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Quantum spin Hall insulators have attracted significant attention in recent years. Understanding
the optical properties and spin Hall effect in these materials is crucial for technological advancements.
In this study, we present theoretical analyses to explore the optical properties, Berry curvature
and spin Hall conductivity of perturbed and pristine PbBiI using the linear combination of atomic
orbitals and the Kubo formula. Our calculations reveal that the electronic structure can be modified
using staggered exchange fields and electric fields, leading to changes in the optical properties.
Additionally, spin Berry curvature and spin Hall conductivity are investigated in terms of various
parameters. The results indicate that due to the small dynamical spin Hall conductivity, generating
an ac spin current in PbBiI requires the use of external magnetic fields or magnetic materials.

I. INTRODUCTION

In the realm of condensed matter physics, the emer-
gence of topological materials has ushered in a new
era of exploration, leading to the discovery of quantum
phenomena with transformative implications. Among
these materials, quantum spin Hall (QSH) insulators oc-
cupy a pivotal position, representing a paradigm shift in
the understanding of topologically nontrivial electronic
states [1]

The notion of a QSH insulator was first proposed
by Bernevig et al [2], reflecting a revolutionary break
from conventional electronic behavior by introducing the
concept of topological protection for electronic states.
These materials manifest insulating behavior in the bulk
but host robust conducting edge states, ushering in the
promise of dissipationless electronic transport and novel
spin-based functionalities [3–5].

Experimental investigations have validated the exis-
tence of QSH behavior in various material platforms,
ranging from one- and two-dimensional systems to de-
signed heterostructures, expanding the horizons of poten-
tial applications of these topological electronic states [6–
9]. These experimental efforts have illuminated the intri-
cate interplay between topological and electronic proper-
ties at the heart of QSH insulators.

Recent advances in experimental techniques, ranging
from magneto-transport measurements to angle-resolved
photoemission spectroscopy (ARPES), have uncovered
a plethora of materials showcasing QSH behavior, ex-
panding the horizon of potential platforms for exploit-
ing the remarkable attributes of these topological ma-
terials [10, 11]. Such strides in materials discovery and
characterization open avenues for investigating the inter-
play between topological electronic states and intricate
quantum phenomena.

Understanding the implications of QSH insulators ex-
tends beyond fundamental physics, venturing into the
realm of practical applications in electronics and spin-
tronics. The chiral nature of the edge states in QSH
insulators offers the tantalizing prospect of dissipation-

less spin transport, holding promise for the development
of efficient spin logic and memory devices that harness
the spin degrees of freedom of electrons [12–15]. More-
over, the intricate interplay between the topological and
electronic properties of these materials underpins their
potential for realizing topologically protected quantum
computation and information processing [16, 17].
Recent theoretical advances have further underscored

the potential of QSH insulators in redefining the lim-
its of electronic and spin-based functionalities. The pro-
posals for utilizing edge states in QSH insulators have
opened up new avenues for achieving dissipationless spin
transport and laying the groundwork for advancements
in spin-based information processing and quantum com-
puting [18, 19]. The foundations set forth by the theo-
retical models have not only provided a roadmap for un-
derstanding the fundamental behavior of QSH insulators
but also set the stage for exploring their transformative
implications [20, 21].
Amid these developments, the experimental realiza-

tion of the quantum spin Hall effect and the identifica-
tion of materials exhibiting topologically nontrivial elec-
tronic states have paved the way for exploring unique
opportunities for harnessing their extraordinary proper-
ties [22, 23]. The ensuing synthesis of theory and exper-
iment has propelled the field of topological electronics
into a realm of unprecedented promise and potential.
Large Rashba spin splitting is found in materials

formed by heavy elements with strong intrinsic SOC such
as Bi, Pb, and W, among others [24–27] . To date, sev-
eral types of QSHIs have been reported, and recently it
proposed a honeycomb noncentrosymmetric QSHIs con-
sisting of IV, V, and VII elements and Rashba-like SOC
and unconventional spin texture. [28]
Until now, the properties of this material have been

well studied in the presence of various disturbances. It
has been shown that the thermodynamic properties of
this material can be adjusted by a staggered exchange
field [29]. Additionally, the effect of external fields on
the electronic and optical properties of this material has
also been well studied [30–32]
Spin Hall conductivity (SHC) is a fundamental prop-
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FIG. 1: (a) Side and top view of the geometry structure of the
PbBiI with Bi = V, Pb = IV, and I = VII by the buckled

parameter d ≃ 1.3 and Pb-I (h) and Bi-Pb bond lengths 1.35 and
3.04 Å respectively. (b) 3D band structure and contour plot of

ε3 − ε2 in the kx - ky plane.

FIG. 2: (a) Band structure of the pristine PbBiI along the kx
direction and ky = 0, and (b) total density of states and (c)

projected density of states for px, py and pz orbitals.

erty of materials that describes the ability of a material
to generate a spin current in response to an applied elec-
tric field. [33–36] This phenomenon arises from spin-orbit
coupling, where the motion of electrons interacts with
their spin degrees of freedom. In the presence of an elec-
tric field, electrons experience a transverse deflection due
to the spin-orbit interaction, leading to the generation of
a spin current perpendicular to the charge current. The
SHC tensor quantifies this effect and provides valuable
information about the spin dynamics in materials. Un-
derstanding and controlling the SHC is crucial for devel-
oping spintronic devices, such as spin-based transistors
and memory storage devices, which rely on the manipu-
lation of electron spins for information processing [37–39].

This paper begins by exploring the theoretical back-
ground in section II to gain insight into the properties of
PbBiI. Next, theoretical frameworks are applied to cal-
culate these properties in section III, and the results are
summarized in section IV.

II. THEORY

A. Pristine and perturbed Hamiltonian

The geometric structure of PbBiI is depicted in
Fig.1(a) with top and side views, consisting of Bi (V), Pb
(IV), and I (VII) elements. The lattice parameters are
approximately d ≈ 1.3 Å and h = 3.04Å. Our analysis
reveals that the highest valence comes from the px,y-Bi
orbitals, while the pz-Bi orbitals are linked to the lowest
conduction band. As a result, we can ignore the Pb and
I components in the electronic band structure of PbBiI.
Hence, we focus on L = 1 (p orbitals), S = 1/2 for spin
angular momentum, and J1,2 = {1/2, 3/2} for two spin
directions with jz = {−1/2, 1/2}. The Effective Hamil-
tonian in the basis of —J, ±1/2〉 can be expressed as [28]

H(k⃗) =

 −ε1/2 0 0 0
0 −ε1/2 0 0
0 0 +ε3/2 0
0 0 0 +ε3/2



+


ζ1/2k

2 iαR,1/2k− 0 γk−
−iαR,1/2k+ ζ1/2k

2 γk+ 0
0 γk− −ζ3/2k

2 0
γk+ 0 0 −ζ3/2k

2

 ,

(1)

The onsite energies are determined to be ε1/2 = 0.1685
eV and ε3/2 = 0.1575 eV while other parameters are ob-
tained from ab initio calculations [28] and are ζ1/2 =

0.008187 eV/Å2, ζ3/2 = 0.038068 eV/Å2, αR,1/2 =

3.0919 eV/Å, γ = −3.5853 eV/Å, where k± = kx ± iky ,

k =
√
k2x + k2y.

To introduce perturbations to the PbBiI system, ex-
ternal electric and magnetic exchange fields are applied
to the Hamiltonian. The magnetic proximity effect arises
from the induction of magnetic exchange fields in a ma-
terial when it is in close proximity to a ferromagnetic
or anti-ferromagnetic substrate. These induced fields in-
fluence the orbital angular momentum within the basis,
resulting in modifications to the Hamiltonian. Addition-
ally, an external electric field can be applied by plac-
ing the PbBiI between two voltage gates. The modified
Hamiltonian with perturbation terms is expressed as:

H′(k⃗) = H(k⃗) +HR +HI (2)

where HR and HI are the external staggered exchange
field and electric field contributions respectively and are
given by

HR = −|jz|
(

RJ1 0
0 RJ2

)
⊗ σz. (3)
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HI =

 −I/2 0 0 0
0 +I/2 0 0
0 0 −I/2 0
0 0 0 +I/2

 (4)

The induced exchange field Rji corresponds to the to-
tal angular momentum Ji (i = 1, 2) [40], Here,σz repre-
sents the z-component of the Pauli matrix, and I denotes
the electric field.

In Fig 2 (a), the band structure of the unperturbed
PbBiI system, obtained from Eq. 1, is illustrated. This
band structure comprises two valence and two conduction
bands, where the valence band at the Γ point is charac-
terized by the states {|J = 3/2, jz⟩}, and the effective
state for the conduction band is {|J = 1/2, jz⟩}. Con-
sequently, the states include {|1/2, 1/2⟩}, {|1/2,−1/2⟩},
{|3/2, 1/2⟩}, {|3/2,−1/2⟩}.

B. Density of states

By utilizing the Green’s function approach, the den-
sity of states (DOS) for the PbBiI can be computed. The
DOS can be determined by adding up over the first Bril-
louin zone (FBZ),

D(ε) = − 1

Ncπ

∑
k

ℑ[TrG(k⃗, ε)], (5)

where Nc indicates the number of atoms in each unit cell.
The non-interacting Green’s function matrix is acquired

through G(k⃗, ε) = [ε+ iη −H(k⃗)]−1, where η represents
the broadening factor

G(k⃗, ε) =

 G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44

 , (6)

Using Eqs. 5 and 6 total DOS reads

D0(ε) = − 1

Ncπ

∑
k

ℑ[G11 +G22 +G33 +G44]. (7)

One can calculate the projected density of states
straightforwardly as

PD0(ε) = − 1

π
ℑ
∑
α,α′

⟨Oi|α⟩Gαα′⟨α′|Oi⟩ (8)

C. Optical properties

The optical conductivity tensor, σ(ω), can be deter-
mined using Ohm’s law, which states that J = σE, where
J is the current density, E is the electric field, and σ is
the optical conductivity tensor.

σ =

(
σxx σxy

σyx σyy

)
, (9)

To calculate σ(ω), direction-dependent velocities are
required. The current operator definition along the ν
direction is jν = e∂H′/∂kµ

jν =


ζ1/2

∂k2

∂kν
iαR,1/2

∂k−
∂kν

0 γ ∂k−
∂kν

−iαR,1/2
∂k+

∂kν
ζ1/2

∂k2

∂kν
γ ∂k+

∂kν
0

0 γ ∂k−
∂kν

−ζ3/2
∂k2

∂kν
0

γ ∂k+

∂kν
0 0 −ζ3/2

∂k2

∂kν

 ,

(10)
Also the general form of the current operator is[41]

jν = − e

ℏ
∑
k

c†kckα
ν
k + i

e

ℏ
∑
k

c†kckβ
ν
k , (11)

that αν
k and βν

k are intra-band and inter-band
direction-depended velocities along the ν-direction.
By using linear response theory, the optical conductiv-

ity is given as

σνν′(ω) =
gs
ℏωS

∫
dteiωt⟨[jν(t), jν′(0)]⟩, (12)

where gs = 2 is the spin degeneracy, ω is photon fre-
quency and S is the 2D planar area.
Using Eq. 13, IOC is given as [41, 42]

σinter
νν′ (ω) = −i

gse
2

ℏ2S
∑
k

∑
J,J ′

∑
jzj′z

βJJ ′ν
jzj′z

(k⃗)βJJ ′ν′

jzj′z
(k⃗)

× 1

εJ
k⃗,jz

− εJ
′

k⃗,j′z

fJ
k⃗,jz

− fJ′

k⃗,j′z

ℏω − εJ
k⃗,jz

+ εJ
′

k⃗,j′z
+ iη1

.

(13)

where fJ
k⃗,jz

= 1/(1 + exp ((εJ
k⃗,jz

− µ0)/kBT )) is the

Fermi-Dirac distribution at a constant temperature T
and chemical potential µ = 0, εJ

k⃗,jz
represents the eigen-

value of the energy, η1 denotes the finite damping be-

tween the conduction and valence bands, and βJJ ′ν
jzj′z

(k⃗) =

⟨k⃗; J, jz|jν |⃗k; J ′, j′z⟩ and βJJ ′ν′

jzj′z
(k⃗) = ⟨k⃗; J ′, j′z|jν′ |⃗k; J, jz⟩

are velocities along the ν and ν′-directions respectively.
In the terahertz (THz) region, low-frequency photons

exhibit intra-band optical conductivity as the dominant
factor in their overall optical behavior. Intra-band tran-
sitions occur within specific bands, where Eq. 14 show
that |J, jz⟩ = |J ′, j′z⟩ and (fJ

k⃗,jz
− fJ′

k⃗,j′z
)/(εJ

k⃗,jz
− εJ

′

k⃗,j′z
)

must be interpreted as −∂fJ
k⃗,jz

/∂εJ
k⃗,jz

. This means

that the Drude-like conductivity described by [43] is
responsible for most of the low-frequency photon’s
optical behavior.
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σintra
νν′ =

1

S

ie2ℏ
ℏω + iη2

∑
q

αJν
q⃗,jz

αJν′

q⃗,jz
(
−∂fq⃗
∂εq⃗

) |J,jz . (14)

where η2 is the broadening width determined by scat-
tering or disorder in the conduction band and. In this
paper, we considered KBT = 0.05eV.
Another important optical property is the EELS. The

energy electron loss spectrum is a type of spectroscopy
technique used to study the electronic properties of ma-
terials. It involves measuring the energy lost by electrons
as they interact with a sample, which can provide infor-
mation about the electronic structure and bonding of the
material. The spectrum is generated by bombarding the
sample with high-energy electrons and then measuring
the energy distribution of the scattered electrons. The
resulting spectrum can reveal details about the valence
and conduction bands of the material, as well as the pres-
ence of impurities or defects. To calculate EELS we need
the dielectric function which is given by

ενν
′
(ω)− εr =

iσinter
νν′ (ω)

ωε0dBP
, (15)

where εr is the relative permittivity and dBP is the
PbBiI thickness. One can calculate the EELS as

Lνν′(ω) = −ℑ[ 1

ενν′(ω)
] =

ενν
′

2 (ω)

(ενν
′

1 (ω))2 + (ενν
′

2 (ω))2
.

(16)
We can determine the reflectivity by using the refrac-

tive index n and extinction coefficient κ and dielectric
function. We have

nνν(ω) =
1√
2

√
|ενν(ω)|+ ενν

′
1 (ω) (17)

and

κνν′(ω) =
1√
2

√
|ενν′(ω)| − ενν

′
1 (ω) (18)

that we have write ενν′ = ενν
′

1 + iενν
′

2 . Reflectivity can
be calculated as

Rνν′(ω) =
(1− nνν′(ω))2 + κ2

νν′(ω)

(1 + nνν′(ω))2 + κ2
νν′(ω)

(19)

D. Spin Hall conductivity

We calculate both static (ω = 0) and dynamic (ω ̸=
0) SHC using the Kubo formula and Berry curvatures.
The component σz

xy of the SHC tensor represents a spin
current flowing along the x-direction, polarized along the

FIG. 3: EELS obtained from Eq. 16 in presence of the staggered
exchange field with (a) RJ2 = RJ1 and (b) RJ1 = RJ2/3

.

z and an electric field applied along y-axis. Kubo formula
for SHC is[44, 45]

σSH(ω) =
e

ℏ
∑
k

∑
J,jz

fJ
k⃗,jz

Ωz
J′,j′z

(20)

where dynamic spin Berry curvature, velocity, and
spin-current operators are defined as

Ωz
J′,j′z

(k⃗, ω) =
∑
J′,j′z

ζJ,J
′,x

jz,j′z,z
(k⃗)βJ,J ′,y

jz,j′z
(k⃗)

(εJ
k⃗,jz

− εJ
′

k⃗,j′z
)2 − (ℏω + iη)2

. (21)

and the static spin Berry curvature definition is

Ωz
J′,j′z

(k⃗) =
∑
J′,j′z

2Im
ζJ,J

′,x
jz,j′z,z

(k⃗)βJ,J ′,y
jz,j′z

(k⃗)

(εJ
k⃗,jz

− εJ
′

k⃗,j′z
)2

. (22)

and

βJ,J,y
jz,j′z

(k⃗) = ⟨k⃗; J, jz|jy |⃗k; J ′, j′z⟩ (23)

ζJ,J,xjz,jz,z
(k⃗) = ⟨k⃗; J, jz|Sz

x |⃗k; J ′, j′z⟩ (24)

where Sz
x = ℏ

4{βΣz, jx}. Here β,Σz are the well-known
4× 4 Dirac matrices [45].

III. RESULTS AND DISCUSSION

Fig. 3 displays the EELS results under the influence of
a staggered exchange field for varying values of Rj1 and
Rj2 . The range considered for Rj1 is between 0 - 0.5eV
and Rj2 = Rj1 &Rj1/3. In the case whereRj2 = Rj1 (as
shown in Fig. 3(a)), distinct peaks are observed, and as
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FIG. 4: Color density of the EELS in the presence of (a) the
staggered exchange field with RJ2

= RJ1
, (b) RJ2

= RJ1
/3 and

(c) external electric field.

FIG. 5: Real and imaginary parts of the optical conductivity for
polarized light along the x-axis by introducing staggered exchange

field (a), (b) RJ2
= RJ1

and (c), (d) RJ2
= RJ1

/3

the strength of the field increases, the peaks shift towards
higher energies. Conversely, forRj2 = Rj1/3 (depicted in
Fig. 3 (b)), an opposite shift is observed for Rj1 = 0.5eV.
To explore the entire spectrum of staggered and electric
fields, contour plots of the EELS have been calculated
within a specific energy and external field range (refer
to Fig. 4). Notably, the majority of EELS behavior is
associated with RJ2

= RJ1
/3 and RJ1

> 0.1eV. Com-
paring Fig. 4 (a) and (c) reveals a similarity in the EELS
response to positive values when both a staggered ex-
change field (Rj2 = Rj1) and an external electric field is

FIG. 6: Color density of the real part of the optical conductivity
in subject to the external perturbation (a) staggered exchange

field ( RJ2
= RJ1

) and (b) electric field.

FIG. 7: Reflectivity of the perturbed PbBiI in the presence of
staggered exchange field (a) RJ2 = RJ1 and (b) RJ2 = RJ1/3

FIG. 8: Spin Berry curvature in the Brillouin zone around the Γ
point in the form of (a) color density and (b) surface plot.

applied.
The optical conductivity of PbBiI with external per-

turbations is computed using the Kubo formula. Due to
PbBiI’s isotropic nature, we focused on the optical con-
ductivity along the x-axis and omitted the y-axis. In the
pristine case, a peak in the real part of the optical con-
ductivity aligns with the band gap energy (see Fig. 5 (a)
and (c)). Adjusting the RJ1 and RJ2 parameters, alters
the optical conductivity and shift peaks energies. It is
evident that regardless of the RJ1 and RJ2 ratio, intro-
ducing a staggered exchange field leads to new peaks in
the real parts, with only their positions changing based
on different ratios. Furthermore, due to the Kramers-

FIG. 9: Calculated (a) real and imaginary parts of the dynamical
SHC, (b) statical SHC as a function of temperature, and (c)

statical SHC versus Fermi energy.
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Kronig relation, a dip in the imaginary parts occurs at
the peak’s energy in the real parts.

Figure 6 showcases a contour plot illustrating the op-
tical conductivity as a function of frequency, staggered
exchange field (Fig. 6 (a)), and electric field (Fig. 6 (b)).
It is evident from Fig. 6 (a) that the peak of the opti-
cal conductivity appears at an energy of 0.3eV. When
RJ1

= 0.3eV, it causes a shift towards lower energies
however, for RJ1

> 0.3eV this trend is reversed. The
external electric field also has a similar effect except in
negative magnitudes.

Reflectivity is defined as the ratio of the intensity of re-
flected light to the intensity of incident light, typically ex-
pressed as a percentage. It is a key parameter in numer-
ous applications, including optics, coatings, architecture,
and solar energy technologies, where controlling and op-
timizing the reflective properties of materials is essential
for achieving desired performance characteristics. Fig. 7
is related to the reflectivity in the presence of the stag-
gered exchange field. As we can see by increasing the
photon’s frequency we have an increase in the reflectivity
and the peaks appear. In addition by comparing Fig. 7
(a) and (b) we found that reflectivity is greater in case
RJ2 = RJ1 .
The 3D plot and color density of the spin Berry curva-

ture of the PbBiI in the Brillouin zone are shown in Fig. 8
(a) and (b) respectively. The Berry curvature is enhanced
in locations where the bands are close. According to the
figures, the Berry curvature is maximum around the Γ
point and decreases when moving away from this point.
This is due to existence of the band crossing near the Γ
point.

The SHC can be expressed in terms of the spin Berry
curvature (see Eq. 20). Fig. 9 (a) represents the dynami-

cal SHC of the PbBiI versus frequency. Both the real and
imaginary parts of the ac SHC are small. This suggests
that to generate an ac spin current, one needs to use a
magnetic field or magnetic materials.
The dependence of the dc SHC on temperature is il-

lustrated in Fig. 9 (b). however, a critical temperature
of kBT = 0.016eV is identified, beyond which the SHC
decreases sharply towards room temperature, reaching a
minimum for kBT > 0.025eV.
The Spin Hall conductivity of the PbBiI as a function

of Fermi energy is plotted in Fig. 9 (c). Our calculations
reveal that the SHC is minimal at EF = 0 and maximum
at EF = 0.2eV. This is because there are band crossings
induced by spin-orbit interactions at these specific ener-
gies.

IV. CONCLUSIONS

In summary, our analysis involved the computation of
the Berry curvature and spin Hall conductivity, along
with investigating the electronic and optical characteris-
tics of PbBiI under external influences. By introducing
staggered exchange and electric fields, we were able to
manipulate the optical conductivity and EELS of the Pb-
BiI. The peak of the real part of the optical conductivity
is observed at 0.3 eV, with perturbations causing a shift
towards lower energies. The Berry curvature reaches its
maximum near the Γ point where band crossing occurs,
diminishing significantly further away from this region.
Given the low dynamical spin Hall conductivity, a mag-
netic field is necessary to induce an ac spin current. Fur-
thermore, the dc spin Hall conductivity exhibits critical
behavior around kBT = 0.016eV.
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tunable band topology in atomic monolayers, Phys. Rev.
Lett. 125, 157402 (2020).

[41] C. H. Yang, J. Y. Zhang, G. X. Wang, and C. Zhang,
Dependence of the optical conductivity on the uniaxial
and biaxial strains in black phosphorene, Phys. Rev. B
97, 245408 (2018).

[42] M. Yarmohammadi, M. M. Nobahari, T. S. Tien, and
L. T. T. Phuong, Linear interband optical refraction
and absorption in strained black phosphorene, Journal
of Physics: Condensed Matter 32, 465301 (2020).
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