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Complex network analysis methods have been widely applied to nonlinear systems, but applica-
tions within fluid mechanics are relatively few. In this paper, we use a network for the Lagrangian
dynamics of the velocity gradient tensor (VGT), where each node is a flow state, and the probability
of transitioning between states follows from a direct numerical simulation of statistically steady and
isotropic turbulence. The network representation of the VGT dynamics is much more compact than
the continuous, joint distribution of a set of invariants for the tensor. We focus on choosing optimal
variables to discretize and classify the VGT states. To this end, we test several classifications based
on topology and various properties of the background flow coherent structures. We do this using
the notion of “community” or “module”, namely clusters of nodes that are optimally distinct while
also containing diverse nodal functions. The best classification based upon VGT invariants often
adopted in the literature combines the sign of the principal invariants, Q and R, and the sign of the
discriminant function, ∆, separating regions where the VGT eigenvalues are real and complex. We
further improve this classification by including the relative magnitude of the non-normal contribu-
tion to the dynamics of the enstrophy and straining stemming from a Schur decomposition of the
VGT. The traditional focus on the second VGT principal invariant, Q, implies consideration of the
difference between the enstrophy and strain-rate magnitude without the non-normal parts. The fact
that including the non-normality leads to a better VGT classification highlights the importance of
unclosed and complex terms contributing to the VGT dynamics, namely the pressure Hessian and
viscous terms, to which the VGT non-normality is intrinsically related.

I. INTRODUCTION

The use of symbolic dynamics to characterize fluid flow dates back to [28] who studied geodesics of surfaces of
negative curvature in terms of a sequence of symbols. Such an approach has been used relatively sparingly since, with
a few theoretical contributions [9], and applications in e.g., geosciences, where it helped characterize the interaction
between large-scale flow structures and natural, mobile boundaries from single-point velocity measurements [40, 41].
More generally, in nonlinear time-series analysis, symbolic sequence analysis has been employed to enhance the
signal-to-noise ratio [4] and to underpin the construction of discrete, complex network approaches to model continuous
systems [45] with applications in a range of fields, such as neuroscience [55], transport planning [60] and electrical power
provision [20]. In fluid dynamics, complex network approaches have been relatively under-utilized. Examples include
the investigation of vortex interaction in two-dimensional turbulence [47, 54] and the study of time irreversibility in
near-wall flows [30]. However, complex networks have typically not been used to study the dynamics of the turbulent
velocity gradient tensor (VGT) that is the focus of this work.

An open question in the study of the VGT is what is the best way to classify the flow dynamics into different
communities of flow states? Such a question has typically been considered from a continuum perspective, rather
than utilising discrete networks, and has typically been based upon defining communities of flow structures based on
topological properties of the VGT [51], although there have been noteworthy departures from the standard approaches
[43]. Classifying the VGT states in terms of its topology is a question that is closely related to the definitions of
coherent flow structure in turbulent flows [18, 22, 29, 62].

Examples of such classifications in nonlinear physics include typical investigations into cliques [7], communities [24],
or modules [27]. Those entail applying some form of partition to extract a set of discrete and non-overlapping “units”
that, when taken together include all nodes in a network (although the definition of clique due to [50] permits these
to be nested within a given module or overlap with more than one module). In general, modules provide information
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about the network structure at an intermediate scale between individual nodes (e.g. measures of node centrality [2, 25])
and the whole network (such as contrasting the exponential or power-law degree distributions of, respectively, the
Erdös-Rényi [23] and Barabási and Albert [1] networks). In this respect, eigenvector centrality [8] has an interesting
status as it is node-oriented while also encompassing information on how each node is connected to other significant
nodes in the network.

While in complex physics a search for communities in a network is typically empirical, in fluid dynamics, we
can formulate communities a priori, based on quantities classically considered in the literature, and then test their
effectiveness. This is the approach adopted in this paper: we first provide a background on the relevant invariants and
properties of the VGT, then use them to define communities in a complex network representing the VGT dynamics
and finally classify the resulting communities. We build the complex network and analyze the communities using
Lagrangian data from a direct numerical simulation of homogeneous, isotropic turbulence (HIT) [42].

II. THE DYNAMICS OF THE VELOCITY GRADIENT TENSOR

Our starting point is the continuity equation and Navier-Stokes momentum equation for an incompressible, New-
tonian fluid:

∇ · u = 0, (1)

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u, (2)

where u(x, t) is the three-dimensional velocity vector field, t is time, p(x, t) is the pressure field divided by the constant
density, and ν is the kinematic viscosity. The VGT is defined as A ≡ ∇u and its evolution equation is obtained by
taking the spatial gradient of (2):

∂A

∂t
+ (u · ∇)A = −

(
A2 − tr(A2)

3
I

)
−H + ν∇2A, (3)

where I is the identity matrix, tr(. . .) indicates the matrix trace, and H is the anisotropic pressure Hessian, H ≡
∇∇p− 2QI/3, with Q ≡ −tr(A2)/2 the second principal invariant of the VGT.
The relation between the trace of the pressure Hessian and the second principal invariants of the VGT highlights

the relevance of the VGT invariants, because of their dynamical relevance [5, 58], their role in parameterizing the
single-point statistics of the VGT is isotropic turbulence [17, 31] and importance for the classification of small-scale
flow states [53]. Following [13], we can use (3) to write down equations for the Lagrangian evolution of the VGT
principal invariants, Q and R ≡ −tr(A3)/3, in terms of each other, formally including the viscous effects and the
coupling between the VGT A, the deviatoric pressure Hessian H and viscous contributions ν∇2A:

dQ

dt
= −3R− ν tr

(
A∇2A

)
+ tr (AH) (4)

dR

dt
=

2

3
Q2 − ν tr

(
A2∇2A

)
+ tr

(
A2H

)
, (5)

where d/dt is the Lagrangian derivative taken along fluid particle trajectories. Neglecting the last two terms on
the right-hand side of (4) and (5) yields the restricted Euler model [12, 58], in which Q and R and thus the VGT
eigenvalues λi are given by the characteristic equation

λ3
i + Pλ2

i +Qλi +R = 0, (6)

where the first invariant, P , is zero in incompressible flow. The principal invariants, Q and R evolve independently
of the other VGT components but the restricted Euler model features a finite-time blowup for almost all initial
conditions, which is not observed in numerical simulations of the Navier-Stokes equations. This indicates that the
deviatoric pressure Hessian and viscous terms crucially enter the VGT dynamics by affecting the VGT magnitude
and alignments. In particular, the effects of the pressure and viscous terms reflect on the statistics of the strain-rate
tensor S and rotation-rate tensor Ω,

S =
1

2
(A+A∗) (7)

Ω =
1

2
(A−A∗) (8)
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Sign(∆) Sign(R) Topology
- - stable-node/saddle/saddle (SN/S/S)
- + unstable-node/saddle/ saddle (UN/S/S)
+ - stable-focus/stretching (SF/S)
+ + unstable-focus/ contracting (UF/C)

TABLE I. Topological flow states in the Q-R plane following [49].

together with their statistical alignments [57]. Formulating models for the dynamics that correctly capture the
complexities introduced by the non-local effects of the pressure Hessian has been the focus of a significant body of
work, e.g. [10, 16, 19, 21, 26, 33, 44, 61], as reviewed in [34, 46].

Here, we explicitly separate the normal part of A, related to its eigenvalues λi, and the non-normal part of A by
using a complex Schur transform [52]. This transform imposes a unitary form for the rotation vectors and moves the
non-normality, N , into the upper-triangular part of the central matrix of the transform, T , [36]

A = UTU∗, (9)

where T = Λ+N , Λ is a diagonal matrix of eigenvalues such that Λi,i = λi, and N is upper-diagonal. The normal
and non-normal contributions to the dynamics may be isolated according to, B = ULU∗ and C = UNU∗. The
principal invariants Q and R can be written purely in terms of strain and rotation components of B, while the
enstrophy, total straining and production terms all involve contributions from C [36]. Hence, we have

Q =
1

2

(
∥Ω∥2 − ∥S∥2

)
, (10a)

∥Ω∥2 = ∥ΩB∥2 + ∥ΩC∥2, (10b)

∥S∥2 = ∥SB∥2 + ∥ΩC∥2, (10c)

where ∥ . . . ∥ is the Frobenius norm. The equivalent expressions for the third invariant are

R = −det (S)− tr
(
Ω2S

)
, (11a)

−det (S) = −det (SB) + tr
(
Ω2

CSB

)
− det (SC) , (11b)

tr
(
Ω2S

)
= tr

(
Ω2

BSB

)
+ tr

(
Ω2

CSB

)
− det (SC) , (11c)

where det(. . .) is the determinant. This decomposition has been adopted to gain an insight into several properties
of turbulence including the reason for the preferred alignment between the vorticity vector and the eigenvector
corresponding to the intermediate eigenvalue of the strain rate tensor [36], and the the physics of the flow when
non-normality is maximal [37]. In addition, in spatially developing flows, it has been shown that ∥ΩC∥2 is crucial
for the dynamics before turbulence is fully established (i.e. regions where pressure Hessian contributions typically
dominate the kinetic energy budget) [3], and to characterize the role of in-rushing sweeps in boundary layers [6, 38].

In this study, we make use of the terms in (10) and (11) to provide a means to expand the possible number of
physical quantities that may be relevant for effective classification of the VGT dynamics. Hence, we form a network
where the nodal attributes consist of the signs of these terms as well as the relative rankings of their magnitudes.
That is, the rank-order of the three terms on the right-hand side of (10) all of which are non-negative, and then the
rank-order of the absolute values of the terms on the right-hand side of (11): |det (SB) |, |tr

(
Ω2

BSB

)
|, |tr

(
Ω2

CSB

)
|

and |det (SC) |. We refer to [39] for the definition of the network nodes. Given such a network, and with different
classifications making use of different combinations of terms as explained in the next section, we can then make use
of network community extraction techniques to determine the best classification for the Lagrangian dynamics of the
VGT.

III. A PRIORI NETWORK CLASSIFICATIONS

Rather than adopting a purely empirical approach to community network classification, our approach is to test
existing, physics-based classifications of the VGT dynamics, as well as extensions of them based on the decompositions
given in (10) and (11). In this section, we outline the basis for the ten primary classifications examined in this paper.

From the restricted Euler model given by the simplification of (4) and (5) by disregarding the last two terms on the
right-hand side of each of these equations, it follows that the dynamics on the Q-R plane [58, 59] are the logical starting
point for looking to define communities. This approach increased in popularity significantly following the work of [51]
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and [49] (see [46] for a review), as it provided a topological classification of four different flow configurations based on
the sign of R and the sign of the discriminant function, ∆,

∆ = Q3 +
27

4
R2, (12)

which separates the regions based on whether the eigenvalues for A are real or complex. These four topologies
are defined in Table I and while this provides a means to classify the flow into different, non-overlapping mod-
ules/communities, it is not the only approach possible on the Q-R plane. For example, a positive value of Q has
been used extensively as a criterion for coherent flow structure identification [22, 29], which follows from the physical
interpretation of Q > 0 as the excess enstrophy (10a). Hence, an alternative definition of modules/communities to
that in Table I would be one based on the signs of Q and R. Thus, we have:

C1 A classification into NM = 4 modules based on the sign of R and the sign of the discriminant function, ∆ [51];

C2 A classification into NM = 4 modules based on the sign of R and the sign of Q.

A superposition of C1 and C2 leads to a classification of the VGT in terms of six regions and it has been shown
that there are distinct behaviours in each of these regions even though they are not all topologically distinct [36].
Thus, our third classification is a hybrid of the first two:

C3 A classification into NM = 6 modules based on the signs of R, Q and ∆.

A departure from working in the Q-R plane was introduced by [43] who separated R into the terms on the right-hand
side of (11a). This leads to

C4 A classification into NM = 8 modules based on the sign of Q and then the signs of the strain production, −det(S)
and the enstrophy production, tr(Ω2S).

Considering our expansion of R in (11) it is clear that C4 permits the combined effect of the non-normal produc-
tion det (SC) and the interaction production tr

(
Ω2

CSB

)
to be included in analysis (while these terms cancel when

considering R). However, because both of these terms feature in both equations in (11) there is an innate correlation
between these variables. While the signs of the normal strain production, det (SB) and the normal enstrophy produc-
tion, tr

(
Ω2

BSB

)
are necessarily opposite where ∆ > 0, (with sgn[−det(SB)] = sgn[R]), there is no similar constraint

on the signs for the other two terms. Thus, one may extend C4 to form

C5 A classification with NM = 16 modules based on the signs of Q and R, with the latter setting the signs for
−det(SB) and tr(Ω2

BSB), and then the signs of −det(SC) and tr(Ω2
CSB).

Our final general classification type extends the logic [43] applied to R to also consider Q. From (10) we have the
non-normality, ∥ΩC∥2, in addition to the normal enstrophy, ∥ΩB∥2 and the normal straining, ∥SB∥2. As all these
terms are non-negative, it only makes sense to consider the sign of their differences as in (10a). Hence, with Q retained
to contrast the magnitudes of the normal enstrophy and normal strain, we may define

χ = ∥ΩC∥2 − ∥ΩB∥2 (13)

ξ = ∥ΩC∥2 − ∥SB∥2, (14)

and there will be six possible values for the signs of Q, χ and ξ when taken together (because if Q > 0 and χ > 0,
necessarily ξ > 0; likewise if Q < 0 and ξ > 0, necessarily χ > 0). If, in addition, we follow C3 and incorporate the
sign of ∆ into our analysis then there is a further constraint that restricts the number of combinations of signs that
can be observed because ∥ΩB∥2 = 0 when ∆ < 0, which imposes χ < 0. Hence, our sixth classification type is

C6 A classification with NM = 64 modules based on the signs of Q, χ, ξ, ∆, R, −det(SC) and tr(Ω2
CSB).

The introduction of the variables ξ and χ means that we may also extend the classifications C2 to C5 (all of which
involve Q) by introducing these two additional variables, which increases the number of modules by a factor of 3
where ∆ > 0 and by a factor of 2 where ∆ < 0. Thus, in addition to C1 to C6 we have four additional categories,
C2b-C5b, which extend C2-C5 by including ξ and χ.



5

IV. NETWORK MODULARITY AND PARTICIPATION

A. Construction of our network

A network or graph, G, without self-loops, comprises a set of N nodes (vertices), V, edges E , and weights, W. We
construct a network with N = 844 vertices based on the 64 states defined for C6 as well as the relative ranking of
the magnitudes of the four production terms in (11) [39]. Thus, we have approximately thirteen times as many nodes
as there are possible modules/communities in classification C6. The adjacency matrix, W , consists of zeros along
the primary diagonal (because there are no self-loops) and then weights, wij based on the probability of transitioning
from node i to j, i.e. the flow changing from a state described by one node to a state described by another. These
transition probabilities were determined based on Lagrangian tracking of 273 tracers in a direct numerical simulation
of homogeneous isotropic turbulence (HIT) [42] with an initial separation of two Taylor microscales. Particles were
followed for 240 Kolmogorov times, τη at a resolution of 0.05τeta. The ten network classifications were then applied
to the 844-node network to determine the optimal partitioning of the flow states. Further details on the network
construction are provided in [39].

B. Modularity

The notion of a community or “module” within a network can be formalized to enable a quantitative analysis of
intermediate scale structure between that of the individual vertex and the network as a whole [27]. An important
principle to find optimal partitions has been to maximize the modularity [48], which for a given partition into NM

distinct modules is given by:

M ≡
NM∑
k=1

[
Sk

SW
− Dk

2SW

]
. (15)

Here NM is the number of modules,

SW =

N∑
i=1

N∑
j=1

Wij (16)

is the sum of all weights in the network, Sk is the sum of all weights over all nodes in module k

Sk =
∑

i∈Mk

∑
j∈Mk

Wij , (17)

where Mk is the set of all node indices in module k, and

Dk =
∑

i∈Mk

Di, (18)

is the module degree, given by the sum of the degrees Di =
∑N

j=1 Wij of all the nodes in module k. We normalized

W such that SW =
∑NM

k=1 Sk = 1. The nature of (15) is such that the second term within the bracket prevents a
maximization of Sk that leads to a single module corresponding to the whole network. In this paper, we adopted an
alternative approach to this maximization problem. Noting that pM (k) = Sk/SW is in the form of a probability, we
adopted an entropy approach, by employing the Boltzmann-Gibbs-Shannon entropy

E = −
NM∑
k=1

pM (k) log2 pM (k). (19)

This formalism intrinsically prevents an optimum corresponding to the whole network because NM = 1 gives E = 0.
While it is the case that ceteris paribus E grows with NM it will increase less steeply if further division into new
modules does not result in significant entropy increase. The entropy approach also has the useful property that for a
given NM , E is maximized when the total edge probabilities are equally distributed over all modules.
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Role Hub/non-hub Description
Ultra-peripheral non-hub ρi ∼ 0
Peripheral non-hub ρi ≤ 0.625
Connector non-hub 0.625 < ρi ≤ 0.8
Kinless non-hub ρi > 0.8
Provincial hub Node with a large degree

and ρi ∼ 0.3
Connector hub Node with a large degree

and 0.3 < ρi ≤ 0.75
Kinless hub ρI > 0.75

TABLE II. Classification of node function based on zi and ρi following [27] A non-hub has z < 2.5 while zi ≥ 2.5 corresponds
to a hub.

C. Participation

Optimizing the modularity does not distinguish between different forms of nodal function and the extent to which
these are represented within a given module. This can be investigated using the participation coefficient, which for
node i is defined as [27]

ρi = 1−
NM∑
k=1

(
Dik

Di

)2

, (20)

where

Dik =
∑

j∈Mk

Wij . (21)

Hence, if a vertex is only connected to other nodes in its own module, i ∈ Mk, then ρi = 0, while even connectivity
to all modules gives ρi → 1. Again, a probabilistic interpretation of ρi is possible if we define pD(i, k) = Dik/Di. As
noted by [11] this means that (20) may be interpreted as equivalent to a Gini coefficient, which is derived from the
Shannon entropy by expanding the logarithm and truncating to the leading term.

It was proposed by [27] to complement ρi with a metric for within-module connectivity based on the statistical
notion of a z-score. With D+

ik the variant of Dik that is restricted/conditioned to nodes in the same module, i.e. D+
ik =∑

j∈Mk
(Wij | i ∈ Mk), then

zi =
D+

ik −D+

ik

σD(k)
, (22)

where the overbar indicates the mean over all nodes in module k and the standard deviation of this set of nodes is
given by σD(k).
Based on a threshold applied to z it was then suggested that zi ≥ 2.5 was a hub node and zi < 2.5 was a non-hub.

Combining this threshold with ρi resulted in the seven-state classification given in Table II.

V. ANALYSIS

Fig. 1 shows the entropy, E from (19) as a function of NM , which is displayed on a base-2 logarithmic scale as many
of our classifications lead to NM being an integer power of two. What is clear from this maximization perspective
is that E saturates at large NM when the number of vertices per module becomes small. Indeed, E for C6 is lower
than for C5b despite the greater value of NM for the former. Direct comparisons for the same NM show that C2 is
a better classifier than C1, (i.e. Q is a more effective variable than ∆) and that C3b is a better classifier than C5
(i.e., it is more important to include the signs of χ and ξ than the signs of −det(SC) and tr(Ω2

CSB). The four lines
added to the plot illustrate the impact of adding χ and ξ to C2-C5 and the degree of improvement is very similar
for C3 and C4, is greatest for C2 to C2b and smallest for C5 to C5b, where E approaches its maximum. Noting
that C1 has the smallest value of E and C5b the largest, we can define a semi-normalized gradient as

dE
dNM

=
(E − EC1)/(EC5b − EC1)

log2(NM )
, (23)
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2 2.5 3 3.5 4 4.5 5 5.5 6

log
2
(N

M
)

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

C6C4b

C5

C4

C1
C2

C3

C2b

C3b C5b

FIG. 1. Values of the modularity entropy, E as a function of NM for each of the ten classifications. The lines connecting points
illustrate the entropy change from introducing χ and ξ. Values for the semi-normalized gradient (23) are stated next to each
point.

Type No. of nodes ⟨log10(DO
i )⟩ σ

[
log10(D

O
i )

]
Stable hub 44 -2.17 0.26
Non-stable hub 110 -2.70 0.25
Stable non-hub 346 -3.82 0.44
Semi-stable 1 non-hub 52 -3.43 0.30
Semi-stable 2 non-hub 55 -3.29 0.34
Non-stable non-hub 234 -3.17 0.32

841
All nodes 844 -3.34 0.60

TABLE III. Node types and their stability based on their probability of changing function over the different classifications, as
explained in the text, and the associated properties of DO

i for each type.

and as shown by the labels in Fig. 1, this is maximal for C3b (followed by C4b and then C2b). Hence, the favoured
classification is one with six regions based on the signs of Q, R and ∆, with the addition of χ and ξ to incorporate
the relative magnitude of ∥ΩC∥2.
Focusing on the individual vertices, Table III classifies the network nodes into hub or non-hub classes and then

further sub-divides them based on how consistent this was over the ten classifications. The mean and standard
deviation of the out-degree is also stated for each case (the out-degree is approximately normally distributed after a
logarithmic transformation). Three nodes were classified as hub or non-hub an equal number of times and therefore
excluded from this table. Three hundred and ninety vertices did not alter their classification from hub or non-hub
over all ten classifications. These are denoted as “stable” in Table III. Semi-stable type 1 nodes were those that
were the same for all classifiers except for one of the two with the greatest number of modules (either C5b or C6).
Semi-stable type 2 nodes were those that were the same for all classifiers except both C5b and C6; all of these cases
were non-hub nodes. Otherwise, the non-stable cases were classified as hubs or non-hubs the majority of times, but
the classifications that gave alternate results were not restricted to the high NM cases of C5b and C6.
Based on a t-test, all of the means quoted in the table are significantly different at the 1% significance level except
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  C5b    C6  C2b   C3b    C5    C4bC1     C2     C3      C4   C3c

(a) (b)

FIG. 2. Boxplots of the values of ρOi for the stable non-hubs and stable hubs (left and right of each pair, respectively) for the
ten described classifications are shown in (a) for increasing NM . Panel (b) shows the results for a further classification, C3c,
considered in the discussion section of this paper. The median is shown by a horizontal line in the box, extending from the
lower to the upper quartile. Whiskers extend for 1.5 times the interquartile range or until the limit of the data is attained.
Outliers are shown as crosses.

those for the two semi-stable non-hub node groupings (p = 0.03) as might be expected given the similar definition of
these two groupings. As there is close to a factor of 50 difference in the mean out-degree for the stable hubs compared
to the stable non-hubs and given that a large degree forms part of the description of a hub in Table II, then Table III
indicates that we can robustly discriminate between the stable hubs and stable non-hubs. Hence, we can use the ρi
values from Table II to classify these hubs and non-hubs into their different functions.

Fig. 2a shows boxplots of the participation coefficient based on the out-degree ρOi (there was no qualitative difference
if the ρIi , i.e. the equivalent term based on the in-degree were adopted instead) as a function of the ten classifications
(each pair of boxplots) and if the vertices were classified as a stable non-hub (left-hand box) or stable hub (right-hand
box) in Table III. For C1 and C2 virtually all the non-hub vertices are ultra-peripheral (ρOi ∼ 0) or peripheral nodes
(ρOi ≲ 0.625), but for C2b onwards, the upper whisker for the non-hubs extends beyond ρOi = 0.625, meaning that
some nodes have a connector functionality. For C1-C4 the great majority of hubs are of the provincial hub type
(ρOi ∼ 0.3), but C2b-C4b are much more likely to include connector hubs (0.3 < ρOi ≤ 0.75). The large number
of modules in the classifications C5b and C6 results in a dominance of connector hubs, with provincial hubs being
very rare. Classifications C4b, C5b and C6 have vertices approaching the kinless node categorisation (ρOi > 0.8),
while the kinless hub type was not observed for our network. Hence, classifications C2b-C4b, C4 and C5 feature
a favourable diverse functionality of the nodes. In particular, C3b is preferable not only from the viewpoint of the
modularity entropy (as in Fig. 1), but also for the diversity of the functionality of its nodes.

A. Fluid Mechanical Properties of Stable Hubs and Non-Hubs

Fig. 3 reports the features, in terms of the sign and ranking of the VGT invariants, for the stable hub nodes (black
bars), stable non-hubs (grey bars) and for all the nodes (white bars). All the terms used in classifications C1 to C3b
feature in panels (a) and (b), while the signs of the production terms, which feature in the remaining classifications
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FIG. 3. The proportion of all nodes (white), stable hubs (black) and stable non-hubs (grey) for different combinations of the
signs of Q, R, and ∆ indicated by ± subscripts, and the rank order of ∥ΩC∥2 (abbreviated using “C”) relative to the normal
enstrophy and normal straining when considered in descending order of magnitude are given in panels (a) and (b). Hence, “C2”
means that ∥ΩC∥2 is ranked second, and if Q > 0 then ∥ΩB∥2 is ranked first. Panels (c) and (d) give the signs of the classic
production terms and the non-normal production and interaction production, respectively. The order in which these terms are
considered is indicated in the top-left of each panel and then the relevant sign combinations are provided on the horizontal
axis.

are given in panels (c) and (d). Note that for compactness we state the rank order of ∥ΩC∥2 relative to ∥ΩB∥2 and
∥SB∥2, rather than using ξ and χ explicitly. Also, we do not give the signs of −det (SB) and tr

(
Ω2

BSB

)
as these are

opposite to one another for ∆ > 0, with the sign of the former given by the sign of R, which features in panels (a)
and (b).

Panel (a) focuses on the Q > 0 cases, and among these enstrophy-dominated nodes the stable non-hubs show very
similar relative frequencies of VGT invariant sign combinations as compared to all nodes. In contrast, stable hub nodes
have very distinct behaviour, which is not symmetrical in R, with strong non-normality when R < 0 (rnk

(
∥ΩC∥2

)
= 1

being more frequent) and lower non-normality where R > 0. This distinction highlights why classification C3b out-
performs C3 as it can capture that there are a greater number of hubs for Q > 0, R < 0 than Q > 0, R > 0 and also
that those hubs arise where the non-normality dominates the dynamics.

Panel (b) shows that stable hubs rarely occur where Q < 0 and ∆ > 0, and not at all if, in addition, R < 0.
Given the typical clockwise Lagrangian path around the Q-R plane, Q < 0, ∆ > 0, R < 0 is where vorticity is
first established (as the flow crosses the zero-discriminant line ∆ = 0 at R < 0, and the eigenvalues of A transition
from all being real to one real value and a conjugate pair, resulting in ∥ΩB∥2 > 0). This asymmetry in the VGT
behaviour concerning R explains why it is important for a classification to capture its sign. Panel (b) also shows that
the eigenvalues of A are real (∆ < 0), stable hubs are preferentially associated with ∥ΩC∥2 < ∥SB∥2, i.e. the C2 state
as the normal enstrophy is zero for ∆ < 0. For a Gaussian velocity gradient, the PDF in the ∆ < 0 region decays
with Q and is independent of R [17]. Classification C2 can capture the decay but misses the skewness, crucial for the
energy cascade and characterizing flows even at very low Reynolds numbers [15, 17, 32]. Indeed, this is sufficiently
extreme in the ∆ < 0, R > 0 region that synthetic statistical models that are more advanced than the Gaussian PDF,
and capture the marginal behavior for Q and R, cannot capture their joint behavior [35].

These results highlight why neither C1 nor C2 is sufficient for effective classification of the VGT dynamics since
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different signs of Q, R and ∆ correspond to dynamically different configurations of the VGT. Let us highlight two
examples of this in the following using the results in Fig. 3: Panel (a) shows that where ∆ > 0 and ∥ΩB∥2 > ∥SB∥2
the preference is for hubs to arise when non-normality is large. However, classification C1 groups the Q > 0 cases from
panel (a) with the ∆ > 0 cases in panel (b), thus conflating those configurations. Panel (b) shows that for R < 0, stable
hubs only arise significantly where normal enstrophy is zero and non-normality is small relative to normal straining
(the R−,∆−, C2 case). No stable hubs occur where normal enstrophy is non-zero but smaller than the normal straining
irrespective of the non-normality (the R−,∆+ cases for any of C1, C2, or C3). However, classification C2 conflates
the ∆+ and ∆− cases shown in panel (b).

While the occurrence of stable hubs displays marked asymmetries concerning the signs of the VGT invariants
(particularly the sign of R), stable non-hubs show a more symmetric behavior. Panel (b) in Fig. 3 indicates there is a
preferred state for the stable non-hubs, which is approximately symmetric in R, and arises where ∆ > 0 and ∥ΩC∥2
is the largest magnitude term. Hence, in two of the six regions defined by C3 where hubs arise only rarely (and only
at all for R > 0), non-hubs occur preferentially. Relative to the flow in general, Q < 0, ∆+, C1 for either sign of R is
the only state that leads to a preferential occurrence of non-hubs.

The last two panels in Fig. 3, (c) and (d), focus on the signs of the production terms. Given that the signs of
the normal enstrophy and normal straining are opposite (where the normal enstrophy is non-zero) with the sign
of the normal straining equal to the sign of R [36], we focus on the classical strain and enstrophy production in
(c) and the non-normal and interaction production in (d). The results on these panels are correlated due to the
decompositions (10) and (11), and show that stable hubs arise preferentially when all production terms are positive,
while the occurrence of stable non-hubs is independent of the signs of the production terms (the grey bars and white
bars are similar throughout these panels). Thus, for these stable hubs, −det (SC) > 0 and tr

(
Ω2

CSB

)
> 0 is sufficient

to give −det (S) > 0 and tr
(
Ω2S

)
> 0 even though, depending on the sign of R, one of the normal enstrophy

production or the normal strain production must be negative. The easiest way for this situation to arise is with
R > 0, imposing −det (SB) > 0, and ∆ < 0, which gives tr

(
Ω2

BSB

)
= 0. Panel (b) shows that in this situation,

stable hubs arise where ∥ΩC∥2 < ∥SB∥2, i.e. R+, ∆−, C2. Hence, the stable hubs with all positive production terms
are concentrated on the right Vieillefosse tail [58] and with minimal impact from the non-normality (these hubs are
interconnecting flow states that are dominated by normal straining behaviour [5, 14, 39, 59]).

By design, the part of the definition of the distinct nodes that did not feature in any of the classifications was
the relative magnitude of the four production terms on the right-hand sides of (11), to avoid the number of commu-
nities/modules tending to the number of nodes. Fig. 1 indicates that entropy “saturation” is arising by NM = 64.
However, given that the magnitude of the production terms does not feature as part of the classifications, and is
therefore not directly dependent upon them, it is interesting to determine if the stable hubs and non-stable hubs
exhibit clear differences concerning this aspect of the flow. This is illustrated in Fig. 4 where all twenty-four possible
rankings of the magnitudes of the four production terms are shown, with each panel featuring the six permutations
given that the normal strain production is ranked, respectively, first (a), second (b), third (c) and fourth (d). While
the stable non-hubs (grey bars) exhibit broadly similar characteristics to all nodes (white bars), the stable hubs (black
bars) strongly differ from the average behavior of all nodes. In particular, there is one instance in each of panels (a)
and (b), and two instances in (d) where there is a very strong excess probability of a stable hub arising. In panels
(a) and (b), stable hubs are characterized by the normal enstrophy production magnitude, |tr(Ω2

BSB)|, being the
smallest term. This configuration shows up most readily where ∆ < 0, all the eigenvalues of the VGT are real and
there is no local enstrophy. In both (a) and (b), |det(SC)| remains the second smallest term and the relative standing
of |det(SB)| and |tr(Ω2

CSB)| changes from first to second between panels (a) and (b). The instance on the second row
is of particular interest since one might assume that |det(SB)| > |tr(Ω2

CSB)| when |det(SB)| > |det(SC)|. However,
this is not the case, highlighting the crucial role played by the alignment between the normal straining eigenvectors
and the non-normal vorticity vector for these stable hubs. The stable hubs in Fig. 4d arise when the normal strain
production is the smallest in magnitude and the normal enstrophy production is the largest. This configuration occurs
when Q > 0 and the normal straining is not vanishing, as that might lead to |det(SC)| > |tr(Ω2

BSB)|. For the stable
hubs to be more common in the left-most case (‘4123’) rather than the second case (‘4132’) it should be the case
that the normal straining must be closely aligned with the normal vorticity compared to the non-normal vorticity. It
was shown by [36] (their Figure 17) that it is only where Q < 0,∆ > 0, R > 0 that there is a preferential alignment
between the eigenvectors of SB and ωC , and this is at a 45◦ angle. However, we know from Fig. 3b that stable hubs
rarely occur in this region (there are no stable hubs for R+, ∆+, C1 and only a small number for R+, ∆+, C2). In
contrast, where Q > 0, [36] found a very strong alignment between the eigenvector of either the most compressive
(where R > 0) or most extensive (where R < 0) eigenvalue of SB and the normal vorticity, ωB . Hence, the stable
hubs in Fig. 4d preferentially exhibit this strong alignment of the normal strain rate and vorticity and are associated
with vortical regions.
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FIG. 4. The proportion of all nodes (white), stable hubs (black) and stable non-hubs (grey) for each of the twenty-four
permutations of the rank order of the four production terms. This order is stated beneath each set of three bars (ranking in
descending order), with the order of the four terms stated in the top panel.

VI. DISCUSSION

The modularity entropy and participation coefficient reported in Fig. 1 and 2 suggests that the best classifier of the
VGT Lagrangian dynamics is C3b. Hence, beyond the sign of the principal invariants Q,R and the discriminant, ∆,
we do not need to explicitly consider the production terms featured in (12), in contrast to the expansion of the Q-R
plane by [43]. However, because both Q and R and, thus, ∆ may be written entirely in terms of the eigenvalues of
A, the tensor non-normality is excluded from consideration in classifications C1–C3. Thus, including ∥ΩC∥2 to give
C3b results in a significantly improved classification of the VGT dynamics.
However, Fig. 3b suggests that in terms of nodal function, there is no clear distinction between R < 0,∆ < 0

and R > 0,∆ < 0, with stable hubs occurring at an approximately equal frequency in these two regions and, in
both instances with a similar elevated frequency where ∥ΩC∥2 < ∥SB∥2. This raises the possibility that C3b can be
enhanced by simplifying from six to five regions in the Q-R plane by merging the regions where ∆ < 0 for either sign
of R (and then retaining differences in ξ and χ). This gives classification C3c with NM = 14 communities rather
than NM = 16. The modularity entropy of this new case is E = 2.832 compared to E = 2.975 for C3b. In addition,
inserting this value into (23) gives dE/dNM = 0.212, which is less than that for C3b (where dE/dNM = 0.228).
Furthermore, we have included C3c in panel (b) of Fig. 2 and there is no obvious change in nodal functionality in
terms of the boxplots for ρOi for the stable hubs and non-hubs. This would suggest that our original C3b classifier
is more effective. This is borne out in Fig. 5, which shows that for all nodes where there is a significant change,
C3c induces a loss of nodal diversity as stable hubs or non-hubs with a tendency to act as connectors in C3b are
peripheral under C3c. This can be seen by looking more closely at the two hubs that undergo the greatest change,
which are labelled (i) and (ii) in the figure. These are very similar in terms of the fluid dynamics they represent: Both
are where ∆ < 0, R < 0, with positive signs for −det(S), tr(Ω2S), −det(SC) and tr(Ω2

CSB), and with the interaction
production, |tr(Ω2

CSB)|, the largest magnitude of the production terms. A key distinguishing characteristic is the
proportion of the out-degree to flow states with different signs for ∆, R or Q (rather than to flow states with the same
signs). The two highlighted stable hub nodes had approximately 50% of the out-degree to the same ∆ < 0, R < 0
cases, with 25% to ∆ < 0, R > 0 and 25% to Q < 0,∆ > 0, R < 0 vertices. This is in marked contrast to the other
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FIG. 5. Values of the participation ρOi for classifications C3b and C3c with hubs shown as triangles and non-hubs as circles.
The labels highlight two individual hubs and the ellipse a group of nine non-hubs that are discussed further in the text.

two stable hubs in the ∆ < 0, R < 0 region, which had 88% of their out-degree to the ∆ < 0, R < 0 cases, with 4%
to ∆ < 0, R > 0 and 8% to Q < 0,∆ > 0, R < 0. In other words, the change from C3b to C3c no longer contrasts
those hubs that are key to the flow state transitions across the left Vieillefosse tail, gaining the flow local enstrophy
and, thus, vortical properties.

VII. CONCLUSION

Adopting an entropy form for the network modularity (19) and combining this with a consideration of nodal
participation (20)-(22), allows us to identify an effective classification for the Lagrangian dynamics of the velocity
gradient tensor (VGT). Such a classification, here denoted as C3b, first combines two well-known approaches, given
as C1 and C2, based on the signs of the VGT principal invariant, R, and discriminant, ∆, as well as on the signs
of the second and third invariants, Q and R, respectively. Then, rather than adopting this classification (denoted as
C3), it is beneficial to incorporate the non-normality of the VGT into the classification. The most effective direction
to take this non-normality into account is not that pursued by [43], who implicitly added the combined effect of
non-normal production and interaction production to the normal strain production and normal enstrophy production
(11). Instead, our results show it is more effective to establish the relative standing of ∥ΩC∥2 compared to the two
quantities that define Q, namely ∥ΩB∥2 and ∥SB∥2 (10), which we accomplish using the two quantities, ξ and χ,
defined in (14). Hence, the most effective classification according to the criteria presented here, consists of a three-
dimensional space. Two axes and six regions are defined in the Q-R plane, where all the terms can be written using the
VGT eigenvalues, while the third axis incorporates information not captured by the VGT eigenvalues. This is made
explicit using a Schur decomposition of the VGT, as in (9) and (10). Including the VGT non-normality turned out
to be key to obtaining an effective classification, and this is because it reflects crucial aspects of the VGT dynamics.
Following e.g., [12, 49, 58], several studies have produced maps for the VGT dynamics that reflect the three distinct
contributions in (4) and (5): the restricted Euler equations for Q and R, the viscous term and the part of the dynamics
due to the deviatoric part of the pressure Hessian [12, 19, 56, 58, 64]. Such studies have shown that the diffusive effect
of the viscous term is similar everywhere, pulling the flow towards the origin on the Q-R plane, while the deviatoric
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pressure Hessian introduces intricate dynamics, that is the focus of several modelling efforts [15, 19, 33, 61, 63]. The
inclusion of ∥ΩC∥2 provides a means to capture these non-local influences on the tensor in our discrete classification
of the VGT dynamics. Such influences introduce torques, which are reflected in the non-normal part of the VGT. The
resulting classification C3b differs from others based purely on the VGT topology [51] or on the production terms
[43], and it reflects the role of particular nodes that provide a means for the VGT to transition across different regions
on the Q-R plane [39].

Applying methods from complex networks theory [27, 48] to networks encoding the VGT dynamics can shed light
on its intricate time evolution and preferential configurations, for example, by extracting communities of VGT states
and studying their interaction. Namely, different nodes within a community can act as hubs or non-hubs, and those
hubs or non-hubs occur when certain fluid dynamical constraints are met. This one-to-one correspondence between
the network and the flow configurations constitutes a promising research direction. In general, using a discrete
network that allows for a comprehensive description of the VGT through a limited number of degrees of freedom is
a promising approach to better understand the VGT dynamics, for practical flow modelling and development of flow
control methods.
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