d.∼ tν ,

ϵi = µϵ + σϵ

√
(ν − 2)

ν
T

′

i , T
′

i
i.i.d.∼ tν , (2.7)

where tν is a standard Student’s t-distribution with ν degrees of freedom. The location and

scaling parameters ensure Vi and ϵi have themean and variance specified in Expression (2.5).

These two cases are particularly relevant as meta-analyses compiled on the results of 6,700

e-commerce [30] and 432marketing experiments [136], respectively, indicate the upliftsmea-

sured by the experiments, and hence the value of the business propositions under some es-

timation noise, exhibit the following properties:

1. They can be positive or negative,

2. They are usually clustered around an average instead of uniformly spreading across a

specific range, and

3. The distributions are heavy-tailed.
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The normal assumptions cover the first two properties only, yet enable one to draw on the

wealth of results in order statistics and Bayesian inference related to normal distributions

to get started. The t-distributed assumptions also cover property 3, though valuation under

such assumptions is more complicated as t-distributions do not have conjugate priors.

We will include the valuation under t-distributed assumptions under the general case for

brevity. We will, however, present empirical results in Section 2.8.1, showing that the value

gained under t-distributed assumptions has a highermean and variance, thus demonstrating

that the model can capture the “higher risk, higher reward” concept.

2.3.2 Key results

In the following two sections, wewill derive the expected value and variance forW , themean

true value of the topM business propositions selected after being ranked by their estimated

value (as defined in Equation (2.2)), as well as the expected value and the variance ofD, the

value gained when the estimation noise is reduced. This enables us to calculate the Sharpe

ratio defined in Expression (2.4).

We will also provide two key insights. Firstly, the expected mean true value of the selected

business propositions (W) increases when the estimation noise (σ2
ϵ ) decreases, and the rela-

tive increase in value depends on howmuch noisewe can reduce. Secondly, whenM is small,

reducing the estimation noise may not lead to a statistically significant improvement in the

true value of the business propositions selected. As a result, improvements in prioritisation

driven by DEMmay only be justified for larger organisations.

2.4 Calculating the Expectation

We first derive the expected value for D. This requires the expected values of, in order:

1. E(r) – the estimated value of the rth ranked business proposition in estimated value;

2. VI(r) – the true value of the rth ranked business proposition in estimated value; and

3. W – the mean of the true value for theM most valuable business propositions ranked by

their estimated values.
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To obtain the expected value for E(r), we apply a result in Section 4.6 of [56], which approxi-

mates the expected value of the order statistics E(r) using the quantile function of Ei:

E(E(r)) ≈ F−1
E

( r − c

N − 2c+ 1

)
, (2.8)

where F−1
E (·) denotes the quantile function for Ei and c is a constant correcting the quantile of

the ranks.3 The formula results from applying the first-order delta method on the underly-

ing compound beta-F−1
E distribution [223]. Such estimationwill inevitably incur a small bias,

particularly for extreme order statistics (i.e., r close to one orN) and whenN is small. How-

ever, as verified empirically in Section 2.6, we consider such an estimation accurate enough

for our application.4 One can also include higher-order terms in the corresponding Taylor

expansion to improve estimation accuracy, thoughwe believe the additional complexity and,

thus, reduced interpretability in the resultant formula is not worth the marginal gain in ac-

curacy.

We then obtain the expected value of VI(r) by applying Equation 6.8.3a of [56]:

E(VI(r)) =µV + ρVE σV E

(
E(r) − (µV + µϵ)√

σ2
V + σ2

ϵ

)

=µV +
σ2
V

σ2
V + σ2

ϵ

(
E(E(r))− (µV + µϵ)

)
, (2.9)

where ρVE =
√
σ2
V/
√
σ2
V + σ2

ϵ is the correlation between Vi and Ei.

Equation (2.9) shows that decreasing the estimation noise σ2
ϵ will increase E(VI(r)) for any

r > (N + 1) · FE(µV + µϵ). It follows that the mean true value of the topM business proposi-

tions, selected according to their estimated value, will generally increasewith a lower estima-

tion noise. We show this by applying the expectation function toW defined in Equation (2.2)

3 Many values for cwere proposed. Earlyworks advocate c = 0 or c = 0.5 depending on how one approaches
continuity correction between ranks and quantiles [119]. [27] proposes a compromise value of c = 3

8 based
on a tabulation of c required to yield the correct expected value for different r and N . [119] expands
the tabulation and proposes using a different c for each N , with the values of c hovering around 0.4. For
simplicity, we take c = 0.4 for all N in all our calculations.

4 [119] also noted for normal order statistics, the maximum error is 0.018 (i.e., less than one percent relative
to the value of extreme order statistics) for some choice of c.



2.4. Calculating the Expectation 43

to obtain

E(W) =
1

M

N∑
r=N−M+1

E(VI(r))

=µV +
σ2
V

σ2
V + σ2

ϵ

[(
1

M

N∑
r=N−M+1

E(E(r))

)
− (µV + µϵ)

]
. (2.10)

We finally consider the improvement when we reduce the estimation noise from σ2
ϵ = σ2

1

to σ2
ϵ = σ2

2 . This will be the expected value gained by having better DEM capabilities:

E(D) =E
(
W |σ2

ϵ = σ2
2

)
− E

(
W |σ2

ϵ = σ2
1

)
=

σ2
V

σ2
V + σ2

2

[(
1

M

N∑
r=N−M+1

E
(
E(r) |σ2

ϵ = σ2
2

))
− (µV + µϵ)

]
−

σ2
V

σ2
V + σ2

1

[(
1

M

N∑
r=N−M+1

E
(
E(r) |σ2

ϵ = σ2
1

))
− (µV + µϵ)

]
. (2.11)

2.4.1 Expectation under normal assumptions

In the special casewhere Ei are normally distributed (withmeanµV+µϵ and variance σ2
V+σ

2
ϵ ),

the expected value for the normal order statistics E(r) is approximately

E(E(r)) ≈ µV + µϵ +
√
σ2
V + σ2

ϵ Φ
−1

(
r − c

N − 2c+ 1

)
, (2.12)

whereΦ−1(·) denotes the quantile function of a standard normal distribution [27]. It is worth

noting that decreasing the estimation noise σ2
ϵ will decrease E(E(r)) for any r > N+1

2
, appear-

ing to lower the average value of the topM business propositions. This is a common pitfall

– we are not optimising the combined estimated value of the selected business propositions.

What matters is the true yet unobserved value of that proposition, VI(r), as shown below.

For VI(r), we can simplify Equation (2.9) by substituting Equation (2.12). We can also eval-

uate from first principles by noting a standard result in Bayesian inference, which states that

the posterior distribution of Vi once Ei is observed is also normally distributed with mean

µVi | (Ei=e) =
σ2
V

σ2
V + σ2

ϵ

(e− µϵ) +
σ2
ϵ

σ2
V + σ2

ϵ

µV , (2.13)
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and applying the law of iterated expectations to obtain5

E(VI(r)) = E
(
E(VI(r) | E(r))

)
≈ µV +

σ2
V√

σ2
V + σ2

ϵ

Φ−1

(
r − c

N − 2c+ 1

)
. (2.14)

Here, decreasing the estimation noise σ2
ϵ will lead to an increase in E(VI(r)) for any r > N+1

2
.6

The value of business propositions chosen (W) under normal assumptions then evaluates to

E(W) ≈ µV +
σ2
V√

σ2
V + σ2

ϵ

1

M

N∑
r=N−M+1

Φ−1

(
r − c

N − 2c+ 1

)
. (2.15)

This is done by substituting Equation (2.14) into Equation (2.10). Note the absence of µϵ
in Equation (2.15), which suggests that systematic bias in estimation will not affect the true

value of the chosen business propositions in the normal case.

Finally, the expression for the expected value of D when we reduce the estimation noise

from σ2
ϵ = σ2

1 to σ2
2 is much neater under normal assumptions, as many terms cancel out in

Equation (2.11), leading to

E(D) ≈

(
σ2
V√

σ2
V + σ2

2

− σ2
V√

σ2
V + σ2

1

)
1

M

N∑
r=N−M+1

Φ−1

(
r − c

N − 2c+ 1

)
. (2.16)

If we further assume that µV = 0 (i.e., the true value of the business propositions centres

around zero), then the relative gain is entirely dependent on σ2
V , σ2

1 , and σ2
2 :

E(D |µV = 0)

E(W |σ2
ϵ = σ2

1, µV = 0)
=

√
σ2
V + σ2

1√
σ2
V + σ2

2

− 1 . (2.17)

To calculate the relative improvement in prioritisation delivered by DEM under these as-

sumptions, we plug the following into Equation (2.17) to obtain an estimate of how much

one will gain from acquiring such capabilities:

1. The estimated spread of the values (σ2
V),

2. The estimated deviation of the current estimation process (σ2
1), and

5 E(r) ≡ EI(r), as we rank the business propositions by their estimated values.
6 While VI(r) are no longer normally distributed with the ranking information, it remains valid to use the

law of iterated expectations to obtain the expected value for all r.
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3. The estimated deviation to the actual value upon acquisition of DEM capabilities (σ2
2).

For example, if Example Company Ltd’s project values are spread with a standard deviation

of 1 unit and their current estimation has a standard error of 0.5 units, then by acquiring

an A/B test framework that is capable of measuring with an error of 0.4 units, the company

gains 3.8% of extra value simply due to the ability to prioritise with more accurate measure-

ments under normal assumptions.

We conclude this section by suggesting how onemay estimate σ2
V , σ2

1 , and σ2
2 , especiallywhen

they have yet to build any DEM capabilities. Clearly, it is impossible to recommend specific

values for the three parameters as organisations seeking to build DEM capabilities come

in all shapes and sizes. That said, one may consider using industry averages published in

meta-analyses [30, 136] when estimating σ2
V . For σ2

1 , they may solicit value estimates for

several business propositions from current decision makers and take the variance over such

estimates.7 Finally, they may leverage the user numbers and the variance of user responses

that form the business metric to estimate σ2
2 under an A/B test.8 We also encourage one to

explore parameter values around their estimates for robustness, aswewill show in Section 2.7

when we provide two case studies.

2.5 Calculating the Variance

It is crucial to understand both the expected gain and the risk or uncertainty of ranking un-

der lower uncertainty to make effective investment decisions. Therefore, having derived the

expected value in Equation (2.11), we address the investment risk given by the variance ofD

in this section.

The variance calculation features new challenges in addition to that identified in the section

7 It does not matter if the decision makers provide value estimates far from the actual value of the business
propositions. In fact, one need not know the business propositions’ actual value. What matters here is the
spread of the estimates.

8 For example, in an A/B test measuring conversion rate (CVR) uplift using a practical t-test, the estimation
noise (σ2

ϵ or σ2
2) is the variance of the difference in CVR between two variants under a nil null hypothesis.

This equals 2 · p(1−p)
n/2 = 4p(1−p)

n , where p is the base CVR and n is the total number of users across both
groups. See Chapter 3 for further discussions on statistical tests, particularly Sections 3.5.2 and 3.5.3 on
practical t-tests and how they are applied to business metrics based on binary responses such as CVR.
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Figure 2.3: The generative model in the ranking under lower uncertainty problem when two
distinct noise levels are involved in plate notation. When we change the noise level of our
ranking under uncertainty setup from σ2

1 to σ2
2 (see Figure 2.2), we obtain two sets of observed

values,Hi and Li, for each noise level.

above, the most prominent of which concerns the interactions between quantities generated

under different estimation noise levels. While these interactions do not affect the expected

value, they influence the variance via the covariance terms. Failure to account for the covari-

ance terms may lead to a large error in the variance estimate.

To address the challenges, we first extend the notation to clarify the interactions. Instead of

a single set of noise shown in Section 2.3, we define two sets of random noise with different

noise levels:

ϵ1i
i.i.d.∼ Fϵ1(·) ,where E(ϵ1i) = µϵ ,Var(ϵ1i) = σ2

1 , and

ϵ2i
i.i.d.∼ Fϵ2(·) ,where E(ϵ2i) = µϵ ,Var(ϵ2i) = σ2

2 . (2.18)

Similar to how the problem ismodelled in Section 2.3, we assume all true item values (V) and

noises (ϵ1 and ϵ2) are independent, i.e., Vi ⊥ ϵ1j , Vi ⊥ ϵ2j , and ϵ1i ⊥ ϵ2j ∀ i, j. The estimated

value of each item is then given by

Hi = Vi + ϵ1i under Higher noise level σ2
1 and

Li = Vi + ϵ2i under Lower noise level σ2
2. (2.19)

The setup is illustrated in Figure 2.3.
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Var(D)

Var(W1) /
Var(W2)

Var(VI(r)) /

Var(VJ(s))

Var(H(r)) /
Var(L(s))

Cov(VI(r), VI(s)) /

Cov(VJ(r), VJ(s))

Cov(H(r), H(s)) /
Cov(L(r), L(s))

Cov(W1, W2)

Cov(VI(r), VJ(s))

Cov(H(r), L(s))

Figure 2.4: Relationship between different variances/covariances used to calculate the vari-
ance of D, the value gained when the estimation noise is reduced. An arrow from quantity
A to B means the value of B depends on the value of A.

Having obtained two sets of estimated values, we rank and trace the corresponding indices

for each set separately. For H, we denote H(r) as the rth order statistic of Hi, the estimated

value of the rth ranked item under noise level σ2
1 , followed by VI(r) as the concomitant [56]

ofH(r), i.e., the true value of the rth item ranked by its estimated value. We repeat the process

for L: we denote L(s) as the sth order statistic of Li and VJ (s) as the concomitant of L(s).9

We also define the mean true value of the top M items, ranked by their estimated value,

under both noise levels as

W1 =
1

M

N∑
r=N−M+1

VI(r) , W2 =
1

M

N∑
s=N−M+1

VJ (s) , (2.20)

whereW1 is the mean true value under σ2
1 , andW2 is the mean true value under σ2

2 . Finally,

we denote the difference between the mean true values as D ≜ W2 −W1.

Deriving the variance is similar to deriving the expectation – one has to obtain the variances

for (in order)H(r)/L(s), VI(r)/VJ (s),W1/W2, andD. The relationship between these quantities

is shown in Figure 2.4.

9 I(·) and J (·) are the index functions that map the ranking to the index for H and L, respectively.
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2.5.1 Var(H(r))/Var(L(s))

We apply a result from [54], which states that the variance of H(r) and L(s) can be approxi-

mated as

Var(H(r)) ≈
r(N − r + 1)

(N + 1)2(N + 2)

1(
fH
(
F−1
H
(

r
N+1

)))2 , (2.21)

Var(L(s)) ≈
s(N − s+ 1)

(N + 1)2(N + 2)

1(
fL
(
F−1
L
(

s
N+1

)))2 , (2.22)

where f(·) and F−1(·) denote the probability density function and quantile function of the

corresponding r.v., respectively. As is the case with calculating the expected value (see Sec-

tion 2.4), the formula results from applying the first-order deltamethod [171], with the same

strength and weakness considerations. In the special case where Vi, ϵ1i, and ϵ2i are all nor-

mally distributed, the variances are

Var(H(r)) ≈
r(N − r + 1)

(N + 1)2(N + 2)

σ2
X + σ2

1(
ϕ
(
Φ−1

(
r

N+1

)))2 , (2.23)

Var(L(s)) ≈
s(N − s+ 1)

(N + 1)2(N + 2)

σ2
X + σ2

2(
ϕ
(
Φ−1

(
s

N+1

)))2 , (2.24)

whereϕ(·) is the probability density function, andΦ−1(·) is the quantile function of a standard

normal distribution.

2.5.2 Var(VI(r))/Var(VJ (s))

The variance forVI(r) is obtainedusingproperties of the concomitants of order statistics [55]:10

Var(VI(r)) = σ2
V

(
ρ2VH

Var(H(r))

σ2
V + σ2

1

+ 1− ρ2VH

)
=

σ2
1σ

2
V

σ2
V + σ2

1

+
σ4
V

(σ2
V + σ2

1)
2 Var(H(r)) , (2.25)

Var(VJ (s)) = σ2
V

(
ρ2VL

Var(L(s))

σ2
V + σ2

2

+ 1− ρ2VL

)
=

σ2
2σ

2
V

σ2
V + σ2

2

+
σ4
V

(σ2
V + σ2

2)
2 Var(L(s)) , (2.26)

10 H/L and V in this thesis correspond to X and Y in [55].
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where ρVH = σV/
√
σ2
V + σ2

1 denotes the correlation betweenVi andHi, and ρVL = σV/
√
σ2
V + σ2

2

denotes the correlation between Vi and Li.

In the multivariate normal case, the same result can also be obtained from first principles.

We first recall Equation (2.13), which describes the mean of Vi once we observe Ei (now Hi

or Li), and note its variance counterpart is

σ2
Vi |Hi

=
σ2
1σ

2
V

σ2
V + σ2

1

, σ2
Vi | Li =

σ2
2σ

2
V

σ2
V + σ2

2

. (2.27)

Using the results in Equations (2.13) and (2.27), we apply the law of total variance to obtain11

Var(VI(r)) =E
(
Var(VI(r) |H(r))

)
+ Var

(
E(VI(r) |H(r))

)
≈ σ2

1σ
2
V

σ2
V + σ2

1

+
σ4
V

σ2
V + σ2

1

r(N − r + 1)

(N + 1)2(N + 2)

1(
ϕ
(
Φ−1( r

N+1
)
))2 , (2.28)

Var(VJ (s)) =E
(
Var(VJ (s) | L(s))

)
+ Var

(
E(VJ (s) | L(s))

)
≈ σ2

2σ
2
V

σ2
V + σ2

2

+
σ4
V

σ2
V + σ2

2

s(N − s+ 1)

(N + 1)2(N + 2)

1(
ϕ
(
Φ−1( s

N+1
)
))2 . (2.29)

2.5.3 Var(W1)/Var(W2)

To derive the variance of W1, we require the covariance between H(r) and H(s), as well as

that between VI(r) and VI(s) ∀r, s. The same goes for W2, where we require the covariance

between L(r) and L(s), as well as that between VJ (r) and VJ (s) ∀r, s. This is necessary as the

terms of W1 (see Equation (2.2)), which result from removing noise from successive order

statistics, are highly correlated.

Equation 4.6.5 of [56] provided a formula to estimate the covariance between H(r) and H(s)

11 Similar to what has been mentioned in Footnotes 5 and 6,H(r) ≡ HI(r) and L(s) ≡ LJ (s), since we rank the
business propositions by their estimated values. Moreover, while VI(r) and VJ (s) are no longer normally
distributed with the ranking information, using the law of total variance to obtain the variance for all r
and s remains valid.
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and between L(r) and L(s) for any r < s ≤ N :12

Cov(H(r),H(s)) ≈ r(N − s+ 1)

(N + 1)2(N + 2)

1

fH
(
F−1
H ( r

N+1
)
)
fH
(
F−1
H ( s

N+1
)
) , (2.30)

Cov(L(r),L(s)) ≈ r(N − s+ 1)

(N + 1)2(N + 2)

1

fL
(
F−1
L ( r

N+1
)
)
fL
(
F−1
L ( s

N+1
)
) . (2.31)

To obtain the covariance between VI(r) and VI(s) for any r, s ≤ N , we again refer to [55]

(Equation 2.3d):

Cov(VI(r),VI(s)) = ρ2VHσ
2
V
Cov(H(r),H(s))

σ2
V + σ2

1

=
σ4
V

(σ2
V + σ2

1)
2 Cov(H(r),H(s)) , (2.32)

Cov(VJ (r),VJ (s)) = ρ2VLσ
2
V
Cov(L(r),L(s))

σ2
V + σ2

2

=
σ4
V

(σ2
V + σ2

2)
2 Cov(L(r),L(s)) . (2.33)

Equation (2.32) and (2.33) affirms the claim that VI(r) are positively correlated ∀r. Unlike Vi,

which are independent by definition, they become correlated under the presence of ranking

information.

We can now state the variance of W1 and W2. Applying the variance function to Equa-

tion (2.20), we get

Var(W1) =
1

M2

(
N∑

r=N−M+1

Var
(
VI(r)

)
+

N∑
r=N−M+1

N∑
s=r+1

2 · Cov
(
VI(r),VI(s)

))
, (2.34)

Var(W2) =
1

M2

(
N∑

s=N−M+1

Var
(
VJ (s)

)
+

N∑
r=N−M+1

N∑
s=r+1

2 · Cov
(
VJ (r),VJ (s)

))
, (2.35)

where the constituent variances and covariances are derived in Equations (2.25)/(2.26) and

(2.32)/(2.33), respectively.

2.5.4 Var(D)

Finally, we derive the variance of D. In addition to the variance of W1 and W2 derived,

respectively, in Equations (2.34) and (2.35), we require the covariance between these two

12 For r > s, simply swap r and s as covariance functions are symmetrical.
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terms. This, in turn, requires the covariance between H(r) and L(s) and that between XI(r)

and XJ (s).

The covariance betweenH(r) and L(s) can be derived using results in [56]:

Cov(H(r),L(s)) = ρVHρVL Cov(V(r),V(s))

=
σ2
V√

σ2
V + σ2

1

√
σ2
V + σ2

2

r(N − s+ 1)

(N + 1)2(N + 2)

1

fV(F
−1
V ( r

N+1
)) fV(F

−1
V ( s

N+1
))
, (2.36)

where fV(·) and F−1
V (·) are the probability density function and quantile function for Vi, re-

spectively.

Deriving the covariance between VI(r) and VJ (s) is perhaps the most challenging problem

within the work, as they take two forms depending on the indices:

Cov(VI(r),VJ (s)) =

 Var(VI(r)) = Var(VJ (s)) if I(r) = J (s)

σ2
V

σ2
V+σ

2
1

σ2
V

σ2
V+σ

2
2
Cov(H(r),L(s)) if I(r) ̸= J (s)

, (2.37)

where the second case is a standard Bayesian inference result.

The problem arises as the rth rankedH and the sth ranked L can be generated by the same Vi
for some i. It will not arise if we have onlyH orL (see Figure 2.5 for an example). In this case,

whenwe consider the covariance of the concomitantsVI(r)/VJ (s), we have to take into account

both the existing variance of Vi and the ranking information provided by H(r) and L(s). If

the order statistics are generated by different V , we only need to consider the latter as we

assumed Vi to be independent and thus uncorrelated.

As we are interested in the overall behaviour, we only need to derive the two cases on the

RHS of Equation (2.37) and weigh them using the probability that I(r) = J (s) without

worrying about which case applies to each (r, s) pair. The first case (when I(r) = J (s)) can
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V1 V2 V3

E1 E2 E3

E(1) E(2) E(3)

V1 V2 V3

H1 H2 H3

H(1) H(2) H(3)

L1 L2 L3

L(1) L(2) L(3)

Figure 2.5: Relationship between different quantities in a three-item generative model under
the ranking under lower uncertainty problem. Vi, Hi/Li, and H(r)/L(s) represent the true
value, the unranked noisy estimates, and the ranked noisy estimates of the items, respec-
tively, for i, r, s ∈ {1, 2, 3}. (L) Under one estimation noise level, ∃ a bijection between Vi
and H(r) within a set of generated samples. (R) With two noise levels, H(r) and L(s) may be
generated by the same Vi for some r and s.

be evaluated using the law of total variance with multiple conditioning random variables:

Var(VI(r)) = Var(VJ (s))

=E(Var(VI(r)|H(r),L(s))) + E(Var(E(VI(r)|H(r),L(s))|H(r))) + Var(E(VI(r)|H(r)))

=
σ2
Vσ

2
1σ

2
2

σ2
Vσ

2
1 + σ2

Vσ
2
2 + σ2

1σ
2
2

+

(
σ2
Vσ

2
1

σ2
Vσ

2
1 + σ2

Vσ
2
2 + σ2

1σ
2
2

)2

Var(L(s)) +

(
σ2
V

σ2
V + σ2

1

)2

Var(H(r)).

(2.38)

The second case can be derived by substituting Equation (2.36) into Equation (2.37).

For the weighting probability P(I(r) = J (s)), we see its derivation as an interesting and

potentially important problem in its own right, yet to the best of our knowledge, no proper

treatmentwas given to the problem. In thiswork, we approximate the probability using beta-

binomial distributions, with parameters derived from quantities calculated above. Without

distracting readers from the main question of quantifying the value and risk of DEM capa-

bilities, we relegate the detailed discussion on approximating the quantity to Appendix A.1.

With the three components for the covariance between VI(r) and VJ (s) in place, we can finally

derive Cov(W1,W2) and Var(D) by applying the covariance and variance functions to the
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definitions of, respectively,W1/W2 and D (see (2.20)) to obtain

Cov(W1,W2) =
1

M2

N∑
r=N−M+1

N∑
s=N−M+1

Cov(VI(r),VJ (s)), (2.39)

Var(W) =Var(W2 −W1) = Var(W1) + Var(W2)− 2Cov(W1,W2), (2.40)

where the first two terms on the RHS of Equation (2.40) are that derived in Equations (2.34)

and (2.35).

We conclude this section by observing thatM and N influence Var(D) considerably. In par-

ticular, Var(D) is generally large whenM and N are small with other parameters fixed. This

is crucial as even in cases where E(D) is positive, the limited capacity of an organisation to

introduce new business propositions may mean that the Sharpe ratio defined in Section 2.3

(see Expression (2.4)) may not be high enough to justify investment in a DEM capability.

The exact threshold where an organisation should consider acquiring such capabilities de-

pends on multiple factors, including their size (which affects M), the size of their back-

log (N), the nature of their work (µV and σ2
V), and how good they were at estimation (σ2

1).

Thus, we refrain from providing a one-size-fits-all recommendation but give examples in

Section 2.7.

2.6 Empirical Verification

Having performed theoretical calculations for the expectation and variance of the valueDEM

capabilities deliver through enhanced prioritisation, we verify those calculations using sim-

ulation results.13

Weverify the result derived in Sections 2.4 and 2.5 empirically, in particular under the normal

assumptions. We run multiple statistical tests for each quantity of interest – the mean and

variance ofW1/W2 andD, as well as the covariance between different pairs of order statistics

and their concomitants.

13 All code used in the experiments, case studies and extensions are available on GitHub: https://github.
com/liuchbryan/ranking_under_lower_uncertainty.

https://github.com/liuchbryan/ranking_under_lower_uncertainty
https://github.com/liuchbryan/ranking_under_lower_uncertainty
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In each statistical test, we randomly select and fix the value of the parameters, i.e., N ,M , µV ,

µϵ, σ2
V , σ2

1 , σ2
2 , r, and s (the latter two for the covariance of the order statistics only). We se-

lectN uniformly on a log scale, with the log scale favoured due to its better resemblance to the

organisation size distribution in real life and bounds chosen to represent the usual number

of items/propositions an organisation will consider during prioritisation. We also select µV ,

µϵ, σ2
V , and σ2

1 randomly from a uniform distribution (on a linear scale), with bounds cho-

sen that are reflective of the usual business metrics an organisation uses to prioritise their

items/propositions and their unit of measurement (e.g., percentage points change, revenue

impact in hundred thousand pounds).14

Each parameter is drawn independently from other parameters where possible, with the

only exceptions being when the range of a parameter is restricted (i.e., M < N , σ2
2 < σ2

1 ,

and N −M + 1 ≤ r, s,≤ N for selected items/propositions). To draw M , we draw a uni-

formly random multiplier between 0.01 and 0.8, then apply the multiplier to N .15 We apply

a similar process to draw σ2
2 , though we use a different multiplier range and apply the mul-

tiplier on σ1 (the standard deviation) before squaring.16 Finally, we draw r and s indepen-

dently and uniformly amongst integers between N −M + 1 and N (both inclusive).

Upon selecting and fixing the value of the parameters, we compare the theoretical value of

the quantity of interest to the centred 95% confidence interval (CI) generated from multiple

empirical samples. If the derivations above are exact, the 95%CI should contain the theoretical

value in around 95% of the statistical tests. The histogram of the percentile rank of the theo-

retical quantity among the empirical samples should also follow auniformdistribution [259].

Each empirical sample is generated using one of the following two methods depending on the

quantity we are evaluating:

a) Bootstrap resampling – We use the method to generate a sample for the mean/variance

of W1/W2 and D. We first generate the initial samples for W1, W2, and D by performing

14 Denoting U(a, b) as a uniform distribution with bounds a and b, we draw N ∼ 10U(1,3.5), µV , µϵ ∼
U(−10, 10) and σ2

V , σ
2
1 ∼ U(0.3, 10)2.

15 In other words, we drawM ∼ N × U(0.01, 0.8), subjected to rounding with the floor function and a min-
imum value of one. Multipliers above 0.8 are ignored, as it is unrealistic for organisations to have such a
high relative capacity.

16 We draw σ2
2 ∼ (σ1 ×U(0.1, 0.99))2, subjected to a minimum value of 0.22. Multipliers below 0.1 and above

0.99 are ignored, as we consider such an estimation noise reduction unrealistic and of negligible value,
respectively.
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Table 2.1: The number of statistical tests with the centred 95% confidence interval containing
the derived theoretical value for each quantity of interest. If a theoretical value derived in
Sections 2.4 or 2.5 is exact, its associated 95% CI should contain the theoretical value in 95%
of the statistical tests.

Quantity # within CI # statistical tests % within CI
E(W) 3,991 4,428 90.13%
E(D) 4,162 4,428 93.99%

Var(W) 3,390 4,555 74.42%
Cov(H(r),L(s)) 4,663 4,940 94.39%
Cov(VI(r),VJ (s)) 4,730 4,940 95.75%

10,000 simulation runs (see below). We then resample the initial samples and calculate the

mean/variance of the resample to obtain an empirical mean/variance sample. Finally, we

repeat the resampling 2,000 times to obtain a representative empirical distribution for the

mean/variance.

b) Sampling for order statistics – The bootstrapping approach is unlikely to work on the

covariance between the order statistics (e.g.,H(r) and L(s)) and their concomitants (e.g., VI(r)

and VJ (s)), as the ranking information may not be preserved during resampling. Hence, for

these quantities, we opt for a more naı̈ve sampling approach. We generate 200 samples for

H(r),L(s), VI(r), and VJ (s) via the same number of simulation runs, and calculate the covariance

between these quantities to obtain an empirical sample. The process is repeated 1,000 times

to yield a representative empirical distribution for the covariance.

Finally, in each simulation run, we obtain one sample for each ofH(r)/L(s), VI(r)/VJ (s),W1/W2,

and D w.r.t. the parameters via the following four-step process:17

1. Take N samples from N (µV , σ
2
V) as Vi;

2. Take N samples from N (µϵ, σ
2
1), and sum the ith-indexed sample with Vi ∀i to obtain Hi:

(a) Rank all Hi, take the value of the rth-ranked Hi as H(r) and its index as I(r),

(b) Take the value of the I(r)th-indexed sample of Vi as VI(r),

17 Identifiers in monospace refer to variables used in software packages, which correspond to the random
variables used in Sections 2.3–2.5.
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Figure 2.6: Histogram of the theoretical quantity’s percentile rank compared to the empirical
samples acrossmultiple statistical tests. If the theoretical value derived in Section 2.4 is exact,
the histogram should show a uniform distribution with probability mass around the black
line [259].

(c) Obtain the indices of theM largest samples of the ranked Hi,

(d) Calculate the mean of Vi, where i is in the set of indices in Step 2c, as W1;

3. Take N samples from N (µϵ, σ
2
2), and sum the ith-indexed sample with Vi ∀i to obtain Li:

(a) Rank all Li, take the value of the sth-ranked Li as L(s) and its index as J(s),

(b) Take the value of the J(s)th-indexed sample of Vi as VJ(s),

(c) Obtain the indices of theM largest samples of the ranked Li,

(d) Calculate the mean of Vi, where i is in the set of indices in Step 3c, as W2;

4. Take the difference between W2 obtained in Step 3d and W1 from Step 2d to get D.

We show the results in Table 2.1 and Figure 2.6. We observed that the 95% CI of the quanti-

tiesE(W),E(D), Var(W), Cov(H(r),L(s)), andCov(VI(r),VJ (s)) contain the derived theoretical

value for roughly 90%, 94%, 74%, 94%, and 96% of the times respectively. While these num-

bers are expected for the expectations and covariances, considering they are approximations,

they are on the low side for the variances. Upon further investigation, we realised that most

out-of-CI cases have a theoretical variance below the CI, suggesting a slight underestimate

in our variance derivation. We believe that this is due to the omission of higher-order terms

when using the formulas in [54], leading to a small (less than one percent relative) bias,
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which is more apparent for smaller N and M . Otherwise, we are satisfied with the sound-

ness of the derived quantities.

2.7 Case Study

“What do e-commerce/marketing companies gain by acquiring digital experimentation and measure-

ment capabilities?”

It is difficult to verify any model that seeks to ascertain the value of DEM capabilities with

real-life data. This is because of the inability to observe the true value of a digital product

/ business proposition / service without any measurement error and the lack of published

measurements from organisations. The closest proxies are meta-analyses, including those

compiled by Browne and Johnson [30] and Johnson et al. [136], which contain statistics on

the measured uplift (in relative %) over a large number of e-commerce and marketing ex-

periments for many organisations.

The information presented by the two groups of researchers, which we describe in more

detail below, is sufficient for us to ask the following question: If the same organisation con-

ducted all the experiments presented by Browne and Johnson / Johnson et al., how much

value did the DEM capabilities add due to improved prioritisation? We present results un-

der normal assumptions in this section and will revisit the question when we discuss the

model under t-distributed assumptions in Section 2.8.1.

2.7.1 e-Commerce companies

In [30], Browne and Johnson reported running 6,700 A/B tests in e-commerce companies,

with an overall effect in relative conversion rate (CVR) uplift centred at around zero, and the

5% and 95% percentiles at around ±[1.2%, 1.3%]. We then divide the range by z0.95 ≈ 1.645,

the 95th percentile of a standard normal, to estimate that the distribution reported has a stan-

dard deviation of around 0.75%. Based on this information, we take µV = 0 and σ2
V = (0.6%)2,

considering that the reported distribution incorporated some estimation noise, and hence,

the spread of the true values should be slightly lower.
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Given an A/B test on CVR uplift run by the most prolific organisations (e.g. one with five

million visitors and a 5% CVR) carries an estimation noise of around (0.28%)2,8 we explore

the scenarios where we reduce the noise level from σ2
1 = {(1%)2, (0.8%)2, (0.6%)2} to σ2

2 =

{(0.8%)2, (0.6%)2, (0.4%)2}, representing different levels of estimation abilities before and af-

ter the acquisition of DEM capabilities for companies of various sizes. We also calculate the

value gained under different M (from 10 to 2,000) to simulate organisations with different

yet realistic capacities while fixingN = 6700 (# experiments). Finally, we set µϵ = 0 as we do

not assume any systematic bias during estimation in this case.

We show the results in Figure 2.7, which shows the relationship between differentM and the

value gained under differentmagnitudes of estimation noise reduction. One can observe that

the expected gain in value decreases when M increases. This is expected: as one increases

their capacity, they will run out of the most valuable work and have to settle for less valuable

work that has many acceptable replacements with similar value, limiting the value DEM

capabilities bring.

We can also see an inverse relationship between the size of M and the uncertainty of the

value gained. As a result, while the expected value gain decreases with increasing M , the

uncertainty drops quicker, such that at someM , we will see a statistically significant increase

in value gained or an acceptable Sharpe ratio that justifies investment in DEM capabilities or

both. The specific value that tips the balance is heavily dependent on individual circum-

stances.

2.7.2 Marketing companies

In the second case study, we repeat the process applied to e-commerce in Section 2.7.1 for the

marketing experiments described in [136]. In that work, Johnson et al. reported running 184

marketing experiments that measured relative CVR uplift, with a mean relative uplift of

19.9% and standard error of 10.8%. Thus, we take µV = 19.9% and σ2
V = (10%)2, which is

slightly reduced to account for the estimation noise being included in the reported standard

error.

Johnson et al. also noted that the average sample size in these experiments is over five mil-

lion, which keeps the estimation noise low. However, the design of marketing experiments
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Figure 2.7: The value gained by having some digital experimentation and measurement
(DEM) capabilities D (x-axes, in per cent) under different capacityM (y-axes, in log scale)
in the case study on 6,700 e-commerce experiments reported by Browne and Johnson [30]
(see Section 2.7.1). In each plot, the dot represents themean, and the error bar represents the
5th–95th percentile of the empirical value distribution. Each sub-caption denotes the estima-
tion noise before and after the acquisition of DEM capabilities (i.e., σ2

1, σ
2
2). We fix µV , µϵ = 0,

σ2
V = (0.6%)2, and N = 6700.
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often comes with additional sources of noise compared to standard A/B tests [105, 172].

Hence, we assume the same estimation noise as in the e-commerce case study above (i.e.,

σ2
2 = {(0.8%)2, (0.6%)2, (0.4%)2}). The larger variance in the uplifts allows us to assume

a larger estimation error without DEM capabilities, and we explore the scenarios where

σ2
1 = {(5%)2, (2%)2, (1%)2, (0.8%)2, (0.6%)2}. We set N = 184 (# experiments) and vary M

between 10 and 100 for each combination of σ2
1 and σ2

2 .

Figure 2.8 shows the results. In the presence of a larger variability in the true uplift of the

advertising campaigns (σ2
V) and lower capacity (M), the level of estimation noise reduction

that gave a statistically significant value gained in the e-commerce example is no longer suffi-

cient. Therefore, one needs a larger noise reduction or to increase their capacity to effectively

control the risk in investing in DEM capabilities. They may also be better off increasing their

limited number of existing business propositions.

2.8 Empirical Extensions

We also provide two extensions, evaluated empirically, that open the door for future work in

this area.

2.8.1 Valuation under independent t-distributed assumptions

So far, we have spent much of the work assuming that the business propositions’ true value

and the estimation noise are normally distributed. While possessing decent mathematical

properties, more is needed to explain the heavy tail in the distribution of uplifts shown in [30]

or [136].

In this section, wemodel the true value of the business propositions and the estimation noise

as Generalised Student’s t-distributions (see Equation (2.7)). It is difficult to derive the ex-

act theoretical quantities under such model assumptions because Student’s t-distributions

do not have conjugate priors [230]. We instead simulate the empirical distribution of the

value gained under different parameter combinations to understand if this model is a better
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Figure 2.8: The value gained by having some digital experimentation and measurement
(DEM) capabilities D (x-axes, in per cent) under different capacity M (y-axes) in the case
study on 184 marketing experiments reported by Johnson et al. [136] (see Section 2.7.2). In
each plot, the dot represents the mean, and the error bar represents the 5th–95th percentile
of the empirical value distribution. Each sub-caption denotes the estimation noise before
and after the acquisition of DEM capabilities (i.e., σ2

1, σ
2
2). Here, we fix µV = 19.9%, µϵ = 0,

σ2
V = (10%)2, and N = 184.
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alternative to that under normal assumptions. The sampling procedure is similar to that de-

scribed in Section 2.6, with stepsmodified to generate samples using standard t-distributions,

which are then scaled and located as specified by Equation (2.7).

We compare the value gain estimates obtained under t-distributed and normal assumptions.

For each comparison, we randomly sample values for N ,M , µV , µϵ, σ2
V , σ2

1 , σ2
2 , and perform

1,000 simulation runs of the four-step sampling procedure in Section 2.6 to obtain samples

of D using both the t3 and normal distributions.18 We then compare the expected values, the

5th and 95th percentile of the value gained under the two distributions.

We observed from 840 comparisons that overall, the value gained under the t-distributed

assumptions has a higher mean (7% higher mean) and variance (7% higher in the 95% per-

centile on average) than that under normal assumptions. The result arises despite us setting

the mean/variance of the true value and estimation noise under the t-distributed assump-

tions to that under the normal assumptions. This suggests that themodel under t-distributed

assumptions can capture the “higher risk, higher reward” concept.

Individual comparisons paint a more nuanced picture, perhaps best illustrated by revisiting

the case study in Section 2.7 under t-distributed assumptions. We select a few scenarios

featured in the previous section and overlay the value gained by having DEM capabilities

under t-distributed assumptions over that under normal assumptions in Figure 2.9. One

can see that while t-distributed assumptions generally yield a higher value gained, this is

not always the case – for the e-commerce case, as M increases, the value gained decreases

quicker under t-distributed assumptions than under normal assumptions. This shows that

the valuation of DEM capabilities is sensitive to model assumptions.

2.8.2 Partial estimation/measurement noise reduction

There are many situations when not all business propositions are immediately measurable

upon acquiring DEM capabilities. This may be due to the extra work required to integrate

additional capabilities in certain legacy systems or the limited ability to run experiments

18 t3 (t-distribution with three degrees of freedom (d.f.)) is used as it is the distribution with the longest tail
under the t family with a natural number of d.f. while retaining a finite variance.



2.8. Empirical Extensions 63

0 1 2 3
101

102

103

(a) e-Commmerce - (1%)2, (0.4%)2

0.0 0.5 1.0 1.5
101

102

103

(b) e-Commerce - (0.6%)2, (0.4%)2

0.0 0.5 1.0

20

40

60

80

100

(c) Marketing - (2%)2, (0.4%)2

0.0 0.1 0.2

20

40

60

80

100

(d) Marketing - (0.8%)2, (0.4%)2

Figure 2.9: The value gained by having some digital experimentation and measurement ca-
pabilities (x-axes, in per cent) under normal assumptions (blue error bars with crosses) and
t-distributed assumptions (orange error bars with triangles). Both assumptions are evalu-
ated under different but matching capacityM (y-axes, with the error bars displaced for clar-
ity). See Section 2.7.1/Figure 2.7 and Section 2.7.2/Figure 2.8 for details of the parameters
for e-commerce and marketing experiments, respectively.
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on online but not offline activities. In the case where there is a single backlog, we ask the

question, will an organisation still benefit from a partial noise reductionwhen some business

propositions’ values are obtained under reduced uncertainty while others are subject to the

original noise level?

We address this by attempting to establish the relationship between the expected improve-

ment in themean true value of the selected business propositions and the proportion of busi-

ness propositions that benefited from a reduced estimation noise (denoted p ∈ [0, 1]).19 The

sampling procedure is similar to that described in Section 2.6, with Step 3 modified: instead

of generating all samples from N (µϵ, σ
2
2), we generate p of the samples from N (µϵ, σ

2
2) (the

lowered estimation noise) and 1 − p of the samples from N (µϵ, σ
2
1) (the original estimation

noise).

We run the procedure aboveunder various scenarios, including a large/smallN , a large/small

ratio between an organisation’s capacity and backlog (M/N), and a large/small magnitude

of noise reduction upon acquisition of DEM capabilities (σ2
1 − σ2

2). Figure 2.10 shows the

result. We can see that under most scenarios, the expected value gained increases with p

linearly, while there are a few scenarios where the expected improvement in mean true value

of the selected business propositions curve upward for increasing p. This shows that while

organisations are incentivised to acquire DEM capabilities that cover the majority of their

work, in many scenarios, a partial acquisition yields proportional benefits. Potential experi-

menters need not consider the acquisition a zero-one decision orworry about any steep initial

investment required to unlock returns.

2.9 A Brief Recap

In this chapter, we have addressed the problem of valuing DEM capabilities, which enables

one to justify acquiring the said capabilities. Such capabilities deliver three forms of value to

organisations. These are

1. Improved recognition of the value of business propositions,

19 We can model the estimation noise using a two-component mixture distribution parameterised by p.
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Figure 2.10: The near-linear relationship between p (proportion of business propositions
with their value estimated under a lower estimation noise, x-axes) and the improvement
in the mean true value of the selected business propositions (y-axes) under normal assump-
tions. In each plot, the dot represents the sample mean, and the error bar represents the
5%–95% percentile of the sample value gained. All figures assume σ2

V = 1, while the top four
figures assume σ2

1 = 0.52 and σ2
2 = 0.42 (corresponding to a small reduction in estimation

noise), and the bottom four figures assume σ2
1 = 0.82 and σ2

2 = 0.22 (corresponding to a large
reduction in estimation noise).
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2. Enhanced capability to prioritise, and

3. The ability to optimise individual business propositions.

Of these, improving prioritisation is the most challenging to address while being the most

applicable for organisations seeking to build DEM capabilities from scratch.

We have established a methodology to value better prioritisation through reduced estima-

tion error using the framework of ranking under uncertainty. The key insight is that DEM

capabilities reduce the estimation error in the value of individual business propositions, al-

lowing prioritisation to follow the optimal order of projects more closely had the true values

of business propositions been observable. In addition, we have provided simple formulas

that give the value of prioritising under lower estimation error brought by DEM capabilities

and the Sharpe ratio governing investment decisions. Finally, alongside two case studies that

illustrate howwe can apply themethodology in specific situations, we have provided general

guidelines for conditions when such investments are inappropriate.



Chapter 3

Statistical Testing

This chapter contains background material that appeared in multiple publications:

• “An Evaluation Framework for Personalization Strategy Experiment Designs”, presented at and

awarded Best Student Paper of AdKDD 2020 Workshop (in conjunction with SIGKDD ’20)

[176];

• “Datasets for Online Controlled Experiments”, presented at the 35th Conference on Neural In-

formation Processing Systems (NeurIPS 2021) [173]; and

• “Measuring e-Commerce Metric Changes in Online Experiments”, presented at ACMWeb Con-

ference 2023 (WWW ’23) [177].

3.1 Motivation

After establishing the business case of engaging in digital experimentation and measure-

ment, we turn our focus to two necessary ingredients for running digital experiments. They

are data, which record what happens during an experiment, and statistical tests, which indi-

cate whether groups in the experiment give different responses beyond randomness.

We first discuss statistical testing in this chapter, which will complement our approach to

datasets in Chapter 4. We will also build upon the concepts introduced in this chapter in

Chapter 5, when we formally describe an experiment and its underlying causal reasoning,

67
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and in Chapter 6, when we compare different experimental designs for digital experiments.

Generally (and loosely) speaking, a statistical test is a statistical inference procedure that

informs us whether the data collected is compatible with our hypothesis(es). In the context

of digital experimentation, the data collected is often responses from two or more groups

exposed to different treatments, and the hypothesis is usually whether or how much the

responses from one group are different from another group.

Statistical testing may appear to be a simple and widely understood topic – at the end of

the day, it is taught in many upper secondary education curricula around the globe1 and

forms part of the standard toolkit in scientific research. It is not. As we will show in this

chapter, its development is riddled with assumptions that do not suit practical needs and its

application is permeated with careless interpretations. Multiple generations of academics

and practitioners have derided its misuse (and sometimes its use) [26, 47, 166, 200, 277,

297], with the latest round of controversy surrounding “p-hacking” necessitating an official

statement from the American Statistical Association [276].

Despite its many associated problems, statistical testing remains useful for decision-making

if applied correctly. This chapter aims to provide a comprehensive introduction to the area,

with a good balance between the theoretical foundation and its practical use in digital ex-

periments. We seek to enable practitioners in digital experimentation, having arrived from

diverse backgrounds, to quickly acquire the knowledge required to perform a statistical test

while being mindful of the nuances and pitfalls.

1 A non-exhaustive list of examples includes (in alphabetical order):

• China: (National College Entrance Examination) Mathematics - Extended Topic 3: Probability and
Statistics (Item 3(3)2), Elective Group A: Probability and Statistics (Topic 4), and Mathematics Elec-
tive Group B: Applied Statistics (Topic 4) [197, pp. 48, 57, 62]

• Germany (Berlin & Brandenburg): (Abitur) Mathematics (Semester 4 / Q4, Advanced-level only,
Theme 5 / L5) [196, p. 31]

• Japan: Mathematics B (Topic (2)A(D)) [198, pp. 104, 108–109]

• United Kingdom (AQA): GCE A Level in Mathematics (Subject Content O) [7, p. 23]

• United Kingdom (Edexcel): GCE A Level in Statistics (Topics 7–10, 15–17, and 19–20) [219, pp. 11–
13, 15–19]

• USA: Advanced Placement Statistics (Units 6–9) [48, pp. 125–205]

• Worldwide - International Baccalaureate Mathematics: applications and interpretation (Topics SL
4.11 & AHL 4.18) [132, pp. 57–58, 62]
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Target audience The chapter is written with a mathematically-inclined audience in mind,

i.e., those exposed to university-level introductory mathematics. As we place equal impor-

tance on the applications, we will not cover formal proofs and skip through many advanced

theoretical concepts, relegating them to footnotes with pointers to relevant works. However,

the chapter will involve a fair bit of mathematical notations and algebraic manipulations to

help us properly navigate the many concepts in statistical testing. For brevity, we also as-

sume readers are already familiar with concepts covered in introductory probability and

statistics textbooks, including conditional probability, population vs sample, and probabil-

ity distributions.2 Readers may also find expositions aimed at a broader audience in digital

experimentation, e.g., early chapters of [101], Chapter 17 of [155], and [194] plus its sibling

online articles, as well as works on various aspects of statistical testingwritten for researchers

and practitioners in other fields [36, 76, 87, 96, 166, 178, 275] helpful.

A note of caution It is worth emphasising that everything in this chapter only helps us es-

tablish whether the groups being compared give different responses and, at best, whether

the difference in responses is correlated to the different treatments provided to the groups. As

the old saying goes, “Correlation does not imply causation” [3]. We require further theoret-

ical foundations to properly establish the causal relationship between the treatment(s) and

the change in responses. This will be explored in Chapter 5 when we discuss experimental

design in digital experimentation.

Chapter organisation The rest of the section is organised as follows. We first define the

basic terminologies and outline the considerations that drive the development of many dif-

ferent statistical tests in Section 3.2, followed by some non-examples but important concepts

related to statistical testing in Section 3.3. We then discuss tests and quantities commonly

used in digital experimentation from Section 3.4 onward, categorised by the considerations

outlined at the end of Section 3.2.

2 One can refer to, e.g., Chapters 4–7 of [190] (more illustrative), Chapters 1–5 of [36] (more formal), Chap-
ters 1–2 of [275] (more compact), or any relevant massive open online courses (MOOCs) delivered by a
reputable higher education institution.
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3.2 Pre-matter and Considerations

A statistical test starts with the experimenter stating one or more statistical hypotheses.3

Usually, one specifies a null hypothesisH0, the preferred/assumed state of matter,4 and one or

more alternative hypothesis(es)H1, H2, · · · . Together, the hypotheses usually cover all possible

scenarios. In digital experiments, wemay have two populations,X and Y , and are interested

in inferring the difference in their population mean, ∆ = µY − µX , from their respective

samples. Depending on the experimenter’s claim, the hypotheses can be in the form of:

• In a comparison test, a.k.a. a two-sided test in some cases –

H0 : ∆ = 0, H1 : ∆ ̸= 0 .

• In a superiority test, a variant of a one-sided test [49, 272] –

H0 : ∆ ≤ 0, H1 : ∆ > 0 .

• In a non-inferiority test, another variant of a one-sided test commonly used to show a pop-

ulation is not substantially worse than another –

H0 : ∆ ≤ −θ, H1 : ∆ > −θ ,

where θ is a small margin that an experimenter is prepared to take to declare that µY is not

substantially lower than µX .

3 Not to be confused with a scientific/research hypothesis. A scientific hypothesis describes what the experi-
menter intends to discover/validate about the relationship between variables in the real world. A statistical
hypothesis is a much narrower statement on how a statistical model/procedure (usually a simplified view
of the real-world phenomenon) behaves. See [28, 160, 166, 189] for further discussions.

4 Not to be confused with a nil hypothesis, one that hypothesises the parameter of interest (e.g.,∆ as defined
in the same paragraph) is zero. Our comparison test example shows a nil hypothesis as the null, though
other hypotheses, such as H0 : ∆ = −3, are also valid. See [47, 104] for further discussions.
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• In an equivalence test (commonly carried out using two one-sided tests, or TOSTs) –

H0 : ∆ ≤ −θL, H1 : ∆ > −θL in one and

H0 : ∆ ≥ θU , H1 : ∆ < θU in the other.

Rejecting both null hypotheses would lead to the conclusion that−θL < ∆ < θU , where θL
and θU are the negative and positive margins, respectively, that an experimenter is pre-

pared to take to declare that µY and µX are equal.

In practice, within and outside digital experimentation, it is common to treat the null hypoth-

esis as one to be nullified, one set up to enable an experimenter to demonstrate the contrary

despite its status as the assumed state of matter [47].5 One major exception is A/A tests

– randomised controlled trials featuring two supposedly identical treatments. These tests

contrast A/B tests that feature two different treatments (see Chapter 1 / Figure 1.1) and are

often employed in digital experimentation to ensure one implements the systems and mod-

els correctly. Given identical treatments, one would expect results consistent with a nil null

hypothesis (no difference in the population means) in a comparison test – the alternative

hypothesis is the unexpected artefact.6

After specifying the statistical hypotheses, one then has to decide how to carry out the sta-

tistical test procedure. Many statistical tests have been proposed to date, each driven by a

combination of different considerations:

Philosophical alignment The philosophical debates on the interpretation of probability

and the role of models in statistical inference have led to different approaches to running

a statistical test. The frequentist versus Bayesian debate dominates the former, and the latter

manifests in whether a statistical test should solely inform one’s degree of belief in a par-

ticular hypothesis or act as a decision rule between competing hypotheses [162, 165]. To

5 One can draw a parallel between the reasoning behind nullifying the null hypothesis in a statistical test
and that behind proof by contradiction in pure mathematics. That said, the introduction of probabilistic
statements has complicatedmatters. See [47], particularly the “The Permanent Illusion” section, for further
discussions.

6 Instead of merely assuming the nil null hypothesis, somemay instead put the hypothesis to test by running
an equivalence test with −θL and θU very close to zero. However, we are back to the “nullifying the null
hypothesis” regime in that case.
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make things more confusing, statistical testing in modern times, known as null hypothesis

significance testing (NHST), is a hybrid of the two procedures (and underlying schools of

thought) [166]. We will introduce examples of NHST and Bayesian tests common in digital

experiments in Sections 3.4/3.5 and 3.9, respectively.

Model/distributional assumptions As an inference procedure, statistical tests almost al-

ways utilise a statistical model – a set of assumptions related to the sample data generation

process. The model can be parametric (i.e., assuming distributions with a finite number of

parameters), non-parametric (i.e., assuming distributions with an infinite number of param-

eters or even no distributions), or a mixture of the two [102]. All tests that we will introduce

in Section 3.4 are parametric. We will also discuss non-parametric tests in Section 3.7.

Number of samples A test can involve one, two, ormany sample(s) (groups of responses in

business speak). Some tests also utilise models that enable one to collapse a two-sample test

into a one-sample test (which, one can argue, reduces the operational complexity). Examples

of the latter include the z-test and t-test, which we will discuss in depth in Section 3.4.

Decision-making process Some tests are developed with a fixed-sample/fixed-horizon ex-

periment in mind. Other tests, which include those that arise from sequential analysis and

Bayesian statistics, support adaptive stopping (see Section 4.1 for a further exposition). It is

important to separate this consideration from that on philosophical alignment, e.g., there is

both frequentist and Bayesian interpretation to sequential tests. Wewill introduce only fixed-

horizon tests in Section 3.4, followed by sequential tests in Section 3.8 and Bayesian tests in

Section 3.9.

3.3 Alternative Approaches to Formal Tests

Before we proceed with the definitions of relevant statistical tests, we discuss some related

concepts that are not formal statistical tests yet are often mentioned alongside statistical test-

ing. They are the inter-ocular trauma test, effect size (of a treatment), and confidence inter-

vals.
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3.3.1 The inter-ocular trauma test

Given the number of considerations listed above, it is perhaps unsurprising that manyworks

that collate and organise statistical tests already exist [184]. Indeed, many guides for experi-

menters from different fields in need of statistical tests feature a flowchart of various sophis-

tication – see [224], [71, 107], and [58] for one intended for general use, clinical trials, and

digital experimentation, respectively. However, many of these works may have neglected to

ask an important question:

“Do we require a statistical test at all?”

Many statistical tests are unnecessary from the outset. Some results are obvious and way

beyond anypossible randomfluctuations. Other results come from such a noisy environment

that it is statistically unfeasible to extract any signal. The inter-ocular trauma (IOT) test deals

with the former:

“You know what the data mean when the conclusion hits you between the eyes.” [84]

An IOT test is not a statistical test per se – it is often performed visually via plots [31, 204] or

tables without involving formal statistical inference. Nonetheless, it reminds experimenters

that statistical testing is not just a rite of passage or a recipe to follow to obtain a “significant

result”, whatever “significant” might be.

We are not asserting that all statistical tests are unnecessary. Determining what constitutes

inter-ocular trauma is more an art than science and requires the backing of substantial do-

main expertise. Indeed, Edwards et al. [84] added the following immediately after publicly

coining the IOT test,

“But the enthusiast’s interocular trauma may be the skeptic’s random error. A little arith-

metic to verify the extent of the trauma can yield great peace of mind for little cost.” [84]

3.3.2 Effect size

We move on to effect size, which we touched upon without explicitly naming when we set

up our running example in Section 3.2. Recall that we have two populations, X and Y , and
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are interested in the difference in their means

∆ = µY − µX . (3.1)

When X and Y represent responses from two groups receiving different treatments in a

randomised controlled trial, ∆ is known as the effect size (of the mean difference) or the

average treatment effect. It enables us to tell whether a treatment is creating an impact that

matters in practice (i.e., practically significant). Effect size is just a measure,7 not a statistical

test (as no inference is made). It is, though, a measure that many statistical tests are set up to

infer and is one of the two quantities of interest whenwe compare digital experiment designs

in Chapter 6.

A standardised effect size enables us to compare the difference across many (related) exper-

iments, thus useful in meta-analyses. One commonly used effect size is Cohen’s d, defined as

the difference in sample means divided by the pooled sample standard deviation [46]. More

formally, let X1, · · · , Xn and Y1, · · · , Ym be independent and identically distributed (i.i.d.)

samples from the two populations in our running example, with sample means and vari-

ances (X̄, Ȳ ) and (s2X , s
2
Y ), respectively. Cohen’s d is defined as

d =
Ȳ − X̄√

(n−1)s2X+(m−1)s2Y
n+m−2

. (3.2)

Other commonly used effect sizes, including Glass’ ∆ and Hedge’s g [120], also involve di-

viding the difference in sample means by a standalone or pooled standard deviation, with

the latter also involving a correction factor dependent on the sample sizes n andm.

3.3.3 Confidence Intervals

The final non-example is confidence intervals. Confidence intervals are range estimates for

a parameter of interest θ, which is unknown but fixed. Examples of such parameters include

the population mean of a sample and the effect size introduced above.

We define confidence intervals as follows. Consider a sample X generated from a statistical

7 In a layman’s sense, i.e., “a basis or standard of comparison.” [191]
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model with a parameter of interest θ. A random interval constructed from X is an interval

delimited by two transformations ofX , themselves r.v.’s: (u(X), v(X)). It is said to be a (1−α)

confidence interval of θ if the random interval covers θ in at least (1− α) of instances, i.e.,

P(u(X) < θ < v(X)) = 1− α , (3.3)

where (1 − α) is known as the confidence level and is usually chosen to be a value close to

but less than one (e.g., 95%). The probability statement should hold for all possible values

of θ, as well as that for all other parameters in the model. This is achieved by choosing

appropriate u(·) and v(·).

For example, consider an i.i.d. sampleX1, · · · , Xn generated from a normal distribution with

mean µX and variance σ2
X , estimated by the sample mean X̄ and sample variance s2X , respec-

tively. A commonly used (1− α) confidence interval of µX is

(
X̄ − tn−1, 1−α/2

√
s2X
n
, X̄ + tn−1, 1−α/2

√
s2X
n

)
, (3.4)

where tn−1,1−α/2 is the (1−α/2) quantile of the Student’s t-distribution with n− 1 degrees of

freedom.8 Upon observing the empirical responses, they are substituted into the formula in

Expression (3.4) to obtain the realised confidence interval specific to the experiment.

Confidence intervals are not statistical tests as they do not involve any statistical hypotheses.

That said, a “duality” exists between a (1 − α) confidence interval and the non-rejection

region of a statistical test that utilises the same statistical model at significance level α, which

leads to confidence intervals frequently appearing in test results. The “duality” enables one

to construct a confidence interval for θ by taking values that a corresponding statistical test

on its point estimate (i.e., H0 : θ = θ̂) fails to reject [52]. It also enables one to reject the null

hypothesis H0 : θ = θ0 in a statistical test if the corresponding confidence interval does not

cover θ0.

Some consider confidence intervals superior to a statistical test or p-values (see Section 3.6.1).

They see confidence intervals rebalancing the influence from the null and alternate hypothe-

8 For brevity, wewill skip how such an interval is constructed andwhy such construction is valid. For amore
extensive exposition, readers can refer to, e.g., Sections 7.2 & 7.3 of [52].
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ses – instead of giving the null a preferred status as one does in a (frequentist) test, confidence

intervals make one look at the full range of effect sizes compatible with the data [109]. Oth-

ers consider confidence intervals a more effective heuristic on the interaction between effect

size and sampling uncertainty than any two numbers from a statistical test.

On the other hand, confidence intervals suffer from the same problem as p-values – there

is no guarantee that they are always useful in practice. It is possible for confidence interval

procedures, even the “good” ones, to produce intervals that are overly wide or narrow (or

even empty) while maintaining a (1−α) confidence level overall [199]. Moreover, its root in

frequentist, parametric statistics also prevents meaningful comparison with non-parametric

or Bayesian tests on a like-for-like basis. Any attempt at such will likely revert to debates on

the underlying philosophy.

In addition, many interpretation pitfalls prevent one from fully reaping the benefits outlined

above. Some stem from losing sight of θ, the parameter of interest, during the estimation

procedure. Recall that a confidence interval is a random interval that estimates θ, a fixed

quantity. It does not infer the samples themselves and thus does not provide any information

on the proportion of the samples it may cover.9 Readers may have also encountered texts

claiming “there is a (1− α) chance for θ to fall within the (1− α) confidence interval”. This

is misleading. One may consider the phrases “the interval covering θ” and “θ falling within

the interval” to describe the same event from a different perspective. However, things get

complicated once they form part of a probability statement. The description above, which

has θ as the subject, incorrectly implies θ is random.

Othermisconceptions arise from confusing the procedure, which produces random intervals

from random samples, with a particular interval constructed from realised response values.

The confidence level is a probability statement on the estimation procedure itself – its value

gives the proportion of confidence intervals that cover θ in the long run.10 It does not matter

what value θ takes or what the parameter is – all (1− α) confidence intervals that were and

9 A random interval that covers (1 − α) of the samples is known as a (1 − α) prediction interval. Generally,
these two intervals are not comparable as they estimate different quantities. When one produces confidence
intervals for the population mean of a normal distribution, a prediction interval usually shares the same
mid-point with, yet is much wider than, a confidence interval with the same “rating”.

10 The notion of long-run proportion underpins the frequentist interpretation of probability.
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will be constructed should cover the corresponding θ in (1−α) of the instances.11 On the other

hand, once an interval is realised from the response values, it is no longer random. While θ

remains unknown, this particular interval either covers the fixed θ or does not – there is no

probability statement to be made. Thus, the notion of confidence level is meaningless for

realised intervals [207].

3.4 Null Hypothesis Significance Tests

Wecontinue to discuss statistical tests by introducing null hypothesis significance tests (NHSTs),

the most popular class of statistical tests featured in classrooms and most application areas,

including digital experimentation. In this section, we describe the general procedure for run-

ning an NHST. Three examples follow in Section 3.5, and a practical guide to concepts and

quantities featured in NHSTs in Section 3.6.

The general procedure for running an NHST is as follows:

1. Determine the statistical hypotheses, namely the null and alternative(s), as outlined in

Section 3.2.

2. Determine an appropriate test based on underlying considerations (see Section 3.2) and

state the associated test statistic T – see below for typical examples in digital experimenta-

tion.

3. Determine the appropriate significance level (α), and as best practice,minimum power (πmin)

and sample size (n) via an a priori power analysis – see Section 3.6 for the definition of the

mentioned concepts and description of a power analysis.

4. Derive/obtain the distribution of T under the null hypothesis. We call a hypothesis simple

if it completely determines the distribution of T and composite otherwise.

5. Calculate the test statistic based on the observed data, tobs.

6. Determine the critical region Tcrit – values of T that lead to us rejecting the null hypothesis.

The critical region should be chosen so that the probability of T fallingwithin the region is

11 This assumes all intervals involved are correctly constructed and all other model assumptions are met.



78 Chapter 3. Statistical Testing

at most α, as determined in Step 2 (see Section 3.6). For named tests, both the distribution

and the optimal critical region12 are standard results.

7. Reject the null hypothesis if the test statistic falls within the critical region, i.e., tobs ∈ Tcrit.

This indicates it is implausible for the null to generate the observed data, and one of the

alternate hypotheses is now favoured.13 Otherwise, do not reject the null hypothesis.14

Another approach to the decision steps (Steps 6 and 7) is as follows:

6A. Calculate the p-value, the highest probability that, given the null hypothesis, a sampled

value from T (itself an r.v.) will be at least or more extreme than observed test statis-

tic tobs (see Section 3.6).

7A. Reject the null hypothesis if the p-value is less than the significance level, i.e. p < α.

Otherwise, do not reject the null hypothesis.

The existence of the two approaches highlights the difference in philosophical alignment dis-

cussed in Section 3.2. The critical region was developed to provide an objective decision cri-

terion. In contrast, the p-valuewas developed tomeasure the strength of evidence against the

null hypothesis without making a formal decision. The latter approach is a result of mash-

ing the two mathematical concepts together, perhaps driven by the desire to “have your cake

and eat it”, i.e., to have a measure of the strength of evidence while making a formal deci-

sion, and further aided by the happy coincidence that there is a one-to-onemapping between

these two concepts. In practice, both approaches are commonly used. Some experimenters

also engage in both approaches when running the same NHST.

12 For one-sided parametric tests, this is given by the uniformly most powerful (UMP) test under the same
statistical assumptions. See Section 8.3.2 of [36] or Chapter 3 of [164] for further discussions.

13 It might sound innocuous to say that rejecting the null hypothesis indicates the null hypothesis is implausi-
ble given the observed data (or, in mathematical terms, a low P(H0|Data)). This is not true – it indicates the
observed data is implausible given the null hypothesis (or a low P(Data|H0)). We will explore this subtle
difference in greater detail in Section 3.6.1.

14 Strictly speaking, there is no such notion of accepting the null hypothesis – failing to reject the null simply
means it remains the preferred hypothesis as determined at the beginning of a statistical test.
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3.5 Examples of NHSTs

We now focus on individual examples, i.e., some named tests commonly used in digital ex-

perimentation. These include the z-test, the (Welch’s) t-test, and the binomial test of pro-

portion. The examples are all parametric, fixed-horizon NHSTs.15 Needless to say, there are

many other examples of parametric, fixed-horizon NHSTs (e.g., F -test on population vari-

ances, one-way analysis of variance test on population means, Pearson’s correlation coeffi-

cient test on the correlation between two sets of data) that we have to omit for brevity.

We will follow a similar pattern when introducing each test. In the order laid out by the

general procedure in Section 3.4, we first state the statistical assumptions, definition of the

associated test statistic T , distribution of T , the optimal critical region Tcrit, and p-value. We

then provide examples of their use in practice.

3.5.1 z-test

The z-test (or test for normal population mean(s)) is one of the most recognised statistical

tests, perhaps because of its early coverage in introductory statistical textbooks.

Assumptions & Definitions We first consider a one-sample test: let X1, · · · , Xn be i.i.d.

samples from a population with unknown mean µX and known variance σ2
X . We are inter-

ested in inferring µX , estimated by the sample mean X̄ . The z-test assumes all other param-

eters (in this case σ2
X) are already known and defines the test statistic as

Z ≜
X̄ − µX√
σ2
X/n

. (3.5)

Test statistic distribution The test also assumes the test statistic, also known as the stan-

dard score, follows the standard normal distribution, denotedN (0, 1). Theoretically, having

normally distributed data ensures that the test statistic is normally distributed. This can eas-

15 Some regard these tests as classical NHSTs, though there is no formal definition or consensus on what
constitutes a classical NHST.
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ily be shown by observing

X1, · · · , Xn
i.i.d.∼ N (µX , σ

2
X) =⇒ X̄ ∼ N (µX , σ

2
X/n) =⇒ Z ∼ N (0, 1) . (3.6)

It leads to some textbooks (incorrectly) mandating normality assumptions in the data for a z-

test. In practice, one would be hard-pressed to find data that is strictly normally distributed.

Instead, many appeal to the central limit theorem (CLT),which implies that the samplemean

of any underlying distribution approximately follows the normal distribution given sufficient

samples,16 i.e., X̄ approx.∼ N (µX , σ
2
X/n). This enables one to run an approximate z-test using

the same test statistic.

The implication above also means we can run an approximate z-test on two or more samples

to infer a linear combination of themeans, e.g., the effect size between twogroups. We further

let Y1, · · · , Ym be i.i.d. samples from a population with unknown mean µY (estimated by the

sample mean Ȳ ) and known variance σ2
Y . Using the same implication above, we can assume

Ȳ
approx.∼ N (µY , σ

2
Y /m) and thus

Ȳ − X̄
approx.∼ N

(
µY − µX ,

σ2
X

n
+
σ2
Y

m

)
. (3.7)

Noting the effect size as∆ = µY −µX (see Equation (3.1)), the test statistic in this two-sample

setting is

Z ≜
(Ȳ − X̄)−∆√

σ2
X

n
+

σ2
Y

m

approx.∼ N (0, 1) . (3.8)

One may notice that Equations (3.5) and (3.8) place the parameters of interest (µX and ∆)

in the definition of Z rather than the distribution.17 Such formulation enables one to use the

same distribution for different statistical hypotheses on µX or ∆ – parameters’ values only

affect the value of the test statistic calculated using the observed data. This is appealing for

old clinical trials and pedagogical purposes as one only needs to refer to a single z-table.

16 Formally, the Lindeberg-LévyCLT states that
√
n(X̄−µX) converges in distribution toN (0, σ2

X). The practical
but naı̈ve interpretation of the statement above is that the distribution of X̄ is getting closer to a normal
distribution with mean µX and variance σ2

X/n as n increases. It makes no claim on what constitutes a
sufficient number of samples.

17 With σ2
X and σ2

Y known, this makes Z a pivotal quantity.
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Such appeal is less pronounced in digital experiments with modern computers.

Critical region & p-value While the distribution of a z-test statistic does not depend on the

statistical hypotheses, it is not the case for the critical region Tcrit and p-value – the direction

of the hypotheses matters. Consider the one-sample setting, where we use Z defined in

Equation (3.5) to infer on µX :

Tcrit =


(z1−α,∞) under a greater/right-tailed test (H0 : µX ≤ θ0, H1 : µX > θ0)

(−∞, zα) under a less/left-tailed test (H0 : µX ≥ θ0, H1 : µX < θ0)

(−∞, zα/2) ∪ (z1−α/2,∞) under a two-sided test (H0 : µX = θ0, H1 : µX ̸= θ0) ,

(3.9)

p =


1− Φ(zobs) under a greater/right-tailed test

Φ(zobs) under a less/left-tailed test

2 · (1− Φ (|zobs|)) under a two-sided test ,

(3.10)

where zobs denotes the observed test statistic, zq is the qth quantile of a standard normal,

and Φ(·) is the CDF of a standard normal. The exposition for a two-sample test is identical,

with ∆ and the definition of Z in Equation (3.8) replacing µX and the definition in Equa-

tion (3.5), respectively.

Practical usage Despite its popularity in introductory statistical textbooks, a pure z-test is

uncommon in digital experiments as one needs to know/assume the population variances

(σ2
X and σ2

Y ) in advance. Nonetheless, experimenters have combined elements of the approx-

imate z-test and the Student’s/Welch’s t-test to test whether the mean response of a group

differs from that of another group. We will describe how such a combination works in prac-

tice below.

3.5.2 t-tests

We now introduce t-tests, the most popular class of statistical tests in digital experimenta-

tion [155]. It is a collection of closely-related variants – in addition to the one- or two-sample
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distinction (similar to the z-test discussed above), there are also slightly different t-tests for

independent or paired samples [129], equal or unequal response variance [106, 279], and

full or partial range of data points [295]. In the rest of the section, we focus on Welch’s t-

test [279], which deals with independent samples with potentially unequal variance across

groups and takes all available data.

Assumptions&Definitions LetX1, · · · , Xn and Y1, · · · , Ym be i.i.d. samples from two pop-

ulations with unknown means µX and µY , respectively, and unknown variances σ2
X and σ2

Y ,

respectively. The populationmeans and variances are estimated by the samplemeans (X̄, Ȳ )

and variances (s2X , s2Y ), respectively. Similar to the z-test, we are interested in inferring µX
and∆ = µY −µX in a one-sample and a two-sample t-test, respectively. However, unlike the

z-test, which only assumes the test statistic is normally distributed, a t-test assumes the data

(more precisely, the underlying r.v.’s generating the data) are normally distributed.18

The test statistics are

T ≜
X̄ − µX√
s2X/n

for a one-sample test on µX and (3.11)

T ≜
Ȳ − X̄ −∆√

s2X
n
+

s2Y
m

for a two-sample test on ∆ . (3.12)

They are similar to that in the z-test (cf. Equations (3.5) and (3.8)), with the only difference

being that the t-test statistics use the sample variances (s2X and s2Y ) instead of the population

variance. The difference is critical – as the sample variances estimate the population vari-

ances (and hence can be formulated as estimators/r.v.’s), they introduce another source of

uncertainty to the parameters we are inferring. Other variants of t-tests may pool the vari-

ance, resulting in slightly different denominators in the fraction within the square root.

18 Strictly speaking, neither the original t-test fromGosset/Student norWelch’s t-test explicitly states the r.v.’s
generating the data has to be normally distributed. Instead, they assume (1) X̄ (or its two-sample counter-
part) follows the normal distribution, (2) s2(n−1)/σ2 follows the χ2 distribution, and (3) the quantities in
(1) and (2) are independent. However, the assumptions only hold when the underlying r.v.’s are normally
distributed.
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Test statistic distribution Both test statistics follow the Student’s t-distribution with de-

grees of freedom ν determined by the Welch-Satterthwaite equation [238]:

T ∼ tν , where ν =

(
s2X
n
+

s2Y
m

)2
(s2X/n)

2

n−1
+

(s2Y /m)
2

m−1

for a two-sample test. (3.13)

In cases where s2X ≈ s2Y and n ≈ m, the degrees of freedom are around n + m − 2. In a

one-sample test on µX , the degrees of freedom are simply n− 1.

Critical region & p-value Similar to the z-test, the distribution of a t-test statistic does not

depend on the statistical hypotheses. In contrast, the critical region and p-value do. For a

one-sample test inferring on µX , they are

Tcrit =


(tν,1−α,∞) under a greater/right-tailed test (H0 : µX ≤ θ0, H1 : µX > θ0)

(−∞, tν,α) under a less/left-tailed test (H0 : µX ≥ θ0, H1 : µX < θ0)

(−∞, tν,α/2) ∪ (tν,1−α/2,∞) under a two-sided test (H0 : µX = θ0, H1 : µX ̸= θ0) ,

(3.14)

p =


1− Tν(tobs) under a greater/right-tailed test

Tν(tobs) under a less/left-tailed test

2 · (1− Tν (|tobs|)) under a two-sided test ,

(3.15)

where tobs is the observed test statistic, tν,q is the qth quantile of a Student’s t-distribution

with ν degrees of freedom, and Tν(·) is the CDF of a Student’s t-distribution with ν degrees

of freedom.

Practical usage As mentioned at the beginning of the section, t-tests are popular in digital

experiments. However, what digital experimenters call a t-test is usually not the pure Stu-

dent’s/Welch’s t-test defined above. The Student’s/Welch’s t-test was initially developed for

when the number of available samples is small. The test also impose normality assumptions

on the data. Digital experimentation, on the other hand, often features a large number of

responses that are unlikely to be well modelled by normal distributions.
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Readers may recall that an approximate z-test, introduced in Section 3.5.1, is suited to exper-

iments with many arbitrarily distributed responses. However, it requires the knowledge of

the population variances (σ2
X , σ2

Y ), whichwewill never have in practice.19 To obtain the t-test

digital experimenters use in practice, or the “practical t-test” in short, we need to extend the

approximate z-test to take sample variances (s2X , s2Y ) while keeping its other features. Fortu-

nately, given enough samples, this is as simple as using the sample variance estimates as the

population variances, or in other words, “plugging in” the sample variances.20 This results

in

T
approx.∼ N (0, 1) , (3.16)

which enables experimenters toworkwith the normal distributions, instead of themore com-

plicated Student’s t-distributions, during experiment design and analysis (see Section 3.6).

By delving into the underlying statistical theory, we can understand how the shift from

Welch’s t-test to the practical t-test (i.e., an approximate z-test with plug-in variance esti-

mates) happens. Readers interested only in practical details can skip to the next titled para-

graph. The shift can happen in two ways. The first maintains the normality assumptions

imposed by Welch’s t-test. Thus, the test statistic follows the Student’s t-distribution with ν

degrees of freedom. As the sample size increases, so would ν, resulting in the test statistic

distribution converging to a standard normal distribution:

T |X,Y∼N (·,·) ∼ tν → N (0, 1) as ν → ∞ . (3.17)

The second way removes the normality assumptions altogether. Using the same one-sample

test statistic as Welch’s t-test (see Equation (3.11)), we observe that the numerator, includ-

ing
√
n, converges in distribution to a normal distribution with a zero mean by the central

19 This is perhaps one of the reasons why the name “t-test” sticks in the digital experimentation community:
It serves as a reminder that we are dealing with the sample variances instead of the population variances.

20 This is known as the plug-in principle. Why the plug-in principle works is a topic in its own right – see, e.g.,
Chapters 4 & 5 of [86] for further discussions.



3.5. Examples of NHSTs 85

limit theorem:

√
n(X̄ − µX)

D→ N (0, σ2
X) . (3.18)

At the same time, the denominator converges in probability to the population standard de-

viation by the law of large numbers and the continuous mapping theorem:

s2X
P→ σ2

X =⇒
√
s2X

P→ σX . (3.19)

Thus, by Slutsky’s theorem, the test statistic converges in distribution to the quotient of the

respective limits – in somewhat sloppy mathematical notation:

T =

√
n(X̄ − µX)√

s2X

D→ “N (0, σ2
X)”

σX
≡ N (0, 1) . (3.20)

This formulation is a special case (square root version of the one-parameter test statistic) of

the Wald test [275]. The exposition for the two-sample case follows in an identical fashion.

What constitutes a large enough sample size? Equations (3.17) and (3.20) show that the

test statistic distribution converges (in other words, eventually gets arbitrarily close) to the

standard normal, provided the sample size is large. However, they make no claim on how

quickly the convergence is happening or at what sample size the test statistic distribution

will be practically indistinguishable from the standard normal.

Readers may have come across many resources suggesting n = 30 as the “magic number”

where beyond that, the test statistic is effectively normal [38]. Some might go further and

suggest one should switch from a t-test to a z-test beyond that point, regardless of the un-

derlying distribution of the data [258]. These suggestions may be acceptable for pedagogical

purposes but aremisleading or even harmful in digital experimentation. Firstly, they indicate

a clear boundary exists where things are normal on one side and not on the other, whereas

in reality, no such boundary exists – the t29 (from n = 30) and t30 (from n = 31) distributions

are not much different from each other.21

21 The issue of having arbitrary thresholds for decision-making is pervasive in statistical testing. An obvious
example would be the convention for one to reject the null hypothesis when the p-value drops below a
certain threshold (see Section 3.6.1), which has led to years of bitter debates between statisticians.
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Secondly, n = 30 is usually insufficient for the test statistic distribution to practically resem-

ble the standard normal. This is the case even when the normality assumption for the data

holds. Consider the t30 distribution, the distribution that the one-sampleWelch’s t-test statis-

tic follows when n = 31. While its PDF may look similar to the standard normal distribution

on a plot, the tails of the two distributions are still substantially different. We can see this via

the 95% z- and t-quantiles:

z0.95 = t30, 0.94478... and z0.95517... = t30, 0.95 . (3.21)

The left equation above tells us that a t30-distributed test statistic has a 5.52% chance to exceed

the 95% z-quantile (the lower bound of the critical region for a greater/right-tailed z-test, see

Equation (3.9)). Thus, if we assume the t30-distributed test statistic is sufficiently normal and

decide whether to reject based on the normal (instead of t30) quantiles, we will inflate the

Type I error from 5% to 5.52%, or 10% relatively. Such bias is further amplified at lower

significance levels – for the 99% z- and t-quantiles,

z0.99 = t30, 0.98652... and z0.99299... = t30, 0.99 . (3.22)

In this case, rejecting at a 1% significance level using the normal (instead of t30) quantiles will

inflate the Type I error from 1% to 1.35%, or 35% relatively. One will require hundreds (if not

thousands) of samples to effectively limit such bias,22 which, fortunately, is easily achievable

in digital experiments.

It is worth reiterating that the bias above occurs even when the normality assumption in the

data holds. A separate source of bias comes from when we deviate from the normality as-

sumption. In this case, [150] provided a rule of thumb on theminimum sample size required

per group for the test statistic to be sufficiently normal-like to run a practical t-test. It is based

on the underlying distribution’s moment coefficient of skewness:

355× s2, where s = E [(X − µX)
3]

σ3
X

, (3.23)

22 For example, to limit such bias to under 1% relative to the significance level, we require at least 315 samples
(per group) for a test at a 5% significance level and 1,000 samples for a test at a 1% significance level.
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In practice, one usually plugs the empiricalmoment coefficient of skewness into Equation (3.23)

to estimate the required sample size. The estimated sample size is most useful when |s| > 1.

Needless to say, experimenters should ensure they have a sufficient sample size that can ad-

dress both sources of bias. This is in addition to having enough samples to achieve sufficient

test power (see Section 3.6.5).

3.5.3 The binomial test of proportions

Another popular statistical test deals with binary responses. By statistical convention, the

response of interest is referred to as success and the other as failure. The successes and

failures are often modelled by a Bernoulli r.v. The test decides whether the proportion of

successes from the observed responses equals a pre-specified probability.

Definitions LetX1, · · · , Xn be independent, identically, andBernoulli distributed responses

with parameter πX . We also let B be the test statistic formed by summing the responses. We

observe that the test statistic follows the binomial distribution:

B =
n∑
i=1

Xi ∼ Bin(n, πX) . (3.24)

Unlike the z-test or t-test, the test statistic distribution depends on the parameter of inter-

est πX . Thus, one should define their statistical hypotheses if they have not yet done so.

The direction of the null hypothesis does not matter at this stage – the test statistic follows

the same distribution under the two-sided (H0 : πX = θ0) and one-sided null hypotheses

(H0 : πX ≤ θ0 or H0 : πX ≥ θ0):

B ∼ Bin(n, θ0) . (3.25)

p-value & critical region Suppose one then proceeds with the test statistic calculation and

obtains k (i.e., they have observed k successes amongst n responses). Its associated p-value,
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the probability that B attains k or more extreme values (see Section 3.6.1), is

p =



∑n
i=k P(B = i) under a greater/right-tailed test (H0 : µX ≤ θ0, H1 : µX > θ0)∑k
i=0 P(B = i) under a less/left-tailed test (H0 : µX ≥ θ0, H1 : µX < θ0)∑
i s.t. P(B=i)≤P(B=k) P(B = i) under a two-sided test (H0 : µX = θ0, H1 : µX ̸= θ0) ,

(3.26)

where P(B = i) =
(
n
i

)
(πX)

i(1− πX)
n−i. Note how the summation indices change depending

on the statistical hypothesis. For two-sided p-values, we obtain the summation indices by

taking values that are equally or less likely to occur (as “more extreme”) than k. Such an

elaborate definition is required as most binomial distributions are asymmetric. This renders

the approach used by z- and t-tests to obtain the p-value, i.e., taking the probability of the

relevant tail and multiplying by two, infeasible.

We also note that a binomial r.v. is discrete. Thus, we define a critical set instead:

Tcrit =


{
i
∣∣∣ i ∈ N0, F−1

Bin(n,θ0)(1− α) < i ≤ n
}

under a greater/right-tailed test{
i
∣∣∣ i ∈ N0, 0 ≤ i < F−1

Bin(n,θ0)(α)
}

under a less/left-tailed test ,
(3.27)

where F−1
Bin(n,θ0)(·) is the quantile function of a binomial. Two observations arise: Firstly, we

exclude the binomial quantiles from the critical sets as it ensures the probability of the test

statistic attaining a value in the critical setwould not exceed the significance levelα. Secondly,

excluding the binomial quantiles means the critical region can be an empty set, usually when

n is small. In such a scenario, the test is considered poorly designed as it is impossible to reject

the null hypothesis.

The critical set for a two-sided binomial test is more complicated than that for a one-sided

test: one can use the α/2 and 1 − α/2 binomial quantiles, but the resultant set rarely agrees

with what one would obtain using the p-values, especially when n is small. This brings

unnecessary confusion; thus, we omit it from Equation (3.27). In practice, when n is small, it

is easier for one to decide whether to reject using just the p-values. For large n, one generally

uses the critical region provided by a practical t-test, as shown below.
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Practical usage The test described above is exact – it gives exact probabilities provided all

the assumptions are met. It generally works well for small n, though it is inadequate for the

sample size featured in digital experiments due to the need to calculate the probability mass

for each possible value B can take.

Instead, digital experimenters employ approximation methods. They appeal to the normal

approximation to the binomial distribution (a special case of the CLT), which states that if

the sample size n is large and the success rate πX is not too close to zero or one,23

B
approx.∼ N (nπX , nπX(1− πX)) . (3.28)

Another way to represent the same approximation is to divide the test statistic by n. The re-

sultant test statistic is the mean of n Bernoulli r.v.’s, representing the proportion of successes:

B′ ≜
B

n

approx.∼ N
(
πX ,

πX(1− πX)

n

)
⇐⇒ B′ − πX√

πX(1−πX)
n

approx.∼ N (0, 1) . (3.29)

This enables one to use the practical t-test described in Section 3.5.2. Since there is no straight-

forward equivalent for the exact binomial test for two-sample comparison, digital experi-

menters almost always use the practical t-testwith the test statistic defined in Equation (3.12).

3.6 Key Quantities in NHST

We introduce some quantities in NHST that are key to the design and analysis of digital

experiments.

3.6.1 p-value

We start with p-values, one of the most commonly reported measures7 in NHSTs. Its con-

struction is straightforward, with the resultant formulas/routines for different tests readily

23 The literature usually states the requirements as nπX > 5 and n(1−πX) > 5 [241]. Some texts recommend
that they should be greater than 10 to be safe.
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implemented in statistical software packages. However, perhaps due to thewidespread avail-

ability and ease of access, it is also one of the most misconstrued quantities in NHSTs. The

section aims to highlight the pitfalls surrounding its usage.

As alluded to in Section 3.4, the p-value of a test is often descriptively defined as

p ≜ P(T attaining tobs or more extreme values |H0 is true). (3.30)

A more mathematically precise definition of p-value depends on the hypotheses and test, as

those affectwhat constitutes extreme. See Equations (3.10), (3.15), and (3.26) in the previous

section for examples. One can also find a more abstract definition of p-value in statistical

theory literature, e.g., Definition 8.3.26 in [36].

The definition above applies to a simple null hypothesis, e.g., a nil hypothesis within a com-

parison test. Under a composite null hypothesis, e.g., a one-sided test,

p = sup
h∈H0

P(T attaining tobs or more extreme values |h is true). (3.31)

Each possible null hypothesis leads to a different test statistic distribution and, hence, a dif-

ferent p-value candidate for the supremum. At first glance, it seems likemuchwork to derive

all the test statistic distributions and calculate the p-value under every possible null hypoth-

esis. In reality, virtually all named one-sided tests used in digital experimentation attain the

supremum at the hypothesis boundary (e.g., parametric tests with H0 : ∆ ≤ θ0, H1 : ∆ > θ0

attain the supremum at ∆ = θ0). Thus, computation of the test statistic and p-value always

focuses on this single hypothesis as a simple hypothesis [130].

The widespread usage of p-values may give the impression that they give extensive infor-

mation about the experiment. They do not. They have a fairly narrow scope: To the fullest

extent of the interpretation, p-values can be characterised as a measure of the degree of sur-

prise24 for the data in hand under the assumptions imposed by the specific null hypothesis.

Writing such characterisation as P(Data |H0), we can see that changing the null hypothesis,

which includes the underlying statistical model and experiment assumptions, will lead to a

different, incomparable measure.

24 Some prefer a degree of discrepancy [21] or incompatibility [276] instead.
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Crucially, p-values, by themselves and as characterised above, tell us nothing about the null

hypothesis and the data-generating process. Ideally, one would decide whether to reject the

null hypothesis based on P(H0) or P(H0 |Data), i.e., the chance that the null hypothesis is

actually true, with or without observing the data, respectively. In reality, both probabilities

are generally unavailable under the NHST framework. Using p-values as a substitute for

the same ideal is where one can get tripped up. Clearly, P(Data |H0) and P(H0 |Data) are

different. The former – p-values – do not tell us the probability that the null hypothesis is

true, as the entire p-value calculation assumes that the null hypothesis is the preferred state

of affairs, the ground truth.

It is possible to circumvent the restriction above by making assumptions about P(H0) or

P(H0 |Data). Indeed, [248] showed that under some prior belief on how the parameters

involved in H0 may behave, P(Data |H0) and P(H0 |Data) can be equivalent for certain sta-

tistical models and hypotheses.25 That said, such assumptions would bring us into Bayesian

territory (see Section 3.9), and we recommend readers who are new to p-values and their

role in the frequentist vs Bayesian debate to revert to such equivalence only after familiaris-

ing themselves with the two perspectives.

In addition, p-values also tell us very little about the effect size of treatment and whether it

is important in practice. Again, p-values merely represent how (in)compatible the data is

with the specific null hypothesis assumptions. With carefully crafted hypotheses that seek

to demonstrate specific effect sizes, e.g., those in non-inferiority or equivalence tests, one can

indeed infer a non-negative or zero effect size solely from a small p-value. However, most

digital experiments do not seek to demonstrate specific effect sizes (beyond, e.g., “not zero”).

Thus, their null hypothesis specification and p-value calculations are generally ignorant to the

underlying effect size despite the latter usually being encoded in the data. To appreciate the

extent of decoupling between p-values and effect sizes in these experiments, we note that for

any given effect size, it is possible to construct statistical tests that yield an arbitrarily chosen

p-value.26 One usually needs to report quantities discussed in Section 3.3.2 to communicate

25 More specifically, [248] showed that under non-informative priors, the p-value of a one-sidedNHST and the
posterior probability of a corresponding Bayesian test are (asymptotically) equivalent. Such equivalence
applies for binary data with Jeffrey’s prior and normal data with an improper flat prior. For two-sided
tests, they demonstrated equivalence between the two concepts by reformulating a two-sided test as two
one-sided tests and constructing a “two-sided posterior probability” that matches the p-value.

26 One can do so by changing, e.g., the sample size or the null hypothesis parameter(s).
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effect sizes. In all cases, theywould also require domain expertise to appreciate the effect size

in the relevant context and, more importantly, to decide the next steps based on the results.

Despite what p-values do not tell us, it remains useful in statistical testing to identify and po-

tentially sift out specific statistical hypotheses and assumptions that the data is incompatible

with. It is just not the one quantity to rule them all. In fact, no quantities in statistical test-

ing assume such a role. Experiment analysis is nuanced, and we require multiple sources of

signal, including but not limited to the concepts introduced in Section 3.3, to understand the

big picture and make well-informed decisions. This cannot happen if we over-emphasise re-

porting a single quantity that does not represent the experiment results. The quantity could

also be prone to manipulation, both intentionally and unintentionally,27 making results less

interpretable and thus less trustworthy.

To summarise the above, it is perhaps best to use the (slightly rearranged) words of the

American Statistical Association [276]:

“p-values can indicate how incompatible the data are with a specified statistical

model [(one used by the null hypothesis)].”

“[They] do not measure the probability that the [scientific/statistical] hypothesis

is true, or the probability that the data were produced by random chance alone.”

“[They also] do not measure the size of an effect or the importance of a result.”

“Proper inference requires full reporting and transparency.”

“By itself, a p-value does not provide a good measure of evidence regarding a

model or hypothesis.”

“[One should not base] scientific conclusions and business or policy decisions

[. . . ] only on whether a p-value passes a specific threshold.”

3.6.2 Type I and II errors

The rest of the quantities stem from decisions made in an NHST. Here, we consider what

happens when we decide between two competing statistical hypotheses.

27 For p-value, it is known as data dredging [252] or “p-hacking” [276].
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Treating NHST as a binary decision problem enables us to analyse the different kinds of

errors we commit. Of course, we do not know which of the null hypothesis (H0) or the

alternate hypothesis (H1) is actually true – otherwise, we do not need a statistical test at all.

We can, however, consider what would have happened had either of the hypotheses been

true. This gives us four possible scenarios, as shown below:

H0 is true H1 is true

Test does not reject H0 Correct decision / True negative Type II error / False negative

Test rejects H0 Type I error / False positive Correct decision / True positive

Knowing how often each of the four scenarios happens enables us to quantify the perfor-

mance of a decision rule. We are usually interested in the Type I and Type II error rates in

statistical testing. The former is defined as the chance of committing a Type I error when H0

is true (see Section 3.6.3), and the latter is defined as the chance of committing a Type II error

whenH1 is true (see Section 3.6.4). A good experiment design always controls for these two

types of error, though we will show in Section 3.6.4 that it is more of a trade-off.

It is worth noting that many other quantities exist to evaluate different aspects of a decision

rule. To add to the complication, different communitiesmay refer to the same quantity differ-

ently. For example, readers with a clinical background may recognise specificity (one minus

the Type I error rate) and sensitivity (one minus the Type II error rate), while those with a

computer science or machine learning background may be used to precision (one minus the

false positive risk, see Section 3.6.3) and recall (another name for sensitivity). For consistency,

we will stick to the terms presented in the table above for the remainder of the section.

3.6.3 Significance level

The significance level, as commonly referred to in digital experimentation,28 of an NHST is

defined as

α ≜ P(test rejects H0 |H0 is true). (3.32)

28 Strictly speaking, in statistical theory, Equation (3.32) describes the size of a statistical test, with the signifi-
cance level being a property of a class of tests [183]. Having that said, in nearly all practical cases in digital
experimentation, the size and level of a test are equal, and there is little practical impact in confusing the
terms in our context.
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It is usually specified as a parameter (as opposed to a calculated property) of a test and

determines the specific form of the rejection rules.

Similar to the p-value, the definition of the significance level is slightly different when a com-

posite null hypothesis (e.g., in a one-sided test) is involved:

α = sup
h∈H0

P(test rejects H0 |h is true) . (3.33)

Under the same arguments for p-values, computation upon the specification of α always

focuses on the boundary hypothesis as if it is a simple hypothesis. That said, given that a

decision is now involved, experimenters should also take particular care when interpreting

a test that failed to reject the null – clearly, only a particular (but not the full range of the)

null hypothesis can be true.

The parameter signifies the false positive ratio/rate experimenters are willing to take. While

we are probably more interested in controlling the confusingly similarly named false positive

risk (i.e., P(H0 is true | test rejects H0), with the events conditioned the other way round), it

is simply not a feature of NHSTs.

There are no rules on what α should be. Common sense dictates that it should be small – a

test is no good if it rejects the null hypothesis more often than not when the null hypothesis

is true. Digital experimenters generally take α = 10%, 5% or 1%, which stemmed from the

values used in clinical trials decades ago, themselves chosenmore as a matter of convenience

(e.g., access to statistical tables presented with arbitrarily decided thresholds) rather than

principle [162].

It is alsoworth noting that some, including a large digitalA/B testing platformprovider [211],

refer to the complement of the p-value (i.e., 1 − p) as “significance”. Fortunately, the two

usages usually yield values on different extremes and thus create little confusion once the

experiment context is clear.
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3.6.4 Power

The power of an NHST is defined as

1− β ≜ P(test rejects H0 |H1 is true), (3.34)

where β is the probability of committing a Type II error / false negative.

In the case whereH1 is a composite hypothesis (which is the case for all one-sided and two-

sided tests), such probability is difficult to obtain. To illustrate, in parametric tests utilising a

model with parameters θ ∈ Θ, we have to consider the test rejection probability under every

parameter combination to obtain 1− β, i.e., we have to calculate

∫
θ∈Θ

P(test rejects H0 | θ)︸ ︷︷ ︸
≜1−βθ

f(θ |H1 is true)dθ. (3.35)

The second term of the integrand, which describes the distribution of the parameters un-

der H1, is usually unknown in an NHST.29 Thus, we generally refer to the first term of the

integrand, i.e., the probability of the test rejectingH0 given a specific alternate hypothesis, when

we talk about the power.

Unlike the significance level (α), one can specify the power as a parameter a priori or calculate

the a posteriori/post hoc power. The a priori power,30 commonly denoted πmin, signifies the

minimum power one desires for the upcoming test. Equivalently, via β, it represents the

false negative ratio/rate they are willing to take. Clearly, we want the power to be close to

one, and it is common to set πmin = 80% or 90% in digital experiments. As shown below,

specifying the power will affect what is possible with other test parameters, such as sample

size (see Section 3.6.5) and effect size (see Section 3.6.6).

One can calculate the a posteriori/post hoc power before or after running the test. Both ap-

proaches answer, “Given all the other test parameters, what is the chance that the test detects

a certain effect size if it actually exists?” The difference comes from the timing: in pre-test

29 Imposing any assumptions on the parameter distribution will bring us into Bayesian territory (see Sec-
tion 3.9). However, most Bayesian testing approaches do not feature the concept of power as they do not
involve a decision.

30 Also known as prospective power [87].
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calculations, one often explores a range of potential test parameters based on their experi-

ence. In contrast, in post-test calculations, one often uses the observed effect size, response

variance, and sample size as if they are the true values.

Calculating the power post-test using the observed effect size, known as a retrospective or ob-

served power analysis, is controversial [94, 125, 151].31 This is because it relies on the unlikely

assumption that the observed effect size, derived from a sample, is identical to the underly-

ing population effect size. Its use is nonetheless common in other applications and, thus, not

unheard of in digital experiments as experimenters move fields [151].

Example: z-test Consider a two-sample, one-sided z-test withH0 : ∆ = θ0 andH1 : ∆ > θ0.

The test statistic under H0 is z = ((ȳ − x̄)− θ0) /

√
σ2
X

n
+

σ2
Y

m
, and we would reject the null

hypothesis if z > z1−α. The power for a specific H1 : ∆ = θ is thus

1− βθ = P(Z > z1−α |∆ = θ) = 1− P(Z < z1−α |∆ = θ)

= 1− P

 Ȳ − X̄ − θ0√
σ2
X

n
+

σ2
Y

m

< z1−α

∣∣∣∣∣∆ = θ

 (substituting def. of Z)

=1− P

 Ȳ − X̄ − θ + θ − θ0√
σ2
X

n
+

σ2
Y

m

< z1−α

∣∣∣∣∣∆ = θ

 (inserting self-cancelling θ pair)

=1− P

 Ȳ − X̄ − θ√
σ2
X

n
+

σ2
Y

m

< z1−α −
θ − θ0√
σ2
X

n
+

σ2
Y

m

∣∣∣∣∣∆ = θ

 (moving const. terms to RHS).

(3.36)

We note that under this specificH1, the r.v. on the RHS of the inequality follows the standard

normal. Thus, the power evaluates to

1− βθ = 1− Φ

z1−α − θ − θ0√
σ2
X

n
+

σ2
Y

m

 . (3.37)

31 The terminology surrounding power analysis is neither accurate nor precise. Some uses have semantics that
deviate from the dictionary definition, and there is no consensus on the names of different approaches.
Some consider an a posteriori, post hoc, and retrospective/observed analysis synonymous [5, 243], others
differentiate between an a posteriori/post hoc analysis and a retrospective/observed analysis [94, 285].
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In a two-sample, two-sided z-test, we can obtain the power using the same procedure as

Equations (3.36) and (3.37), noting that we would reject the null hypothesis if |z| > z1−α/2

instead and taking particular care when expanding the absolute function:

1− βθ = Φ

zα/2 − θ − θ0√
σ2
X

n
+

σ2
Y

m


︸ ︷︷ ︸

Left-tail contribution

+1− Φ

z1−α/2 − θ − θ0√
σ2
X

n
+

σ2
Y

m


︸ ︷︷ ︸

Right-tail contribution

, (3.38)

where the right-tail contribution is of the same form as that in Equation (3.37) (albeit with a

different z-quantile).

There are also two alternate formulations for Equation (3.38). The first, which we use in

Section 5.5, assumes one uses a nil hypothesis as the null. In this case, θ0 = 0 and

1− βθ = Φ

zα/2 − θ√
σ2
X

n
+

σ2
Y

m


︸ ︷︷ ︸

Left-tail contribution

+1− Φ

z1−α/2 − θ√
σ2
X

n
+

σ2
Y

m


︸ ︷︷ ︸

Right-tail contribution

. (3.39)

Another formulation exploits that in Equation (3.39), the left-tail contribution is negligible

when the ratio between θ and the standard error
√
σ2
X/n+ σ2

Y /m is large (i.e., θ/
√
· · · ≫ 0),

the right-tail contribution is negligible when the ratio is negatively large (i.e., θ/
√
· · · ≪ 0),

and the functions representing the two contributions are the horizontal reflection of each

other along θ = 0.32 This enables one to approximate the power using only the right-tail

contribution term (similar to that in Equation (3.37)):

1− βθ ≈ 1− Φ

z1−α/2 − |θ|√
σ2
X

n
+

σ2
Y

m

 . (3.40)

This form is attractive as it eases downstream algebraic manipulation – one only needs to

deal with one normal CDF when making other parameters the subject of the equation (see

Sections 3.6.5 and 3.6.6). However, it does require the ratio between the absolute value of θ

32 What matters is the magnitude of the entire ratio instead of its components (θ or the standard error). In
digital experiments, one usually deals with small effect sizes and hence θ (see Section 3.6.6 and the ”Im-
proving sensitivity” paragraphs in Section 5.4.1 for further discussions). However, the same experiments
often involve a large sample size (n andm), leading to a workable ratio.
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and the standard error to be large (i.e., |θ|/
√
· · · ≫ 0).33 This formulation is used in the

following sections and Chapter 6, where the ratio is assumed to be large enough to benefit

from this approximation.

Determining factors In general, the power depends on many factors:

1. The significance level (α) - power increases when one increases α as βθ, the Type II error

rate, decreases;

2. The sampling uncertainty (σ2) - power increases when σ2 decreases as one is more likely

to observe the same treatment effect under a lower noise level;

3. The sample size (n/m) - power increases when n/m increases due to the same reason

above; and

4. The effect size (e.g., θ, assuming θ0 = 0 as in common practice) - power increases when θ

increases as one is more likely to observe a larger effect size under the same noise level.

Returning to our z-test examples, we observe from Equations (3.37) and (3.38) that power

depends entirely on the above factors. In other words, assuming we can specify the value

of 1 − βθ alongside the other parameters above, specifying any four out of the five (groups

of) parameters will fix the final one. This gives experimenters multiple options during the

power analysis stage that were alluded to in Section 3.4.

3.6.5 Required sample size

One common approach to conducting a power analysis seeks to obtain the sample size re-

quired for the statistical test and experiment. This is done by either solving for the sample

size (n orm) in a known power formula given all other parameters. Alternatively, one finds

the sample size that leads to a desired power value while holding other parameters constant

in a power simulation. The approach is popular in medical experiments as experimenters

have a higher influence on sample size (compared to sampling uncertainty/response vari-

33 In practice, we can obtain good approximations when the ratio is greater than z1−α/2 + 1. At α = 5%, the
quantity is approximately equal to three.
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ance or the effect size). It also appeals to digital experimenters as the number informs how

long it takes to collect the samples, a sizeable portion of an experiment’s overall duration.34

Example: z-test We can obtain the required sample size for a z-test by specifying the de-

sired power as πmin < 1−βθ, substituting Equation (3.37) into the inequality, and rearranging

the terms to make n orm the subject. Usually, one assumes n = m, i.e., the two groups have

an equal sample size, as that generally yields the highest power and, thus, the lowest sample

size requirement (assuming the two samples have similar variance).35 This yields

πmin < 1− Φ

z1−α − θ − θ0√
σ2
X

n
+

σ2
Y

n

 ⇐⇒ n >
(z1−α − z1−πmin)

2(σ2
X + σ2

Y )

(θ − θ0)2
. (3.41)

We use the power definition in Equation (3.40) instead for a two-sided test instead; other-

wise, the procedure is identical.

A helpful rule of thumb [23, 155, 194] is to express the minimum required sample size as

n =
16σ2

θ2
, (3.42)

where σ2 is the population variance of one group, and θ is the effect size as defined and used

throughout this section (assuming θ0 = 0). The factor of 16 comes from rounding up the

product of (z1−α − z1−πmin)
2 and the factor of two extracted from σ2

X + σ2
Y in Equation (3.41)

(assuming α = 5%, πmin = 80%, and σ2
X ≈ σ2

Y as per common practice).

One can also observe from the equations above that the required sample size n is inversely

proportional to the square of the effect size θ. In other words, all other things being equal,

one requires four times the number of samples to detect half the effect size. This highlights

34 Translating the required sample size to the number of days required to collect the samples can be either
straightforward or tricky, depending on the experimental units. If the responses are based onwebsite visits,
the translation is as simple as dividing the required sample size by the average daily number of visits. On
the other hand, if the responses are based on visitors who can return if and when they please, we require
more advanced methods to estimate the time taken to observe a certain number of visitors [228, 296].

35 Let se(n) =
√

σ2
X

n +
σ2
Y

ntot−n be a function of the standard error to the sample size of the first group, where
σ2
X and σ2

Y are the population variances, and ntot is the total number of experimental units available to be
split into the two groups. Minimising se(n) will maximise the power in Equations (3.37) and (3.40). One
can show (via, e.g., a derivative test) that se(n) is minimised when n = ntot

σY /σX+1 . When σ2
X = σ2

Y , se(n) is
minimised when n = ntot/2, i.e., when the two groups have equal sample size.
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the importance of having a sensible effect size estimate. One can either draw on results from

previous experiments or, without prior knowledge, use the minimum practically significant

effect size – one that would matter in practice.

3.6.6 Minimum detectable effect

Another useful approach to power analysis is to compute the required effect size θ based on

other experiment parameters and seewhether it is practically achievable. As power increases

when the effect size increases, we are interested in the minimum effect size that yields the

desired power, in other words, can be detected (via rejecting the null hypothesis) reliably (at

the specified power level). Similar to the required sample size, this can be done by solving a

known power formula (see below) or by simulation.

The approach appeals to those with little influence on other experiment parameters (e.g.,

sample size and response variance) due to operational constraints. Given the fact that digi-

tal experiments often feature small effect sizes [150, 286], one may leverage a power analysis

that requires an unrealistically large effect size to request better resources for their planned

experiment, e.g., more participants or investment in methods that improve experiment sen-

sitivity (see Section 5.4.1).

We will also discuss how the minimum detectable effect (MDE) of a test comes into play

when we evaluate competing digital experiment designs in Chapter 6.

Example: z-test Similar to howwe obtain the required sample size, we can obtain theMDE

by specifying the desired power as πmin < 1 − βθ, substituting Equation (3.37) into the in-

equality, and rearranging the terms to make θ the subject. The only difference is that we do

not need to assume anything about the sample size. This yields

πmin < 1− Φ

z1−α − θ − θ0√
σ2
X

n
+

σ2
Y

m

 ⇐⇒ θ − θ0 > (z1−α − z1−πmin)

√
σ2
X

n
+
σ2
Y

m
. (3.43)

The MDE, commonly denoted θ∗, is then the minimum θ− θ0 that satisfies Inequality (3.43),

i.e., that specified by the RHS of the inequality. Some variants of Inequality (3.43) may re-
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place θ− θ0 and z1−α with, respectively, |θ− θ0| and z1−α/2 (by assuming a two-sided test and

using Equation (3.40) instead), or leave out θ0 (by assuming θ0 = 0), or both.

3.7 Non-parametric Tests

So far, we have discussedNHSTs comparing statistical hypotheses on the value of one ormore

statistical model parameters. In some cases, such hypotheses may not suit an experimenter’s

need – they may not want to assume the data is generated by a specific distribution, or they

may feel the test assumptions are too restrictive.

Instead of inferring specific parameter(s) in a statistical model, a non-parametric test focuses

on the overall distributions. In a one-sample setting, the statistical hypotheses often have the

following form:

H0 : FX(·) ≡ F (·), H1 : FX(·) ̸≡ F (·) , (3.44)

i.e., whether a sampleX is generated from a specified distribution. Whereas in a two-sample

setting, the hypotheses often have the following form:

H0 : FX(·) ≡ FY (·), H1 : FX(·) ̸≡ FY (·) , (3.45)

i.e., whether two samples X and Y are generated by the same distribution. Similar to para-

metric tests, one-sided non-parametric tests exist and are often used, though different tests

may have different definitions of what constitutes “greater” or “less”.

This section will introduce two non-parametric tests commonly used in digital experiments:

theMann-WhitneyU test (Section 3.7.1) and the χ2 goodness-of-fit test (Section 3.7.2). Other

examples, which we omit for brevity, include the Wilcoxon signed-rank [281],

Kruskal-Wallis [157], and Kolmogorov–Smirnov tests [75].
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3.7.1 Mann-Whitney U test

AMann-Whitney U test (also known as aWilcoxon rank-sum test [163]) is a two-sample test

determining whether the underlying distributions are equivalent [181]. Here, the null hy-

pothesis is similar to that in Expression (3.45). In contrast, the greater (less than) alternative

hypothesis is that one is more (less) likely to see a randomly chosen observation from a pop-

ulation Y exceeding in value than a randomly chosen observation from the other population

X and, therefore, Y is greater (less) than X overall.36

Let X1, · · · , Xn and Y1, · · · , Yn be our samples. We make no assumptions on the distribution

ofX and Y except that they are at least ordinal (i.e., there is some notion of a response being

greater/less than another), and each copy is i.i.d. The test statistic is defined as

U ≜
n∑
i=1

m∑
j=1

S(Xi, Yj), where S(X, Y ) =


1 if Y < X ,

1/2 if Y = X ,

0 if Y > X .

(3.46)

For large n andm, a rank-based method that generates the same test statistic while avoiding

the inefficient double sum is available. Statistical software packages should handle all this

automatically upon presenting the responses.

When the sample size is large, U approximately follows a normal distribution:

U − µU
σU

approx.∼ N (0, 1), where µU =
n ·m
2

, σU =

√
n ·m · (n+m+ 1)

12
. (3.47)

This enables us to use the p-values and critical regions of an approximate z-test (see Sec-

tion 3.5.1) to make a reject/not reject decision. In cases with many ties, one would adjust σU
to account for the 1/2 contributions to the test statistic [163].

36 More formally, the greater (less than) alternative hypothesis says Y is stochastically greater (less) than X ,
defined as the probability that an observation from Y exceeds that from population X is greater (less)
than the probability in the reverse case, i.e., observation from X exceeds that from Y . This is defined
mathematically as P(Y > X) > P(X > Y ) (P(Y > X) < P(X > Y )). The two-sided alternative hypothesis
states that the two probabilities are unequal.
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Practical usage The Mann-Whitney test is often employed as an alternative to the (practi-

cal) t-test. This may be due to a severe deviation from the normality assumptions in the data

or an insufficient sample size for one to rely on the CLT or both.

That said, one should not mindlessly use a Mann-Whitney test in lieu of a t-test. Strictly

speaking, switching from a t-test to a Mann-Whitney test removes one’s ability to produce

statements on the effect size of a treatment described in Section 3.3.2. This is due to the sta-

tistical hypotheses involved – a t-test infers on the (difference in) population means while a

Mann-Whitney test infers the overall distributions. At best, one canmake claims like “overall

engagement has improved” or “users are spending more in general” directly off the result

of the test, but not “average engagement has improved by 0.2 units” or “mean spend per

user has increased by 83 pence”.37 Moreover, a Mann-Whitney test can be less efficient, or in

other words, requires more samples to reject a nil-as-null hypothesis, than a t-test given the

same effect size if the underlying distributions are sufficiently normal-like (see Section 3.5.2

on relevant heuristics).

Some literature refers to the Mann-Whitney test as a test for difference in medians. This is

only true if one is willing to assume, in addition to that stated at the start of the section, that

(1) the underlying probability distributionsX and Y are continuous and (2) the distribution

of Y is a location-shifted version of X , i.e. FX(x) = FY (x + δ) for some value of δ. Failing

these assumptions, it is possible to construct r.v.’sX and Y such that themedian of Y is equal

to / less thanX , yet a Mann-Whitney test will reject the null hypothesis in favour of a greater

alternative hypothesis (i.e., Y is stochastically greater than X). Generally, a Mann-Whitney

test considers both the location and shape of the two distributions we are comparing [118].

3.7.2 χ2 goodness-of-fit test

We also discuss the χ2 goodness-of-fit test, which deals with categorical responses. In partic-

ular, it is a test to decidewhether an observed frequency distribution overmultiple categories

is the same as the theoretical frequency.

Suppose there are |Cats.| categories, with the expected/theoretical and observed frequency

37 Many digital experimenters make the latter two claims off a Mann-Whitney test regardless.
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for each category i being Ei and Oi, respectively. The test statistic is defined as

C2 =

|Cats.|∑
i=1

(Oi − Ei)
2

Ei
. (3.48)

Under the null hypothesis, it follows the χ2 distribution with ν degrees of freedom (d.f.):

C2 ∼ χ2
ν . (3.49)

For a goodness-of-fit test, ν equals the number of categories with counts minus the num-

ber of restrictions.38 The restrictions can be in the form of fitted parameters required to

produce the expected count (taking one d.f. away per parameter), or rules that mandate

how different sets of expected counts should behave, or both. Usually, there is only one

rule for one-dimensional counts: the expected counts should sum up to the observed count

sum. However, one may encounter many copies of such a rule along the marginals for multi-

dimensional counts, substantially reducing the d.f.

We observe that the test statistic C2 evaluates to zero when the observed frequency distribu-

tion is identical to the theoretical frequency distribution and grows large as the discrepancy

between the two distributions increases. Thus, the test only makes sense as a greater/right-

tailed test, and we reject the null hypothesis if C2 exceeds the 1− α quantile of the χ2
ν distri-

bution.

Practical usage The χ2 test is often employed to check for sample ratio mismatch (SRM)

in digital experiments. SRM occurs when the ratio between the sample size of two or more

groups in an experiment deviates from the designed split. It often indicates one or more

problems in software code that trigger a user’s entry to an experiment, perform experimen-

tal unit randomisation, and track events. These problems often introduce biases that can

invalidate experiment results [74, 155]. Of course, not all deviations are necessarily problem-

atic. Small deviations can occur purely due to randomness, but the same deviation becomes

38 The same χ2 test statistic can also be used to test for homogeneity and independence. They feature a dif-
ferent approach to obtaining the degrees of freedom in the test statistic distribution.
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unlikely as the sample size grows.39 The χ2 goodness-of-fit test formalises this process by

quantifying how likely the observed deviation would happen, assuming the split is correct.

The SRM test operates like other χ2 goodness-of-fit tests, with the expected frequency of each

group obtained bymultiplying the total number of samples by the designed split proportion.

The d.f. is the number of groups minus one, reflecting the only restriction that the expected

group counts should sum up to the total number of samples. Digital experimenters also

often set a lower significance level, e.g., at α = 1% or even α = 0.1%. This is done on practical

grounds: investigating why a test rejects the null hypothesis (i.e., flagging a potential SRM)

is often costly [93], incentivising experimenters to limit the number of false positives.

3.8 Sequential Tests

As stipulated in Section 3.4, NHSTs require one to decide and commit to the number of sam-

ples required prior to the start of the experiment. This prevents experimenters from continu-

ously monitoring and stopping an experiment early – also known as peeking [134] and often

used to achieve a shorter time-to-insight – as it inflates the Type I / false positive error rate

due to the look-elsewhere effect.40

Some experimenters turn to sequential tests to circumvent the restriction on peeking [242].

Sequential tests (a.k.a. sequential analysis or interim analysis) concern statistical tests that do

not fix their sample size in advance. Instead, these tests evaluate the responses as they are

observed. In addition to having a decision rule for the test outcome (e.g., reject/not rejectH0),

a sequential test also features a stopping rule, which dictates whether an experimenter should

continue or stop collecting new data. The decision rule in a sequential test may also depend

on the stopping time or other elements of the stopping rule.

39 If we perform a random 50/50 split on our stream of incoming users, we often see 105 users in one group
and 95 in the other from the first 200 users. However, one would be rightly suspicious if we see 1 050 000
users in one group and 950 000 in the other, which indicates systemic bias.

40 The look-elsewhere effect is best described as “The harder you look for something, the more likely you will
find it.” Peeking is closely related to the multiple comparison problem (see Section 5.4). The key difference
is that the former concerns observing and making decisions based on successive (dependent) test statistics
within the same statistical test. In contrast, the latter concerns making decisions based on test statistics
across different tests that may or may not be dependent.
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Many examples of sequential tests exist and are used in digital experimentation [195]. Be-

low, we introduce two sub-classes, including (mixed) sequential probability ratio tests and

group sequential tests. Readers can refer to, e.g., [242], for a critique on the pros and cons of

different sequential tests.

(Mixed) sequential probability ratio test One of the earliest tests in the sequential

paradigm is the sequential probability ratio test (SPRT) [271]. It is a one-sample test that

assumes the i.i.d. data X1, · · · , Xn, · · · , Xn′ follows a parametric distribution and compares

two simple hypotheses on a parameter of interest θ, i.e., H0 : θ = θ0 and H1 : θ = θ1. The test

statistic Sn is the cumulative sum of the log-likelihood ratio up until the latest observed data

point Xn. More specifically, S0 ≜ 0 and

Sn = Sn−1 + log

(
f(Xn | θ1)
f(Xn | θ0)

)
. (3.50)

The stopping and decision rules are jointly specified as follows. Upon observing Xn and

calculating Sn:

• If Sn ≥ log
(
1−β
α

)
, accept H1;

• Else if Sn ≤ log
(

β
1−α

)
, accept H0;41

• Else (i.e., when log
(

β
1−α

)
< Sn < log

(
1−β
α

)
), continue to take observations;

where α and 1− β correspond to the significance level and power (see Section 3.6) specified

by the experimenter during the design stage, respectively.42

Many extensions of SPRT have been developed since. The mixture SPRT (or mSPRT [229])

supports the now more commonly used hypothesis pair H0 : θ = θ0 and H1 : θ ̸= θ0 by

using a mixture distribution H to specify likely values of θ among all possibilities. In other

words, it specifies H1 : θ ∼ H . One then integrates the likelihood ratio across the PDF of H ,

41 Readers may notice the test refers to actions such as accepting H0, something not supported in a classical
NHST. This is not a typo. The SPRT stems from the (Neyman–Pearsonian) hypothesis test framework, an
“ancestor” of the NHST framework. Instead of giving the null hypothesis a preferred status like that in an
NHST, a hypothesis test decides between two competing hypotheses without any prior judgment and thus
can accept either hypothesis. The test also does not have the notion of p-value, a feature of a (Fisherian)
significance test [166].

42 We refer readers to the original work [271] for a full justification of why these specific decision/stopping
boundaries will control the Type I and II errors at the specified level.
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denoted fH(θ), when calculating the test statistic. This is defined, upon observing the first n

samples, as

ΛH,θ0n ≜
∫ n∏

i=1

f(Xi | θ)
f(Xi | θ0)

fH(θ)dθ. (3.51)

The version of mSPRT commonly used in digital experimentation is specified in [134], which

adapted the test into a two-sample setting. It assumes the samples X1, · · · , Xn, · · · , Xn′ and

Y1, · · · , Yn, · · · , Yn′ are normally distributed with known variances σ2
X and σ2

Y , respectively.

The normality assumptions mean one can reduce the two samples into a single sample (Y1−

X1), · · · , (Yn−Xn), · · · , (Yn′−Xn′), observe the resultant sample follow a normal distribution

withmean θ (to be inferred) and variance σ2
X+σ

2
Y ,43 and apply the one-samplemSPRT on the

resultant sample. The authors of [134] also noted that by taking H as a normal distribution

centred at the null hypothesis (i.e., H = N (θ0, τ
2), where τ 2 is a hyperparameter that we

specify or learn from data), the test statistic would have the following closed-form upon

observing the first n samples:

Λ̃H,θ0n ≜

√
σ2
X + σ2

Y

σ2
X + σ2

Y + nτ 2
exp

(
n2τ 2(Ȳn − X̄n − θ0)

2

2(σ2
X + σ2

Y )(σ
2
X + σ2

Y + nτ 2)

)
, (3.52)

where X̄n = n−1
∑n

i=1Xi and Ȳn = n−1
∑n

j=1 Yj represent the samplemean of the two samples

up to sample n. The test rejects the null hypothesis if Λ̃H,θ0n ≥ 1
α
. However, it can also seek

new responses indefinitely if the inequality is not met.

Group sequential tests Another popular sub-class of sequential tests is group sequential

tests. Instead of specifying a new test statistic, a group sequential test reuses the statistical

test that one would have used if the experiment is fixed-horizon multiple times during the

test duration. Instead, it adjusts each interim test’s significance level (and thus critical value)

to ensure the overall Type I error rate is equal to what has been specified.44

43 In [134], the text states that the resultant sample has a variance of 2σ2. This arises from assuming σ2
X =

σ2
Y = σ2.

44 The procedure resembles family-wise error rate control procedures such as Bonferroni correction, whichwe
will cover in Section 5.4. That said, there are fundamental differences between the two sets of procedures
– see Footnote 40.
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The test procedure is then as follows. Many steps featured below are similar to that in an

NHST, as described in Section 3.4:

1. Determine the statistical hypotheses, the appropriate test for each interim analysis, overall

significance level, power, maximum sample size, and test statistic distribution under the

null hypothesis H0 (cf. Steps 1–4 in Section 3.4);

2. Upon collecting the required number of responses for the subsequent interim analysis:

(a) Obtain the adjusted significance level (see below for examples),

(b) Calculate the test statistic based on responses observed so far (cf. Step 5),

(c) Obtain the adjusted critical region or calculate the p-value (cf. Steps 6/6A),

(d) Decide to reject/not reject H0 within the context of the interim analysis, using the ad-

justed critical region or significance level (cf. Steps 7/7A),

(e) If the interim analysis rejects H0, decide the same for the overall test;

Otherwise, continue to take observations;

3. Upon reaching the maximum sample size specified in Step 1, stop taking further observa-

tions and do not reject H0.

There are many ways to adjust the significance level in each interim test. Early approaches

set a fixed discount on its value based on the number of groups (i.e., the number of times the

experimenter intends to peek) and apply the discounted value uniformly to every interim

test [220]. While experimenters can expect to use the same adjusted significance level for

each interim test, such approaches require them to specify and commit to the number of

times they intend to peek.

More recent approaches feature an alpha spending function specified before starting an ex-

periment. It describes how the overall significance level α, which can be characterised as

a budget of “chance to commit Type I error” in this context, is spent across multiple in-

terim analyses [158]. Any monotonically increasing function that maps the proportion of

responses observed so far to significance levels bounded above by α, i.e., [0, 1] → [0, α], can

be used as an alpha spending function with various effectiveness. While these approaches

require non-trivial calculations to obtain the values of adjusted significance level and critical
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region for each interim analysis,45 they do not require experimenters to specify the number

of times or when they intend to peek during the experiment [60].

3.9 Bayesian Tests

We also discuss statistical testing from a Bayesian perspective. Recall that we introduced

P(H |Data), the probability of a statistical hypothesis H being true given the data, in Sec-

tion 3.6.1.46 We observed that this probability is often considered the more intuitively cor-

rect heuristic when making data-driven decisions than, e.g., p-values [47]. In Section 3.6.1,

“Data” was shorthand for the specific event “test statistic attaining the observed or more ex-

treme values”. However, the observation still holds if we take the term’s general definition

of “the probability of the samples taking their observed value”.

The Bayesian perspective enables one to obtain P(H |Data) by treating it as a posterior belief.

Under such an approach, one first specifies their prior belief on the hypothesis as a probabil-

ity, denoted as P(H). They then update the prior belief with the observations, summarised

by the likelihood under the chosen statistical model (denoted as f(Data |H)), using Bayes’

theorem to obtain the posterior belief.

We outline two approaches in the Bayesian setting. The first focuses on the posterior proba-

bility of a single hypothesis being true. By applying Bayes’ theorem directly:

P(H |Data) = f(Data |H)P(H)

f(Data) . (3.53)

In cases where the chosen statistical model is parametric, the hypothesis is usually a state-

ment of plausible values of the parameter of interest θ. The likelihood function has to account

for all such parameter values:

f(Data |H) =

∫
f(Data | θ,H)f(θ |H)dθ . (3.54)

45 That said, software packages that perform such calculations are readily available. See, e.g., [37].
46 The actual hypothesis featured in Section 3.6.1 was, in fact, the null hypothesisH0. The switch to a general

statistical hypothesis H is intentional, as all hypotheses are treated equally in the Bayesian regime.
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The second approach arises from the need to compare and select statisticalmodels. Of course,

we already have those models in hand – that specified by the null (H0) and alternative hy-

potheses (H1). Unlike the NHST regime, where there is a preferred/assumed state of matter

and hence an unequal status balance between the two hypotheses, the models specified by

the two hypotheses are treated equally in the Bayesian regime. Both are treated as candidate

models, with updates done in the same way using the same observations.47

The comparison and selection process utilises the Bayes factor [143]. We first substitute H0

and H1 into Equation (3.53) separately to obtain two posterior probability formulas. Then,

we observe that the quotient between the two posterior probabilities is

P(H1 |Data)
P(H0 |Data)︸ ︷︷ ︸
Posterior odds

=
f(Data |H1)P(H1)

f(Data) · f(Data)
f(Data |H0)P(H0)

=
f(Data |H1)

f(Data |H0)︸ ︷︷ ︸
Bayes factor (≜BF10)

· P(H1)

P(H0)︸ ︷︷ ︸
Prior odds

, (3.55)

with the expansion in Equation (3.54) appliedwhere appropriate. The Bayes factor BF10 (the

second-from-right fraction in Equation (3.55)) represents the strength of evidence provided

by the observations in favour ofH1. There is no universal scalewith descriptors, though [143]

considers a Bayes factor of
√
10 ≈ 3.162, 10, and 100 to be the lower thresholds for “substan-

tial”, “strong”, and “decisive” evidence.

An advantage of the Bayes factor overNHST is that the former can also represent the strength

of evidence in favour of H0, the “null” hypothesis that one can only accumulate evidence

against in an NHST (Sections 3.4–3.6). We can obtain that by taking the reciprocal of the

Bayes factor BF10 (or the entire Equation (3.55)) to obtain BF01. One can also recover the

posterior probability of each of the two hypotheses from the posterior odds quickly if H0

and H1 cover the entire event space. This is usually the case if we use the standard one- and

two-sided hypotheses featured in the previous sections.

Applications in digital experimentation Bayesian testing has gained traction in digital ex-

periments in recent years [61, 66]. It is often employed in lieu of sequential testing (see

section above) to address the continuous monitoring/peeking problem – see Section 4.1 for

a more detailed account of the problem and [66] for a discussion on how Bayesian and se-

47 One can still favour a particular hypothesis via the specification of the prior belief.
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quential testing differs in practice.

Many Bayesian tests in digital experimentation work off the statistical models used in a

Wald/practical t-test. Consider a two-sample setting, with X1, · · · , Xn, · · · , Xn′

andY1, · · · , Ym, · · · , Ym′ being i.i.d. samples from the twogroups. We recall fromSection 3.5.2

that given a large sample, the Wald/practical t-test statistic approximately follows the stan-

dard normal distribution. The Bayesian perspective allows one to update their belief with

incoming observations. Thus, it makes sense to define a test statistic upon observing the

first n samples from X andm samples from Y :

√
Wn,m ≜

Ȳm − X̄n −∆√(
s2X
n
+

s2Y
m

) approx.∼ N (0, 1) , (3.56)

where X̄n = 1
n

∑n
i=1Xi and Ȳm = 1

m

∑m
j=1 Yj are the running sample means. s2X and s2Y are

the plug-in estimates for the population variances σ2
X and σ2

Y , respectively.

Unlike the practical t-test, where one usually states hypotheses on the unstandardised effect

size ∆, we prefer inferring the effect size standardised by the pooled variance in a Bayesian

test. This is because standardising the effect size will make it scale-independent, easing the

specification or learning of the prior. To obtain the standardised effect size, we note
√
Wn,m

can be expanded as

√
Wn,m =

(
Ȳm − X̄n√( s2X

n
+

s2Y
m

)
/
(
1
n
+ 1

m

)︸ ︷︷ ︸
≜ δn,m

− ∆√( s2X
n
+

s2Y
m

)
/
(
1
n
+ 1

m

)︸ ︷︷ ︸
≜∆◦

)
1√

1
n
+ 1

m︸ ︷︷ ︸
≜
√
En,m

, (3.57)

where δn,m, ∆◦, and En,m are the test statistic, standardised effect size and the effective sam-

ple size of the test, respectively. Given that
√
Wn,m approximates the standard normal dis-

tribution, δn,m, a linear transformation of
√
Wn,m, approximates a (non-standard) normal

distribution:

δn,m =
Ȳm − X̄n√( s2X

n
+

s2Y
m

)
/
(
1
n
+ 1

m

) =

√
Wn,m√
En,m

+∆◦ approx.∼ N
(
∆◦,

1

En,m

)
. (3.58)

This enables us to assume a normal likelihood for the standardised effect size.
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Next, we specify the statistical hypothesis to calculate the Bayes factor. Similar to NHSTs,

many hypothesis combinations exist (see Section 3.2).48 A commonly used hypothesis pair

is H0 : ∆◦ = θ0 and H1 : ∆◦ ∼ N (θ0, V
2), where V 2 is a hyperparameter that we specify or

learn from data. We observe thatH0 is identical to that used in NHSTs. Meanwhile, the prior

specified inH1 is a reasonable approximation to the distribution of (standardised) effect sizes

(see Section 2.3.1) that also has nice mathematical properties – the resultant model underH1

is a hierarchical normal model. Given the above, the Bayes factor is

(BF10)n,m =
f(δn,m |H1)

f(δn,m |H0)
=
ϕ
(
δn,m; θ0, V

2 + 1
En,m

)
ϕ
(
δn,m; θ0,

1
En,m

) , (3.59)

where ϕ( · ;µ, σ2) is the PDF of a normal distribution with mean µ and variance σ2. One can

also obtain the posterior odds shown in Equation (3.55) if they specify P(H0) and P(H1), the

prior belief on the probability that each hypothesis is true.

Like every other Bayesian analysis, determining a good prior distribution for ∆◦ is difficult.

If one prioritises removing experimenters’ biases from prior specification, theymay consider

leveraging past experiment data to learn the prior using an empirical Bayes approach [61].49

In our running example, this means using the expectation-maximisation algorithm to learn

the parameter V 2 and the prior probability P(H0). In the case where the speed in obtaining a

large Bayes factor is essential, they may also consider using a non-local prior for H1, which is

perhaps best described as drilling hole(s) on the probability density near the parameter(s)

covered by H0 [138]. By unnesting H0 from H1, we avoid evidence in favour of H0 to also

contribute toH1 aswell and thus enable a quicker convergence hadH0 been the ground truth.

48 That said, one should take extra care when specifying the statistical hypotheses in a Bayesian test, par-
ticularly the alternative hypothesis. In NHSTs, the alternative hypothesis is generally not involved in test
calculations and can be lazily specified as the complement of the null hypothesis. This is different for Bayes
factor calculations, which involve both hypotheses heavily.

49 In [61, 66], both prominent works on Bayesian testing in digital experimentation, the authors called the
prior distribution obtained from the empirical Bayes “objective”. We believe this is used in the general sense
to contrast with a subjective prior elicited from a domain expert. In Bayesian analysis, objective priors usually
mean non-informative priors, default priors constructed by some formal or structural rules that are largely
ignorant to the context surrounding the experiment [50, 144], which is a different approach to empirical
Bayes priors [265].
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3.10 A Brief Recap

We provided an introduction to statistical testing in digital experimentation in this chapter.

Starting from the beginning of a statistical test – the specification of one or more statistical

hypotheses – we introduced four (overlapping) classes of statistical tests. They are NHSTs,

non-parametric tests, sequential tests, and Bayesian tests. For each class of tests, we described

one or more examples that are popular among digital experimenters in detail. We also out-

lined three alternatives to formal statistical tests: the inter-ocular trauma test, effect size, and

confidence intervals.

We have aimed to balance the theoretical foundations and the practical applications. For the

former, we covered, amongmany topics, the distributional results that underpin the practical

t-tests and the derivation of the required sample size formulas from first principles using

the concept of power. For the latter, we have outlined the situations where a specific test

is applied in digital experiments and the pitfalls in interpreting quantities (e.g., p-values)

featured in a test. In addition, we have carefully collated and linked the terminologies used

in different communities. This is done with the intention for the guide to be accessible to a

diverse yet mathematically-inclined audience.

That said, the expansive nature of statistical testing means we have inevitably omitted the

details of many examples and (primarily theoretical) concepts. We provided further details

and pointers for interested readers in the footnotes and references throughout the chapter.





Chapter 4

Datasets for Digital Experiments

The chapter is adapted from the research paper “Datasets for Online Controlled Experiments”,

presented at the 35th Conference on Neural Information Processing Systems (NeurIPS ’21) [173].

4.1 Motivation

Wemove on and discuss data, another necessary ingredient for running digital experiments.

Data plays a central role in developing the digital economy, especially in digital content, so-

cial networks, digital advertising and e-commerce. Its generation, processing, use, and stor-

age have been the topic of interest for many software engineering, databases, and machine

learning researchers and practitioners. That said, we feel data is less rigorously explored

in the digital experimentation context than statistical tests (see Chapter 3). Its existence is

often taken for granted by researchers or practitioners in digital experimentation or treated

as merely one of the means to tackle the research/business problem (instead of the object of

interest).

To illustrate, the ability to run experiments on the Web allows one to interact with many

subjects within a short time frame and collect many responses. This, together with the scale

of experimentation carried out by tech organisations, should lead to a wealth of datasets de-

scribing the result of an experiment. However, there are not many publicly available datasets

describing digital experiments, and we believe they were never systematically reviewed nor

115
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categorised. This is in contrast to the machine learning field, which also enjoyed its appli-

cation boom in the past decade yet already has established archives and detailed categorisa-

tions for its datasets [78, 266].

We argue that the lack of relevant datasets arising from real experiments hinders the fur-

ther development of digital experimentation andmeasurementmethods (e.g., new statistical

tests, bias correction, and variance reduction methods; see Chapter 5). Many statistical tests

proposed relied on simulated data that impose restrictive distributional assumptions and

thus may not represent the real-world scenario. Moreover, it may be difficult to understand

how methods differ and assess their relative strengths and weaknesses without a common

dataset to compare them on.

To address this problem, we present the first ever survey for online controlled experiments

(OCE) datasets, together with a taxonomy that can be generalised to all digital experiments.1

Our survey identified 13 datasets, including standalone experiment archives, accompanying

datasets from scholarly works, and demo datasets from online courses on the design and

analysis of experiments. We also categorise these datasets based on dimensions such as the

number of experiments each dataset contains, how granular each data point is time-wise and

subject-wise, and whether it includes results from real experiment(s).

The taxonomy enables us to discuss the data requirements for an experiment by systemati-

cally mapping out which data dimension is required for which statistical test and learning

the hyperparameter(s) associated with the test. We also recognise that, in practice, data are

often used for purposes beyond what it is originally collected for [146]. Hence, we posit the

mapping is equally useful in allowing one to understand their options when choosing sta-

tistical tests given the format of data they possess. Together with the survey, the taxonomy

helps us to identify what types of datasets are required for commonly used statistical tests

yet are missing from the public domain.

One of the gaps identified by the survey and taxonomy is datasets that can support the design

and running of experiments with adaptive stopping (a.k.a. continuous monitoring / optional

stopping). We motivate their use below. Traditionally, experimenters analyse experiments

1 Online controlled experiments, or online randomised controlled trials, are a subset of digital experiments.
They are characterised by the experimenters’ ability to perform random assignments and apply scientific
control. See Section 5.3 for further details.
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using null hypothesis significance tests (NHSTs), e.g., a Student’s t-test. These tests require

one to calculate and commit to a required sample size based on some expected treatment

effect size, all prior to starting the experiment. Making extra decisions during the experi-

ment, be it stopping the experiment early due to seeing favourable results or extending the

experiment as it teeters “on the edge of statistical significance” [203], is discouraged as they

risk one having more false discoveries than intended [109, 202].

Clearly, the restrictions above are incompatible with modern decision-making processes.

Businesses operating online are incentivised to deploy beneficial features and roll back dam-

aging changes as quickly as possible. In the “free delivery” banner example in Chapter 1, the

business may have calculated that they require four weeks to observe enough users based

on an expected 1% change in the decision metric. If the experiment shows, two weeks in,

that the banner is leading to a 2% improvement, it will be unwise not to deploy the banner

to all users simply due to the need to run the experiment for another two weeks. Likewise, if

the banner is shown leading to a 2% loss, it makes every sense to immediately terminate the

experiment and roll back the banner to stem further losses.

As a result, more experimenters are moving away from NHSTs and adopting adaptive stop-

ping techniques. Experiments with adaptive stopping allow one to decide when to stop an

experiment (i.e. stopping it earlier or prolonging it) based on the sample responses observed

so far without compromising the statistical validity of false positive/discovery rate control.

To encourage further development in this area, both in methods and data, we release the

ASOS Digital Experiments Dataset, which contains daily checkpoints of decision metrics

from multiple real OCEs run on the global online fashion retail platform.

The dataset design is guided by the requirements identified by themapping between the tax-

onomy and statistical tests, and to the best of our knowledge, is the first public dataset that

can support the end-to-end design and running of digital experiments with adaptive stop-

ping. We demonstrate it can indeed do so by (1) running a sequential test and a Bayesian

hypothesis test on all the experiments in the dataset and (2) estimating the value of hyper-

parameters associated with the tests. While the notion of ground truth does not exist in real

digital experiments, we show that the dataset can also act as a quasi-benchmark for statistical

tests by comparing results from the tests above with that of a t-test.

To summarise, our contributions are:
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1. (Sections 4.2 & 4.3) We create, to the best of our knowledge, the first ever taxonomy on

digital experiment datasets and apply it to publicly available online controlled experiment

datasets;

2. (Section 4.4) We map the relationship between the taxonomy and statistical tests com-

monly used in experiments by identifying the minimally sufficient set of statistics and di-

mensions required in each test. The mapping, which also applies to offline experiments,

enables experimenters to quickly identify the data collection requirements for their ex-

periment design (and conversely, the test options available given the data availability);

and

3. (Section 4.5)Wemake available, to the best of our knowledge, the first real, multi-experiment

time series dataset, enabling the design and running of experimentation with adaptive

stopping.2

4.2 A Taxonomy for Digital Experiment Datasets

We begin by presenting a taxonomy on digital experiment datasets, which is necessary to

characterise and understand the results of a survey. To the best of our knowledge, there

are no surveys nor taxonomies specifically on this topic prior to this work. While there is a

large volume ofwork concerning the categorisation of datasets inmachine learning [78, 266],

researchwork in the online randomised controlled experimentmethods [10, 12, 90, 233], and

general experiment design [128, 176], our search on Google Scholar and Semantic Scholar

using combinations of the keywords “online controlled experiment”/“A/B test”, “dataset”,

and “taxonomy”/“categorization”/“categorisation” yields no relevant results.

The taxonomy focuses on the following four main dimensions:

Experiment count A dataset can contain the data collected from a single or multiple exper-

iments. Results from a single experiment are useful for demonstrating how a test works,

though any learning should ideally involve multiple experiments. Two closely related but

relativelyminor dimensions are the variant count (number of control/treatment groups in the

2 Link to the dataset and accompanying datasheet: https://osf.io/64jsb/.

https://osf.io/64jsb/


4.2. A Taxonomy for Digital Experiment Datasets 119

experiment) and the metric count (number of performance metrics the experiment is track-

ing). Having an experiment with multiple variants and metrics enables the demonstration

of methods such as false discovery rate control procedures (e.g., [25], see Section 5.4.1 for

more details) and learning the correlation structure within an experiment.

Response granularity Depending on the experiment analysis requirements and constraints

imposed by the digital experimentation platform, the datasetmay contain data aggregated to

various levels. Consider the “free delivery” banner example in Chapter 1, where the website

users are randomly allocated to the treatment (showing the banner) and control (not show-

ing the banner) groups to understand whether the banner changes the proportion of users

who bought something. Each individual user is considered a randomisation unit [155].

A dataset may contain, for each experiment, only summary statistics on the group level, e.g.,

the proportion of users who have bought something in the control and treatment groups,

respectively. It can also record one response per randomisation unit, with each row containing

the user ID and whether the user bought something. The more detailed activity logs at a

sub-randomisation unit level can also have each row containing information about a particular

page view from a particular user.

Time granularity An experiment can last between aweek andmanymonths [155], provid-

ing many possibilities for recording the result. A dataset can opt to record the overall result

only, showing the end state of an experiment. If the dataset contains multiple randomisation

units or experiments, it may or may not have a timestamp for each instance. It can also record

intermediate checkpoints for the decision metrics, ideally at regular intervals such as daily or

hourly. These checkpoints can either be a snapshot of the interval (recording activities be-

tween time t and t+1, time t+1 and t+2, etc.) or cumulative from the start of the experiment

(recording activities between time 0 and 1, time 0 and 2, etc.).

Syntheticity A dataset can record data generated from a real process. It can also be syn-

thetic – generated via simulations with distributional assumptions applied. A dataset can

also be semi-synthetic if generated from a real-life process and subsequently augmented with

synthetic data.
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Note that we can also describe datasets arising from any experiments (including offline and

non-randomised controlled experiments) using these four dimensions. We will discuss in

Section 4.4 how these dimensions map to common statistical tests used in digital experimen-

tation.

In addition, we also record the application domain, target demographics, and the temporal cov-

erage of the experiment(s) featured in a dataset. In an age when data are often reused, one

must understand the underlying context and that learnings from a dataset created under a

specific context may not translate to another context. We also see the surfacing of such con-

text as a way to promote considerations in fairness and transparency for experimenters as

more experiment datasets become available [133]. For example, having target demograph-

ics information on a meta-level helps experimenters identify who were involved, or perhaps

more importantly, who were not involved in experiments and could be adversely impacted

by an effectively untested treatment.

Finally, the datasets can also differ in theirmediumof documentation and the presence/absence

of a data management / long-term preservation plan. The latter includes the hosting location, the

presence/absence of aDOI, and the type of license. We record these attributes for the datasets

surveyed below for completeness.

4.3 Public Online Controlled Experiment Datasets

Here, we discuss our approach to produce the first ever survey on OCE datasets and present

its results. The survey is compiled via two search directions, which we describe below. For

both directions, we conduct a first round search in May 2021, with follow up rounds in Au-

gust and October 2021 to ensure we have the most updated results.

We first searched on the vanilla Google search engine using the keywords “Online controlled

experiment “dataset””, “A/B test “dataset””, and “Multivariate test “dataset””. For each key-

word, we inspect the first 10 pages of the search result (top 100 results) for scholarly articles,

web pages, blog posts, and documents that may host or describe a publicly available OCE

dataset (or both). The search term “dataset” is in double quotes to limit the search results

to those explicitly mentioning dataset(s). We also searched on specialist data search en-
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gines/hosts, namely Google Dataset Search (GDS) and Kaggle, using the keywords “Online

controlled experiment(s)” and “A/B test(s)”. We inspect themetadata and description for all

the results returned (except for GDS, where we inspect the first 100 results for “A/B test(s)”)

for relevant datasets as defined below.3

A dataset must record the result arising from a randomised controlled experiment run on-

line to be included in the survey. The criterion excludes experimental data collected from

offline experiments, e.g. those in agriculture [284], medicine [77], and economics [81]. It

also excludes datasets used to perform quasi-experiments and observational studies, e.g.

the LaLonde dataset used in econometrics [59] and datasets constructed for uplift modelling

tasks [72, 124].4

The result is presented in Table 4.1. We place the 13 OCE datasets identified in this exercise

along the four taxonomy dimensions defined in Section 4.2 and record the additional fea-

tures. These datasets include two standalone archives, one for onlinemedia experiments [185]

and the other for experiments on an online education platform [244], plus two accompany-

ing datasets for peer-reviewed research articles [262, 293]. There are also tens of Kaggle

datasets, blog posts, and code repositories that describe or duplicate one of the six example

datasets used in five massive open online courses on online controlled experiment design

and analysis [15, 33, 111, 113, 264]. Finally, we identify three standalone datasets hosted on

Kaggle with relatively light documentation [13, 88, 147].

The table shows several gaps in OCE dataset availability, the most obvious being the lack of

datasets that record responses at a sub-randomisation unit level. In the sections below, we

will identifymore of these gaps anddiscuss their implications for digital experiment analysis.

3 Searching for the keyword “Online controlled experiment” on GDS and Kaggle returned 42 and 7 results,
respectively, and that for “A/B test” returned “100+” and 286 results, respectively. Curiously, replacing
“experiment” and “test” in the keywords with their plural form changes the number of results, with the
former returning 6 and 10 results on GDS and Kaggle, respectively, and the latter returning “100+” and
303 results, respectively.

4 Uplift modelling (UM) tasks for online applications often start with an OCE [226], and thus we can con-
sider UM datasets as OCE datasets with extra randomisation unit level features. The nature of the tasks is
different, though: OCEs are concerned with validating the average treatment effect across the population
using a statistical test, whereas UM is concerned with modelling the conditional average treatment effect
for each individual user, making it more a general causal inference task that is outside the scope of this
survey.
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Dataset Name Ref. Experiment Count
- Variant / Metric
Count

Response
Granularity

Time Granularity Syntheticity Application
Domain

Target
Demographic

Temporal
Coverage

Documentation Data management / long-
term preservation plan

Upworthy Research Archive [185] Multiple (32 487)
- 2–14 / 2 (C) Group Overall result only

Timestamp per expt. Real Media & Ads
Copy/Creative

Mostly English-
speaking users
in USA

Jan 2013 –
Apr 2015

Peer reviewed
data article

Host: Open Science Framework
DOI: ✓ (see [185])
Licence: CC BY 4.0

ASSISTments Dataset from
Multiple Randomized
Controlled Experiments

[244] Multiple (22)
- 2 / 2 (BC) Rand. Unit Overall result only

✗ timestamp Real Education
Teaching model

Mostly middle school
students (age 11-14)
in/near MA, USA

2013 –
2015

Peer reviewed
data article

Host: Author website
DOI: Unknown
Licence: Unknown

A/B Testing Web Analytics Data
(From [292]) [293] Single

- 5 / 2 (C) Group Overall result only
✓ timestamp Real Education

UX/UI change

Mostly English-
speaking university
library users

May 2013 –
Jun 2013

Accompanying
dataset to
peer-reviewed
research article

Host: University library
DOI: ✓ (see [293])
Licence: CC BY-SA 4.0

Dataset of two experiments of the
application of gamified peer assessment
model into online learning environment
MeuTutor (From [261])

[262] Multiple (2)
- 3+2 / 3+3 (R+C) Rand. Unit Overall result only

✗ timestamp Real Education
Teaching model

High school students
in Brazil taking
ENEM (age 17)

Jul 2015 –
Aug 2015

Peer reviewed
data article

Host: Journal website
DOI: ✓ (see [262])
Licence: CC BY 4.0

Udacity Free Trial Screener Experiment
(From Udacity A/B Testing
Course - Final Project [111])

See e.g.
[205, 247, 273]

Single
- 2 / 4 (C) Group Daily checkpoint

Snapshot Real Education
UX/UI change

Mostly English-
speaking users Unknown

Blog posts &
Kaggle notebooks
e.g. [192, 236, 294]

Host: Kaggle / GitHub (multiple)
DOI: Unknown
Licence: Unknown

“Analyse A/B Test Results” Dataset
(From Udacity Online Data
Analyst Course - Project 3 [264])

See e.g.
[4, 57, 215]

Single
- 2 / 1 (B) Rand. Unit Overall result only

Timestamp per RU Unknown E-commerce
UX/UI change Unknown Unknown

Blog posts &
Kaggle notebooks
e.g. [42, 180, 227]

Host: Kaggle / GitHub (multiple)
DOI: Unknown
Licence: Unknown

Mobile Games A/B Testing
with Cookie Cats
(DataCamp project [15])

See e.g.
[82, 257, 291]

Single
- 2 / 3 (BC) Rand. Unit Overall result only

✗ timestamp Real Gaming
Design change

Unknown (likely
Facebook users) Unknown Kaggle notebook

Host: Kaggle / Course website
DOI: Unknown
Licence: Unknown

Experiment Dataset (From
DataCamp A/B Testing
in R Course [33])

[35] Single
- 2 / 1 (B) Rand. Unit Overall result only

Timestamp per RU Synthetic Tech
UX/UI Change N/A N/A Course notes

Blog posts

Host: Course website
DOI: Unknown
Licence: Unknown

Data Visualization Website -
April 2018 (From DataCamp
A/B Testing in R Course [33])

[34] Single
- 2 / 4 (BR) Rand. Unit Overall result only

Timestamp per RU Synthetic Tech
UX/UI Change N/A N/A Course notes

Host: Course website
DOI: Unknown
Licence: Unknown

AB Testing Result (From
Customer Analytics and
A/B Testing in Python [113])

[112] Single
- 2 / 2 (CR) Rand. Unit Overall result only

Timestamp per RU Unknown Tech
UX/UI Change Unknown Jan 2014 –

Jan 2018 Course notes
Host: Course website
DOI: Unknown
Licence: Unknown

Grocery Website Data for AB Test [147] Single
- 2 / 1 (B) Rand. Unit Overall result only

✗ timestamp Unknown E-commerce
UX/UI change Unknown Unknown Kaggle notebook

Host: Kaggle
DOI: Unknown
Licence: Unknown

Ad A/B Testing
(aka SmartAd AB Data) [88] Single

- 2 / 2 (B) Rand. Unit Overall result only
Timestamp per RU Unknown Media & Ads

Display ads Unknown Jul 2020 Kaggle notebook
Host: Kaggle
DOI: N/A
Licence: CC BY-SA 3.0

Synthetical A/B-Tests [13] Multiple (25 856)
- 2 / 1 (R) Group. Overall result only

✗ timestamp Synthetic N/A N/A N/A Kaggle notebook
Host: Kaggle
DOI: Unknown
Licence: CDLA-Sharing-1.0

Table 4.1: Results from the first ever survey of OCE datasets. The 13 datasets identified are placed on the four taxonomy dimen-
sions defined in Section 4.2, together with the additional attributes recorded. In the Experiment Count column, a second-line value
(corresponding to Variant/Metric Count) of “x / y (BCR)” means the dataset features x variants and y metrics in each experiment,
with the metrics based on Binary, Count, and Real-valued responses. In the Response Granularity and Time Granularity columns,
Randomisation Unit is abbreviated as RU or Rand. Unit. Many resources are accessed via links to non-scholarly articles – blog plots,
Kaggle dataset pages, and GitHub repositories. These resources may not persist over time.
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4.4 Matching Dataset Taxonomy with Statistical Tests

Specifying the data requirements (or structure) and performing statistical tests are perhaps

two of the most common tasks carried out by data scientists. However, the link between

the two processes is seldom mapped out explicitly. It is all too common to consider from

scratch the question, “I need to run this statistical test, how should I format my dataset?” (or

more controversially, “I have this dataset, what statistical tests can I run?” [146]) for every

new project/application, despite the list of possible dataset dimensions and statistical tests

remaining essentially the same.

We aim to speed up the process above by describing what summary statistics are required to

perform common statistical tests in digital experiments and link the statistics back to the tax-

onomy dimensions defined in Section 4.2. The exercise is similar to identifying the sufficient

statistic(s) for a statistical model [95]. However, the identification is done for the encapsu-

lating statistical inference procedure, with a practical focus on data dimension requirements.

Wedo so by stating the formula used to calculate the corresponding effect sizes and test statis-

tics and observing the summary statistics required in common. The general approach also

enables one to apply the resultant mapping to any experiments that involve a two-sample

statistical test, including offline experiments and experiments without a randomised con-

trol. We will refrain from discussing the full model assumptions and their applicability for

brevity. Instead, we point readers to the relevant work in the literature.

4.4.1 Effect size and Welch’s t-test

We first look at the requirements to calculate effect sizes (using Cohen’s d) and perform the

most basic statistical test (using Welch’s t-statistic). Recall from Sections 3.3.2 and 3.5.2 that

the formulas to calculate these two quantities are

d =
Ȳ − X̄√

(n−1)s2X+(m−1)s2Y
n+m−2

, (*3.2)

T =
Ȳ − X̄ −∆√

s2X
n
+

s2Y
m

, (*3.12)
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where (X̄, Ȳ ), (s2X , s2Y ), and (n,m) are the means, variances, and counts of the samples X

and Y , respectively.

We observe that we require only six group-level summary statistics to calculate the two quan-

tities above: two means, two variances, and two counts. Besides the counts, the exact list of

quantities required depends on the distributional assumptions used in a test, which dictates

what the sufficient statistics are.5 We call these quantities Dimension Zero (D0) quantities,

as they are the bare minimum required to run a statistical test. These quantities will be ex-

panded along the taxonomy dimensions defined in Section 4.2.

Cluster randomisation / dependent data The sample variance estimates (s2X , s2Y ) may

be biased when cluster randomisation is involved. Using the “free delivery” banner ex-

ample again, instead of randomly assigning each individual user to the control and treat-

ment groups, the business may randomly assign postcodes to the two groups, with all users

from the same postcode getting the same version of the website. In this case, user responses

may become correlated, violating the independence assumptions in statistical tests. Com-

mon workarounds, including the use of bootstrap [19] and the Delta method [64] (see Sec-

tions 5.4.1 and 5.5), generally require access to sub-randomisation unit responses.

4.4.2 Experiments with adaptive stopping

Asdiscussed in Section 4.1, experimentswith adaptive stopping are getting increasingly pop-

ular among the digital experimentation community. Here, wemotivate the data requirement

for statistical tests in this domain by looking at the quantities required to calculate the test

statistics for amixture sequential probability ratio test (mSPRT, see Section 3.8 or [134]) and a

Bayesian hypothesis test using Bayes factor (see Section 3.9 or [66]), two popular approaches

in digital experimentation. Many other tests support adaptive stopping [194, 271], though

the data requirements should be largely identical in terms of the dimensions defined in Sec-

tion 4.2.

5 Welch’s t-test assumes normally distributed data and hence requires the samplemean and variance for both
samples as they are a joint sufficient statistic for normal distributions with unknown variance. For decision
metrics derived from binary responses, we only require the sample mean as it is a sufficient statistic for a
Bernoulli distribution.
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We first recall from Section 3.8 that running a mSPRT with a normal mixing distribution

H = N (θ0, τ
2) involves calculating the following test statistic upon observing the first n sam-

ples from X and Y :

Λ̃H,θ0n =

√
σ2
X + σ2

Y

σ2
X + σ2

Y + nτ 2
exp

(
n2τ 2(Ȳn − X̄n − θ0)

2

2(σ2
X + σ2

Y )(σ
2
X + σ2

Y + nτ 2)

)
, (*3.52)

where X̄n = n−1
∑n

i=1Xi and Ȳn = n−1
∑n

j=1 Yj represent the sample mean ofX and Y up to

sample n, respectively.

For Bayesian hypothesis tests, we recall fromSection 3.9 that the test statistic δn,m and effective

sample size En,m can be obtained by decomposing the Wald test statistic upon observing the

first n samples from X andm samples from Y :

√
Wn,m =

(
Ȳm − X̄n√( s2X

n
+

s2Y
m

)
/
(
1
n
+ 1

m

)︸ ︷︷ ︸
≜ δn,m

− ∆√( s2X
n
+

s2Y
m

)
/
(
1
n
+ 1

m

)︸ ︷︷ ︸
≜∆◦

)
1√

1
n
+ 1

m︸ ︷︷ ︸
≜
√
En,m

, (*3.57)

where ∆◦ is the standardised effect size. δn,m and En,m are then used to calculate the Bayes

factor under the hypothesis pair H0 : ∆
◦ = θ0 and H1 : ∆

◦ ∼ N (θ0, V
2):

(BF10)n,m =
f(δn,m |H1)

f(δn,m |H0)
=
ϕ
(
δn,m; θ0, V

2 + 1
En,m

)
ϕ
(
δn,m; θ0,

1
En,m

) , (*3.59)

where ϕ( · ;µ, σ2) is the PDF of a normal distribution with mean µ and variance σ2.

During an experiment with adaptive stopping, we calculate the test statistics stated above

many times for different n and m. This means a dataset can only support the running of

such experiments if it contains intermediate checkpoints for the counts (n, m) and the means

(X̄n, Ȳm), ideally cumulative from the start of the experiment. One often also requires the

variances at the same time points (see below). The only exception to the dimensional re-

quirement above is where the dataset contains responses at a randomisation unit or finer level

of granularity and, despite recording the overall results only, has a timestamp per randomisation

unit. Under this special case, we can still construct the cumulative means (X̄n, Ȳm) for all rel-

evant values of n andm by ordering the randomisation units by their associated timestamps.
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Learning the effect size distribution (hyper)parameters The two tests introduced above

feature some hyperparameters (τ 2 and V 2) that must be specified or learned from data.

These parameters characterise the prior belief of the effect size distribution, which will be

the most effective if it “matches the distribution of true effects across the experiments a user

runs” [134]. Common parameter estimation procedures [1, 14, 115] require results from

multiple related experiments.

Estimating the response variance In the equations above, the response variance of the two

samples, σ2
X and σ2

Y (or s2X and s2Y ), are assumed to be known before we observe all the

samples. In practice, we often use the plug-in empirical estimates (s2X)n and (s2Y )m – the

sample variances for the first n samples from X and m samples from Y , respectively. Thus,

the data dimensional requirement is identical to that of the counts and means as discussed

above. We will also require a sub-randomisation unit response granularity when the plug-in

estimates are biased due to dependent data (see Section 4.4.1).

4.4.3 Non-parametric tests

We also briefly discuss the data requirements for non-parametric tests. Recall from Sec-

tion 3.7 that one of themost commonly used non-parametric tests in digital experimentation,

the Mann-Whitney U -test, calculates the following test statistic:

U =
n∑
i=1

m∑
j=1

S(Xi, Yj), where S(X, Y ) =


1 if Y < X ,

1/2 if Y = X ,

0 if Y > X .

(*3.46)

While a rank-based method is available for large n andm, both methods require knowledge

of all the Xi and Yj . This requirement applies to many other non-parametric tests (see Sec-

tion 3.7). The observation suggests that a dataset can only support a non-parametric test if it

at least provides responses at a randomisation unit level.

We conclude by showing how we can combine the individual data requirements above to

obtain the requirement to design or run experiments for more complicated statistical tests.
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This is possible due to the orthogonal design of the taxonomy dimensions. Consider an ex-

perimentwith adaptive stopping using Bayesian non-parametric tests (e.g., with a Pólya Tree

prior [43, 127]). It involves a non-parametric test, requiring responses at a randomisation unit

level. It computes multiple Bayes factors for adaptive stopping and hence requires interme-

diate checkpoints for the responses (or a timestamp for each randomisation unit). Finally, it

needs to learn the hyperparameters of the Pólya Tree prior, which requiresmultiple related ex-

periments. The substantial data requirement along 3+ dimensions perhaps explains the lack

of relevant digital experiment datasets and the tendency for experimenters to use simpler

statistical tests for the day-to-day design or running of digital experiments (or both).

4.5 ANovelDataset for ExperimentswithAdaptive Stopping

We finally introduce the ASOS Digital Experiments Dataset, which we believe is the first

public dataset that supports the end-to-end design and running of digital experiments with

adaptive stopping. Wemotivatewhy this is the case, provide a light description of the dataset

(and a link to the more detailed accompanying datasheet),2 and showcase the capabilities of

the dataset via a series of experiments. We also discuss the ethical implications of releasing

this dataset.

Recall from Section 4.4.2 that in order to support the end-to-end design and running of ex-

periments with adaptive stopping, we require a dataset that

1. Includes multiple related experiments;

2. Is real, so that any parameters learned are reflective of the real-world scenario;

and either

3a. Contains intermediate checkpoints for the summary statistics during each experiment (i.e.,

time-granular), or

3b. Contains responses at a randomisation unit granularity with a timestamp for each ran-

domisation unit (i.e. response-granular with timestamps).

None of the datasets surveyed in Section 4.3meet all three criteria. While theUpworthy [185],

ASSISTments [244], and MeuTutor [262] datasets meet the first two criteria, they all fail to
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meet the third.6 The Udacity Free Trial Screener Experiment dataset meets the last two crite-

ria by having results from a real experimentwith daily snapshots of the decisionmetrics (and

hence time-granular), which supports the running of an experiment with adaptive stopping.

However, the dataset only contains a single experiment, which does not help in learning the

effect size distribution (the design).

The ASOS Digital Experiments Dataset contains results from OCEs run by a business unit

within ASOS.com, a global online fashion retail company. In terms of the taxonomy defined

in Section 4.2, the dataset contains multiple (78) real experiments, with two to five variants

in each experiment and four decision metrics based on binary, count, and real-valued re-

sponses. The results are aggregated on a group level, with daily or 12-hourly checkpoints of the

metric values cumulative from the start of the experiment. The dataset design meets all the

three criteria stated above and thus differentiates itself from other public datasets.

We provide readers with an accompanying datasheet (based on [99]) that provides further

information about the dataset. We also host the dataset on Open Science Framework to en-

sure it is easily discoverable and can be preserved long-term.2 It is worth noting that the

dataset is releasedwith the intent to support development in the statistical methods required

to run digital experiments. The experiment results shown in the dataset are not representa-

tive of ASOS.com’s overall business operations, product development, or experimentation

program operations, and no conclusion of such should be drawn from this dataset.

4.5.1 Potential use cases

Meta-analyses The multi-experiment nature of the dataset enables one to perform meta-

analyses. A simple example is characterising the distribution of p-values (under Welch’s

t-test) across all experiments (see Figure 4.1). We observe that roughly a quarter of experi-

ments in this dataset attain p < 0.05 and attribute this to the fact that what we experiment in

digital experiments is often guided by what domain experts think may have an impact. That

said, we invite external validation on whether there is evidence for data dredging using,

6 All three report the overall results only and hence are not time-granular. The Upworthy dataset reports
group-level statistics and hence is not response-granular. The ASSISTments and MeuTutor datasets are
response-granular but lack the timestamp to order the samples.
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Figure 4.1: Distribution of p-values attained by the 99 OCEs in the ASOS Digital Experiment
Dataset using Welch’s t-tests, split by decision metrics. The leftmost bar in each histogram
represents experiments with p < 0.05. Here, we treat OCEs with multiple variants as multi-
ple independent OCEs.

e.g., [193].

Design and running of experiments with adaptive stopping We also demonstrate that

the dataset can indeed support digital experiments with adaptive stopping by performing a

mixed sequential probability ratio test (mSPRT) and a Bayesian hypothesis test via the Bayes

factor for each experiment andmetric. This requires learning the hyperparameters τ 2 and V 2.

We learn, for each metric, a naı̈ve estimate for V 2 by collating the δn,m (see Equation (3.57))

at the end of each experiment and taking their sample variance. This yields the estimates

1.30e-05, 1.07e-05, 6.49e-06, and 5.93e-06 for the four metrics respectively.

For τ 2, we learn near-identical naı̈ve estimates by collating the value of Cohen’s d (see Equa-

tion (3.2)) instead. However, as τ 2 captures the spread of unstandardised effect sizes, we

specify in each test τ 2 = d · (s2X)n, where (s2X)n is the sample variance of all responses up

to the nth observation in that particular experiment. The Bayesian tests also require a prior

belief in the null hypothesis being true (P(H0)) – we set it to 0.75 based on what we observed

in the t-tests above.

We then calculate the p-value in mSPRT and the posterior belief in the null

hypothesis (P(H0|data)) in the Bayesian test for each experiment andmetric at each daily/12-

hourly checkpoint, following the procedures stated in [134] and [66, 143], respectively. We

plot the results for five experiments selected at random in Figure 4.2. It shows that the p-

value for an mSPRT is monotonically non-increasing. At the same time, the posterior belief

for a Bayesian test can fluctuate depending on the effect size observed so far.
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Figure 4.2: Change in (left) p-values in a mixed sequential probability ratio test (τ 2 =

5.92e-06) and (right) posterior belief in the null hypothesis (P(H0|data)) in a Bayesian hy-
pothesis test (V 2 = 5.93e-06, P(H0) = 0.75) during the experiment for five experiments
selected at random. The experiment duration (x-axis) is normalised by its overall runtime.
Only results for Metric 4 are shown.

A quasi-benchmark for adaptive stopping methods Real digital experiments, unlike ma-

chine learning tasks, generally do not have a notion of ground truth. Nonetheless, the dataset

can still be used as a quasi-ground truth to compare two hyperparameter settings of the same

adaptive stopping method or between two adaptive stopping methods. For example, we can

treat the reject / not reject verdict from a Welch’s t-test at the end of an experiment as the

“ground truth” and compare it to the reject / not reject verdict of an mSPRT at different ex-

periment stages. This yields many “confusion matrices” over different stages of individual

experiments, where a “Type I error” corresponds to cases in which aWelch’s t-test fails to re-

ject the null hypothesis and anmSRPT rejects the null hypothesis. A confusionmatrix for the

end of each experiment can be seen in Table 4.2. As the dataset was collected without early

stopping, it allows us to perform sensitivity analysis and optimisation on the hyperparam-

eters of mSPRT under what can be construed as a “precision-recall” trade-off of statistically

significant treatments.

Other use cases The time series nature of this dataset enables one to detect bias (of the es-

timator) across time, e.g., those caused by concept drift or feedback loops. In the context of

digital experiments, [41] described several methods to detect invalid experiments over time

that may be run on this dataset. Moreover, with the time series spanning multiple experi-

ments and decision metrics, one can also learn the correlation structure across experiments,

decision metrics, and time [221, 274].
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Table 4.2: Comparing the number of reject / not reject verdicts given byWelch’s t-test and an
mSPRT at the end of an experiment for all four metrics.

t-test Rejects H0 Does not reject H0

mSPRT Rejects H0 Does not reject H0 Rejects H0 Does not reject H0

Metric 1 19 7 2 71
Metric 2 20 7 18 49
Metric 3 16 9 6 63
Metric 4 16 11 4 63

4.5.2 Ethical considerations

We finally discuss the ethical implications of releasing the dataset, touching on data protec-

tion and anonymisation, potential misuse, and the ethical considerations for running digital

experiments in general.

Data protection and anonymisation The dataset records aggregated activities of hundreds

of thousands or millions of website users for business measurement purposes. Hence, it is

impossible to identify a particular user. Moreover, to minimise the risk of disclosing busi-

ness sensitive information, all experiment context is either removed or anonymised. One

should not be able to tell who is in an experiment, when the experiment is run, what treat-

ment the experiment involves, and what decision metrics are used. We refer readers to the

accompanying datasheet2 for further details in this area.

Potential misuses A digital experiment dataset, no matter how anonymised it is, reflects

the behaviour of its participants under a specific application domain and time. We urge po-

tential users of this dataset to exercise caution when attempting to generalise the learnings.

It is important to emphasise that the learnings differ from the statistical methods and pro-

cesses demonstrated on this dataset. We believe the latter are generalisable, i.e., they can be

applied to other datasets with similar data dimensions regardless of the datasets’ application

domain, target demographics, and temporal coverage, and appeal for potential dataset users

to focus on such.
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One example of generalising the learnings is using this dataset as a full performance bench-

mark. As discussed above, this dataset does not have a notion of ground truth, and any

quasi-ground truths constructed are themselves a source of bias to estimators. Thus, experi-

ment design comparisons need to be considered at a theoretical level [176]. Another example

will be directly applying the value of hyperparameter(s) obtained while training a model on

this dataset to another dataset. While this may work for similar application domains, the

less similar they are, the less likely the hyperparameters learned will transfer. This may risk

introducing bias, both in the estimator and in fairness.

Running digital experiments in general The dataset is released to support experiments

with adaptive stopping, which will enable a faster experimentation cycle. The ethical con-

cerns will naturally mount as we run more digital experiments, which are ultimately human

subjects research. We reiterate the importance of the following three principles when we de-

sign and run experiments [206, 208]: respect for persons, beneficence (properly assess and

balance the risks and benefits), and justice (ensure participants are not exploited), and refer

readers to Chapter 9 of [155] and its references for further discussions in this area.

4.6 A Brief Recap

Digital experiments are a powerful tool for online organisations to assess the impact of their

digital products and services. To safeguard future methodological development in the area,

it is vital that we have access to and a systematic understanding of relevant datasets arising

from real experiments. We described the result of the first ever survey on publicly available

OCE datasets. We also provided a dimensional taxonomy that links the data collection and

statistical test requirements for digital experiments in general. In addition, we released the

first ever dataset that can support digital experiments with adaptive stopping, which design

is grounded on a theoretical discussion between the taxonomy and statistical tests. Via ex-

tensive experiments, we also showed that the dataset is capable of addressing the identified

gap in the literature.

Ourwork on surveying, categorising, and enriching the publicly available digital experiment

datasets is just the beginning, andwe invite the community to join in the effort. As discussed
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above, we have yet to see a dataset that can supportmethods dealingwith correlated data due

to cluster randomisation, or the end-to-end design and running of experimentswith adaptive

stopping using Bayesian non-parametric tests. We also see ample opportunity to generalise

the survey to cover datasets arising from uplift modelling tasks, quasi-experiments, and ob-

servational studies. Finally, we can further expand the taxonomy, which already supports

datasets from all experiments, with extra dimensions (e.g., number of features to support

stratification, control variate, and uplift modelling methods) as the area matures.





Chapter 5

Recent Advances in Digital

Experimentation Methods

Part of the chapter (Section 5.5) is adapted from the research paper “Measuring e-Commerce

Metric Changes inOnline Experiments”, presented atACMWebConference 2023 (WWW’23) [177].

5.1 Motivation

After establishing the statistical tests and datasets required to run a digital experiment in

Chapters 3 and 4, we can now describe what a digital experiment entails. To begin, we out-

line the causal reasoning behind experiments. Establishing causation (i.e., making conclu-

sions such as “this treatment causes that business metric to change”) is a step further than

establishing correlation1 that a statistical test may do. We thus require additional theoretical

grounding to represent the concept of causation. This chapter provides an initial view of the

potential outcomes framework / Rubin causal model and its associated language.2

Using the potential outcomes framework, we can describe different classes of experiments.

The classes, primarily characterised by the level of control an experimenter has, are ran-

domised controlled trials (RCTs), quasi-experiments, and natural experiments. Having a

1 Also known as association within the causal inference community [122].
2 Other tools and frameworks exist, e.g., directed acyclic graphs and do-calculus, which are arguably more

generalisable. Here, we prioritise the ease of understanding.

135
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classification of digital experiments enables us to highlight the different methodological and

implementation challenges faced by digital experimenters on each front.

Given the availability of excellent and up-to-date review articles that deal with established

and emerging approaches in each area, it is perhaps not the most effective for us to cover

yet another systemic review of digital experimentation methods. Thus, we provide a more

lightweight, narrative overview beyond introducing the review articles. Wewill describe the

major challenges and highlight several prominent works for each challenge as entry points

for readers interested in further exploration.

As we continue to place equal emphasis on the theory and practice of digital experimen-

tation methods, we also enrich the overview with case studies. These case studies pro-

vide spotlights on digital randomised controlled trials with dependent responses and quasi-

experiments that assign treatments based on geographical regions. In addition to providing

evidence on the extent of these challenges, the case studies also detail the practical consider-

ations when implementing the methods to address them.

The rest of the chapter is organised as follows. We introduce the basics of the potential out-

comes framework in Section 5.2. Using its notation and rules, we outline the three classes of

experiments in Section 5.3. We then interleave the reviews on advances in each class of exper-

iments (RCTs in Section 5.4 and quasi-experiments/natural experiments in Section 5.6) with

spotlights onmethods that dealwith dependent responses (Section 5.5) andgeo-experiments

(Section 5.6.3).

5.2 From Correlation to Causation – The Potential Outcomes

Framework

Readers may recall that in Chapter 3, we noted that statistical tests alone are insufficient to

establish causal relationships between treatments and changes in responses. In this section,

we bridge the gap between correlation/association thinking (as featured in statistical tests)

and causal thinking (as featured in experiments and causal inference) by introducing the

most basic concepts of the potential outcomes framework. In subsequent sections, we will

refer to and extend these concepts.
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This introduction extends the notations in Chapter 3 and takes a more leisurely pace than

other introductions to background materials in the thesis. This is deliberate – in the author’s

experience, it is a big jump to fully appreciate the framework’s premises, rules, and notations,

especially for those who are used to dealing only with randomised control trials. Readers

familiar with the potential outcomes framework and the Yi(0)-style notation in causal infer-

ence may consider skimming through the section. They may also find other expositions on

the framework [62, 122, 131] useful.

Observed responses In Chapter 3, we often deal with two sets of responses: X1, · · · , Xn

and Y1, · · · , Ym. In the general context of statistical testing, the responses can arise from two

arbitrary sources, e.g., the height of males vs females in a survey or ice cream sales vs the

number of drowning incidents [201]. In the context of an experiment, the two sets of re-

sponses would have come from experimental units that are assigned and subjected to two

different treatments.3 Formally, by modelling the treatment assignment using a binary r.v. A

and denoting the two possible assignmentsA = 0 andA = 1, we can represent the responses

under the additional context as

Xi | A = 0 and Yj | A = 1 . (5.1)

Assuming all Xi and Yj are identically distributed copies of their respective populations, by

taking the sample mean of the two sets of responses, we obtain an unbiased estimator of the

expected response of the overall populations X and Y given the corresponding treatments:

E(X | A = 0) and E(Y | A = 1) . (5.2)

Counterfactual responses Note Xi and Yj in Expression (5.1) are merely the observable re-

sponses from their associated experimental units. We do not observe how the experimental

unit responding Xi under A = 0 would have responded had A = 1, nor do we observe how

the unit responding Yj underA = 1would have responded hadA = 0. These “would haves”

are known as the counterfactual responses and are essential to causal reasoning – understand-

3 We focus on the two-treatment case for the rest of the chapter. The numerical designation of the treatment
assignments, i.e., 0, 1, · · · , eases the extension of the framework to cover multiple treatments.
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ing the impact of a treatment requires understanding both the outcomes when the treatment

is and is not prescribed.

The potential outcome framework unifies the observed and counterfactual responses from

the same experimental unit by treating all equally as potential responses (or outcomes) and

giving each potential response a separate designation. In the two-treatment case, they are

denoted as

Xi ≜

Xi(0) if A = 0

Xi(1) if A = 1 ,

Yj ≜

Yj(0) if A = 0

Yj(1) if A = 1 .

(5.3)

More generally, we can write Xi = Xi(a) if A = a and Yj = Yj(a) if A = a, where a ∈ {0, 1}.4

The framework features a missing data problem – some potential responses (generally one

max per experimental unit) are observable, and others must be estimated.

Using the framework, we can define the causal impact of a treatment over another more

formally. In a two-treatment setting, the treatment effect (of treatment 1 over 0) on a single

experimental unit that responds Xi or Yj is

∆Xi = Xi(1)−Xi(0), ∆Yj = Yj(1)− Yj(0) . (5.4)

Assuming again that allXi and Yj are identically distributed copies of their respective popu-

lations, we can also define the average treatment effect (ATE) across the overall populations

X and Y as

∆X = E(X(1)−X(0)), ∆Y = E(Y (1)− Y (0)) . (5.5)

The framework also enables us to formalise the adage “correlation does not imply causation”.

So far, we have encountered the expected observed response given a treatment E(X | A = a)

(see Expression (5.2)) and the expected potential response under the said treatmentE(X(a)).

Theymay appear to be descriptions of the same quantity but are not the same. This is because

a third variable (e.g., a confounder) may affect both X and A.

4 In [122], the same quantities are denoted Xa
i and Y a

j , sometimes with the numeric value of a explicitly
specified, e.g., Y a=0

j for disambiguation.
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To illustrate, we use the “ice cream consumption causes drowning” fallacy [201] – letX be the

number of (observed) drowning incidents andA be a binary r.v., representing high (A = 1)

and low (A = 0) ice cream sales. It is established that the number of drowning incidents

increases along with ice cream sales. In other words, E(X | A = 1) is high, E(X | A = 0) is

low, and the difference E(X | A = 1) − E(X | A = 0) is positive. However, it is also estab-

lished that ice cream consumption does not cause drowning, nor does drowning incidents

cause increased ice cream sales.5 Instead, the correlation/association in the expected ob-

served responses arises due to a third factor: weather. Hot and sunny spells generally raise

the demand for ice cream and, unfortunately, the number of drowning incidents as more

people visit various water bodies and thus are exposed to the risk of drowning.

The expected potential responses better reflect the lack of a causal relationship between ice

cream sales and drowning incidents. Given the potential number of drowning incidents

under high ice cream sales E(X(1)), one would expect the counterfactual response E(X(0)),

i.e., the number of drowning incidents had the ice cream sales been low and all else equal, will

be similar if not the same. This leads to a negligible causal impact E(X(1))− E(X(0)).

5.3 Classes and Examples of Digital Experiments

To aid the discussion in the rest of the chapter, we provide an overview of different classes of

experiments defined in the traditional statistics literature and further exampleswithin digital

experimentation. Figure 5.1 shows the classes of experiments and what differentiates a class

from another.

5.3.1 Randomised controlled trials

The class of experiments where experimenters have the most control is randomised con-

trolled trials (RCTs). They are also known as online controlled experiments (OCEs) in the

digital experimentation community [155]. The free delivery banner experiment described

at the beginning of the thesis (see Figure 1.1) belongs to this class. These experiments are

5 It is conceivable for drowning incidents to cause decreased ice cream sales due to emergency responses.
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Randomized 
controlled trials

Quasi-experiments
Ability to apply 
scientific control

Ability to perform
random assignment

Natural experiments

Figure 5.1: The onion model for different types of experiments, in decreasing degree
of control from the experimenter (inner to outer): Randomised controlled trials, quasi-
experiments, and natural experiments. Quasi-experiments and randomised controlled trials
are differentiated by the experimenter’s ability to assign experiment participants randomly
into different groups for different treatments. Natural experiments and quasi-experiments
are differentiated by the experimenter’s ability to vary the treatment (or lack thereof) pre-
scribed to an experiment participant.

characterised by the experimenter’s ability to apply a scientific control and randomly assign

experimental units to different groups.6 For the free delivery banner example, this corre-

sponds to the ability to show a version of the website without the “free delivery” banner and

randomly assign users to see different website versions, respectively.

Most of the value of an RCT comes from the ability to perform random assignments, which

has twomajor implications. Here, we describe the implications using the potential outcomes

framework. Firstly, randomisation generally implies exchangeability.7 This means the po-

tential responses and the actual treatment are independent. We denote such exchangeability

as X(0), X(1) ⊥⊥ A and Y (0), Y (1) ⊥⊥ A and observe that if the potential responses are ex-

6 Unlike in medical trials, the issue of blinding, where information that may influence the result is withheld
from the experimenter or experiment participants (or both) tominimise biases, is rarely discussed in digital
experimentation. It is often addressed by having the Internet between the experimenter and participants:
the overwhelming majority of participants are unaware of what treatment(s) are in place when they visit
a website. Moreover, experimenters would only know who the participants are during post-experiment
analysis as they delegate the task of assigning and tracking participants to automated computer systems.

7 Also known as unconfoundedness or ignorability. While there are randomisation schemes that lead to non-
exchangeable potential responses, in practice, almost all online controlled experiments rely on randomisa-
tion schemes (e.g., simple randomisation) that yield some form of exchangeability [240].
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changeable,

E(X(a)) = E(X(a) | A = 0) = E(X(a) | A = 1) and

E(Y (a)) = E(Y (a) | A = 0) = E(Y (a) | A = 1) , a ∈ {0, 1} . (5.6)

Secondly, as experimental units in both groups can be viewed as a simple sample of the same

underlying population under randomisation, the r.v.’s representing the potential responses

of both groups under the same treatment, i.e.,

X1(a), · · · , Xn(a), Y1(a), · · · , Ym(a) for a ∈ {0, 1} , (5.7)

are interchangeable.8 Thismeans they can be swappedwithin and across the groupswithout

consequences.

The two implications mean we can obtain an unbiased estimate/estimator on the average

treatment effect using only the observed responses under randomisation. To illustrate, we

can express the ATE defined in Equation (5.5) as

∆X = E(X(1)−X(0)) (By definition – Eq. (5.5))

= E(X(1))− E(X(0)) (Linearity of expectation)

= E(Y (1))− E(X(0)) (Interchangeability between X(1) and Y (1))

= E(Y (1) | A = 1)− E(X(0) | A = 0) (Exchangeability of Y (1) and X(0) – Eq. (5.6))

= E(Y | A = 1)− E(X | A = 0) (By definition – Eq. (5.3)) .

(5.8)

We can also show that∆Y is equal to the last line of Equation (5.8) using the same arguments

(plus the interchangeability between X(0) and Y (0)). This should not come as a surprise as

X and Y are based on experimental units from the same population and thus should share

the same ATE. As stated in Section 5.2, estimating the last line of Equation (5.8) is simply a

matter of taking two sample means over the two groups of observed responses. This has the

effect of reducing theATE estimation problem into amuchmore straightforward two-sample

8 Also known as an exchangeable sequence of r.v.’s [44]. There are a few subtle differences between the two
exchangeability definitions. Thus, we use a different name to disambiguate these two concepts.
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testing problem. Experimenters can use the many readily available methods in statistical

testing (see Chapter 3) and avoid estimating expected counterfactual responses, which may

attract considerable bias.

To sum up, the results above show that randomisation generally implies that any difference

in the responses can be attributed to the causal effect of the treatment and not to other mea-

sured or unmeasured confounding. Such a desirable property perhaps explains why RCTs

are considered the “gold standard” in medical trials [139] and are the most common type of

digital experiment. We will outline further statistical challenges to running RCTs online in

Section 5.4.

5.3.2 Quasi-experiments

Taking away the ability to randomly assign experiment units in randomised controlled trials

leaves us with a quasi-experiment. Consider the example in [287], where a digital organ-

isation developed a mobile application downloadable from app stores such as Apple App

Store and Google Play. The organisation is interested in whether a new app feature shipped

within a new app version will improve a business metric relative to the existing app version.

For the new feature to reach app users, developers usually upload the new version onto the

app stores. The app stores then have to review the new app version, and once approved, app

users have to update their app.

In this scenario, the ability to assign who sees the new or existing version of the app (let

alone randomly) is taken away from the experimenters and put in the hands of the users,

who decide when to update the app, and the app stores, who decide when to allow the new

version of the app to be downloaded.

The inability to randomise treatment assignments generally marks the beginning of causal

inference’s remit. Experimenters can no longer expect the exchangeability mentioned in the

previous subsection to automatically hold and have to employ other methods to estimate

the counterfactual responses from one or more observed responses. In the language of the

potential outcomes framework, we want to estimate Xi(1) and Yj(0) using Xi | A = 0 and

Yj | A = 1, where Xi represents the responses from users who have yet to download the

new app version, Yj represents the responses from users who have seen the new version
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(and presumably interacted with the new feature), and A be the binary treatment assign-

ment indicator. We will introduce several causal inference approaches and how they apply

to quasi-experiments in Section 5.6.

5.3.3 Natural experiments

If we further remove the ability to apply scientific control,9 we end up with natural exper-

iments. While experimenters cannot apply different treatments (in this case, different ver-

sions of a digital product or experience), participants may still encounter scenarios that in-

clude one or more of the said treatments by the act of nature. This means it remains possible

to draw inferences on the causal effect of the treatments from observational data.

An experimenter may opt not to apply a scientific control and run a natural experiment in-

stead due to various operational, reputational, legal and ethical considerations. For example,

experiments aiming to measure the value added by existing call centre support may be pre-

vented from actively blocking some users’ access to the call centre as it negatively impacts

user experience. Other experiments seeking to understand the price elasticity of demand10

may be keen to avoid engaging in the controversial practice of price discrimination11 to avoid

negative press and risk of legal actions [73, 282]. Lastly, testing different news headlines

simultaneously in front of readers may also damage editorial credibility or even “fan the

flames” of partisan political beliefs in the long run [133]. Experimenters may instead lever-

age responses from users who have never contacted the call centre, sales on similar digital

products/services priced differently, and reactions on past news headlines on similar topics

to understand the respective causal impact.

Most natural experiments share the same causal inference approaches as quasi-experiments.

We will cover a few applications in Section 5.6.

9 Also known as manipulating the treatment or independent variables [231].
10 The relationship between the price of a product/service sold by an organisation and its demand.
11 The act of offering different users a different price for the same digital product/service.
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5.3.4 Special case – Experiments for personalisation strategies

It is worth noting that the boundaries between each experiment class introduced above are

not clear-cut. Depending on the situation, experimentersmayhave various degrees of control

over random assignments.

Consider a follow-up experiment to our free delivery banner experiment introduced above.

Suppose the organisation is now interested in whether varying the timing of showing the

“free delivery” banner will lead to further improvement. One can run an experiment as

simple as comparing “showing the banner after a user has viewed three shop products” vs

“showing the banner after a user has viewed four shop products” and see which timing rule

leads to a better outcome.

In the experiment, the treatment (timing rule) a user is subjected to is jointly determined

by the assignment from experimenters and the user’s actions. While the experimenters can

randomly assign which timing rule to put the user through, the user must also qualify under

the rules by seeing three or four shop products. Only by doing so, the user would see the

“free delivery” banner, without which the notion of treatment effect would not make sense.

This means experimenters have some, but not complete, control in random assignments –

more than that in the new app feature experiment described in Section 5.3.2, but certainly

less than the vanilla free delivery banner experiment discussed in Section 5.3.1.12

The banner display timing experiment is one ofmany experiments for personalisation strategies

– complex sets of targeted user interactions common in e-commerce and digital marketing.13

Wewill focus on the design of these experiments and further elaborate on their unique chal-

lenges in Chapter 6.

12 Some literature describes this scenario as one-sided non-compliance [270].
13 The example provided is grossly simplified to facilitate discussion. In practice, display timing strategies,

in true personalisation spirit, usually specify how different users are shown their “free delivery” banner at
a different stage of their website visit, depending on their browsing behaviour. Thus, an experiment that
compares two display timing strategies is essentially comparing the execution of two sets of display timing
rules generated from two meta-principles.
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5.4 Advances in Online Controlled Experiments

Here, we provide a brief review of the advances in OCEs. Since its inception in the late

1990s [153], the field has seen tremendous growth in research output and its economic and

societal impact [263]. More recently, we have also seen some comprehensive and up-to-date

reviews in the area:

• [155] provided a narrative, general-purpose guide to the field while collating many rele-

vant works.14

• [12] and [225] provided systematic literature reviews. The former built a taxonomy based

on the process-infrastructure distinction, type of methodological approach, and the chal-

lenges/benefits involved. The latter categorised the works by the subject of an experi-

ment,15 choices made in the experiment design/execution processes, and the role of stake-

holders.

• [116] and [159] described the challenges. The former provided a general viewby including

data, engineering, and organisational culture topics. The latter focused on the statistical

aspect and provided a more technical treatment to each topic presented.

This review aims to be a gateway to the multitude of research works in the area by unifying

the many nomenclatures, providing a concise problem statement for each challenge, and

suggestingworks accessible to those new to a particular line ofwork. For a fuller exposition of

the challenges and research in this area, readers should refer to the five high-quality reviews

listed above.

Most of the section is dedicated to advanced statistical methods, building on concepts and

notations covered in Chapter 3 (on statistical testing) and Sections 5.2 and 5.3.1 (on the po-

tential outcomes framework). We will also briefly outline works addressing other topics in

running successful OCEs, as mentioned in the second research question in Section 1.2. These

include choosing decision metrics / evaluation criteria, scalable computer systems, and fos-

tering a growth mindset organisational culture.

14 The author reviewed part of the manuscript before the book’s publication in 2020.
15 Defined in [225] as the application domain and the element subjected to experimental manipulation.
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5.4.1 Advanced statistical methods

We begin with the statistical challenges in OCEs that necessitate the development of ad-

vancedmethods. These challenges included in the section are themultiple testing/comparison

problem, post-selection inference, heterogeneous treatment effects, dependent responses,

stable unit treatment value assumption (SUTVA) violations, and improving experiment sen-

sitivity.

Multiple testing/comparisons Recall from Section 3.6.3 that the probability of rejecting

the null H0 in an NHST when H0 is true (i.e. the false positive rate) is α. The false positive

rate is usually small so that when a test rejects H0, we have reasonable conviction to hail

the experiment result as a discovery. That said, the probability of committing a false positive

accumulates aswe perform additional comparisons. ForNtest independentNHSTs, we expect

(α · Ntest) tests to reject H0 when H0 is true. This means that for every 20 NHSTs run under

α = 0.05, we expect the tests to rejectH0 once on average, evenwhen all theH0 are true [202].

Hailing all test rejections as discoveries without accounting for the inflated false positive rate

will lead to biased decisions.16

The problem is increasingly prevalent due to the increasing number of experiments, treat-

ment pairs, and user segments to compare (see paragraph on heterogeneous treatment effect

below). Usually, experimenters seek to control the family-wise error rate (FWER) or the false

discovery rate (FDR), defined over many experiments as

FWER ≜ P(# Type I error ≥ 1) = 1− P(# Type I error = 0), (5.9)

FDR ≜ E
(

# Type I error
# Test rejecting H0

)
. (5.10)

The most common techniques that control for FWER include Bonferonni correction [80] and

Šidák correction [249], whereas those for FDR include the Benjamini-Hochberg [25] and

knockoff procedures [97].

16 This is closely related to the continuous monitoring/peeking problem discussed in Section 3.8 and Sec-
tion 4.1. That said, comparisons in the continuous monitoring/peeking problem are often correlated, lead-
ing to the risk of committing a false positive accumulating differently.
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Post-selection inference Having multiple comparisons over experiments, treatment pairs

and sub-populations will remain a potential source of bias even when we move away from

binary decisions and on to effect size estimation. Consider a two-sample, right-tailed t-test

(and all its associated notation, see Section 3.5.2). In addition to deciding to reject/not reject

H0 : ∆ = θ0, we also estimate the treatment effect∆. We know Ȳ −X̄ is an unbiased estimator

for∆. However, with many statistical tests, we generally ignore all tests that fail to rejectH0 –

assuming∆ = θ0 as per the null hypothesis – and focus on tests that rejectH0. The treatment

effect estimate after such test selection now overestimates ∆:

E
(
Ȳ − X̄ |T > tν,1−α

)
= E

(
Ȳ − X̄

∣∣∣∣ Ȳ − X̄ > θ0 + tν,1−α

√
s2X
n

+
s2Y
m

)
> E

(
Ȳ − X̄

)
= ∆ .

(5.11)

Another way to put this in the context of multiple comparisons is that the test selection pro-

cess above favours “lucky” OCEs, some of which are merely false discoveries. Inferring

quantities with the test selection process is an example of post-selection inference [65], and

the estimation bias it introduces is also known as the winner’s curse [161].

The best way to detect the existence of the winner’s curse and correct the bias is via repli-

cation [65]. In practice, it is often operationally challenging. It also seems unnecessary if

one only seeks the aggregated treatment effect from multiple successful OCEs; in this case

one can employ a maximum likelihood approach to estimate the expected bias from the

test selection process [161]. To estimate the treatment effects of individual OCEs, one can

perform pseudo-replication by splitting an experiment into two sub-experiments with the

same treatments and build a regression model on the expected treatment effect of the sec-

ond sub-experiment (without any selection) using that of the first sub-experiment (which

goes through test selection) [45]. They can also use empirical Bayes methods [14] such as

Tweedie’s formula and the James–Stein estimator [85]. Finally, [65] combined elements of

the approaches above to improve the precision of individual treatment effect estimates.

Heterogeneous treatment effects Many experiments seek to measure the average treat-

ment effect across the population. That said, it is valuable for experimenters to understand

whether there are subgroupswhose treatment effect may deviate from that of the entire pop-

ulation [79]. To detect such heterogeneous treatment effects, experimenters often estimate
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the conditional average treatment effect (CATE) instead, i.e.

E(Yj(1)− Yj(0) | Cj), (5.12)

where Cj represents the covariates for experimental unit j. Many works assume conditional

interchangeability and exchangeability, such that they can estimate CATE using the condi-

tional observed responses E(Xi | Ci = c) and E(Yj | Cj = c) from an OCE. See Section 5.6.1 for

further discussions on CATE estimation and Section 3 of [159] for a summary of works in

the area.

Dependent responses Many OCEs feature statistical tests (see Section 3.5) that assume

i.i.d. responses. While many OCEs do have observations that are approximately i.i.d. [67],

such assumptions are not always justified. We have (implicitly) covered deviations from

the identically distributed assumptions when we discussed heterogeneous treatment effects

above. Below, we look at deviations from the independence assumptions.

One can find dependent responses in many experiment designs. A significant portion fea-

tures dependent treatment assignments. This could be explicitly imposed by randomly as-

signingpre-existing groups of experimental units (instead of individuals) to treatment groups,

also known as cluster randomisation, as briefly discussed in Section 4.4.1. It could also im-

plicitly arise as one randomises individual experimental units independently yet observes

and infers based on more granular responses, effectively forming a cluster per experimental

unit.17 In Section 5.5, we will present an extensive case study on dependent responses in

e-commerce OCEs, which arises from experimenters randomising by users and measuring

changes to business metrics based on more granular transaction- or item-based responses.

Having dependent responses can affect treatment effect estimates and decisions from sta-

tistical tests. Consider a one-sample t-test (see Section 3.5.2 for all its associated notation).

We recall from Equation (3.11) that its test statistic is (X̄ − µX)/
√
s2X/n. Moreover, the test

17 Digital experimenters often differentiate an experimental unit, a randomisation unit (one subjected to inde-
pendent randomisation), and an analysis unit (one that yields a response). These units do not necessarily
coincide [70, 67].
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statistic’s denominator is an estimator of the standard error of the mean (SE):

√
Var(X̄) =

√
1

n2

(∑n
i=1Var(Xi) + 2

∑
i<j Cov(Xi, Xj)

)
. (5.13)

Under i.i.d. assumptions, Cov(Xi, Xj) = 0 ∀i ̸= j and thusVar(X̄) =
∑

iVar(Xi)/n
2 = σ2

X/n.

This implies
√
s2X/n is an unbiased estimator of the SE. However, if Xi are dependent, then

Cov(Xi, Xj) ̸= 0, which makes
√
s2X/n a biased estimator. In the case study below, we will

demonstrate how the bias affects the power and confidence interval calculations and, thus,

the decisions made in statistical tests and experiments.

Digital experimenters use the delta method [64] or one-way/block bootstrap [19] to mitigate

the bias. We will provide a critique of these methods in the case study below. Another

interesting work in the area is [67], which explores scenarios where an experimenter can

treat responses as i.i.d. before providing a variance formula that exploits the relationship

between the experimental/randomisation/analysis units and accommodates a wide range

of randomisation mechanisms in practical settings.

Stable unit treatment value assumption (SUTVA) violations Responses can also become

dependent by violating the stable unit treatment value assumption (SUTVA), an assumption we

made implicitly when we defined the potential outcomes in Section 5.2 / Equation (5.3).18

More precisely, SUTVA is an assumption in two parts – in the words of [131]:

1. (No interference [51, 234]) – “The potential outcomes for any [experimental] unit do not

vary with the treatments assigned to other units, and,”

2. (No hidden variations of treatments) – “[F]or each [experimental] unit, there are no dif-

ferent forms or versions of each treatment level, which lead to different potential out-

comes.”

InOCEs, interferencemainly arises due to the network effects. As experimental units interact

with each other in the network, their potential response no longer depends onwhat treatment

they have received but also on what treatments their connections have received. In other

18 Also known as having spillover effects [250, 253], in the sense that a treatment spills over to experimental
units in another treatment group (due to, e.g., interactions between experimental units in different groups)
and induces unwanted treatment effects.
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words, a treatment may spill over to an experimental unit’s connections. The effect can be

found directly in social networks (where a user interacts with their connections) [142] or

indirectly via marketplaces (where suppliers/buyers compete for shared resources) [167]

and recommender systems (where the system recommendmultiple items/users to the same

user/item) [221].

While dependent treatment assignment, which breaks the independence assumption but

maintains SUTVA, generally affects the variance estimate, a SUTVA violation can bias the

treatment effect estimates. [19] have shown that interaction amongst users and, separately,

the items recommended can result in an increased false positive rate in experiments when

applied to Facebook data, likely due to bias in both the treatment effect and variance esti-

mates.

A common way to mitigate the spillover effect in social networks is to randomise treatment

group assignments over clusters19 of experimental units (e.g. communities of users) instead

of the units themselves [18]. Clustering by non-overlapping communities means one can

hold SUTVA at a cluster level, as the units generally interact heavily within the same cluster

but sparsely between clusters [169]. However, the choice of clusters is non-trivial; this means

a cluster-based treatment assignment may only be justified when the network effect is appar-

ent. [239] developed a framework that detects whether network effects exist for a particular

OCE by simultaneously running the same experiment under individual-based and cluster-

based assignment and testing if the treatment effect differs (and hence if SUTVA holds up

reasonably to justify individual-based assignment). Section 6 of [159] describes many more

relevant works, including those focusing on indirect network effects.

The second part of SUTVA (no hidden variations of treatments) is seldom explicitly dis-

cussed in OCEs. That said, it is conceivable that many “imperfections [...] hidden through-

out the engineering stack or in the design process” [283] are capable of breaking this part of

SUTVA and thus bias the (potential) responses. Many examples are presented as pitfalls in

OCE operations, which we will cover in Section 5.4.2 / Table 5.1.

19 In network speak, sub-graphs that are highly connected within.
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Improving sensitivity We look beyond challenges that lead to biases in our treatment ef-

fect estimator. Recall from Section 3.6.4 that the power of a test depends on many factors,

including the significance level, sampling uncertainty, sample size and effect size. While we

have discussed the role of sample and effect sizes in Sections 3.6.5 and 3.6.6, respectively, little

regarding the sampling uncertainty has been said so far in the thesis. Some works look into

increasing the sensitivity of OCEs by reducing sampling uncertainty, which enables an ex-

perimenter to reduce the sample size required for an experiment or the minimum detectable

effect (or both). The works are motivated by observations where [150] noted that ordinar-

ily, successful experiments in technology companies only improve metrics by a fraction of a

per cent; [286] also described the need to detect small effects as huge customer bases often

translate them into substantial gains in revenue and profit.

The methods described below rely on decomposing the variance in a metric and attempt-

ing to eliminate unnecessary components. Controlled-experiment Using Pre-Existing Data

(CUPED) is a control variates method that measures a metric modified by a linear function

of the covariates [69].20 The idea is to eliminate the effect of correlated covariates on the

metric under measurement. [63] later apply the idea to reformulate dilution21 as a variance

reduction problem, resulting in a more easy to implement and less error-prone formula. A

similar idea is used by [222], which subtracted the predicted value of a metric using boosted

decision trees as predictors. In the same spirit, stratified sampling is used to eliminate vari-

ance between strata. Stratified sampling can be applied pre- or post-experiment, and while

the theoretical bounds are better for pre-experiment stratification, post-stratification is often

preferable for large-scale OCEs [286].

5.4.2 Other topics

To complete our review of OCEs, we also review topics that we did not cover in the statistical

tests and data chapters, as well as the advanced methods section above.

20 Also known as regression adjustment in econometrics [168].
21 The act of translating the treatment effect from users who have been exposed to a treatment (“triggered”

users) to the general user base. The metric is diluted as we incorporate untriggered users (who contribute
zero).
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Anatomy of an OCE A mature OCE system/platform often features complex processes

and infrastructure, and many seek to provide an overview or describe specific parts of the

ecosystem. [154] provided a definitive guide on setting up, running, reporting, and scaling

OCEs. Several papers described the scalable, concurrent testing infrastructure and its asso-

ciated challenges at major technology companies [149, 260, 288]. Others described the OCE

lifecycle [91] and characterised the elements defining an experiment [11].

State and progress of OCEs’ usage A class of works aim to capture the state and track the

progress of the use of OCEs (or DEM capabilities in general) across many organisations.

Some propose models that represent the maturity/growth of DEM capabilities [92, 280].

Others focus on experiment outcomes and perform meta-analyses on results from multiple

OCEs – see [29, 30, 136] for results across industries, in e-commerce, and in display adver-

tising, respectively. [103] bridged the two topics above by linking experiment performance

to organisational structure.

Pitfalls in OCE operations Despite the increasing adoption and maturity of the use of

OCE, running a successful OCE after another is, by the admission of the biggest players

in the industry, difficult [155]. This is due to many non-obvious challenges and pitfalls ex-

perimenters face while running an OCE end-to-end. In addition to that related to statistical

testing (see Chapter 3) and requiring advanced statistical methods (see Section 5.4.1), many

accounts [53, 74, 89, 152, 148] describe pitfalls related to experimentation infrastructure, de-

cision metric selection and interpretation [68], and external effects [126]. We summarise

these challenges and pitfalls in Table 5.1. To mitigate the potential problems, [179] proposed

techniques that separate problematic user responses affected by some of the external effects

(namely dilution, carry-over effect, and novelty effect) from valid ones. [41, 93] also devel-

oped a series of diagnostic tests to identify the root cause(s) of a sample ratio mismatch, a

common symptom for tests that are potentially invalidated due to encountering one or more

of the pitfalls (see “practical usage” paragraph of Section 3.7.2).
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Table 5.1: Pitfalls in running an OCE end-to-end as described in Crook et al. [53], Kohavi and Longbotham [152], Kohavi et al. [148],
Lu and Liu [179], Hohnhold et al. [126], Dmitriev et al. [74], Fabijan et al. [93], Chen et al. [41], and Esteller-Cucala et al. [89]. The
value in each cell represents the section number where the pitfall is described in each work.

Meta topic Pitfall
Crook et al. 

(2009)

Kohavi and 
Longbotham 

(2011)

Kohavi et al. 
(2012)

Lu and Liu 
(2014)

Hohnhold et 
al. (2015)

Dmitriev et 
al. (2017)

Fabijan et al. 
(2019)

Chen et al. 
(2019)

Esteller-
Cucala et al. 

(2019)
Improper randomization 2/3 5.1 3.2.4
Not controlling for all differences 9 3/7/8
Page performance differ between variants 2 5.2
Dependent experiments 5.1 3.2.5
Setting up triggers correctly for variant assignment / 
counterfactual logging 5.4 3.2.2/3.2.4
Incorporating dynamic targeting 5.2 3.2.3 3.2
Variants has access to share resources 4
Telemetry loss / instrumentation problems / failure in ETL pipelines 8 5 3.2 5.1/5.3 5.1-5.4
Metric hacking (easily manipulated metrics that are not 
beneficial to ultimate organization goals) 3.1 10 3.1 3.1
Non-response bias for survey response 3.2
Having a full set of data quality / drill-down metrics 7 3.3 5.11 3.1
Short-term metric not translating to long-term gain 6 3.1 1
CI calculation for relative change / combination of OECs 4 10
Underestimate variance due to iid assumptions 5
Metric variance increases (too quickly) over experiment duration 3.4
Underpowered test 5.4
p-hacking 5.5
Continuous monitoring / multiple testing 3.3 5.6/5.8 3.3/3.5
Understanding sample ratio mismatch 5.1 2.3.1 3.1 3.2
Ratio metric interpretation 5.2 3.1
Non-homogenous metric movement 5.7
Segment interpretation (Simpson's paradox) 6 9 5.8 3.2.1 3.2
Bots skewing metrics 7 2/7 5.9 5.3
Not applying Twyman's Law 5.12 3.6
Primacy & novelty effect 3.3 4 5.10 4.1 3.4
Trigger-day effect 4.2
Carryover / residual effect 3.5 3 3.1.2 5.1 3.2.1
Metric dilution 2
Cookie churn (intentional reset of cookies from users) 3.1.2 3.4
Ad blindness & sightedness 2
Experimenter / end-user interference 5.5

Experimentation 
infrastructure

Metric / Overall 
evaluation criteria 
(OEC) selection

Metric 
interpretation

Statistical testing

External effects
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5.5 A Spotlight on Dependent Responses in e-Commerce Ex-

periments

To complement our review of advances in OCE, we present a case study on dependent re-

sponses in e-commerce OCEs. We intend for the case study to be a short but crucial piece of

evidence that drives awareness of the pitfall among experimenters in e-commerce and hence

encourages the adoption of established mitigation approaches.

Like many technology organisations, e-commerce organisations aim to provide a consistent

user experience; hence, randomisation in OCEs is generally done on a per-user basis. On the

other hand, e-commerce organisations are unique as they feature physical inventories and

thus track a set of business metrics that are transaction- or item-based. These metrics include

average basket value (ABV),22 average basket size (ABS),23 and average selling price (ASP).24

Experiments thatmeasure changes toABV,ABS, andASP often feature dependent responses.

In these experiments, the responses (or analysis units) are at a more granular transaction

or item level than the randomisation units, which are at a user level. Given that a user can

make many transactions and purchase many items during an experiment, the value of these

transactions and items will likely correlate based on the user’s preference. This creates a

local dependence structure between users and transactions/items, which violates the usual

i.i.d. assumptions in common statistical tests that OCEs employ (e.g., a Student’s t-test). If

left unmitigated, it risks experimenters having wrong estimates of sampling uncertainty and

making wrong conclusions from a statistical test.

Having dependent responses in experiments due to differences in granularity between ran-

domisation and analysis units is not a recent revelation [155]. In some sense, one may re-

gard such a setup as a cluster-randomised controlled experiment, where an experimenter

randomly assigns clusters of transactions or items belonging to the same user to the same

treatment groups.25 In terms of obtaining an unbiased estimate for the sampling uncer-

22 Average (mean) amount spent in each transaction/basket by a user.
23 Average (mean) number of items purchased in each transaction/basket by a user.
24 Average (mean) price per item sold.
25 In such a setup, the size of a cluster can be zero and would only be determined after the experiment ends.

This is because experimenters cannot control how much a user buys on the website.
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tainty, many viable approaches already exist: experimenters in medicine, economics, and

social sciences often employ a crossed random effects model [16] or cluster robust standard

errors [32]. Meanwhile, those in digital technology prefer using bootstrap [19] or the delta

method [64] to estimate the sample variance and the standard error due to their ability to

scale to large datasets and relative lack of model assumptions.

Despite the existing literature dedicated to dependent responses in digital experiments, there

is little published evidence specifically in the context of OCEs in e-commerce. Most pub-

lished research is based on the context of OCEs in digital advertising and content, where

experimenters randomise by users and analyse by sessions or page views [19, 64]; or social

networks, where experimenters both randomise and analyse by users whose responses may

correlate via their social connections [83, 114]. We believe the lack of evidence contributes

to insufficient awareness of the issue from experimenters in this area.

This case study’s contribution is evidence from real-life e-commerce experimentation oper-

ations. In particular:

1. We show, using three e-commerce transaction datasets (with two publicly available), a

positive correlation between the value/size of transactions and items from the same user.

This leads to inflation in measurement uncertainty (Section 5.5.1);

2. We quantify the extent of the said inflation, which can be anywhere between 1x to >100x

the usual estimate and is dependent on the business metric, experiment duration, and

organisation (Section 5.5.2);

3. We highlight the impact of the said inflation on test power and confidence interval cover-

age in null hypothesis significance tests (Section 5.5.3); and

4. We share lessons learnedwhile incorporating someof the establishedmitigation approaches

into an e-commerce company’s internal experiment analysis platform, including a cri-

tique of some popular approaches and practical tradeoffs during implementation (Sec-

tion 5.5.4).
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Table 5.2: Summary of the three online retail/e-commerce transaction datasets featured in
this paper (post data cleaning).

Dataset # Users/
Customers

# Transactions/
Orders

# Items/
Units

# Products/
SKUs

Time span

ASOS (Proprietary) ∼4 180 000 ∼9 680 000 ∼32 900 000 ∼330 000 62 days
(2 months)

UCI Online Retail II
[78, 40]

5 852 36 594 10 690 447 4 621 739 days
(2 years)

Olist Brazilian
e-Commerce [209]

94 983 98 199 112 101 32 729 729 days
(2 years)

5.5.1 Beware of Hidden Inflation in Measurement Uncertainty

We first motivate why wemay obtain inaccurate estimates of the sampling uncertainty when

measuring changes to e-commerce metrics based on transactions or items in OCEs. Recall

from the previous section (see Equation (5.13)) that
√
s2X/n, the vanilla sample standard

error (SE), is an unbiased estimator for the SE under i.i.d. assumptions yet becomes biased

when the responses are dependent.

The i.i.d. assumption is the prevailing assumption when experimenters randomise by users

and analyse by user [67]. However, it is unlikely to hold when experimenters randomise by

users and analyse by transactions or items. Many users tend to make a transaction that is

similarly sized and valued to their previous transaction(s). They also tend to purchase items

that are at a similar price point. To demonstrate the claims above, we utilise three online

retail/e-commerce transaction datasets. The UCI Online Retail II [40, 78] and Olist Brazilian

e-Commerce [209] datasets are publicly available.26 We also use a proprietary dataset from

ASOS.com, a global online fashion retail company, that records transactions within a spe-

cific two-month period in 2022 on a particular mobile platform.27 We summarise the three

datasets in Table 5.2.

26 The experiment code and results on the two publicly available datasets are available on GitHub: https:
//github.com/liuchbryan/oce-ecomm-abv-calculation.

27 The data described are not representative of ASOS.com’s overall business operations, and one should not
draw any such conclusion from the dataset.

https://github.com/liuchbryan/oce-ecomm-abv-calculation
https://github.com/liuchbryan/oce-ecomm-abv-calculation
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Figure 5.2: Kernel density estimation plots showing a user’s transaction (Top row) value /
(Bottom row) size against that of their next transaction – if it exists – in the (Left) ASOS,
(Middle) UCI Online Retail II, and (Right) Olist Brazilian e-Commerce datasets. We nor-
malise the transaction values/sizes by the ABV/ABS of respective datasets.

For each dataset, we plot the value and size of a user’s transaction against that of their next

transaction (if it exists) in Figure 5.2. We observe from the figures a high empirical density

along the x = y diagonal and strong directionality in the kernel density estimates. This

suggests a positive correlation between transaction values/sizes from the same user. For

brevity, we do not show the plots for item values, yet contend that a perfect correlation arises

when a customer purchases multiple units of the same product.

As responses from the same user become positively correlated, we have Cov(Xi, Xj) > 0 for

some i and j in Equation (5.13) and thus a higher SE than the vanilla sample SE.

5.5.2 Re-estimating the SE using bootstrap

We now explore how much the SE can inflate. We apply the bootstrap procedure described

in Section 2.2 of [19] to the datasets described above to re-estimate the SE. Bootstrapping
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Figure 5.3: The ratio between the one-way bootstrap standard error (SE) estimates [19] and
the vanilla sample SE estimates for (Left) ABV, (Middle) ABS, and (Right) ASP. The error
bars represent the 95% confidence interval for the one-way bootstrap SE estimates.

generates a resample by sampling the original set of responseswith replacement (or applying

a randomweight in this case). This yields a different sample mean. By repeating the process

many times and taking many bootstrap means, we can estimate the SE by calculating the

standard deviation of the bootstrap.

We use a one-way bootstrap (a.k.a. block bootstrap) to account for the dependency between

transactions/items and users. Instead of generating the resample by sampling each transac-

tion/item individually, we sample clusters of transactions/items belonging to the same user,

mirroring our randomisation process.28 Here, we use randomweights generated from a Pois-

son(1) distribution to reweight our samples before calculating a bootstrap mean. The ran-

domweights emulate the number of times a transaction/itemwas sampledwith replacement

(alongwith other transactions/items associatedwith the same user). Finally, we estimate the

SE from 500 bootstrap means.

Figure 5.3 shows how the one-way bootstrap SE differs from the vanilla sample SE in suc-

cessive expanding windows, corresponding to different potential OCE durations. We ob-

serve that the bootstrap SE is significantly higher than the vanilla sample SE, with the exact

28 For ASP, in addition to the dependency between items and users, there may be additional dependence be-
tween items and products/stock-keeping units (SKUs). One may account for both using a two-way boot-
strap described in Section 5.5.4 or Section 2.3 of [19].
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Figure 5.4: Trajectories of the one-way bootstrap standard error (SE) estimates (solid colored
lines) and the vanilla SE estimates (dashed black lines) under different dataset-metric com-
binations. Estimates are cumulative from day one of the datasets. All x- and y-axes are on
different scales.

ratio between the one-way bootstrap SE and vanilla sample SE heavily dependent on the

dataset/audience, business metric, and duration. For example, the bootstrap SE for ASP in

the UCI Online Retail II dataset is >100x the vanilla SE as many of their users buy tens or

hundreds of the same product. Meanwhile, the ratios for ABV and ABS in the Olist Brazilian

e-Commerce dataset are practically one. This is due to only 3.2% of transactions coming from

returning users. Given such differences, experimenters should strive to obtain a reasonably

accurate estimate.

We also observe from Figure 5.4 that the bootstrap SE may no longer drop as more trans-

actions are involved over time and may go up again in some cases. This is likely due to

returning users making further transactions, thus creating more and larger clusters of trans-

action/item values and sizes. It leads to the response variance increasing, sometimes more

quickly than the increase in sample size. The observation suggests that lengthening an ex-

periment solely to collect more responses (hence lowering the SE) may backfire. In addition

to established practices on sample size estimation [228], experimenters should also consider

how the variance of their metrics evolves when designing OCEs with dependent data.
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Figure 5.5: (Left) The actual test power of and (Right) the coverage of the centred confidence
interval (CI) from a two-tailed z-test against different standard errors (SE), expressed as a
multiple of the vanilla sample SE

√
s2/n. We choose the test parameters such that the test

power = 80% and the CI coverage = the nominal values when the SE multiples are one.

5.5.3 Impact on OCE decisions

We finally discuss how an inflated SE due to dependent data can affect decisions made from

aNHST. Firstly, it reduces the power of the test, making any potential treatment effect harder

to detect. Consider a two-tailed Student’s t-test with significance level α and ν d.f. Its power

(adapted from Equation (3.39)) is

1− Tν
(
tν,1−α/2 − θ/SE

)
+ Tν

(
− tν,1−α/2 − θ/SE

)
, (5.14)

where θ is the effect size, Tν(·) is the CDF, and tν,q is the qth quantile of a t-distributed r.v. If

the SE increases, then both the standardised effect size θ/SE and the test power in Expres-

sion (5.14) decrease.

Secondly, having an inflated SE without knowing so will lead to tests producing confidence

intervals that are too narrow, risking more false positives. In the test above, the (1 − α)

confidence interval (CI) is
(
x̄ ± tν,1−α/2 · SE

)
– see Equation (3.4). Fixing the CI bounds,

we observe that tν,1−α/2 must decrease (and cease to be a (1 − α/2) quantile) when the SE

increases. This means that the said CI will no longer have a (1−α) but a lower coverage, i.e.,

there is now a lower chance the interval will contain the actual effect size.
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To show the full extent of the issues above, we plot the test power and CI coverage of a two-

tailed z-test, essentially a Student’s t-test with large degrees of freedom, against different SEs

in Figure 5.5. We observe that the power of a z-test with a 5% significance level (dashed line)

tumbles from 80% to around 29% when we merely double the vanilla sample SE. Moreover,

the centred 95% CI calculated using the vanilla sample SE would only have roughly 67%

coverage. These results reinforce the importance of having an accurate estimate of the SE.

5.5.4 Lessons Learned During Deployment

We finally share some lessons learned when incorporating the calculations of e-commerce

metrics into ASOS.com’s experiment analysis platform, which has been in production since

Sep 2019. The analysis platform extends the functionality of a third-party experimentation

platform, namely splitting, logging, and alerting. It adds value to the business by computing

and performing statistical tests on bespoke business metrics that use internal datasets.

As mentioned at the beginning of the section, experimenters in digital technology prefer the

use of bootstrap (see Section 2.2 of [19]) and the delta method (see Section 3 of [64]) to re-

estimate the SE, which acts as a plug-in estimate for subsequent statistical tests. We described

and implemented the bootstrap approach in Section 5.5.2 when we quantified the extent of

the SE inflation. The delta method approach expresses a transaction-/item-based metric as

the quotient of two user-based metrics. For example, we can express ABV as the quotient

of the business metrics “mean spend per user (across all baskets)” and “mean number of

baskets per user.” Given that both metrics in the quotient are asymptotically normal and

based on randomisation unit-based responses, which are commonly assumed to be i.i.d. [67],

we can use the delta method to estimate the variance of the quotient. The resultant formula

has an explicit term for the dependency between users and transactions/items.

Delta method - a straightforward formula with hidden complexity and inflexibility The

delta method approach is more compute efficient than the bootstrap approach. It requires

passing only group-level statistics around instead of analysis/sub-randomisation unit-level
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responses required by bootstrap methods.29 However, it is unclear how the results in [64],

developed with a one-way dependency between randomisation and analysis units in mind,

would apply to business metrics that feature responses dependent on other types of units.28

The approach also requires considerable statistical mastery to understand and implement,

risking decreased engagement from engineering teams and non-technical stakeholders due

to general apprehensiveness towards “black box” algorithms.

Multi-way bootstrap may be overkill by being overly conservative The multi-way boot-

strap described in Section 2.3 of [19] aims to address dependencies between different types

of units. One may apply such an approach to item-based metrics (e.g., ASP) calculations,

where dependence between items and products exists alongside dependence between items

and users.

Recall from Section 5.5.2 that in a one-way reweighting bootstrap, we apply a randomweight

drawn from Poisson(1) to each user and all their associated items before calculating a sin-

gle bootstrap mean. In a two-way bootstrap, we apply a random weight to each user and a

separate random weight to each product. The final weight for each item is the product of

the user weight and the product weight.30 Similar to the one-way bootstrap, the final weight

emulates the number of times the itemwill be selected if we separately sample the users and

products with replacement. The calculations for both the bootstrap means and SE remain

identical post-reweighting.

As a two-way bootstrap preserves the correlation structure between items, users, and prod-

ucts during sampling, one would expect the method to generate less biased (if not unbiased)

SE estimates. However, the SE estimates from a two-way bootstrap are impractically large

(see Table 5.3). This appears to match the results reported in [19], where two-way bootstrap

SE estimates generally yield CIs that are overly conservative in A/A tests.31 While the true

29 That said, to calculate the group-level statistics, which include the covariance between users and transac-
tions/items, one still requires access to sub-randomisation unit responses initially (see Section 4.4.1).

30 In the general case where there are dependencies between multiple types of units, we apply a random
weight to each unit within a single unit type, repeat for other unit types with a separate set of random
weights, and take the final weight of each link/interaction/dependency between the unit types as the prod-
uct of the weight of their associated units.

31 A/A tests are tests featuring two supposedly identical treatments and, thus, produce results that are con-
sistent with a nil null hypothesis. See Section 3.2 for further discussions.
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Table 5.3: The ratio between the bootstrap standard error (SE) estimates and the vanilla sam-
ple SE estimates for ASP. Each entry represents themean and standard deviation of the ratios
across multiple experiment runs.

Dataset Duration One-way bootstrap Two-way bootstrap
ASOS First 30d 3.51 ± 0.13 17.77 ± 0.56

UCI
First 10% 64.45 ± 1.94 72.83 ± 2.20
First 50% 87.95 ± 2.82 105.15 ± 3.33

All 69.82 ± 1.37 94.33 ± 2.28

Olist
First 20% 1.104 ± 0.035 2.083 ± 0.075
First 50% 1.058 ± 0.036 2.531 ± 0.066

All 1.076 ± 0.037 3.364 ± 0.109

SE will always be unknown, we believe overestimating it is just as bad as underestimating it,

as experimenters will then struggle to design any experiments with sufficient power.

The analysis platform currently uses a one-way, user-based bootstrap to estimate the SE of e-

commerce metrics. The approach mimics the randomisation process, and there is extensive

evidence (both in [19] andwithin the organisation) that it produces CIs with the right cover-

age in A/A tests. The team responsible constantly evaluates whether a multi-way bootstrap

will become necessary, especially for experiments with product-treatment interactions.32

Further consideration - error vs runtime/cost tradeoff Bootstrap methods introduce their

error (more precisely, variance component) to SE estimates during the resampling process.

This is in addition to the (inflated) samplinguncertainty andgenerally scales alongO
(
1/
√
B
)
,

where B is the number of bootstrap resamples [86]. Given the runtime of bootstrap meth-

ods scales along O(B), at some point, it is no longer economically practical for a production

system to draw further resamples to reduce the error to SE estimates.

Deciding where the tipping point is more an art than science and depends more on individ-

ual needs. Unlike many technology giants which perform analysis in a streaming fashion,

32 Section 4 of [19] shows that a one-way, user-based bootstrap may underestimate the SE of item-based met-
rics when there are product-treatment interactions. Note that “products” in this case study are referred to
as “items” in [19] due to different business contexts.
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our analysis platform features batch-processing pipelines due to temporal constraints from

upstream data sources. As a result, our priority is to keep the processing jobs’ runtime (and

hence compute cost) low. The team finds B ∈ [500, 1000] works well as it leads to a coeffi-

cient of variation (error of SE estimate divided by mean SE estimate) of < 5%. That said, we

believe the tradeoff also applies to streaming systems as the compute latency increases with

a larger B, which impacts system availability.

5.6 Advances inQuasi-experiments andNatural Experiments

Wemove on to works related to quasi-experiments and natural experiments. While they dif-

fer regarding whether an experimenter can impose scientific control, they involve the same

set of causal inference techniques to estimate the treatment effect. We thus combine the dis-

cussion on related methods and examples for the two experiment classes.

To date, few works are dedicated to reviewing the use of causal inference techniques in dig-

ital experimentation. Chapter 11 of [155] briefly outlined commonly used causal inference

methods with examples, and [62] is a work-in-progress discussing its application in the on-

line industry. That said, causal inference is an established discipline, and many excellent

introductions and reviews exist:

• [122] and [131] provide an accessible introduction to the area and review some models

and techniques. Both books stem from courses the respective authors taught in the past

decades and are geared towards researchers and practitioners in the medical and social

sciences, the latter sharing some scientific goals with digital experimentation.

• [216] focuses on the theoretical constructs (or representations) in causal inference – struc-

tural equation models, the potential outcomes framework (see Section 5.2 for the basics),

and graphical models. The paper also proposed the structural causal model, which is seen

as either a unifying or an alternative representation to those above.

• [290] extensively surveys the methods, datasets, software packages, and applications in

(general) causal inference. Sections of note include the applications in advertising and

recommendations (Sections 6.1–6.2). The paper is tailored to the computer science and
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data mining communities, which substantially overlap with the digital experimentation

community.

• [140] explores works in the intersection of causal inference and machine learning

(CausalML), which has flourished in the past decade. At the same time, [267] outlines

many of its applications in economics and marketing. Many experiments described in the

latter are run offline, thoughmost techniques can be directly translated to an online setting.

We keep our review close to digital experimentation and cover the following in the remain-

der of the section. We first revisit the conditional average treatment effect (CATE) and con-

ditional exchangeability concepts in Section 5.6.1. Many causal inference methods seek to

estimate the former and assume the latter. We then list several classes of popular methods

in causal inference, followed by examples applying the said methods in digital experiments

in Section 5.6.2. We finally provide a mini-spotlight in geo-experiments, a form of quasi-

experiments that assign treatments based on the geographical region a user falls within, in

Section 5.6.3.

5.6.1 CATE and Conditional Exchangeability Revisited

Many causal inference techniques seek to estimate the conditional average treatment effect

(CATE), the average treatment effect among those sharing certain covariates C (those on

which the treatment assignment A does not affect):33

E(Y (1)− Y (0) | C) = E(Y (1) | C)− E(Y (0) | C) . (5.15)

The availability of covariatesmeans one can produce amore expressivemodel Y = g(A, C) to

capture the complex dynamics between the treatments and observed responses, achieved by

drawing on the wealth of potentially complex statistical and machine learning models [137].

Of course, such a model may still only capture correlation/association instead of causation,

as its dependent/target variables are not the potential responses.

33 Here, we separate the covariates C and the treatment assignment indicatorA. Some in the causal inference
community lump these two objects together when discussing CATE. Others may have a strict separation
between these objects, with additional terminologies such as average treatment effect on the treated (ATT,
i.e., CATE on A = 1) and average treatment effect on the control/untreated (ATC/ATU, i.e. CATE on A =
0) [110].
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If, in addition, the covariates identify and account for all confounders, we noted that the

potential responses are conditionally exchangeable, i.e., Y (0), Y (1) ⊥⊥ A | C.34 Similar to its

unconditional counterpart in Equation (5.6), if the potential responses are conditionally ex-

changeable, we have

E(Y (a) | C) = E(Y (a) | A = 1, C) = E(Y (a) | A = 0, C), a ∈ {0, 1} . (5.16)

This, combinedwith the definition of potential outcomes in Equation (5.3), enables us to esti-

mate the potential responses using the observed responses Y conditioned on the covariates C

and, thus, develop a model that captures the complex dynamics between the treatments and

potential responses, i.e., causation.

At first glance, conditional exchangeability appears to be a huge assumption. This is mostly

true but not insurmountable in practice. We live in a complex and dynamic environment;

thus, it is difficult to identify and account for all confounders, which biases the treatment

effect estimate as discussed in Section 5.2. On the other hand, many environmental variables

have a tenuous link to our treatments and responses, and the bias they introduce may be

practically insignificant. Identifying confounders is one of the main tasks in causal discov-

ery and remains an active research topic, together with the study of the impact of hidden

confounders [108, 217].

It is alsoworth emphasising that the decision to estimate CATE instead of ATE and the ability

to perform random assignments are two orthogonal concepts. One can estimate CATE in

randomised controlled trials (as in the case of heterogeneous treatment effect detection and

uplift modelling discussed in Sections 5.4.1 and 4.3). They can also recover the population-

level ATE from various CATE estimates by applying the law of total expectation:

E(Y (1)− Y (0)) = EC(E(Y (1)− Y (0) | C)). (5.17)

That said, it might be difficult in practice as the distribution of C is often unknown. While

one can use the empirical distribution of C, it may incur bias.

34 Also known as conditional unconfoundedness or strong ignorability [62, 235, 240].
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5.6.2 Methods and Examples

Given the underlying goal, we are in a position to list and briefly describe some popular

causal inference techniques. [6] called the following approaches the “furious five” in econo-

metrics, most of which are translatable to digital experiments:

• Randomisation: This has been extensively discussed in the previous sections.

• (Outcome) regression: Amodel that maps the relationship between the treatment assign-

ment indicator, other covariates, and the responses. Bymanipulating the treatment assign-

ment indicator within the fitted model, one can obtain the CATE for a particular covariate

combination, provided the covariates present are sufficient for conditional exchangeabil-

ity. See Chapter 9 of [100] for further discussions.

• Instrumental variables: Variables that only affect the responses via their effect on the treat-

ment assignment indicator or other covariates (but not directly). They must also be in-

dependent of the error term. These variables are often employed when the treatment

assignment indicator or other covariates correlate with the unobserved error terms in a

regression model.

• Regression discontinuity design: Specifies a cut-off to a continuous eligibility index and

assigns treatment based on which side of the cut-off an experimental unit falls on. By

exploiting the assumption that there is no meaningful difference in experimental units’

characteristics or activity around the cut-off point before the treatment, one can estimate

the local treatment effect as all others are roughly equal.

• Difference-in-differences: Calculates, per treatment, the difference in average response

pre- and post-treatment and, then, another difference in the differences arising from dif-

ferent treatments. Under the parallel trend assumptions, i.e., the non-treatment variables

affect the average response in both groups similarly across time, one is constructing a coun-

terfactual when taking the per-treatment difference and estimating the treatment effect by

comparing the counterfactual to the observed when taking the final difference.

Propensity scores To address hidden confounders between treatment and outcomes, some

experimenters match the experimental units or reweigh the responses. This is usually done
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via the propensity score, the probability that an experimental unit is assigned a certain treat-

ment given the covariates associated with the unit [235]. The score is most straightforwardly

estimated via a logistic regressionmodel. Once calculated, it is used tomatch a unit receiving

a treatment with other units receiving another treatment (known as propensity score match-

ing) [235]. The estimated treatment effect is the difference in responses between the unit

and its matched counterparts, averaged over all matches. Alternatively, one can reweigh the

responses using the score and take the difference between the reweighted average response

to obtain the treatment effect (known as inverse probability/propensity weighting) [121].

Another increasingly popular technique related to propensity scores is doubly robust estima-

tion [98]. It combines outcome regression and propensity scoremodels and yields a valuable

property: the treatment effect estimates are consistent when at least one of the two models

is correctly specified. This approach is taken by [287] to estimate the effect of changes to

LinkedIn’s mobile app, where the ability to perform random assignments is surrendered to

the app store and users (as discussed in Section 5.3.2).

Mediation analyses Digital experimenters also turn to mediation analyses. They feature

the use of mediators, variables directly influenced by the treatment assignment, and, in turn,

directly influence the responses.35 Using such intermediary variables enables one to attribute

it to different causal pathways between the treatment assignment and change in responses.

It also enables one to produce more accurate treatment effect estimates if the variables are

unaffected by the same confounders that affect the treatment assignment indicator and re-

sponses. This is the case in [123], who, seeking to measure the effect of a display advert

targeting algorithm on certain user behaviour, uses ad viewability36 as a mediating event.

Moreover, [274], in the quest tomeasure the impact of algorithmic changes to, e.g., predictive

models or recommender systems, uses evaluation metrics from online A/B tests as media-

35 Not to be confused with instruments. Explaining why and how a mediator and an instrument are different
involves an introduction to graphical models in causal inference, which we have omitted for brevity. See,
e.g., Chapters 2 & 3 of [218] for more details.

36 Defined in [123] as whether at least half of the advert has come to a user’s view for longer than a
second. Treatment in display advertising is usually defined as serving an advert, i.e., the advert is
planned/scheduled to appear on a user’s screen as they scroll through the page. While such a definition
leads to much easier tracking from an experimenter’s perspective, the ad may not come into users’ view
for many reasons (e.g., the user stops scrolling or has the wrong browser dimensions). [123] observed that
45% of adverts have not come to view and hence cannot influence any change in user behaviour.
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tors. They bridge the algorithmic changes’ effect on evaluationmetrics in offline experiments

to that on business KPIs.

5.6.3 A mini spotlight on geo-experiments

A class of quasi-experiments gaining traction in the past decade is geo-experiments. They

are heavily used in display advertising [20, 268] – the author also led a team at ASOS.com

to build and maintain such a geo-experimentation platform to help its marketing function

manage tens of millions of spend [17, 188].

A geo-experiment assigns treatments at a geographical region level. For example, it may as-

sign all users based in Oxfordshire to control and all users based in Cambridgeshire to treat-

ment. Such treatment assignment is necessitated by the inability to target and track individ-

ual users (due to privacy and data protection concerns or third-party platform restrictions)

and, sometimes, by interference between individual users (see Section 5.4.1). The treatment

assignment may or may not be random – while a randomised assignment will simplify the

experiment to a straightforward cluster randomised OCE (see Section 5.4.1), experimenters

may decline to do so due to various operational constraints (e.g., cross-region user activities,

minimum advertising budget/coverage requirements).

We estimate the treatment effect by comparing the responses from regions receiving the treat-

ment to a counterfactual, constructed using the responses from control regions, on how the

same regions would have performed had there been no treatment. More precisely and in

the language of potential outcomes, consider a simplified case where we have two regions,

one with response X and the other with response Y . We call the former the control re-

gion and the latter the treatment region. We also assume we can access some covariates C

shared between the two regions that address all confounding, i.e., conditional exchangeabil-

ity Y (0), Y (1) ⊥⊥ A | C holds.

Before the experiment-proper, we assign both regions to A = 0 (i.e., control) and observe

X | A = 0, C and Y | A = 0, C . (5.18)

We know from the definition of potential outcomes (see Section 5.2 / Equation (5.3)) that
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Expression (5.18) is equivalent to

X(0) | A = 0, C and Y (0) | A = 0, C . (5.19)

Suppose we have a mapping g(·) between the two observations under the same treatment

assignment using the covariates, i.e., Y = g(X,A = 0, C). Given that the observations in

Expressions (5.18) and (5.19) are equivalent, the following must also be true:

Y (0) = g(X,A = 0, C) . (5.20)

During the experiment, we assign the control region to A = 0 and the treatment region to

A = 1 and observe37

X | A = 0, C and Y | A = 1, C . (5.21)

To estimate Y (0), we require constructing a counterfactual using the observation X and the

mapping g(·), i.e. g(X,A = 0, C) | A = 0, C. This enables us to take the expected difference

between the observed Y and the counterfactual to obtain the CATE:

E(Y | A = 1, C)− E(g(X,A = 0, C) | A = 0, C)

=E(Y | A = 1, C)− E(Y (0) | A = 0, C) (RHS: By Eq. (5.20))

=E(Y (1) | A = 1, C)− E(Y (0) | A = 0, C) (LHS: By definition – Eq. (5.3))

=E(Y (1) | C)− E(Y (0) | C) (Conditional exchangeability – Eq. (5.16))

=E(Y (1)− Y (0) | C) (Linerarity of conditional expectation) .

(5.22)

The example above is grossly simplified. In reality, there are many copies of X and Y , both

along the geographical (responses from multiple regions) and time dimensions (responses

37 Readers may notice that it seems possible to observe responses under both treatments (Y | A = 0, C in
Expression (5.18) and Y | A = 1, C in Expression (5.21)), which contradicts the premise of counterfactual
reasoning. There is merely an artefact of oversimplifying the notations for illustration purposes – the two
observed responses happened at different points in time and, thus, ought to be represented by different
r.v.’s. Here, we pretend Y | A = 0, C was never observed when we constructed the counterfactual.
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at multiple time points). Given the many variables involved, experimenters often prefer us-

ing the more expressive structural equation model (instead of the potential outcomes frame-

work) to express causal assumptions [20, 268].

Many models have been proposed for the mapping g(·), with the two most common being

geo-based regression (GBR) and time-based regression (TBR) models. GBR uses the ag-

gregated metric value of the regions before and during the experiment, plus the advertising

spend as covariates [268, 269]. Thus, it allows experimenters to easily extract the return on

ad spend (ROAS) metric from the fitted model. However, the statistical power of GBR is

derived from the number of regions involved, which is problematic when the number of re-

gions available for an experiment is small. The challenge is mitigated by TBR, which uses

the value of the covariates at each time interval. TBR also employs Bayesian regression tech-

niques, more precisely, Bayesian structural time series. This allows access to the full posterior

distribution of the counterfactual and, thus, the calculation of a credible interval [39, 145].

That said, similar tomany other Bayesianmodels, one needs to take care when specifying the

prior distributions. The team at ASOS.com found during development that non-informative

priors generate credible intervals (associated with the posterior distribution of the counter-

factual response or, more generally, the posterior predictive) that are too narrow based on

A/A tests.31 The team thus switched to informative priors that enabled them to calibrate the

variance of the posterior predictive based on simulated experiments.

There are many other considerations in designing a geo-experiment. They include (1) the

creation of regions and (2) the selection of regions into control and treatment groups. Often,

regions are handcrafted based on expert input, though [232] showed it can be learnt from

clustering past user queries using clickstream data. The optimal allocation of the regions into

control and treatment groups is studied in [20] and [9], with the former focusing on finding

the best region pair (i.e. one region each for control and treatment) and the latter finding

the best disjoint subsets of regions available38 using a hill-climbing algorithm.

Finally, an experimenter also needs to consider the duration for different stages of a geo-

experiment [17, 188]. Unlike most digital OCEs, geo-experiments feature multiple stages:

38 Consider the case where the experimenter can assign treatments over regions {1, 2, 3, · · · , 7}. The optimal
allocation may assign {2, 4, 7} to control and {3, 5} to treatment, leaving {1, 6} unused.
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two – the period before the experiment where the data arising from two identical treatments

is used to train the model and the period where the treatments differ – or more if an exper-

imenter imposes one or more “cooldown” periods to avoid conflating effect from multiple

treatments across time. The test power of geo-experiments is also less dependent on the sam-

ple size butmore on themodel fit, which reflects the variance of the counterfactual responses.

This complicates power, sample size (or duration), and minimum detectable effect calcula-

tions. Often, one performs a grid search across all possible combinations of stage durations

to determine the optimal experiment runtime.

5.7 A Brief Recap

We presented a brief review of recent advances in digital experimentation. These include

advanced statistical methods that address the many sources of bias (e.g., post-selection in-

ference, heterogeneous treatment effects, SUTVA violations) to experiments, improve ex-

periment sensitivity, and produce treatment effect estimates using general causal inference

techniques when one cannot perform a randomised controlled trial. To organise the research

reported in the chapter, we have also introduced the potential outcomes framework and clas-

sified experiments into online randomised controlled trials, quasi-experiments, and natural

experiments depending on the level of control an experimenter has on performing random

assignments and imposing scientific control.

Interleaved between the reviews is an original case study on dependent responses in

e-commerce OCEs, which arises as experimenters randomise by users to ensure a consistent

user experience yet analyse by a more granular transaction- or item-based decision metric as

is common in the industry. Using three real online retail/e-commerce transaction datasets,

we provided evidence of the extent of the dependent responses in practice. We then high-

lighted its impact on test power and confidence interval coverage. Finally, we shared the

lessons learned when incorporating relevant methods in the review above into the internal

experiment analysis platform of ASOS.com, a global online fashion retail company. We also

provided a spotlight on geo-experiments, an increasingly popular experimental design to

measure the effect of display advertising.



Chapter 6

An Evaluation Framework for

Personalisation Strategy Experiment

Designs

This chapter is adapted from the research paper “An Evaluation Framework for Personalization

Strategy Experiment Designs”, presented at and awarded Best Student Paper of AdKDD 2020

Workshop (in conjunction with SIGKDD ’20) [176].

6.1 Motivation

Without mentioning experimental design, no discussion on statistical challenges in digital

experimentation and measurement capabilities is complete. As alluded to in Section 5.3.4,

in this chapter, we focus on the design of experiments that compare personalisation strategies

– complex sets of targeted user interactions executed by e-commerce and digital marketing

organisations that aim to create an individualised experience for every user to their websites.

In addition to that mentioned in Section 5.3.4, examples of personalisation strategies include

the scheduling, budgeting, and ordering of marketing activities directed at a user based on

their browsing and purchase history.

Compared to one’s usual online controlled experiment (see Section 5.3.1 for examples), ex-

periments for personalisation strategies face two unique challenges. Firstly, strategies are

173
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often only applicable to a small fraction of the user base, leading to many simple experi-

ment designs suffering from either a lack of test power due to low sample size or a diluted

treatment effect due to the inclusion of irrelevant samples [63].

Secondly, users are not randomly assigned a priori but must qualify to be treated with a strat-

egy via their actions or attributes. This leads to a one-sided non-compliance problem where

experimenters do not have complete control over applying scientific control [135]. At best,

they can randomise a user’s eligibility to be treated and treat those who are both eligible and

qualified [135, 270]. Under such a situation, groups of users subjected to different strategies

cannot be assumed statistically equivalent and, hence, are not directly comparable.

While several variance reduction techniques, including stratification and control variates [69,

222] (see Section 5.4), partially address the challenges, the strata and control variates can

vary dramatically from one personalisation strategy experiment to another, requiring many

ad hoc adjustments. As a result, such techniques may not scale well when organisations de-

sign and run hundreds or thousands of experiments at any given time.

We argue that personalisation strategy experiments should focus on the assignment of users

from the strategies they qualified for to the treatment/analysis groups. We call this mapping

process an experiment setup. Identifying the best experiment setup increases the chance of

detecting any treatment effect. An experimentation framework can also quickly reuse and

switch between different setups with little custom input, ensuring the operation can scale.

More importantly, the process does not hinder the subsequent application of variance reduc-

tion techniques, meaning we can still apply the techniques post hoc if required.

To date, many experiment setups exist to compare personalisation strategies. An increas-

ingly popular approach is to compare the strategies using multiple control groups – Quant-

cast calls it a dual control [24], and Facebook calls it a multi-cell lift study [172, 270]. In the

two-strategy case, this involves running two experiments on two random partitions of the

user base in parallel, with each experiment further splitting the respective partition into treat-

ment/control andmeasuring the incrementality (the change in a business metric as compared

to the case where we do nothing) of each strategy. We then compare the incrementalities of

the two strategies against each other.

Despite the setup above gaining traction in display advertising, there is a lack of literature
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on whether it is a better setup – one with a higher sensitivity, presents a higher effect size, or

both. While [172] noted that multi-cell lift studies require many users, they did not discuss

how the number compares to other setups.1 Identifying and adopting a better experiment

setup can reduce the required sample size and enable more cost-effective experimentation.

We address the gap in the literature by introducing an evaluation framework that compares

experiment setups given two personalisation strategies. The framework is designed to be

flexible in dealingwith awide range of baselines and changes in user responses presented by

any pair of strategies (situations hereafter). However, we also recognise the need to quickly

compare typical setups and provide some simple rules of thumb for situations where one

setup will be better. In particular, we outline the desirable conditions for employing treat-

ment effect dilution and a multi-cell setup.

To summarise, our contributions are:

1. (Section 6.2) We develop a flexible evaluation framework for personalisation strategy ex-

periments, where one can compare two experiment setups given the situation presented

by two competing strategies;

2. (Section 6.3) We provide simple rules of thumb to enable experimenters who do not re-

quire the full flexibility of the framework to compare typical setups quickly; and

3. (Section 6.4)Wemake our results useful to practitioners bymaking the code that performs

empirical verification publicly available.2

6.2 Evaluation Framework

We first present our evaluation framework for personalisation strategy experiments. The

experiments compare two personalisation strategies, which we refer to as Strategy 1 and

Strategy 2. Often, one is the existing strategy, and the other is a new strategy we intend to

test and learn from. In this section, we introduce

1 A single-cell lift study is often used to measure the incrementality of a single personalisation strategy and,
hence, is not a representative comparison.

2 The code is available on GitHub: https://github.com/liuchbryan/experiment_design_evaluation.

https://github.com/liuchbryan/experiment_design_evaluation
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Qualify	for
strategy	1

Qualify	for
strategy	2

Group 0:
Qualify	for	
neither
strategy

Group	1 Group	2Group	3

Figure 6.1: Venn diagram of the user groups in our evaluation framework. The outer, left
inner (red), and right inner (blue) boxes represent the entire user base, those who qualify
for Strategy 1, and those who qualify for Strategy 2, respectively.

1. Howusers qualifying themselves into strategies creates non-statistically equivalent groups,

2. How experimenters usually assign the users, and

3. When we consider an assignment to be better.

6.2.1 User grouping

As users qualify themselves into the two strategies, four disjoint groups emerge: those who

qualify for neither strategy, those who qualify only for Strategy 1, those who qualify only

for Strategy 2, and those who qualify for both strategies. We denote these groups (user)

Groups 0, 1, 2, and 3, respectively (see Figure 6.1). It is perhaps obvious that we cannot

assume those in different user groups are statistically equivalent and compare them directly.

We assume Groups 0, 1, 2, and 3 have n0, n1, n2, and n3 users, respectively. We also assume

responses from users (which we aggregate, often by taking the mean, to obtain our business

metric) are distributed differently between groups, and within the same group, between the

scenario where the group is subjected to the treatment associated with the corresponding

strategy and where nothing is done (baseline). We list all group-scenario combinations in

Table 6.1 and denote the mean and variance of the responses (µG, σ2
G) for a combination G.3

3 For example, responses for Group 1 without any interventions have mean and variance (µC1, σ2
C1), and

that for Group 2 with the treatment prescribed under Strategy 2 have mean and variance (µI2, σ2
I2).
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Table 6.1: All group-scenario combinations in our evaluation framework for personalisation
strategy experiments. The columns represent the groups described in Figure 6.1. The base-
line represents the scenario where we do nothing. We assume those who qualify for both
strategies (Group 3) can only receive treatment(s) associated with either strategy.

Group 0 Group 1 Group 2 Group 3
Baseline (Control) C0 C1 C2 C3

Under treatment (Intervention) / I1 I2
Under Strategy 1: Iϕ
Under Strategy 2: Iψ

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

A

B

A

B

Setup	1 Setup	2

A

B

Setup	3

• • •
• • •
• • •

▾ ▾ ▾ ▾ ▾ ▾ ▾ ▾
▾ ▾ ▾ ▾ ▾ ▾ ▾ ▾
▾ ▾ ▾ ▾ ▾ ▾ ▾ ▾

▾ ▾ ▾ ▾ ▾ ▾ ▾ ▾
▾ ▾ ▾ ▾ ▾ ▾ ▾ ▾
▾ ▾ ▾ ▾ ▾ ▾ ▾ ▾

▾ ▾
▾ ▾
▾ ▾

•  •  •  •  •  •  •  • 
•  •  •  •  •  •  •  • 

A	=	A2	-	A1

B	=	B2	-	B1

Setup	4

▾ ▾ ▾ ▾ ▾ ▾ ▾ ▾
▾ ▾ ▾ ▾ ▾ ▾ ▾ ▾

A1
A2

B1
B2

Figure 6.2: Experiment setups overlaid on the user grouping Venn diagram in Figure 6.1. The
hatched boxes cover users included in the analysis, and the downward triangles and dots
cover users subjected to the treatment(s) prescribed under Strategies 1 and 2, respectively.
See Section 6.2.2 for a detailed description.
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6.2.2 Experiment setups

Many experiment setups exist and are in use in different organisations. Here, we introduce

four typical setups of various sophistication, which we also illustrate in Figure 6.2.

Setup 1 (Users in the intersection only) The setup considers only users who qualify for

both strategies. The said users are randomly split (usually 50/50) into two (analysis) groups,

A and B, and are prescribed the treatment specified by Strategies 1 and 2, respectively. The

setup is easy to implement, though it is difficult to translate any learnings from the experi-

ment to other user groups (e.g., those who qualify for one strategy only) [74].

Setup 2 (All samples) The setup is a simple A/B test that considers all users, regardless of

whether they qualify for any strategy. The users are randomly split into two analysis groups,

A andB, and are prescribed the treatment specified by Strategy 1(2) if (i) they qualify under

the strategy and (ii) they are in Group A(B). This setup is easiest to implement but usually

suffers severely from dilution in treatment effect [63].

Setup 3 (Qualified users only) The setup is similar to Setup 2, except only those who qual-

ified for at least one strategy (“triggered” users in some literature [63]) are included in the

analysis groups. The setup sits between Setup 1 and Setup 2 in terms of user coverage. It has

the advantage of capturing the greatest number of relevant samples yet having the least treat-

ment effect dilution. However, the setup also prevents one from telling the incrementality of

a strategy itself, but only the difference in incrementalities between the two strategies.

Setup 4 (Dual control / multi-cell lift test) As described in Section 6.1, the setup first split

the users randomly into two randomisation groups. For the first randomisation group, we

consider those who qualify for Strategy 1 and split them into Analysis Groups A1 and A2.

Group A2 receives the treatment prescribed under Strategy 1, and Group A1 acts as a con-

trol. The incrementality for Strategy 1 is then the difference in the business metric between

Groups A2 and A1. Next, We apply the same process to the second randomisation group,

with Strategy 2 and Analysis Groups B1 and B2 in place. Finally, we compare the incremen-

tality for Strategies 1 and 2. The setup allows one to obtain the incrementality of each strategy
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and minimises treatment effect dilution. However, it also leaves many samples unused and

creates additional analysis groups, and hence generally suffers from a low test power [172].

6.2.3 Evaluation criteria

There are several considerations when one evaluates competing experiment setups. These

include technical considerations, such as the complexity of setting up the setups on an OCE

framework, and business considerations, such as whether the incrementality of individual

strategies is required.

Here, we focus on the statistical aspect and propose two evaluation metrics:

1. The actual average treatment effect size as presented by the two analysis groups in an

experiment setup, and

2. The sensitivity of the experiment setup, represented by the minimum detectable effect

(MDE) under a pre-specified test power.

Both evaluation metrics are necessary: the former indicates whether a setup suffers from

treatment effect dilution, whereas the latter indicates whether the setup suffers from a lack

of power or sample size.4 An ideal setup should yield a high actual effect size and a high

sensitivity (i.e., a low MDE),5 though as we observe in the next section, it is usually a trade-

off.

We formally define the two evaluation metrics. Let A and B be the two analysis groups

in an experiment setup, with user responses randomly distributed with independent mean

and variance (µA, σ2
A) and (µB, σ

2
B), respectively. We also assume the sample size, namely nA

and nB for Groups A and B, respectively, is sufficient such that the mean response of the

two groups approximately follows the normal distribution by the central limit theorem. This

enables us to run a two-sample approximate z-test.

4 The evaluation metric on experiment sensitivity pertains to the efficiency of a statistical test [254]. However,
existing literature on this topic often compares the minimum sample size required by competing statistical
tests instead. As shown earlier in Section 3.6, under a given significance level α and power threshold πmin,
fixing the effect size will determine the sample size required and vice versa. Therefore, we opt to compare
the MDE of competing personalisation strategy experiment designs because (1) it is generally easier to
estimate the sample size and (2) it is on the same scale as the other evaluation metric.

5 We will use the terms “high(er) sensitivity” and “low(er) MDE” interchangeably.
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The actual effect size is simply the difference in the mean of the two analysis groups:

∆ ≜ µB − µA . (6.1)

It is worth noting that, unlike the means and variances of the user groups, the response

means of the analysis groups, thus ∆, vary depending on the experiment setup. We will

demonstrate this property in Section 6.3.1.

As covered in Section 3.6.6, the MDE of a two-sample, two-sided z-test is

θ∗ ≜
(
z1−α

2
− z1−πmin

) √σ2
A

nA
+
σ2
B

nB
. (6.2)

We finally define what it means to be better under these evaluation metrics. WLOG, we

assume the actual effect sizes of the two competing experiment setups are positive6 and say

a setup S is superior to another setup R if, all else being equal,

1. S produces a higher actual effect size (∆S > ∆R) and a lower minimum detectable effect

size (θ∗S < θ∗R), or

2. The gain in actual effect is greater than the loss in sensitivity:

∆S −∆R > θ∗S − θ∗R , (6.3)

which means an actual effect still stands a higher chance to be observed under S.

6.3 Comparing Experiment Setups

Having described the evaluation framework above, in this section, we use the framework

to compare the typical experiment setups described in Section 6.2.2. We will first derive

the actual effect size and MDE for each setup in Section 6.3.1 and use the result to create

rules of thumb on (1) whether diluting the treatment effect by including users who qualify

6 We swap the analysis groups if both actual effect sizes are negative. It is likely an error if the actual effect
sizes are of opposite signs.
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for neither strategy is beneficial (Section 6.3.2) and (2) if dual control is a better setup for

personalisation strategy experiments (Section 6.3.3), two questions that are often discussed

among e-commerce and marketing-focused experimenters.

6.3.1 Actual and minimum detectable effect sizes

We first present the four experiment setups’ actual effect size and MDE. For each setup,

we first compute each analysis group’s sample size, mean response, and response variance,

which arises as a mixture of user groups described in Section 6.2.1. We then substitute the

quantities computed into the definitions of∆ (see Equation (6.1)) and θ∗ (see Equation (6.2))

to obtain the setup-specific actual effect size andMDE.We assume all random splits are done

50/50 in these setups to maximise the test power.

Setup 1 (Users in the intersection only) We recall the setup, which considers only users

who qualify for both personalisation strategies (i.e. the intersection), randomly splits User

Group 3 into two analysis groups, A and B, each with the following number of samples:

nA = nB =
n3

2
.

Users in Analysis Group A are provided treatment under Strategy 1, and users in Analysis

GroupB are provided treatment under Strategy 2. This leads to the groups’ responses having

the following mean and variance:

µA = µIϕ , µB = µIψ , σ2
A = σ2

Iϕ , σ2
B = σ2

Iψ .

The actual effect size and MDE for Setup 1 are, hence,

∆S1 = µIψ − µIϕ , (6.4)

θ∗S1 = (z1−α
2
− z1−πmin)

√
σ2
Iϕ
n3

2

+
σ2
Iψ
n3

2

. (6.5)
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Setup 2 (All samples) This setup also contains two analysis groups, A and B, each taking

half of all available users (regardless of whether they qualify for any strategy):

nA = nB =
n0 + n1 + n2 + n3

2
.

The mean response and response variance for Groups A and B are the weighted mean re-

sponse and response variance of the constituent user groups, respectively, weighted by the

constituent groups’ size. As we only provide treatment to those who qualify for Strategy 1 in

Group A and those who qualify for Strategy 2 in Group B, this leads to different responses

in different constituent user groups:

µA =
n0µC0 + n1µI1 + n2µC2 + n3µIϕ

n0 + n1 + n2 + n3

, µB =
n0µC0 + n1µC1 + n2µI2 + n3µIψ

n0 + n1 + n2 + n3

;

σ2
A =

n0σ
2
C0 + n1σ

2
I1 + n2σ

2
C2 + n3σ

2
Iϕ

n0 + n1 + n2 + n3

, σ2
B =

n0σ
2
C0 + n1σ

2
C1 + n2σ

2
I2 + n3σ

2
Iψ

n0 + n1 + n2 + n3

.

We then substitute the above into the actual effect size andMDE definitions and simplify the

resultant expressions to obtain

∆S2 =
n1(µC1 − µI1) + n2(µI2 − µC2) + n3(µIψ − µIϕ)

n0 + n1 + n2 + n3

, (6.6)

θ∗S2 =(z1−α
2
− z1−πmin)

√
2
(
n0(2σ2

C0) + n1(σ2
I1+σ

2
C1) + n2(σ2

C2+σ
2
I2) + n3(σ2

Iϕ+σ
2
Iψ)
)

(n0 + n1 + n2 + n3)2
. (6.7)

Setup 3 (Qualified users only) The setup is very similar to Setup 2, with members from

User Group 0 excluded:

nA = nB =
n1 + n2 + n3

2
.

The absence of members from User Group 0 means they are not featured in the weighted

mean response and response variance of the two analysis groups:

µA =
n1µI1 + n2µC2 + n3µIϕ

n1 + n2 + n3

, µB =
n1µC1 + n2µI2 + n3µIψ

n1 + n2 + n3

;

σ2
A =

n1σ
2
I1 + n2σ

2
C2 + n3σ

2
Iϕ

n1 + n2 + n3

, σ2
B =

n1σ
2
C1 + n2σ

2
I2 + n3σ

2
Iψ

n1 + n2 + n3

.
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This leads to the following actual effect size and MDE for Setup 3:

∆S3 =
n1(µC1 − µI1) + n2(µI2 − µC2) + n3(µIψ − µIϕ)

n1 + n2 + n3

, (6.8)

θ∗S3 =(z1−α
2
− z1−πmin)

√
2
(
n1(σ2

I1 + σ2
C1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)
)

(n1 + n2 + n3)2
. (6.9)

Setup 4 (Dual control) Setup 4 is unique amongst the experiment setups introduced as

it has four analysis groups. Two analysis groups (A1 and A2) are drawn from those who

qualified for Strategy 1 and are allocated into the first randomisation group. The other two

(B1 and B2) are drawn from those who qualified for Strategy 2 and are allocated into the

second randomisation group:

nA1 = nA2 =
n1 + n3

4
, nB1 = nB2 =

n2 + n3

4
.

Each analysis group’smean response and response variance are theweightedmean response

and response variance of the user groups involved, respectively:

µA1 =
n1µC1 + n3µC3

n1 + n3

, µA2 =
n1µI1 + n3µIϕ

n1 + n3

, µB1 =
n2µC2 + n3µC3

n2 + n3

, µB2 =
n2µI2 + n3µIψ

n2 + n3

;

σ2
A1 =

n1σ
2
C1 + n3σ

2
C3

n1 + n3

, σ2
A2 =

n1σ
2
I1 + n3σ

2
Iϕ

n1 + n3

, σ2
B1 =

n2σ
2
C2 + n3σ

2
C3

n2 + n3

, σ2
B2 =

n2σ
2
I2 + n3σ

2
Iψ

n2 + n3

.

As the setup takes the difference of differences in the mean responses (i.e., the difference

between the mean response for Groups B2 and B1 and the difference between the mean

response for Groups A2 and A1),7 the actual effect size is specified, post-simplification, as

follows:

∆S4 = (µB2 − µB1)− (µA2 − µA1)

=
n2(µI2 − µC2) + n3(µIψ − µC3)

n2 + n3

− n1(µI1 − µC1) + n3(µIϕ − µC3)

n1 + n3

. (6.10)

The MDE for Setup 4 is similar to that specified in the RHS of Equation (6.2), albeit with

7 Not to be confused with the difference-in-differences method, which captures the mean responses for
the control and treatment groups at both the experiment’s beginning (pre-intervention) and end (post-
intervention). Here, we only capture the mean responses once at the end of the experiment.
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more analysis groups featured in the square root term:

θ∗S4 = (z1−α
2
− z1−πmin)

√
σ2
A1

nA1
+
σ2
A2

nA2
+
σ2
B1

nB1

+
σ2
B2

nB2
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6.3.2 Is dilution always bad?

The use of responses from users who do not qualify for any of the strategies we are compar-

ing, an act known as treatment effect dilution, has stirred countless debates in experimen-

tation teams. On the one hand, responses from these users make any treatment effect less

pronounced by contributing exactly zero; on the other hand, it might be necessary as one

does not know who actually qualifies for a strategy [172], or it might be desirable as they

can be leveraged to reduce the variance of the treatment effect estimator [63]. Here, we are

interested in whether we should engage in the act of dilution given the assumed user re-

sponses prior to an experiment. This can be clarified by understanding the conditions where

Setup 3 would emerge superior (as defined in Section 6.2.3) to Setup 2. We relegate most of

the intermediate algebraic work to Appendix A.2 for brevity.

By inspecting Equations (6.6) and (6.8), it is clear that ∆S3 > ∆S2 if n0 > 0. Thus, Setup 3 is

superior to Setup 2 under the first criterion if θ∗S3 < θ∗S2, which is the case if σ2
C0, the response

variance of users who qualify for neither strategy, is large. This can be shown by substituting

Equations (6.7) and (6.9) into θ∗S3 < θ∗S2 and rearranging the terms to obtain
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If we assume the response variances are similar across groups with users who qualified for

at least one strategy, i.e. σ2
I1 ≈ σ2

C1 ≈ · · · ≈ σ2
Iψ ≈ σ2

G, Inequality (6.12) can then be simplified

as

σ2
G

(
n0

n1 + n2 + n3

+ 2

)
< σ2

C0 , (6.13)
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which can be used quickly to determine if one should consider dilution.

If Inequality (6.12) does not hold (i.e., θ∗S3 ≥ θ∗S2), we should then consider when the second

criterion (i.e., ∆S3 −∆S2 > θ∗S3 − θ∗S2) holds. Writing

η = n1(µC1 − µI1) + n2(µI2 − µC2) + n3(µIψ − µIϕ) ,

ξ = n1(σ
2
C1 + σ2

I1) + n2(σ
2
I2 + σ2

C2) + n3(σ
2
Iψ + σ2

Iϕ) , and

z = z1−α
2
− z1−πmin , (6.14)

we can substitute Equations (6.6), (6.7), (6.8), and (6.9) into ∆S3 − ∆S2 > θ∗S3 − θ∗S2 and

rearrange the terms to obtain
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2z
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As the LHS of Inequality (6.15) is always positive, Setup 3 is superior if the RHS≤ 0. Noting

∆S3 =
η

n1 + n2 + n3

and θ∗S3 =

√
2 · z ·

√
ξ

n1 + n2 + n3

,

the trivial case is satisfied if

n0 + n1 + n2 + n3

n0

θ∗S3 ≤ ∆S3 . (6.16)

If the RHS of Inequality (6.15) is positive, we can safely square both sides and use the iden-

tities for ∆S3 and θ∗S3 to get
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As the LHS is always positive, the second criterion is met if

θ∗S3 ≤ ∆S3 . (6.18)

Note that this is a weaker, and thus more easily satisfiable condition than that introduced

in Inequality (6.16). This suggests that an experiment setup is always superior to a diluted
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alternative if the experiment is already adequately powered – introducing any dilution will

make things worse.

Failing the condition in Inequality (6.18), we can always fall back to Inequality (6.17). While

the inequality operates in squared space, it is essentially comparing the standard error ofUser

Group 0 (LHS) – those who qualify for neither strategy – to the gap between the minimum

detectable and actual effects (θ∗S3−∆S3). The gap can be interpreted as the current noise level.

Thus, a higher standard error means mixing in Group 0 users will introduce extra noise, and

one is better off without them. Conversely, a smaller standard error means Group 0 users

can lower the noise level, i.e. stabilise the treatment effect fluctuation, and one should take

advantage of them.

To summarise, treatment effect dilution in a personalisation strategy experiment setup is not

helpful if

1. Users who do not qualify for any strategies have a large response variance (see Inequal-

ity (6.12)), or

2. The experiment is already adequately powered (see Inequality (6.18)).

It could help if the experiment has yet to gain sufficient power and users who do not qual-

ify for any strategy provide low-variance responses (i.e., when the complement of Inequal-

ity (6.17) holds), such that they exhibit stabilising effects when included in the analysis.

6.3.3 When is dual control more effective?

Often, when advertisers compare two personalisation strategies, the question of whether to

use a dual control/multi-cell design comes up. Proponents of such an approach celebrate

its ability to tell a story by making the incrementality of an individual strategy available,

while opponents voice concerns about the complexity of setting up the design. Here, we are

interested in whether Setup 4 (dual control) is superior to Setup 3 (a simple A/B test) under

the prescribed evaluation criteria, and if so, under what circumstances.

We first observe θ∗S4 > θ∗S3 always holds; hence, a dual control setup will never be superior

to the more straightforward under the first criterion. This can be verified by substituting in
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Equations (6.11) and (6.9) and rearranging the terms to show θ∗S4 > θ∗S3 is equivalent to
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which, given all n-terms are non-negative and σ2-terms are positive, always holds : not only

the coefficients of the σ2-terms are larger on the LHS than their RHS counterparts, the LHS

also carries an additional σ2
C3 term with non-negative coefficient and a factor of two.

Moving on to the second evaluation criterion, we recall that Setup 4 is superior if ∆S4 −

∆S3 > θ∗S4 − θ∗S3. Otherwise, Setup 3 is superior under the same criterion. We can see the

full flexibility of the model by substituting Equations (6.8), (6.9), (6.10), and (6.11) into

∆S4 −∆S3 > θ∗S4 − θ∗S3 and rearranging the terms to obtain
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where z = z1−α
2
− z1−πmin .

A key observation from inspecting Inequality (6.20) is that the LHS of the inequality scales

along O(
√
n), where n is the number of users, while the RHS remains constant. This leads

to the insight that Setup 4 is more likely to be superior if the n-terms are large. Here, we

assume the ratio n1 : n2 : n3 remains unchanged when we scale the number of samples, an

assumption that generally holds when an organisation increases their reach while maintain-

ing its user mix. It is worth pointing out that our claim is stronger than that in previous work

– we have shown that having a large user base not only fulfils the requirement of running a

dual control experiment as described in [172], but it also makes a dual control experiment a



188 Chapter 6. An Evaluation Framework for Personalisation Strategy Experiment Designs

better setup than its simpler counterparts in terms of actual and minimum detectable effect

sizes.

We can see the scaling relationship more clearly by simplifying the σ2- and n-terms. If we as-

sume the response variances are similar across user groups (i.e., σ2
C1 ≈ σ2

I1 ≈ · · · ≈ σ2
Iψ ≈ σ2

G),

the RHS of Inequality (6.20) becomes

√
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[√
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n1 + n3

+
n1 + n2 + n3

n2 + n3

− 1

]
, (6.21)

which remains a constant if the ratio n1 : n2 : n3 remains unchanged. Separately, if we

assume the number of users in Groups 1, 2, and 3 is similar (i.e., n1 ≈ n2 ≈ n3 ≈ n), the LHS

of Inequality (6.20) becomes

√
n
(
(µI2 − µC2)− (µI1 − µC1) + µIψ − µIϕ

)
2
√
σ2
C1 + σ2

I1 + σ2
C2 + σ2

I2 + σ2
Iϕ + σ2
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, (6.22)

which clearly scales along O(
√
n).

We conclude the section by indicating what a large n may look like. Suppose the response

variances and the number of users are similar across user groups. In that case, we can rear-

range Inequality (6.20) to make n the subject:

n >
(
2
√
12
(√

6− 1
)
z
)2 σ2

G

∆2
, (6.23)

where∆ = (µI2−µC2)− (µI1−µC1)+µIψ−µIϕ is the difference in actual effect sizes between

Setups 4 and 3. Under a 5% significance level and 80% power, the first coefficient amounts to

around 791, roughly 50 times the coefficient one would use to determine the sample size of a

simple A/B test [194]. This suggests that a dual control setup is perhaps a luxury accessible

only to the largest advertising platforms and their top advertisers. For example, consider an

experiment to optimise the conversion rate where the baselines attain 20% (hence having a

variance of 0.2(1− 0.2) = 0.16). If there is a 2.5% relative (i.e. 0.5% absolute) effect between

the competing strategies, the dual control setup will only be superior if there are> 5Musers

in each user group.
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6.4 Empirical Verification

Having performed theoretical calculations for the actual and detectable effects and condi-

tions where an experiment setup is superior to another, we verify those calculations using

simulation results. We focus on the results presented in Section 6.3.1, as the rest of the results

presented followed those calculations.

In each experiment setup evaluation, we randomly select the value of theµ- and σ-parameters

from a uniform distribution,8 with the bounds chosen that are reflective of what advertisers

usually see with decision metrics based on binary and count responses.9 We also select the

n-parameters uniformly on a log scale, with the bounds chosen to represent usual user num-

bers in personalisation strategy experiments and to ensure the empirical verification runs

within a practical timeframe.10 We favour sampling user numbers uniformly on a log scale

(instead of a linear scale) due to the diminishing real-life experiment count and diminish-

ing impact of having a single additional user as we increase the magnitude of user numbers.

Each parameter is drawn independently from other parameters within the same evaluation

and across different evaluations. We fix α = 5% and πmin = 80% across all evaluations as per

the norm in digital experiments.

We then take 1,000 actual effect samples, each by

1. Sampling normally distributed responses from the user groups under the specified pa-

rameters,9

2. Computing the mean for the analysis groups, and

3. Taking the difference of the means.

We also take 100 MDE samples in separate evaluations, each by

1. Sampling a critical value under the null hypothesis,

8 Denoting U(a, b) as a uniform distribution with bounds a and b, we draw µG ∼ U(−10, 10) and
σ2
G ∼ U(1, 10) for G ∈ {C0, C1, C2, C3, I1, I2, Iϕ, Iψ} (see Table 6.1 for how the groups are defined).

9 This is done to rule out anyCLT convergence issues due to heavy-tailed distributed responses or low sample
size. We acknowledge the limitations of such an approach in Section 7.2.

10 We draw n0, n1, n2, n3 ∼ 5× 10U(1,3.5).
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Table 6.2: Number of evaluations where the theoretical value of the quantities (columns)
falls between the 95% bootstrap confidence interval for each experiment setup (rows). See
Section 6.4 for a detailed description of the empirical verification.

Actual effect size Minimum detectable effect
Setup 1 1049/1099 (95.45%) 66/81 (81.48%)
Setup 2 853/999 (85.38%) 87/106 (82.08%)
Setup 3 922/1099 (83.89%) 93/116 (80.18%)
Setup 4 240/333 (72.07%) 149/185 (80.54%)

2. Computing the test power under a large number of possible effect sizes, each using the

critical value and sampled response means under the alternate hypothesis, and

3. Searching the effect size space for the value that gives the predefined power.

As the power vs effect size curve is noisy, given the use of simulated power samples, we

use the bisection algorithm provided by the noisyopt package to perform the search. The

algorithmdynamically adjusts the number of samples taken from the samepoint on the curve

to ensure the noise does not send us down the wrong search space.

We expect the mean of the sampled actual effect and MDE to match the theoretical value.

To verify this, we perform 1,000 bootstrap resamplings on the above samples to obtain an

empirical bootstrap distribution of the sample mean in each evaluation. The 95% bootstrap

resampling confidence interval (BRCI) should then contain the theoretical mean 95% of the

time. Furthermore, the histogram of the theoretical quantity’s percentile rank, in relation

to the bootstrap samples, across multiple evaluations should also follow a uniform distribu-

tion [259].

The result is shown in Table 6.2. One can observe thatmore evaluations have their theoretical

quantity lying outside the BRCI than expected. Upon further investigation, we observed a

characteristic ∪-shape from the histograms of the percentile ranks for the actual effects. This

suggests that the bootstrap samples may be under-dispersed but otherwise centred on the

theoretical quantities.

We also observed the histograms for MDEs curving upward to the right. This suggests that
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the theoretical value is a slight overestimate (of< 1% to the bootstrap mean in all cases). We

believe this is likely due to a small bias in the bisection algorithm. The algorithm tests if the

mean of the power samples is less than the target power to decide which half of the search

space to continue along. Given that we can bisect up to 10 times in each evaluation, we will

likely see a false positive even when we set the significance level for individual comparisons

to 1%. This leads to the algorithm favouring a smaller MDE sample. Nevertheless, we are

satisfied with the theoretical quantities for experiment design purposes since we have tested

for a wide range of parameters and the overall bias is small.

6.5 A Brief Recap

We have addressed the problem of comparing experiment designs for personalisation strate-

gies by presenting an evaluation framework that allows experimenters to evaluate which

experiment setup they should adopt. The flexible framework can be easily extended to com-

pare setups that compare more than two strategies by adding more user groups (i.e. new

sets to the Venn diagram in Figure 6.1). A new setup can also be quickly incorporated as it

is essentially a different weighting of user group-scenario combinations shown in Table 6.1.

The framework also allows the development of simple rules of thumb, such as:

1. Treatment effect dilution should never be employed if the experiment already has suffi-

cient power, though it can be helpful if the experiment is under-powered and the non-

qualifying users provide a “stabilising effect”; and

2. A dual control setup is superior to simpler setups only if one has access to the user base

of the largest organisations.

We have validated the theoretical results via simulations and made the code available2 so

that practitioners can benefit from the results immediately when designing their upcoming

experiments.





Chapter 7

Conclusion

7.1 Summary of Thesis Achievements

We presented and addressed several statistical and data challenges experimenters face when

building digital experimentation andmeasurement (DEM) capabilities from the ground up.

They include

1. (Chapter 2) Valuing DEM capabilities to justify related investments via a novel ranking

under lower uncertainty model that quantifies the value gained and risk when one lowers

the measurement uncertainty of the items they are prioritising;

2. (Chapter 3) Understanding statistical tests and their alternatives to estimate the potential

treatment impact via an introduction to statistical testing that aims to balance the theoret-

ical foundations and the practical applications;

3. (Chapter 4) Recognising the availability of datasets to validate existing and develop new

methods via the creation of the first ever taxonomy for digital experiment datasets, survey

for publicly available online controlled experiment (OCE) datasets, and OCE dataset that

can support experiments with adaptive stopping;

4. (Chapter 4) Identifying data collection requirements based on the statistical tests chosen

(and vice versa) via a mapping between statistical tests and datasets, two concepts that

are often studied in isolation;

193
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5. (Chapter 5) Acquiring knowledge of advanced methods related to the design, running,

analysis, and interpretation of digital experiments (while avoiding pitfalls) via a review

of recent advances in methods and examples of OCEs, quasi-experiments, and natural

experiments;

6. (Chapter 5) Implementing selected methods in the literature via a case study that cri-

tiques the effectiveness and practicalness of popular approaches that address dependent

responses in OCEs (and geo-experiments to some extent); and

7. (Chapter 6)Designing experiments to compare competingpersonalisation strategies, known

to suffer from low test power and lack of complete control in random assignments, via de-

veloping an evaluation framework that is both flexible and capable of generating simple

rules of thumb.

Digital experimentation is a multi-disciplinary field with researchers and practitioners from

many backgrounds. This is reflected in the diversity of statistical disciplines involved in this

thesis. Addressing the challenges above requires the study of order statistics, statistical test-

ing, data collection and processing, experimental design, and causal inference. In addition,

the thesis also draws upon techniques in computational statistics and distributed computing

to perform the large-scale simulations and empirical verification featured in the thesis. The

breadth of topics makes it likely that a researcher or practitioner in digital experimentation

can take away something from the text.

The thesis also reached considerable depth within each research topic. Most of the novel

research contributions in the thesis have already been presented in and included in proceed-

ings of highly-regarded conferences in applied statistics, machine learning, and data mining.

These include the IEEE International Conference on Data Mining (ICDM), AdKDD Work-

shop (in conjunction with ACM SIGKDD Conference on Knowledge Discovery and Data

Mining, KDD), Conference onNeural Information Processing Systems (NeurIPS), and ACM

Web Conference (TheWebConf, formerly WWW). The research has been further recognised

via the inclusion of the extended ICDM paper into a journal special issue for “Highly-rated

Short Papers for ICDM 2019” and the Best Student Paper award for AdKDD 2020.

Impact beyond academic research The research in this thesis is motivated by the need for

and has directly contributed to the development of DEM capabilities at ASOS.com (a global



7.2. Future Work 195

online fashion retail company) from its infancy:

• Results from the ranking under lower uncertainty model presented in Chapter 2, using

parameters reflecting the company’s measurement capability at the time, have formed one

of the main arguments for the company to invest in initial DEM capabilities.

• Since then, the author has spent years engaging with and educating company colleagues

from both technical and non-technical backgrounds on statistical testing, datasets, and ex-

perimental design in an online setting. Chapters 3, 4, and 6 reflect the distilled knowledge

from that process. Striking a balance between theoretical rigour and applicability in prac-

tice also makes the text suitable for other pedagogical purposes.

• The author led a team that incorporates advanced statistical techniques in ASOS.com’s

internal experiment analysis platform. These include the mSPRT, a sequential test, to ad-

dress peeking (see Section 3.8) and one-way/block bootstrap to address dependent re-

sponses as described in the case study in Section 5.5.4. The author also led another team

that has built and is maintaining a geo-experimentation framework in-house that utilises

techniques mentioned in Section 5.6.3.

7.2 Future Work

The research has also opened up many opportunities for further work in different statistical

and data topics. Below, we outline them in the order they emerge in the thesis.

Ranking under lower uncertainty We believe the general ranking under lower uncertainty

problem, introduced in Chapter 2, will interest many in the statistics and operations research

community. Many exciting questions remain, not only for valuing DEM capabilities (e.g.,

understanding how the expected gain and risk change when we assume different item value

distributions, see Section 2.8.1), but also for general prioritisation processes (e.g., the value

gained when not all items in the prioritisation process can have their estimation noise re-

duced, see Section 2.8.2). It also yields an opportunity for us to gain a further understanding

of order statistics via questions like the probability that two order statistics in the ranking

under lower uncertainty model are generated from the same r.v. (see Appendix A.1).
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Datasets for digital experiments The work in Chapter 4 has highlighted the need for more

publicly available digital experiment datasets, both in quantity and variety, a call echoed

by [159]. This is necessary to foster academic-industry collaboration and safeguard future

methodological development. Asmore datasets become available, the survey, taxonomy, and

mapping introduced in the chapter will require updating and extending.

Dependent responses in e-commerce experiments In Section 5.5.4, we observed that the

two-way bootstrap, which addresses responses dependent on multiple types of units, pro-

duces impractically large standard error estimates andunnecessarily conservative confidence

intervals under online retail/e-commerce transactions datasets. Further work is required to

understand how and why this is the case. This enables experimenters to adjust the models

and methods to estimate the degree of dependence between responses accurately.

Evaluation framework for personalisation strategy experiment designs The evaluation

framework introduced in Chapter 6 assumes the responses from each user group-scenario

combination are randomly distributed with the mean independent of the variance, with the

evaluation criteria calculated assuming the decision metric is approximately normally dis-

tributed under the central limit theorem. While they are reasonable assumptions in practice,

it begs the question of whether the evaluation framework and its results are robust to devi-

ations from these assumptions, e.g., with binary responses (where the mean and variance

correlate) and heavy-tailed distributed responses (where the sample mean converges to a

normal distribution slowly).

In addition to the extensions outlined above, wepropose the following related, high-potential

research direction involving sub-disciplines not covered in the thesis. These sub-disciplines

include (1) automatic experimentation and optimisation capabilities via bandit and Bayesian

optimisation algorithms [117, 210] and (2) combining experimental and observational data

to provide more accurate treatment effect estimates [141].

Automatic experiment prioritisation with decision makers in-the-loop It is increasingly

common to deploy automatic experimentation and optimisation capabilities within individ-
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ual business functions or digital products. However, the problem of finding the optimal

sequencing of experimental interventions at a cross-functional level or across multiple dig-

ital products is often dealt with manually. We argue that a Bayesian optimisation frame-

work, which balances exploitation (obtaining the highest valued intervention) and explo-

ration (eliminating uncertainty in value estimates), is well suited to recommending the next

interventions to be evaluated. The framework should be central to an iterative decision frame-

work where we

1. Measure interventions’ value via experiments,

2. Estimate other candidate interventions’ value using causal inference techniques, and

3. Identify the next best interventions to be evaluated.

This can be roughly linked to the points on the objective function, the surrogate model, and

the acquisition function. With the objective function being largely unknown, we propose

researching into constructing novel surrogate models and acquisition functions that can ad-

dress other challenges presented by prioritising experiments in real life. These include quan-

tifying the uncertainty of interventions in a mixed experimental-observational setting with

potential unmeasured confounders, having concept drift erode the confidence in past effect

estimates over time, and incorporating preference from decision makers in addition to mod-

elled effect estimates.

To sum up, the need to understand the cause and effect of decisions and test out different

alternatives in the current digital era has led to a rich body of work in digital experimentation

and measurement. The field has attracted substantial interdisciplinary interest in the past

two decades and will remain fast-growing, as demonstrated by the open challenges above.

This thesis has contributed to, and seeks to continue inspiring such growth.
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Lecture Notes in Computer Science. Cham: Springer International Publishing, 2017, pp. 114–126. isbn:
978-3-319-71272-7. doi: 10.1007/978-3-319-71273-4_10 (cited on p. 147).

https://doi.org/10.1145/2433396.2433413
https://alexdeng.github.io/public/files/jsm2011-deng.pdf
https://alexdeng.github.io/public/files/jsm2011-deng.pdf
https://ghsla.org/wp-content/uploads/2013/12/Dias2010b.pdf
https://ghsla.org/wp-content/uploads/2013/12/Dias2010b.pdf
http://ama.imag.fr/~amini/Publis/large-scale-benchmark.pdf
https://one.oecd.org/document/DAF/COMP/WD(2018)127/en/pdf
https://doi.org/10.1145/3097983.3098024
https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1080/19345747.2012.673143
https://doi.org/10.1080/19345747.2012.673143
https://doi.org/10.7910/DVN/BRKDVQ
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-319-71273-4_10


REFERENCES 205

[80] Olive Jean Dunn. “Multiple Comparisons among Means”. In: Journal of the American Statistical Asso-
ciation 56.293 (1961), pp. 52–64. issn: 0162-1459. doi: 10.1080/01621459.1961.10482090 (cited on
p. 146).

[81] Pascaline Dupas, Vivian Hoffman, Michael Kremer, and Alix Peterson Zwane. Targeting health subsidies
through a non-price mechanism: A randomized controlled trial in Kenya [Dataset]. Version V1. 2016. doi:
10.7910/DVN/PBLJXJ (cited on p. 121).

[82] Arpit Dwivedi. Cookie Cats, Version 1 [Dataset]. 2020. url: https://www.kaggle.com/arpitdw/cokie-
cats/version/1 (accessed 25/8/2021) (cited on p. 122).

[83] Dean Eckles, Brian Karrer, and Johan Ugander. “Design and Analysis of Experiments in Networks:
Reducing Bias from Interference”. In: Journal of Causal Inference 5.1 (2017), p. 20150021. doi: 10.1515/
jci-2015-0021 (cited on p. 155).

[84] Ward Edwards, Harold Lindman, and Leonard J. Savage. “Bayesian statistical inference for psycho-
logical research”. In: Psychological Review 70.3 (1963), pp. 193–242. doi: 10.1037/h0044139 (cited on
p. 73).

[85] Bradley Efron. “Tweedie’s Formula and Selection Bias”. In: Journal of the American Statistical Association
106.496 (2011), pp. 1602–1614. issn: 0162-1459. doi: 10.1198/jasa.2011.tm11181 (cited on p. 147).

[86] Bradley Efron andRobert J. Tibshirani.An Introduction to the Bootstrap.Monographs on Statistics andAp-
pliedProbability 57. BocaRaton, Florida,USA:Chapman&Hall/CRC, 1994. doi: 10.1201/9780429246593
(cited on pp. 84, 163).

[87] Paul D. Ellis. The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of
Research Results. Cambridge: Cambridge University Press, 2010. isbn: 9780511761676. doi: 10.1017/
CBO9780511761676 (cited on pp. 69, 95).

[88] Osuolale Emmanuel. Ad A/B Testing, Version 1 [Dataset]. 2020. url: https : / / www . kaggle . com /
osuolaleemmanuel/ad-ab-testing/version/1 (accessed 25/8/2021) (cited on pp. 121, 122).

[89] Maria Esteller-Cucala, Vicenc Fernandez, and Diego Villuendas. “Experimentation Pitfalls to Avoid in
A/B Testing for Online Personalization”. In: Adjunct Publication of the 27th Conference on User Model-
ing, Adaptation and Personalization. UMAP’19 Adjunct. Larnaca, Cyprus: ACM, 2019, pp. 153–159. isbn:
9781450367110. doi: 10.1145/3314183.3323853 (cited on pp. 152, 153).

[90] Aleksander Fabijan, Pavel Dmitriev, Helena Holmstrom Olsson, and Jan Bosch. “Online Controlled
Experimentation at Scale: An Empirical Survey on the Current State of A/B Testing”. In: 2018 44th
Euromicro Conference on Software Engineering andAdvanced Applications (SEAA). Prague, Czech Republic:
IEEE, 2018, pp. 68–72. isbn: 978-1-5386-7383-6. doi: 10.1109/SEAA.2018.00021 (cited on pp. 20, 118).

[91] Aleksander Fabijan, Pavel Dmitriev, HelenaHolmstromOlsson, and Jan Bosch. “TheOnline Controlled
Experiment Lifecycle”. In: IEEE Software 37.2 (2020), pp. 60–67. issn: 0740-7459. doi: 10.1109/MS.2018.
2875842 (cited on p. 152).

[92] Aleksander Fabijan, Pavel Dmitriev, Helena HolmstromOlsson, and Jan Bosch. “The Evolution of Con-
tinuous Experimentation in Software Product Development: From Data to a Data-Driven Organization
at Scale”. In: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). Buenos Aires,
Argentina: IEEE, May 2017, pp. 770–780. isbn: 978-1-5386-3868-2. doi: 10.1109/ICSE.2017.76 (cited
on p. 152).

https://doi.org/10.1080/01621459.1961.10482090
https://doi.org/10.7910/DVN/PBLJXJ
https://www.kaggle.com/arpitdw/cokie-cats/version/1
https://www.kaggle.com/arpitdw/cokie-cats/version/1
https://doi.org/10.1515/jci-2015-0021
https://doi.org/10.1515/jci-2015-0021
https://doi.org/10.1037/h0044139
https://doi.org/10.1198/jasa.2011.tm11181
https://doi.org/10.1201/9780429246593
https://doi.org/10.1017/CBO9780511761676
https://doi.org/10.1017/CBO9780511761676
https://www.kaggle.com/osuolaleemmanuel/ad-ab-testing/version/1
https://www.kaggle.com/osuolaleemmanuel/ad-ab-testing/version/1
https://doi.org/10.1145/3314183.3323853
https://doi.org/10.1109/SEAA.2018.00021
https://doi.org/10.1109/MS.2018.2875842
https://doi.org/10.1109/MS.2018.2875842
https://doi.org/10.1109/ICSE.2017.76


206 REFERENCES

[93] Aleksander Fabijan, Jayant Gupchup, Somit Gupta, Jeff Omhover, Wen Qin, Lukas Vermeer, and Pavel
Dmitriev. “Diagnosing Sample Ratio Mismatch in Online Controlled Experiments: A Taxonomy and
Rules of Thumb for Practitioners”. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. KDD ’19. Anchorage, AK, USA: ACM, 2019, pp. 2156–2164. isbn:
9781450362016. doi: 10.1145/3292500.3330722 (cited on pp. 105, 152, 153).

[94] Franz Faul, Edgar Erdfelder, Albert-Georg Lang, and Axel Buchner. “G*Power 3: A flexible statistical
power analysis program for the social, behavioral, and biomedical sciences”. In: Behavior Research Meth-
ods 39.2 (2007), pp. 175–191. issn: 1554-3528. doi: 10.3758/BF03193146 (cited on p. 96).

[95] Ronald A. Fisher. “On the Mathematical Foundations of Theoretical Statistics”. In: Philosophical Trans-
actions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character
222.594–604 (1922), pp. 309–368. doi: 10.1098/rsta.1922.0009 (cited on p. 123).

[96] Joseph L. Fleiss, Bruce Levin, andMyunghee Cho Paik. “Determining Sample Sizes Needed to Detect a
Difference betweenTwoProportions”. In: StatisticalMethods for Rates and Proportions. Hoboken,NJ, USA:
John Wiley & Sons, Inc., 2003. Chap. 4, pp. 64–85. isbn: 9780471445425. doi: 10.1002/0471445428.ch4
(cited on p. 69).

[97] Rina Foygel Barber and Emmanuel J. Candès. “Controlling the false discovery rate via knockoffs”. In:
The Annals of Statistics 43.5 (2015), pp. 2055–2085. doi: 10.1214/15-AOS1337 (cited on p. 146).

[98] Michele Jonsson Funk, Daniel Westreich, Chris Wiesen, Til Stürmer, M. Alan Brookhart, andMarie Da-
vidian. “Doubly Robust Estimation of Causal Effects”. In:American Journal of Epidemiology 173.7 (2011),
pp. 761–767. issn: 0002-9262. doi: 10.1093/aje/kwq439 (cited on p. 168).

[99] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach, Hal
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Appendix A

Miscellaneous Mathematical Results

A.1 Ranking Under Lower Uncertainty: Probability in Gen-

erating Specific Order Statistic Pairs

We consider the problem posed in Section 2.5.4, namely the probability that two order statis-

tics in the ranking under lower uncertainty problem, one from the high-noise set and the

other from the low-noise set, are generated from the same random variable.

This appendix is adapted from the appendix of the research paper “What is the Value of

Experimentation andMeasurement?” published inData Science and Engineering [175]. It also

incorporates relevant discussions on Cross Validated Stack Exchange [170].

We restate the setup and problem formally, which is also re-illustrated in Figure A.1. Let

Vi
i.i.d.∼ FV(·) ,where E(Vi) = µV ,Var(Vi) = σ2

V , (*2.5)

ϵ1i
i.i.d.∼ Fϵ1(·) ,where E(ϵ1i) = µϵ ,Var(ϵ1i) = σ2

1 ,

ϵ2i
i.i.d.∼ Fϵ2(·) ,where E(ϵ2i) = µϵ ,Var(ϵ2i) = σ2

2 , (*2.18)

where Vi ⊥ ϵ1j , Vi ⊥ ϵ2j , and ϵ1i ⊥ ϵ2j ∀ i, j. Vi represents the true value of the ith item under

consideration in the ranking under lower uncertainty problem, while ϵ1i and ϵ2i represents
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Figure A.1: (L) Figure 2.3 – The generative model for the ranking under lower uncertainty
problem in plate notation. (R) RHS of Figure 2.5 – Relationship between different quantities
in a three-item generative model. Vi,Hi/Li, andH(r)/L(s), i, r, s ∈ {1, 2, 3}, represent the true
value, the unranked noisy estimates, and the ranked noisy estimates of the items, respec-
tively. HereH(r) and L(s) may be generated by the same Vi for some r and s combinations.

noise under different noise levels. We further let

Hi = Vi + ϵ1i , Li = Vi + ϵ2i ∀i . (*2.19)

Here, Hi and Li are the estimated values for Vi under high and low estimation noise, re-

spectively. We rank H and L separately to obtain two sets of order statistics: H(r) and L(s).

We then introduce two functions, I : {1, ..., N} → {1, ..., N} and J : {1, ..., N} → {1, ..., N},

whichwe use tomap the ranks ofH andL back to their original indices (and thus the indices

of V), respectively. We are interested in P(I(r) = J (s)), the probability that the rth rankedH

and the sth ranked L are generated by the same Vi.

Before deriving the probability, we obtain some intuition on what we are dealing with via

some simulations. In each run within a simulation, we:

1. Given N , µV , µϵ, σ2
V , σ2

1 , and σ2
2 , generate Vi, Hi, and Li ∀i ∈ {1, ..., N} as specified above.

2. Obtain the rank for each realised H while preserving the order of the data array (i.e., the

indices). Do the same for L.

3. For each index i, obtain the rank ofHi as r and the rank of Li as s. The pair (r, s) is said to
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Figure A.2: Heatmap showing the empirical distribution of P(I(r) = J (s)) across different
r and s, generated from 200 000 simulation runs with N = 25, µV = µϵ = 0, σ2

V = 1, σ2
1 = 0.5,

and σ2
2 = 0.4. Here, all Vi,Hi, and Li follow the normal distribution. Every row and column

in the heatmap sums to one.

have gained a “hit”.

After many runs, we obtain an empirical distribution of P(I(r) = J (s)) across all possible

(r, s) pairs by dividing the number of “hits” for each rank pair by the total number of sim-

ulation runs.1 We observe that each (r, s) pair gets N chances to gain a “hit” within each

simulation run, with the restriction that each r (and each s) would ultimately gain one “hit”.

The latter owes to the fact that each rank withinH and L should appear once and only once.

Figures A.2 and A.3 show the empirical P(I(r) = J (s)) for a particular ranking under lower

uncertainty model. We observe from Figure A.2 that the probability is clearly not uniform

1 The statement “the rth ranked H and the sth ranked L are generated by the same Vi” is equivalent to “the
same Vi generates the rth rankedH and the sth ranked L”, and thus Step 3 above provides a more computa-
tionally efficient way to obtain the empirical distribution – we do not need to determine the index mapping
functions I(·) and J (·)).
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Figure A.3: The marginal distribution of P(I(r) = J (s)) across different s for a given r,
generated from 200 000 simulation runs with N = 25, µV = µϵ = 0, σ2

V = 1, σ2
1 = 0.5, and

σ2
2 = 0.4. Here, all Vi, Hi, and Li follow the normal distribution. Each plot represents a

column in the heatmap in Figure A.2 and has a different scale on the y-axis to emphasise the
relative difference in the probability across different s for a given r.
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and higher when r and s are close to each other (i.e., along the r = s diagonal), reaching

the maximum when r = s = 1 and r = s = N . This agrees with the intuition that if Hi

is the largest (smallest) amongst H, chances are that the associated Vi is quite large (small)

as well, and thus the associated Li stands a high chance of becoming the largest (smallest)

amongst L. On the other hand, the probability is lower when r and s are far apart, reaching

the minimum when (r, s) = (1, N) or (N, 1). This also makes sense – for Vi to generate both

H(N) and L(1), one requires a large realisation for ϵ1i and a large but negative realisation for

ϵ2i. The two realisations rarely happen together.

We also note the similarity between the marginal distributions in Figure A.3 (i.e., the prob-

ability across s for a given r) and the family of beta-binomial distributions. This is not sur-

prising: beta distributions are closely connected to order statistics. As shown below, the

observation will shape our approach to obtaining the probability.

A.1.1 Representing the probability as a certain number of successes in

multiple Bernoulli trials

To obtain P(I(r) = J (s)), one can express it as follow:

P (I(r) = J (s)) =
N∑
k=1

P (I(r) = k ∩ J (s) = k) (law of total prob.)

=
N∑
k=1

P (J (s) = k | I(r) = k)P (I(r) = k) (conditional prob.) (A.1.1)

We first focus on the event J (s) = k. Given any k, the event is equivalent to precisely (s− 1)

{Lj}j ̸=k being less than Lk, which makes Lk the sth ranked L. Thus, we can express Equa-

tion (A.1.1) as

P (I(r) = J (s)) =
N∑
k=1

P

(
N∑

j=1, j ̸=k

I{Lj<Lk} = s− 1

∣∣∣∣∣ I(r) = k

)
P (I(r) = k) . (A.1.2)

We then recognise:

1. P(I(r) = k) = 1
N
∀k. This is because all Vi and Hi are i.i.d. As a result, each Hi is equally
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likely to have generated the order statisticH(r);

2. The conditional probability within the outer summation does not depend on the index k

but the rank r; and

3. Given k = I(r), this particularLk is now different from all the other {Lj}j ̸=k, as the former

now carries information on its possible values fromH(r) via VI(r). To stress the difference,

we perform the index substitution here and refer to the random variable asLI(r) from now

on.

This enables us to further simplify Equation (A.1.2) as:

P (I(r) = J (s)) =
N∑
k=1

P

 N∑
j=1, j ̸=I(r)

I{Lj<LI(r)} = s− 1

 · 1

N


=P

(
N∑

j=1, j ̸=I(r)

I{Lj<LI(r)}︸ ︷︷ ︸
≜C

= s− 1

)
, (A.1.3)

where we also define C (the count) as the summation of the indicator variables.

From (A.1.3), we observe that C represents the number of successes in (N − 1) independent

Bernoulli trials (i.e., Lj < LI(r)). Moreover, the success probability of each Bernoulli trial

is not fixed but depends on the value of LI(r), itself a random variable. We know that for

any given l ∈ R, the probability of Lj being less than l is, by definition, FLj(l). Thus, we can

define another random variable P = FLj(LI(r)) to show how the success probability in the

Bernoulli trials is distributed, with the probability density function (PDF) being

fP (p | r, ...) =
fLI(r)

(
F−1
Lj (p) | r, ...

)
fLj

(
F−1
Lj (p) | ...

) , (A.1.4)

where we omit other parameters in the ranking under lower uncertainty model such as µV ,

σ2
V , ..., for clarity.

This PDF arises from two standard results:

1. (Transformation of random variables) If Y = g(X) and g−1(·) exists, then

fY (y) = fX (g−1(x))
∣∣∣dg−1(x)

dx

∣∣∣; and
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2. (Derivative of inverse functions) dg−1(x)
dx = 1

g′(g−1(x))
for all functions g(·) if both the inverse

g−1(·) and the derivative g′(·) exist (which they do for FLj(·)).

C then follows the following compound probability distribution:

fC(c |N − 1, r, ...) =

∫ 1

0

Bin(c |N − 1, p) fP(p | r, ...)dp , (A.1.5)

where Bin(c |N − 1, p) represents the PDF of the binomial distribution with N − 1 trials and

success probability p.

A.1.2 Modelling the success count distribution using beta-binomials

Deriving the exact distribution for P and C is beyond the scope of this work, and we be-

lieve the distributions are analytically intractable in many cases. To estimate the covariance

in (2.37), we will model P as beta distributions, with the parameters αP and βP obtained via

the method of moments. We believe beta distributions are a natural choice for P as they are

closely related to order statistics. Moreover, beta distributions are also conjugate priors to

binomial distributions, which eases the computation of the probability masses for C.

To obtain the beta distribution parameters, we first require the mean and variance for LI(r)

and FLj(LI(r)). We know that LI(r) = VI(r) + ϵ2(I(r)), VI(r) ⊥ ϵ2(I(r)) from (2.19), and hence

we have

E(LI(r)) = E(VI(r)) + E(ϵ2(I(r))) ≈ µV +
σ2
V

σ2
V + σ2

1

(
F−1
H

( r − α

N − 2α + 1

)
− (µV + µϵ)

)
+ µϵ ,

(A.1.6)

Var(LI(r)) = Var(VI(r)) + Var(ϵ2(I(r)))

≈ σ2
1σ

2
V

σ2
V + σ2

1

+
σ4
V

(σ2
V + σ2

1)
2

r(N − r + 1)

(N + 1)2(N + 2)

1(
fH
(
F−1
H
(

r
N+1

)))2 + σ2
2 , (A.1.7)

where E(VI(r)) and Var(VI(r)) are obtained from (2.9) and (2.25), respectively.

We can then approximate the expected value and variance of FLj(LI(r)) using Taylor series
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expansion:

E
(
FLj(LI(r))

)
≈FLj

(
E(LI(r))

)
+

1

2
f ′
Lj

(
E(LI(r))

)
· Var(LI(r)) + ... , (A.1.8)

Var
(
FLj(LI(r))

)
≈
(
fLj(E(LI(r)))

)2 · Var(LI(r))+

1

4

(
f ′
Lj(E(LI(r)))

)2
· Var

((
LI(r) − E(LI(r))

)2)
+ ... , (A.1.9)

where fLj(·) and f ′
Lj(·) are the probability density function and its derivative for Lj , respec-

tively. We observe that the first-order approximation (a special case of the delta method) is

insufficiently accurate when compared against simulation results (see Section A.1.4). This

is likely due to FLj being non-linear. We thus recommend using a second or higher-order

approximation.

Finally, we denote µP ≜ E
(
FLj(LI(r))

)
, σ2

P ≜ Var
(
FLj(LI(r))

)
and obtain the beta distribution

parameters αP and βP via the method of moments:

αP =

(
1− µP

σ2
P

− 1

µP

)
µ2
P , βP = αP

(
1

µP
− 1

)
. (A.1.10)

A.1.3 Estimation under normal assumptions

To complement themain text, we also discuss how the quantities derived above behave under

normal assumptions. Firstly, (A.1.6) and (A.1.7) are now

E(LI(r)) ≈ µV + µϵ +
σ2
V√

σ2
V + σ2

1

Φ−1

(
r − α

N − 2α + 1

)
, (A.1.11)

Var(LI(r)) ≈
σ2
1σ

2
V

σ2
V + σ2

1

+
σ4
V

σ2
V + σ2

1

r(N − r + 1)

(N + 1)2(N + 2)

1(
ϕ
(
Φ−1

(
r

N+1

)))2 + σ2
2 . (A.1.12)

We then recall from (2.19) that Lj
i.i.d.∼ N (µV + µϵ, σ

2
V + σ2

2), and hence

FLj(l) = Φ

(
l − (µV + µϵ)√

σ2
V + σ2

2

)
. (A.1.13)

This opens up multiple pathways to estimate µP and σ2
P . Firstly, we can proceed with the

Taylor series expansion approach, using the quantities derived above and noting that the
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first and second derivatives of (A.1.13) are

fLj(l) =
1√

σ2
L + σ2

2

ϕ

(
l − (µV + µϵ)√

σ2
V + σ2

2

)
, and (A.1.14)

f ′
Lj(l) = − l − (µV + µϵ)

(σ2
V + σ2

2)
3
2

ϕ

(
l − (µV + µϵ)√

σ2
V + σ2

2

)
. (A.1.15)

However, while the estimate for E(FLj(LI(r))) under this approach is reasonably accurate,

we find the estimates for Var(FLj(LI(r))) unsatisfactory in some cases, even when we involve

the sixth-order Taylor polynomial (see Section A.1.4).

Instead,we estimate the quantities usingOwen’swork on integrals ofGaussian functions [213].

We first define L∗, being LI(r) normalised by the parameters of Lj :

L∗ ≜
LI(r) − (µV + µϵ)√

σ2
V + σ2

2

. (A.1.16)

Since LI(r) is approximately normally distributed, L∗ is also approximately normally dis-

tributed with mean and variance

µL∗ =
E(LI(r))− (µV + µϵ)√

σ2
V + σ2

2

, σ2
L∗ =

1

σ2
V + σ2

2

Var(LI(r)) , (A.1.17)

where E(LI(r)) and Var(LI(r)) are approximated in (A.1.11) and (A.1.12), respectively. This

allows us to represent L∗ by scaling a standard normal r.v. Z:

L∗ ≈ µL∗ + σL∗Z . (A.1.18)

We can then write FLj(LI(r)) as

FLj
(
LI(r)

)
= Φ(L∗) ≈ Φ (µL∗ + σL∗Z) (A.1.19)

by substituting, in turn, (A.1.13), (A.1.16) and (A.1.18) into the LHS of the equation.

We then make use of the following identities provided by Owen [213] (Equations 10010.8
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and 20010.4):

E (Φ(µL∗ + σL∗Z)) = Φ

(
µL∗√
1 + σ2

L∗

)
, (A.1.20)

E
(
(Φ(µL∗ + σL∗Z))2

)
= Φ

(
µL∗√
1 + σ2

L∗

)
− 2 · T

(
µL∗√
1 + σ2

L∗

,
1√

1 + 2σ2
L∗

)
, (A.1.21)

where T (·, ·) represents Owen’s T function [212], of which a fast numerical algorithm is

available from [214]. While the original work does not provide an identity for the variance

of Φ(L∗), we can obtain so from (A.1.20) and (A.1.21) easily:

Var (Φ(µL∗ + σL∗Z))

=E
(
(Φ(µL∗ + σL∗Z))2

)
− (E (Φ(µL∗ + σL∗Z)))2

=Φ

(
µL∗√
1 + σ2

L∗

)(
1− Φ

(
µL∗√
1 + σ2

L∗

))
− 2 · T

(
µL∗√
1 + σ2

L∗

,
1√

1 + 2σ2
L∗

)
. (A.1.22)

We finally substitute (A.1.20) and (A.1.22) into (A.1.10) to obtain the beta distribution pa-

rameters under normal assumptions.

A.1.4 Some basic validations

We close the investigation on the supposedly minor quantity in the ranking under lower un-

certainty problem by validating the theoretical results derived above. We have accepted in

Section A.1.2 that the probability P(I(r) = J (s)) and its associated distributions are analyt-

ically intractable in many cases. As a result, a full validation across many parameter com-

binations (similar to what we have done for quantities such as E(VI(r)) and Var(WL) in the

main text) for what are best estimates is overkill. Instead, we will perform visual checks on

whether the fitted distributions are reasonable approximation to the empirical distribution

for a handful of parameter combinations under normal assumptions. This is not to say we

have fully addressed the original question posed at the top of this chapter – there is still plenty

to uncover for the said probability in terms of estimation method and interpretation – it is

just not the primary quantity of interest for our ranking under lower uncertainty problem.

We also calculate the mean Kullback-Leibler (KL) divergence between the empirical distri-
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bution and distributions produced from different modelling approaches to compare them

quantitatively. Here, we define the mean KL divergence as

1

N

N∑
r=1

DKL

(
f̂C |N−1,r,... || fĈ |N−1,r,...

)
=

1

N

N∑
r=1

N∑
s=1

f̂C(s− 1 |N − 1, r, ...) log

(
f̂C(s− 1 |N − 1, r, ...)

fĈ(s− 1 |N − 1, r, ...)

)
, (A.1.23)

where f̂C(·) denotes the probability mass function (PMF) of the empirical marginal distri-

bution and fĈ(·) denotes the PMF of the fitted distribution. In other words, we calculate the

KL divergence of each marginal distribution shown in Figure A.3 and average it over the N

marginal distributions.2

Weobserve that the approachusingOwen’s integrals onGaussian functions producesmarginal

distributions produces better fit on the empirical distribution than the approaches using Tay-

lor series expansion up to the sixth-order Taylor polynomial, both visually (see Figure A.4)

and in terms of themeanKL divergence (see Table A.1). We also observe the fit usingOwen’s

integrals is less ideal (yet still reasonable) in cases where:

1. r or s is close to 1 or N ,

2. N is small, and

3. σ2
X and σ2

1 are similar in magnitude.

These cases lead to a higher variance in order statistic and rank estimators and greater devi-

ation from the normal assumptions, which make accurate estimation more difficult.

2 We use the empirical marginal distribution as the target distribution for KL divergence as we believe the
true distribution is analytically intractable in many cases. This means the average KL divergence may vary
slightly from one simulation to another due to using fresh samples. We ensure such variance is negligi-
ble by performing hundreds of thousands of simulation runs when generating each empirical marginal
distributions.
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FigureA.4: The fittedmarginal distributions – that using the Taylor series expansion up to the
second-order (blue dotted line), fourth-order (olive dashed line), and sixth-order (purple
dot-dashed line), aswell as that usingOwen’s integrals of Gaussian functions (red solid line)
– overlaid on Figure A.3, which shows the empirical marginal distributions of P(I(r) = J (s))

(grey bars).
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FigureA.5: The fittedmarginal distributions – that using the Taylor series expansion up to the
second-order (blue dotted line), fourth-order (olive dashed line), and sixth-order (purple
dot-dashed line), as well as that using Owen’s integrals of Gaussian functions (red solid
line) – overlaid on the empirical marginal distributions of P(I(r) = J (s)) (grey bars), with
N = 10, µV = µϵ = 0, σ2

V = 1, σ2
1 = 0.5, and σ2

2 = 0.4.

Modelled distribution Mean KL divergence
N = 10 N = 25

Uniform 0.24582 ± 0.00025 0.28358 ± 0.00018
Beta-binomial (2nd order Taylor SE) 0.05924 ± 0.00017 0.06190 ± 0.00007
Beta-binomial (4th order Taylor SE) 0.01070 ± 0.00004 0.01930 ± 0.00004
Beta-binomial (6th order Taylor SE) 0.03414 ± 0.00013 0.02029 ± 0.00004
Beta-binomial (Owen’s integrals) 0.00784 ± 0.00006 0.00317 ± 0.00002

Table A.1: Mean Kullback-Leibler (KL) divergence between the empirical marginal distri-
bution of P(I(r) = J (s)) and distributions produced from different modelling approaches,
with µV = µϵ = 0, σ2

V = 1, σ2
1 = 0.5, and σ2

2 = 0.4. Each entry records the mean and standard
deviation of the mean KL divergence across multiple simulations.
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A.2 CalculationsRelated toDilution inPersonalisationStrat-

egy Experiment Designs

This appendix expands the exposition in Section 6.3.2 by providing the detailed algebraic

manipulations of the inequalities involved. In the section, we discussed, under the context

of designing experiments for personalisation strategies, the conditions where an experiment

setup with treatment effect dilution (aka Setup 2) will emerge superior to one without treat-

ment effect dilution (aka Setup 3) and vice versa.

We recap themathematical arguments presented in the section. Under the evaluation frame-

work introduced in Chapter 6, we can establish superiority of an experiment setup via two

criteria. Setup 3 is superior to Setup 2 if at least one of the following inequalities hold:

First criterion: θ∗S3 < θ∗S2 (as ∆S3 > ∆S2 trivially holds),

Second criterion: ∆S3 −∆S2 > θ∗S3 − θ∗S2 ,

where∆S2, θ∗S2,∆S3, and θ∗S3 are that stated in Equations (6.6), (6.7), (6.8), and (6.9) respec-

tively – we will restate the equations below where appropriate. If neither inequality holds

(and both sides are not equal), we consider Setup 2 as superior to Setup 3 under the second

criterion as the following holds:

∆S3 −∆S2 < θ∗S3 − θ∗S2 ⇐⇒ ∆S2 −∆S3 > θ∗S2 − θ∗S3.

This appendix only deals with the detailed algebraic manipulation. We refer readers back

to Section 6.3.2 in the main text for the interpretations of and the insights from the resultant

inequalities.
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A.2.1 The first criterion

We first show θ∗S3 < θ∗S2, where

θ∗S2 =(z1−α
2
− z1−πmin)

√
2
(
n0(2σ2

C0) + n1(σ2
I1 + σ2

C1) + n2(σ2
C2 + σ2

I2) + n3(σ2
Iϕ + σ2

Iψ)
)

(n0 + n1 + n2 + n3)2
,

(*6.7)

θ∗S3 =(z1−α
2
− z1−πmin)

√
2
(
n1(σ2

I1 + σ2
C1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)
)

(n1 + n2 + n3)2
, (*6.9)

is equivalent to

(
n1(σ

2
I1 + σ2

C1) + n2(σ
2
C2 + σ2

I2) + n3(σ
2
Iϕ + σ2

Iψ)
)
· (n0 + 2n1 + 2n2 + 2n3)

2(n1 + n2 + n3)2
< σ2

C0 . (*6.12)

This is the condition thatwill lead to Setup 3 being superior to Setup 2 under the first criterion

in our evaluation framework.

We start by writing the inequality θ∗S3 < θ∗S2 in full:

(z1−α
2
− z1−πmin)

√
2
(
n1(σ2

I1 + σ2
C1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)
)

(n1 + n2 + n3)2

< (z1−α
2
− z1−πmin)

√
2
(
n0(2σ2

C0) + n1(σ2
I1 + σ2

C1) + n2(σ2
C2 + σ2

I2) + n3(σ2
Iϕ + σ2

Iψ)
)

(n0 + n1 + n2 + n3)2
. (A.2.1)

Canceling the z1−α
2
− z1−πmin

and
√
2 terms on both sides, then squaring both sides3 yields

n1(σ
2
I1 + σ2

C1) + n2(σ
2
C2 + σ2

I2) + n3(σ
2
Iϕ + σ2

Iψ)

(n1 + n2 + n3)2

<
n0(2σ

2
C0) + n1(σ

2
I1 + σ2

C1) + n2(σ
2
C2 + σ2

I2) + n3(σ
2
Iϕ + σ2

Iψ)

(n0 + n1 + n2 + n3)2
. (A.2.1a)

We then write ξ = n1(σ
2
I1 + σ2

C1) + n2(σ
2
C2 + σ2

I2) + n3(σ
2
Iϕ + σ2

Iψ) and move the ξ term on the

3 The operation maintains the iff relation as the radicand is positive.
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RHS to the LHS:

ξ

(
1

(n1 + n2 + n3)2
− 1

(n0 + n1 + n2 + n3)2

)
<

n0(2σ
2
C0)

(n0 + n1 + n2 + n3)2
. (A.2.1b)

As the partial fractions on the LHS can be consolidated as

1

(n1 + n2 + n3)2
− 1

(n0 + n1 + n2 + n3)2
=

(n0 + n1 + n2 + n3)
2 − (n1 + n2 + n3)

2

(n1 + n2 + n3)2(n0 + n1 + n2 + n3)2

=
(n0 + 2n1 + 2n2 + 2n3)n0

(n1 + n2 + n3)2(n0 + n1 + n2 + n3)2
,

where the second step utilizes the identity a2 − b2 = (a + b)(a − b), we can write Inequal-

ity (A.2.1b) as

ξ

(
(n0 + 2n1 + 2n2 + 2n3)n0

(n1 + n2 + n3)2(n0 + n1 + n2 + n3)2

)
<

n0(2σ
2
C0)

(n0 + n1 + n2 + n3)2
. (A.2.1c)

We finally cancel the n0 and (n0 + n1 + n2 + n3)
2 terms on both sides, move the factor of two

to the LHS, and write ξ in its full form to arrive at(
n1(σ

2
I1 + σ2

C1) + n2(σ
2
C2 + σ2

I2) + n3(σ
2
Iϕ + σ2

Iψ)
)
· (n0 + 2n1 + 2n2 + 2n3)

2(n1 + n2 + n3)2
< σ2

C0 ,

which is identical to Inequality (6.12).

A.2.2 The second criterion

The master inequality We also show that the inequality ∆S3 −∆S2 > θ∗S3 − θ∗S2, where

∆S2 =
n1(µC1 − µI1) + n2(µI2 − µC2) + n3(µIψ − µIϕ)

n0 + n1 + n2 + n3

, (*6.6)

∆S3 =
n1(µC1 − µI1) + n2(µI2 − µC2) + n3(µIψ − µIϕ)

n1 + n2 + n3

, (*6.8)

θ∗S2 =(z1−α
2
− z1−πmin)

√
2
(
n0(2σ2

C0) + n1(σ2
I1 + σ2

C1) + n2(σ2
C2 + σ2

I2) + n3(σ2
Iϕ + σ2

Iψ)
)

(n0 + n1 + n2 + n3)2
,

(*6.7)

θ∗S3 =(z1−α
2
− z1−πmin)

√
2
(
n1(σ2

I1 + σ2
C1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)
)

(n1 + n2 + n3)2
, (*6.9)
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is equivalent to

n1 + n2 + n3

n0

√
2n0σ2

C0 + ξ >
n0 + n1 + n2 + n3

n0

√
ξ − η√

2z
, (*6.15)

where

η = n1(µC1 − µI1) + n2(µI2 − µC2) + n3(µIψ − µIϕ) ,

ξ = n1(σ
2
C1 + σ2

I1) + n2(σ
2
I2 + σ2

C2) + n3(σ
2
Iψ + σ2

Iϕ) , and

z = z1−α
2
− z1−πmin . (*6.14)

We start by writing ∆S3 −∆S2 > θ∗S3 − θ∗S2 in terms of η, ξ, and z as shown above:

η

n1 + n2 + n3

− η

n0 + n1 + n2 + n3

> z

√
2ξ

(n1 + n2 + n3)2
− z

√
2
(
n0(2σ2

C0) + ξ
)

(n0 + n1 + n2 + n3)2
. (A.2.2)

Pulling out the common factors on each side we have

η

(
1

n1 + n2 + n3

− 1

n0 + n1 + n2 + n3

)
>

√
2z

( √
ξ

n1 + n2 + n3

−
√
2n0σ2

C0 + ξ

n0 + n1 + n2 + n3

)
.

(A.2.2a)

Writing the partial fraction on the LHS of Inequality (A.2.2a) as a composite fractionwe have

η

(
n0

(n1 + n2 + n3)(n0 + n1 + n2 + n3)

)
>

√
2z

( √
ξ

n1 + n2 + n3

−
√

2n0σ2
C0 + ξ

n0 + n1 + n2 + n3

)
.

(A.2.2b)

We then move the composite fraction to the RHS and the
√
2z term to the LHS:

η√
2z

>
(n1 + n2 + n3) · (n0 + n1 + n2 + n3)

n0

( √
ξ

n1 + n2 + n3

−
√

2n0σ2
C0 + ξ

n0 + n1 + n2 + n3

)
, (A.2.2c)

and expand the brackets, canceling terms that appear on both the denominator and the nu-

merator of the resultant fractions in the RHS:

η√
2z

>
n0 + n1 + n2 + n3

n0

√
ξ − n1 + n2 + n3

n0

√
2n0σ2

C0 + ξ . (A.2.2d)
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Finally, we swap the position of the leftmost term with that of the rightmost term to arrive at

n1 + n2 + n3

n0

√
2n0σ2

C0 + ξ >
n0 + n1 + n2 + n3

n0

√
ξ − η√

2z
,

which is identical to Inequality (6.15).

The trivial case: RHS ≤ 0 We observe that the LHS of Inequality (6.15) is always positive,

and hence the inequality trivially holds if the RHS is non-positive. Here we show RHS ≤ 0

is equivalent to

n0 + n1 + n2 + n3

n0

θ∗S3 ≤ ∆S3 , (*6.16)

where

∆S3 =
n1(µC1 − µI1) + n2(µI2 − µC2) + n3(µIψ − µIϕ)

n1 + n2 + n3

, (*6.8)

θ∗S3 =(z1−α
2
− z1−πmin)

√
2
(
n1(σ2

I1 + σ2
C1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)
)

(n1 + n2 + n3)2
. (*6.9)

The can be done by writing RHS ≤ 0 in full:

n0 + n1 + n2 + n3

n0

√
ξ − η√

2z
≤ 0 , (A.2.3)

and moving the second term on the LHS to the RHS:

n0 + n1 + n2 + n3

n0

√
ξ ≤ η√

2z
. (A.2.3a)

We then add a factor of
√
2z/(n1 + n2 + n3) on both sides to get

n0 + n1 + n2 + n3

n0

√
ξ
√
2z

n1 + n2 + n3

≤ η

n1 + n2 + n3

. (A.2.3b)

Noting from Equations (6.8) and (6.9) that

∆S3 =
η

n1 + n2 + n3

and θ∗S3 =

√
2 · z ·

√
ξ

n1 + n2 + n3

,
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we finally replace the terms in Inequality (A.2.3b) with ∆S3 and θ∗S3 to arrive at

n0 + n1 + n2 + n3

n0

θ∗S3 ≤ ∆S3 ,

which is identical to Inequality (6.16).

The non-trivial case: RHS > 0 We finally tackle the case where the RHS of the master

inequality (Inequality (6.15)) is greater than zero. We show in this non-trivial case, the

master inequality

n1 + n2 + n3

n0

√
2n0σ2

C0 + ξ >
n0 + n1 + n2 + n3

n0

√
ξ − η√

2z
(*6.15)

is equivalent to

2σ2
C0

n0

>

(
θ∗S3 −∆S3 +

n1+n2+n3

n0
θ∗S3

)2
−
(
n1+n2+n3

n0
θ∗S3

)2
2z2

, (*6.17)

where

∆S3 =
n1(µC1 − µI1) + n2(µI2 − µC2) + n3(µIψ − µIϕ)

n1 + n2 + n3

, (*6.8)

θ∗S3 =(z1−α
2
− z1−πmin)

√
2
(
n1(σ2

I1 + σ2
C1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)
)

(n1 + n2 + n3)2
, (*6.9)

η =n1(µC1 − µI1) + n2(µI2 − µC2) + n3(µIψ − µIϕ) ,

ξ =n1(σ
2
C1 + σ2

I1) + n2(σ
2
I2 + σ2

C2) + n3(σ
2
Iψ + σ2

Iϕ) , and

z = z1−α
2
− z1−πmin . (*6.14)

We first multiply both sides of Inequality (6.15) with the fraction n0

√
2z

n1+n2+n3
to get

n1 + n2 + n3

n0

√
2n0σ2

C0 + ξ
n0

√
2z

n1 + n2 + n3

>

(
n0 + n1 + n2 + n3

n0

√
ξ − η√

2z

)
n0

√
2z

n1 + n2 + n3

.

(A.2.4)
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Cancelling terms on both sides of the fractions we have

√
2n0σ2

C0 + ξ
√
2z > (n0 + n1 + n2 + n3)

√
ξ
√
2z

n1 + n2 + n3

− n0
η

n1 + n2 + n3

. (A.2.4a)

Again noting the identities for ∆S3 and θ∗S3, i.e.,

∆S3 =
η

n1 + n2 + n3

and θ∗S3 =

√
2 · z ·

√
ξ

n1 + n2 + n3

,

we can replace the fractions on the RHS to obtain

√
2n0σ2

C0 + ξ
√
2z > (n0 + n1 + n2 + n3)θ

∗
S3 − n0∆S3 . (A.2.4b)

We then square both sides of Inequality (A.2.4b) and move the 2z2 term to the RHS:

2n0σ
2
C0 + ξ >

(
(n0 + n1 + n2 + n3)θ

∗
S3 − n0∆S3

)2
2z2

. (A.2.4c)

Note the squaring still allows the implication to go both ways as both sides of Inequal-

ity (A.2.4c) are positive. Based on the identity for θ∗S3, we observe ξ can also be written

as

ξ =
(n1 + n2 + n3)

2(θ∗S3)
2

2z2
. (A.2.4d)

Thus, we can group all terms with a 2z2 denominator by moving ξ in Inequality (A.2.4c) to

the RHS and substituting Equation (A.2.4d) into the resultant inequality:

2n0σ
2
C0 >

(
(n0 + n1 + n2 + n3)θ

∗
S3 − n0∆S3

)2 − ((n1 + n2 + n3)θ
∗
S3

)2
2z2

. (A.2.4e)

We finally normalize the inequality to one with unit ∆S3 and θ∗S3 to enable effective compar-

ison. We divide both sides of Inequality (A.2.4e) by n0
2:

2σ2
C0

n0

>

(
n0+n1+n2+n3

n0
θ∗S3 −∆S3

)2
−
(
n1+n2+n3

n0
θ∗S3

)2
2z2

, (A.2.4f)

and split the coefficient of θ∗S3 in the first squared term into an integer (1) and a fractional
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(n1+n2+n3

n0
) part to arrive at

2σ2
C0

n0

>

(
θ∗S3 −∆S3 +

n1+n2+n3

n0
θ∗S3

)2
−
(
n1+n2+n3

n0
θ∗S3

)2
2z2

,

which is identical to Inequality (6.17).
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A.3 Calculations Related to Dual Control in Personalisation

Strategy Experiment Designs

Similar to the appendix above, this appendix expands the exposition in Section 6.3.3 by pro-

viding the detailed algebraic manipulations of the inequalities involved. In the section, we

determine, under the context of designing experiments for personalisation strategies, the

sample size required for a dual control experiment setup (aka Setup 4) to emerge superior

to a simpler A/B test setup (Setup 3 in this case).

We recap themathematical arguments presented in the section. Under the evaluation frame-

work introduced in Chapter 6, we can establish superiority of an experiment setup via two

evaluation criteria. Setup 4 is superior to Setup 3 if at least one of the following inequalities

hold:

First criterion: ∆S4 > ∆S3 and θ∗S4 < θ∗S3 ,

Second criterion: ∆S4 −∆S3 > θ∗S4 − θ∗S3 ,

where ∆S3, θ∗S3, ∆S4, and θ∗S4 are that stated in Equations (6.8), (6.9), (6.10), and (6.11) re-

spectively – we will restate the equations below where appropriate.

We showed in themain text (Section 6.3.3) that θ∗S4 > θ∗S3 always holds, and hence Setup 4will

never be superior to Setup 3 under the first criterion. We thus focus on the second criterion

∆S4 −∆S3 > θ∗S4 − θ∗S3 and show

1. The criterion ∆S4 −∆S3 > θ∗S4 − θ∗S3 is equivalent to Inequality (6.20).

By applying various simplifying assumptions on the group response variances (i.e. the σ2-

terms) and the group sample sizes (i.e. the n-terms), we also show:

2. Assuming only the σ2-terms are similar inmagnitude, we can express the RHS of Inequal-

ity (6.20) as Expression (6.21);

3. Assuming only the n-terms are similar in magnitude, we can express the LHS of Inequal-

ity (6.20) as Expression (6.22); and
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4. Assuming both the σ2-terms and the n-terms are similar in magnitude, Inequality (6.20)

is approximately equivalent to Inequality (6.23).

We will restate all Inequalities and Expressions in full below where appropriate. Note the

appendix only deals with the detailed algebraic manipulation. We refer readers back to Sec-

tion 6.3.3 in the main text for the interpretations of and the insights from the resultant in-

equalities.

A.3.1 The master inequality

We first show the criterion ∆S4 −∆S3 > θ∗S4 − θ∗S3, where

∆S3 =
n1(µC1 − µI1) + n2(µI2 − µC2) + n3(µIψ − µIϕ)

n1 + n2 + n3

, (*6.8)

∆S4 =
n2(µI2 − µC2) + n3(µIψ − µC3)

n2 + n3

− n1(µI1 − µC1) + n3(µIϕ − µC3)

n1 + n3

, (*6.10)

θ∗S3 =(z1−α
2
− z1−πmin)

√
2
(
n1(σ2

I1 + σ2
C1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)
)

(n1 + n2 + n3)2
, (*6.9)

θ∗S4 =2 · (z1−α
2
− z1−πmin)

√
n1 (σ2

C1+ σ2
I1) + n3

(
σ2
C3+ σ2

Iϕ

)
(n1 + n3)2

+
n2 (σ2

C2+ σ2
I2) + n3

(
σ2
C3+ σ2

Iψ

)
(n2 + n3)2

,

(*6.11)

is equivalent to

n1
n2(µI2−µC2)+n3(µIψ−µC3)

n2+n3
− n2

n1(µI1−µC1)+n3(µIϕ−µC3)

n1+n3√
n1(σ2

C1 + σ2
I1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)

>
√
2z


√√√√√√√

2 ·

(
1 + n2

n1+n3

)2[
n1(σ

2
C1 + σ2

I1) + n3(σ
2
C3 + σ2

Iϕ)
]
+(

1 + n1

n2+n3

)2[
n2(σ

2
C2 + σ2

I2) + n3(σ
2
C3 + σ2

Iψ)
]

n1(σ2
C1 + σ2

I1) + n2(σ2
C2 + σ2

I2) + n3(σ2
Iϕ + σ2

Iψ)
− 1

 , (*6.20)

where z = z1−α
2
−z1−πmin . There are many terms involved in the inequality, and hence we first

simplify the LHS and RHS independently, and combine them in the final step.
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We start by writing the LHS (i.e., ∆S4 −∆S3) in full using Equations (6.8) and (6.10):

n2(µI2 − µC2) + n3(µIψ − µC3)

n2 + n3

− n1(µI1 − µC1) + n3(µIϕ − µC3)

n1 + n3

−

n1(µC1 − µI1) + n2(µI2 − µC2) + n3(µIψ − µIϕ)

n1 + n2 + n3

. (A.3.1)

The expression can be rewritten in terms of multiplicative products between the n-terms and

the (difference between) µ-terms:

n1(µI1 − µC1)
[
− 1

n1+n3
+ 1

n1+n2+n3

]
+ n2(µI2 − µC2)

[
1

n2+n3
− 1

n1+n2+n3

]
+

n3µIψ
[

1
n2+n3

− 1
n1+n2+n3

]
+ n3µIϕ

[
− 1

n1+n3
+ 1

n1+n2+n3

]
+ n3µC3

[
− 1

n2+n3
+ 1

n1+n3

]
. (A.3.1a)

We then extract a 1
n1+n2+n3

term from Expression (A.3.1a):

1

n1 + n2 + n3

[
n1(µI1 − µC1)

(
− n1+n2+n3

n1+n3
+ 1
)
+ n2(µI2 − µC2)

(
n1+n2+n3

n2+n3
− 1
)
+

n3µIψ
(
n1+n2+n3

n2+n3
− 1
)
+ n3µIϕ

(
− n1+n2+n3

n1+n3
+ 1
)
+ n3µC3

(
− n1+n2+n3

n2+n3
+ n1+n2+n3

n1+n3

)]
.

(A.3.1b)

This allows us to perform some cancellation with the RHS, which also has a 1
n1+n2+n3

term,

in the final step. Noting

n1 + n2 + n3

n1 + n3

= 1 +
n2

n1 + n3

and n1 + n2 + n3

n2 + n3

= 1 +
n1

n2 + n3

,

we can write the Expression (A.3.1b) as

1

n1 + n2 + n3

[
n1(µI1 − µC1)

(
− n2

n1+n3

)
+ n2(µI2 − µC2)

(
n1

n2+n3

)
+

n3µIψ
(

n1

n2+n3

)
+ n3µIϕ

(
− n2

n1+n3

)
+ n3µC3

(
− 1− n1

n2+n3
+ 1 + n2

n1+n3

)]
,

(A.3.1c)

and group the n1

n2+n3
and n2

n1+n3
terms to arrive at

1

n1 + n2 + n3

[
n1

n2 + n3

(n2(µI2 − µC2) + n3(µIψ − µC3))−

n2

n1 + n3

(n1(µI1 − µC1) + n3(µIϕ − µC3))

]
. (A.3.1d)
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We also write the RHS (i.e., θ∗S4 − θ∗S3) in full using Equations (6.9) and (6.11):

2z

√
n1(σ2

C1 + σ2
I1) + n3(σ2

C3 + σ2
Iϕ)

(n1 + n3)2
+
n2(σ2

C2 + σ2
I2) + n3(σ2

C3 + σ2
Iψ)

(n2 + n3)2

−
√
2z

√
n1(σ2

I1 + σ2
C1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)

(n1 + n2 + n3)2
, (A.3.2)

where z = z1−α
2
− z1−πmin . We then extract a

√
2z

n1+n2+n3
term from Expression (A.3.2) to obtain

√
2z

n1 + n2 + n3

√2

√√√√√ (
n1+n2+n3

n1+n3

)2 [
n1(σ

2
C1 + σ2

I1) + n3(σ
2
C3 + σ2

Iϕ)
]
+(

n1+n2+n3

n2+n3

)2 [
n2(σ

2
C2 + σ2

I2) + n3(σ
2
C3 + σ2

Iψ)
] −

√
n1(σ2

C1 + σ2
I1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)

 , (A.3.2a)

where n1+n2+n3

n2+n3
and n1+n2+n3

n1+n3
can also be written as 1 + n1

n2+n3
and 1 + n2

n1+n3
, respectively.

We finally combine both sides of the inequality by taking Expressions (A.3.1d) and (A.3.2a):

1

n1 + n2 + n3

[
n1

n2 + n3

(n2(µI2 − µC2) + n3(µIψ − µC3))−

n2

n1 + n3

(n1(µI1 − µC1) + n3(µIϕ − µC3))

]

>

√
2z

n1 + n2 + n3

√2

√√√√√ (
1 + n2

n1+n3

)2 [
n1(σ

2
C1 + σ2

I1) + n3(σ
2
C3 + σ2

Iϕ)
]
+(

1 + n1

n2+n3

)2 [
n2(σ

2
C2 + σ2

I2) + n3(σ
2
C3 + σ2

Iψ)
] −

√
n1(σ2

C1 + σ2
I1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)

 . (A.3.3)

Canceling the common 1
n1+n2+n3

terms on both sides, and dividing both sides by
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√
n1(σ2

C1 + σ2
I1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ) leads us to

n1
n2(µI2−µC2)+n3(µIψ−µC3)

n2+n3
− n2

n1(µI1−µC1)+n3(µIϕ−µC3)

n1+n3√
n1(σ2

C1 + σ2
I1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)

>
√
2z


√√√√√√√

2 ·

(
1 + n2

n1+n3

)2[
n1(σ

2
C1 + σ2

I1) + n3(σ
2
C3 + σ2

Iϕ)
]
+(

1 + n1

n2+n3

)2[
n2(σ

2
C2 + σ2

I2) + n3(σ
2
C3 + σ2

Iψ)
]

n1(σ2
C1 + σ2

I1) + n2(σ2
C2 + σ2

I2) + n3(σ2
Iϕ + σ2

Iψ)
− 1

 ,
which is identical to Inequality (6.20).

A.3.2 Simplifying RHS by assuming similar response variances

We now simplify the σ2-terms in Inequality (6.20) by assuming that they are similar in mag-

nitude, i.e.,

σ2
C1 ≈ σ2

I1 ≈ · · · ≈ σ2
Iψ ≈ σ2

G ,

and show the RHS of the inequality, i.e.,

√
2z


√√√√√√√

2 ·

(
1 + n2

n1+n3

)2[
n1(σ

2
C1 + σ2

I1) + n3(σ
2
C3 + σ2

Iϕ)
]
+(

1 + n1

n2+n3

)2[
n2(σ

2
C2 + σ2

I2) + n3(σ
2
C3 + σ2

Iψ)
]

n1(σ2
C1 + σ2

I1) + n2(σ2
C2 + σ2

I2) + n3(σ2
Iϕ + σ2

Iψ)
− 1

 ,
is approximately equal to

√
2z

[√
n1 + n2 + n3

n1 + n3

+
n1 + n2 + n3

n2 + n3

− 1

]
. (*6.21)

It is safe to apply the simplifying assumption as we know from the evaluation framework

specification that there are three classes of parameters in the inequality: the user group

sizes (n), the mean responses (µ), and the response variances (σ2). Among these three

classes of parameters, only the user group sizes have the potential to scale in any practical

settings, and thus we can effectively treat the means and variances as constants below.
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We begin by substituting σ2
G into Inequality (6.20):

n1
n2(µI2−µC2)+n3(µIψ−µC3)

n2+n3
− n2

n1(µI1−µC1)+n3(µIϕ−µC3)

n1+n3√
n1(2σ2

G) + n2(2σ2
G) + n3(2σ2

G)

>
√
2z

√2 ·
(
1 + n2

n1+n3

)2[
n1(2σ2

G) + n3(2σ2
G)
]
+
(
1 + n1

n2+n3

)2[
n2(2σ2

G) + n3(2σ2
G)
]

n1(2σ2
G) + n2(2σ2

G) + n3(2σ2
G)

− 1

 .

(A.3.4)

Moving the common 2σ2
G terms out and canceling the common terms in the RHS fraction we

have

n1
n2(µI2−µC2)+n3(µIψ−µC3)

n2+n3
− n2

n1(µI1−µC1)+n3(µIϕ−µC3)

n1+n3√
2σ2

G(n1 + n2 + n3)
>

√
2z

√2 ·
(
1 + n2

n1+n3

)2
(n1 + n3) +

(
1 + n1

n2+n3

)2
(n2 + n3)

n1 + n2 + n3

− 1

 . (A.3.4a)

We can already see the LHS of Inequality (A.3.4a) scales alongO(
√
n) – we will demonstrate

this result in greater detail in the next subsection.

Focusing on the RHS of the inequality, we express the squared terms as rational fractions

and divide each term in the numerator by the denominator to obtain

√
2z


√√√√2

[(
n1 + n2 + n3

n1 + n3

)2
n1 + n3

n1 + n2 + n3

+

(
n1 + n2 + n3

n2 + n3

)2
n2 + n3

n1 + n2 + n3

]
− 1

 . (A.3.5)

Canceling the common n1 + n2 + n3 terms leads to that presented in Expression (6.21):

√
2z

[√
n1 + n2 + n3

n1 + n3

+
n1 + n2 + n3

n2 + n3

− 1

]
.

A.3.3 Simplifying LHS by assuming similar sample sizes

We demonstrate the scaling relation between the LHS of Inequality (6.20) and the number of

users in each group by simplifying the n-terms (assuming n1 ≈ n2 ≈ n3 ≈ n) and showing
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the LHS of the inequality, i.e.,

n1
n2(µI2−µC2)+n3(µIψ−µC3)

n2+n3
− n2

n1(µI1−µC1)+n3(µIϕ−µC3)

n1+n3√
n1(σ2

C1 + σ2
I1) + n2(σ2

C2 + σ2
I2) + n3(σ2

Iϕ + σ2
Iψ)

is approximately equal to

√
n
(
(µI2 − µC2)− (µI1 − µC1) + µIψ − µIϕ

)
2
√
σ2
C1 + σ2

I1 + σ2
C2 + σ2

I2 + σ2
Iϕ + σ2

Iψ

. (*6.22)

Note that unlike the previous subsection, we do not make any simplifying assumptions on

the σ2-terms here. While the relationship (that the LHS of the inequality scales alongO(
√
n))

is evident by inspecting Inequality (6.20) (or its simplified version as Inequality (A.3.4a))

itself, we believe the simplification allows us to show the relationship more clearly.

We begin by substituting n into Inequality (6.20) to obtain

n
n(µI2−µC2)+n(µIψ−µC3)

n+n
− n

n(µI1−µC1)+n(µIϕ−µC3)

n+n√
n(σ2

C1 + σ2
I1) + n(σ2

C2 + σ2
I2) + n(σ2

Iϕ + σ2
Iψ)

>
√
2z


√√√√√√√

2 ·

(
1 + n

n+n

)2[
n(σ2

C1 + σ2
I1) + n(σ2

C3 + σ2
Iϕ)
]
+(

1 + n
n+n

)2[
n(σ2

C2 + σ2
I2) + n(σ2

C3 + σ2
Iψ)
]

n(σ2
C1 + σ2

I1) + n(σ2
C2 + σ2

I2) + n(σ2
Iϕ + σ2

Iψ)
− 1

 . (A.3.6)

Moving the common n-terms out and canceling them in the fractionswhere appropriate lead

to

√
n 1

2
[((µI2 − µC2) + (µIψ − µC3))− ((µI1 − µC1) + (µIϕ − µC3))]√

σ2
C1 + σ2

I1 + σ2
C2 + σ2

I2 + σ2
Iϕ + σ2

Iψ

>
√
2z


√√√√2 ·

(
1 + 1

2

)2
(σ2

C1 + σ2
I1 + σ2

C3 + σ2
Iϕ) +

(
1 + 1

2

)2
(σ2

C2 + σ2
I2 + σ2

C3 + σ2
Iψ)

σ2
C1 + σ2

I1 + σ2
C2 + σ2

I2 + σ2
Iϕ + σ2

Iψ

− 1

 ,

(A.3.6a)

where the LHS is identical to Expression (6.22) after canceling theµC3 terms in the numerator

and expressing the half in the numerator as a two in the denominator.
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It is clear that there are no n-terms left on the RHS of Inequality (A.3.6a), and hence the RHS

remains constant as shown in the previous subsection. To set up the inequality to demon-

strate the last result – that the number of users required for a dual control setup to emerge

superior is large – we further simplify the RHS of the inequality by rearranging the terms in

the square root:

√
n [((µI2 − µC2) + (µIψ − µC3))− ((µI1 − µC1) + (µIϕ − µC3))]

2
√
σ2
C1 + σ2

I1 + σ2
C2 + σ2

I2 + σ2
Iϕ + σ2

Iψ

>
√
2z


√√√√2

(
3

2

)2
(
1 +

2σ2
C3

σ2
C1 + σ2

I1 + σ2
C2 + σ2

I2 + σ2
Iϕ + σ2

Iψ

)
− 1

 . (A.3.6b)

A.3.4 Required number of users for dual control to emerge superior

We finally show that while Setup 4 could emerge superior to Setup 3 as the number of users

increase, the number of users required is large. We do so by assuming both the σ2- and n-

terms are similar in magnitude, i.e. σ2
C1 ≈ σ2

I1 ≈ · · · ≈ σ2
Iψ ≈ σ2

G and n1 ≈ n2 ≈ n3 ≈ n, and

show that Inequality (6.20) is approximately equivalent to

n >
(
2
√
12
(√

6− 1
)
z
)2 σ2

G

∆2
, (*6.23)

where ∆ = (µI2 − µC2)− (µI1 − µC1) + µIψ − µIϕ is the actual effect size difference between

Setups 4 and 3. Note we are determining when Setup 4 is superior to Setup 3 under the

second evaluation criterion – that the gain in actual effect is greater than the loss in sensitivity

– and thus assume ∆ is positive.

The approximate equivalence can be shownby substitutingσ2
G into Inequality (A.3.6b), which
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is Inequality (6.20) with the additional assumption that n-terms are similar in magnitude:4

√
n [((µI2 − µC2) + (µIψ − µC3))− ((µI1 − µC1) + (µIϕ − µC3))]

2
√

6σ2
G

>
√
2z

[√
2

(
3

2

)2(
1 +

2σ2
G

6σ2
G

)
− 1

]
. (A.3.7)

Noting the expression within the LHS square bracket is equal to ∆, we simplify the expres-

sion within the RHS square root, and move every non-n term to the RHS of the inequality to

obtain

√
n >

√
2z
[√

6− 1
] 2√6σ2

G

∆
. (A.3.7a)

As all quantities in the inequality are positive, we can square both sides and consolidate the

coefficients on the RHS to arrive at

n >
(
2
√
12
(√

6− 1
)
z
)2 σ2

G

∆2
,

which is identical to Inequality (6.23).

4 Alternatively, we can substitute n into Inequality (A.3.4a), which is Inequality (6.20) with the additional
assumption that the σ2-terms are similar in magnitude. Simplifying the resultant inequality would yield
the same result.
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