
Monotone Randomized Apportionment

JOSÉ CORREA, Universidad de Chile

PAUL GÖLZ, UC Berkeley, Cornell University

ULRIKE SCHMIDT-KRAEPELIN, TU Eindhoven

JAMIE TUCKER-FOLTZ, Harvard University

VICTOR VERDUGO, Pontificia Universidad Católica de Chile

Apportionment is the act of distributing the seats of a legislature among political parties (or states) in proportion

to their vote shares (or populations). A famous impossibility by Balinski and Young (2001) shows that no

apportionment method can be proportional up to one seat (quota) while also responding monotonically to

changes in the votes (population monotonicity). Grimmett (2004) proposed to overcome this impossibility by

randomizing the apportionment, which can achieve quota as well as perfect proportionality andmonotonicity—

at least in terms of the expected number of seats awarded to each party. Still, the correlations between the

seats awarded to different parties may exhibit bizarre non-monotonicities. When parties or voters care about

joint events, such as whether a coalition of parties reaches a majority, these non-monotonicities can cause

paradoxes, including incentives for strategic voting.

In this paper, we propose monotonicity axioms ruling out these paradoxes, and study which of them can

be satisfied jointly with Grimmett’s axioms. Essentially, we require that, if a set of parties all receive more

votes, the probability of those parties jointly receiving more seats should increase. Our work draws on a rich

literature on unequal probability sampling in statistics (studied as dependent randomized rounding in computer

science). Our main result shows that a sampling scheme due to Sampford (1967) satisfies Grimmett’s axioms

and a notion of higher-order correlation monotonicity.
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1 INTRODUCTION
Across modern democracies, a long-lasting ideal has been that the legislature should “be an exact

portrait, in miniature, of the people” it represents, in the words of John Adams [2]. Many democratic

systems aim to achieve this maxim by partitioning the seats of their legislature over political blocs in
proportion to the sizes of these blocs. Which blocs the countries consider differs: federal states divide

up seats between the member states (in proportion to state populations), whereas 85 countries

around the world divide up seats between political parties (in proportion to their vote shares) [1].

Mathematically speaking, however, both settings pose the same task of apportionment: dividing
a fixed number ℎ ∈ N of seats across 𝑛 blocs in proportion to the blocs’ sizes. For the sake of

exposition, we use the language of apportionment over parties throughout this paper, but our work

equally applies to other apportionment settings.

Though it sounds almost trivial, the question of how to proportionally apportion seats possesses

surprising mathematical and political complexity. The cause of this complexity is the indivisibility

of seats— if a party receives 8.4% of the votes and hence deserves 8.4 out of ℎ = 100 seats, should

it receive 8 or 9, or even some other number? Since the 18th century, political luminaries and

mathematicians have devised various apportionment methods, i.e., functions that take in the number

of votes received by all parties and the legislature size ℎ, and return how many seats are to be

filled by each party. Which of these methods should be used has led to intense debate, which often

revolved around the methods’ mathematical properties and actively involved mathematicians [31].

Take, for example, Hamilton’s method, the apportionment method put forward by the first US

secretary of the treasury, Alexander Hamilton. His method first calculates, for each party, the

number of seats it proportionally deserves (8.4, in the example above) and immediately assigns the

floor of this number to the party (e.g., ⌊8.4⌋ = 8), which is known as the party’s lower quota. Then,
the method goes through the parties in decreasing order of their residue (e.g., 8.4 − ⌊8.4⌋ = 0.4)

and assigns one more seat to each party until the desired house size ℎ is reached. One strength of

Hamilton’s method is that it satisfies quota: a party’s number of seats will never be below the floor

of its proportional entitlement or above its ceiling. On the flip side, this method exhibits paradoxical

non-monotonicities when the votes change. For instance, it violates population monotonicity, which
means that, when party 1 gains voters and party 2 loses voters from one election to the next, party 1

might lose a seat while party 2 gains one. Such monotonicity violations are not mere mathematical

inconveniences but led to Hamilton’s method being abandoned for the apportionment over US

states in 1901 [4, p. 42] and for the apportionment over parties in Germany in 2008 [16]. In fact, no

apportionment method is immune to such criticism: as Balinski and Young showed, any method

violates quota or population monotonicity [4].

In 2004, the mathematician Geoffrey Grimmett proposed a simple solution to this impasse:

allowing apportionment methods to be random [19]. Following his proposal, a party deserving 8.4

seats would be “rounded down” to 8 seats with 60% probability and “rounded up” to 9 seats with

40% probability. In general, Grimmett’s random apportionment of seats would always satisfy quota

ex post and ex-ante proportionality, which means that a party’s expected number of seats is perfectly
equal to its proportional share. This latter property implies that the expected number of seats

satisfies all reasonable forms of monotonicity, circumventing the Balinski–Young impossibility.

In designing such a randomized method, one must carefully correlate the rounding decisions

across parties to ensure that the total number of seats is indeed ℎ. Grimmett’s method, like Hamil-

ton’s, first awards each party its lower quota, and then (randomly) awards some parties one more

seat, as follows: Let the parties’ residues be 𝑝1, . . . , 𝑝𝑛 ∈ [0, 1), and let 𝑘 denote their sum, which is

the number of seats not yet awarded. We line up 𝑛 intervals on the number line without gaps, where

the 𝑖th interval has length 𝑝𝑖 . We then shift all intervals to the right by a random amount 𝑢, drawn
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uniformly from [0, 1), and round up exactly those parties whose interval contains an integer. Note

that there are exactly 𝑘 such integers in the interval [𝑢, 𝑘 + 𝑢), so this step will add 𝑘 seats, as re-

quired. Moreover, the process satisfies ex-ante proportionality since, no matter where some party 𝑖’s

interval is placed, the random shift 𝑢 will leave it containing an integer with probability exactly 𝑝𝑖 .

Beyond Grimmett’s method, the recipe “award lower quotas then round” opens up a vast space

of randomized apportionment methods, all of which satisfy quota and ex-ante proportionality. To

construct such a method, all we need is a rounding rule, i.e., a procedure that takes in residues

𝑝1, . . . , 𝑝𝑛 ∈ [0, 1) summing to some integer 𝑘 , and randomly selects a subset 𝑆 ⊆ {1, . . . , 𝑛} of size 𝑘
such that each 1 ≤ 𝑖 ≤ 𝑘 is contained in 𝑆 with probability 𝑝𝑖 . Fortuitously, this very setting has

been studied in mathematical statistics as 𝜋ps (“probability proportional to size”) sampling without
replacement [7, 33]. In fact, the seminal book by Brewer and Hanif [7] lists 50 such methods,

1
out

of which one, systematic sampling [23], yields exactly Grimmett’s method when applied as above.

Deville and Tille [13] and Hedayat et al. [21] even developed general frameworks for 𝜋ps sampling,

which capture infinitely many rounding rules and hence randomized apportionment methods. In

the past two decades, theoretical computer scientists have searched for the same kind of rounding

rules under the name of dependent randomized rounding [15], which have proved powerful tools in

algorithm design [e.g., 9, 25, 30]— frequently reinventing rules previously known in statistics [34].

But which randomized apportionment method out of this multitude should one choose, given

that all these methods satisfy quota and ex-ante proportionality?
2
Naturally, we define additional

desirable axioms and focus on those methods with good axiomatic properties. In this paper, we ask

Which monotonicity axioms are desirable in randomized apportionment? And can sam-
pling schemes from the statistics literature help us satisfy them?

1.1 A Motivating Example
We motivate our monotonicity axioms with the story of two elections on the island of Apportia.

Despite its modest population of 1100 people, Apportia boasts as many as six political parties, three

leaning left and three leaning right. Apportia’s parliament consists of just 11 legislators, elected

at-large using Grimmett’s randomized apportionment method. In the previous election, votes were

cast according to the middle columns in Table 1.

Table 1. Vote totals for six parties in two fictional elections.

Previous election New election

Party Ideology Votes Lower quota Residue Votes Lower quota Residue

1 left 110 1 0.1 110 1 0.1

2 right 270 2 0.7 (+20) 290 2 0.9

3 left 210 2 0.1 210 2 0.1

4 right 160 1 0.6 (+30) 190 1 0.9

5 left 70 0 0.7 (-60) 10 0 0.1

6 right 280 2 0.8 (+10) 290 2 0.9

Did the left-wing parties have a chance of forming a majority coalition? The proportional number

of votes needed to win a seat in Apportia is 1100/11 = 100. Thus, after Grimmett’s method had

awarded each party its lower quota, the left-wing coalition collectively controlled three seats (one

1
Though several only apply if 𝑘 = 2 or give inclusion probabilities only approximately equal to the 𝑝𝑖 .
2
Grimmett himself offers “no justification for [his] scheme apart from fairness and ease of implementation” [19].
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Previous

election

New

election

1 2 3 4 5 6

1 2 3 4 5 6

Fig. 1. Illustration of Grimmett’s method [19] for the two elections from Table 1. Intervals corresponding to
left-wing parties are gray. Dashed lines indicate the position of integers before the random shift.

from party 1, two from party 3, and none from party 5), the right-wing parties controlled five, with

three seats remaining unapportioned. Hence, a left-wing majority would have only been possible if

all remaining seats had gone to the left-wing parties. Upon inspection of the residues, however,

one can see that this was impossible: Assuming we order the parties numerically for Grimmett’s

algorithm (see Fig. 1, top), the intervals for parties 1 and 3 are contained within the same unit

interval, which means that it is impossible for both intervals to contain an integer, no matter the

random shift 𝑢. Since a left-wing majority would have required each of the three parties to receive

another seat, the right-wing parties obtained a majority with probability 1. (Arguably, this majority

is deserved since the right-wing parties received 65% of the votes.)

Nonetheless, this poor showing by the left-wing parties was discouraging for the voters of

party 5, which is why, for the next election, 60 of these voters switch to vote for right-wing parties:

20 voters switch to party 2, 30 to party 4, and 10 to party 6. (The right-most columns in Table 1

show the new tallies.) This shift leaves the lower quotas unchanged, but changes the residues. As

can be seen on the bottom of Fig. 1, as long as the random shift 𝑢 falls in the range (9/10, 1), all
three left-wing parties will get an extra seat. This is a paradox: a shift of voters from left-wing to

right-wing parties increased the chances of a left-wing government from zero to 1/10. In other

words, even though the vote shares of all left-wing parties weakly dropped and the vote shares of

all right-wing parties grew, the left-wing coalition might well profit from (and hence encourage)

this change. Our monotonicity axioms will rule out such paradoxes.
3

1.2 Our Approach and Results
Our first contribution is the introduction of a family of monotonicity axioms that can guide the

choice and future development of randomized apportionment methods. Unlike the work of Gölz et al.

[17], who lift classical monotonicity axioms into the randomized realm through a rather technical

notion of decomposition (see Section 1.3), our axioms are native to randomized apportionment and
their violation directly implies paradoxes and perverse incentives. Conceptually, our axioms express

that a set of parties that gains in votes while other parties lose votes should be entitled to higher

chances of simultaneous representation, not just to higher chances of representation for each party

separately, which is implied by ex-ante proportionality. Our axioms differ in which gains and losses

of votes they apply to, how they define simultaneous representation, and whether they consider

just a single, growing coalition or the comparison of a growing coalition with a shrinking one.

In Section 3, we begin our investigation in the domain of rounding rules. We find that not

only the systematic rounding underlying Grimmett’s method, but also pipage rounding and the

3
It may appear as if this example relied on the ordering of the parties, so a natural attempt to fix Grimmett’s algorithm

would be to randomize the order. In fact, Grimmett [19] explicitly proposes randomizing the order as “it seems desirable to

reduce to a minimum any correlations which depend on this extraneous element.” However, the reader may verify that

there was no order in which the left-wing parties could have reached a majority in the previous election. Thus, overcoming

this paradox will require new apportionment methods.
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rounding rule with maximum entropy (i.e., conditional Poisson sampling) violate simple forms of

our monotonicity, and hence admit the paradox described in the previous subsection.

One rounding rule from the statistics literature, however, bucks this trend: we show that Sampford
sampling [29] satisfies the axiom of selection monotonicity.

Theorem 1.1 (Sampford rounding satisfies selection monotonicity). Let ®𝑝, ®𝑝′ ∈ [0, 1)𝑛 be
two residue vectors, summing up to the same integer 𝑘 . Let 𝑇 be a set of 𝑘 parties such that 𝑝′𝑖 ≥ 𝑝𝑖 for
all parties 𝑖 ∈ 𝑇 and 𝑝′𝑖 ≤ 𝑝𝑖 for all 𝑖 ∉ 𝑇 . Then, the probability that Sampford sampling rounds up the
set 𝑇 is at least as high for ®𝑝′ as for ®𝑝 .

Proving this theorem reduces to establishing a clean inequality between the partial derivatives of

Sampford’s probability mass function with respect to changes in the residues. But establishing this

inequality is a considerable technical challenge because the Sampford’s probability-mass expression

contains a denominator that sums over all sets of 𝑘 parties. The key to our main result is establishing

a surprising equality between this denominator and an expected-value term related to a Poisson

trial, which allows us to bound and take derivatives of the denominator. Sampford sampling is

also the only rounding rule among those we consider that satisfies a two-coalition version of

selection monotonicity, which is logically incomparable to the axiom above. Because Sampford

sampling possesses the same properties that computer scientists have leveraged when applying

dependent randomized rounding (in particular, strong concentration properties like conditional
negative association [6]), replacing pipage rounding with Sampford sampling adds our monotonicity

axiom “for free”, which we believe has potential applications, for example in mechanism design.

Sampford sampling is the first, and only, rounding rule known to satisfy selection monotonicity,

and there are no other obvious contenders. As for general results about this axiom, we are able to

show that it implies that the rounding rule be Lipschitz continuous.

In Section 4, we return to the general apportionment setting and consider even stronger axioms

of monotonicity, which refer to the probability of coalitions exceeding arbitrary seat thresholds.

We show that, if the axioms are defined with respect to shifts in the raw vote counts (rather than

the parties’ share of votes), such axioms cannot be satisfied by any apportionment method. Even

when shifts are measured in terms of vote share, the two-coalition axiom is incompatible with a

natural regularity condition on randomized apportionment methods, namely, having full support.
Whether the most direct generalization of our axiom, threshold monotonicity, can be satisfied, is left

as an open question, though we conjecture that it is indeed satisfied by Sampford sampling. For the

restricted case where coalitions consist of only two parties, we show that threshold monotonicity

is satisfied by Grimmett’s method.

1.3 Related Work
Deterministic apportionment has been the subject of a deep axiomatic treatment, much of it

developed by Balinski and Young [see 4, 28]. Two of the most prominent axioms in this literature,

like the ones we develop here, are forms of monotonicity that rule out paradoxes [4, Ch. 5]:

population monotonicity, which we explained already, and house monotonicity, which states that

increasing the house size may not cause any party to lose seats. Under mild assumptions, population

monotonicity is incompatible with quota [4, Thm. 6.1] and is satisfied exactly by the widely used

family of divisor methods [4, Thm. 4.2]. Coalitions have mainly been considered in this literature in

the context of whether apportionment methods encourage multiple parties to merge into a single

party [3]; in randomized apportionment, merging leaves the coalition’s expected number of seats

unaffected. In addition, population monotonicity can be restated in terms of coalitions, in a way

that resembles our pairwise axioms: if all parties in coalition𝑇1 weakly gain in votes and all parties
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in𝑇2 weakly lose votes, then each party in𝑇1 must weakly gain seats or each one in𝑇2 must weakly

lose seats.

We have already touched on the literature on 𝜋ps sampling without replacement above. A central

motivation for this literature is the Horvitz–Thompson (HT) estimator [22], which we illustrate in a

toy example (loosely following [29]): Suppose we have farms numbered 1, . . . , 𝑛, and each farm 𝑖

has a known size of land 𝑥𝑖 , and an unknown yield 𝑦𝑖 . Following Horvitz and Thompson [22], we

can get an unbiased estimate of the total yield,

∑
1≤𝑖≤𝑛 𝑦𝑖 , by sampling 𝑘 farms with probability

proportional to their size 𝑥𝑖 and without replacement; summing up the yield per acre 𝑦𝑖/𝑥𝑖 for each
sampled farm 𝑖 , and multiplying the result by

∑
1≤𝑖≤𝑛 𝑥𝑖/𝑘 .4 The variance of this estimate, which

depends on how homogeneous the yield per acre is across farms, can be estimated from the same

sample [36] as long as the joint sampling probabilities of pairs of farms are known. As a result, the

𝜋ps literature scrupulously studied pairwise inclusion probabilities [e.g., 7], but paid little attention

to higher-order correlations, which gives our work a distinct lens on the topic.

By contrast, higher-order correlations have been very central to the study of dependent random-

ized rounding in computer science. As we explain in Section 3.4, typical applications of dependent

rounding lean heavily on concentration bounds. In a pursuit of stronger concentration results, re-

searchers on dependent rounding have leveraged increasingly strong notions of negative correlation,

ranging from the relatively weak negative cylinder dependence [26] over negative association [35]

to the strong Rayleigh property [5]. The axioms we pursue fundamentally differ from those above

in that they are relational rather than punctual [32], i.e., in that they constrain how the rounding

rule’s distributions relates across different residue vectors, rather than just imposing separate

constraints for each input. Whereas we only consider dependent rounding subject to a cardinality

constraint [15, 30], dependent rounding schemes have since been developed for more general

combinatorial constraints, including bipartite matchings [15] and matroids [10, 27].

A source of inspiration for our paper is the work by Gölz et al. [17], which, like us, aims to refine

the space of randomized apportionment methods by imposing monotonicity axioms in addition

to quota and ex-ante proportionality. The monotonicity axioms they arrive at, however, have a

different flavor from ours: They say that a randomized apportionment method satisfies population

monotonicity (respectively, house monotonicity) if it can be represented as a probability distribution

over deterministic apportionment methods satisfying population monotonicity (respectively, house

monotonicity). These axioms can be interpreted as preventing paradoxes, but only in artificial

scenarios in which the votes or house size change after the randomization of the apportionment
has been performed. The authors show that population monotonicity is incompatible with quota,

but that house monotonicity can be guaranteed alongside quota and ex-ante proportionality. In

Appendix A, we show that house monotonicity is unlikely to be compatible with our axioms: no

apportionment method satisfying full support, and none of the methods we consider in this paper,

satisfy house monotonicity.

2 PRELIMINARIES
Throughout this paper, let [𝑛] B {1, . . . , 𝑛} denote a set of parties. For a set 𝑆 and natural number 𝑘 ,

we set

(
𝑆
𝑘

)
B {𝑇 ⊆ 𝑆 | |𝑇 | = 𝑘}. An apportionment method 𝑎 is a function that takes in the number

of votes 𝑣1, . . . , 𝑣𝑛 ∈ R≥0 for each party and house size ℎ, and returns a vector-valued random

variable 𝑎(®𝑣, ℎ) ∈ N𝑛 , summing to ℎ, which lists the number of seats awarded to each party. For a

fixed vector of votes ®𝑣 and a house size ℎ, we denote party 𝑖’s standard quota (i.e., its proportionally

4
A simpler estimator would sample 𝑘 farms uniformly at random, add up their yields 𝑦𝑖 , and multiply the sum by 𝑛/𝑘 . This
estimator is also unbiased but can have much higher variance because it often misses large farms with high yield.
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deserved share of seats) by 𝑞𝑖 B ℎ 𝑣𝑖/
∑

𝑗∈[𝑛] 𝑣 𝑗 and its residue by 𝑝𝑖 B 𝑞𝑖 − ⌊𝑞𝑖⌋. We will only

consider apportionment methods that satisfy the following two axioms of Grimmett [19]:

Quota. For any ®𝑣, ℎ, the number of seats awarded to party 𝑖 is always ⌊𝑞𝑖⌋ or ⌈𝑞𝑖⌉ ex post.
Ex-ante proportionality. For any ®𝑣, ℎ, the expected number of seats awarded to party 𝑖 equals 𝑞𝑖 .

Similarly, a rounding rule 𝑟 is a function that takes in a vector of target probabilities ®𝑝 ∈ [0, 1)𝑛
for each party, which must sum up to an integer 𝑘 , and returns a set-valued random variable

𝑟 ( ®𝑝) ∈
([𝑛]
𝑘

)
, i.e., the values taken on by the random variable are sets of 𝑘 parties. In addition, 𝑟

must satisfy for each ®𝑝 and 𝑖 ∈ [𝑛] that 𝑖’s probability of being included in 𝑟 ( ®𝑝) equals its target
probability 𝑝𝑖 . We are overloading 𝑝𝑖 by using it both for general target probabilities and residues

induced by a vote profile ®𝑣 . We do so as they are mathematically equivalent objects and will play

the same role in Section 3 on rounding rules and Section 4 on apportionment rules, respectively. We

say that a rounding rule is continuous if it is a continuous as a function from its domain, thought of

as a subset of R𝑛 , to R(𝑛𝑘) .
We can easily translate apportionment methods into rounding rules and vice versa. On the one

hand, we can interpret any (quota and ex-ante proportional) apportionment method 𝑎 as a rounding

rule: for given target probabilities ®𝑝 summing to 𝑘 ∈ N, 𝑎( ®𝑝, 𝑘) is a random variable ranging over

integer vectors adding to 𝑘 . Quota ensures that this vector is binary and can thus be interpreted

as a random set of 𝑘 parties. Ex-ante proportionality ensures that the target probabilities are met.

Conversely, any rounding rule 𝑟 induces an apportionment method, as we have described in the

introduction: Given the votes ®𝑣 and house size ℎ, one computes the standard quotas 𝑞𝑖 and residues

𝑝𝑖 , awards each party its lower quota ⌊𝑞𝑖⌋, at which point some number 𝑘 =
∑

𝑖∈[𝑛] 𝑝𝑖 of seats
remain unallocated. By randomly awarding an extra seat to the 𝑘 parties in 𝑟 ( ®𝑝), one obtains an
apportionment method satisfying quota and ex-ante proportionality.

We define axioms for rounding rules and apportionment methods directly in Sections 3 and 4.

3 MONOTONICITY OF ROUNDING RULES
We begin our investigation of montonicity in the subsetting of rounding rules, for two reasons:

First, the rounding setting allows us to capture the paradox in our motivating example (Section 1.1)

in a more direct, circumscribed way: it is paradoxical that an exodus of voters from a bloc of parties

could increase the probability that exactly these parties receive an extra seat. The rounding setting
allows us to analyze this paradox— and bring it to an end—before considering in Section 4 more

expansive definitions that extend to situations in which the lower quotas, and thus the meaning of

getting an “extra seat,” change.

The second reason for starting in the rounding setting is the importance of this setting beyond

apportionment. In particular, our positive results in this section immediately contribute to the

understanding of 𝜋ps sampling, and have potential implications for dependent randomized rounding

in computer science, as we sketch in Section 3.4.

3.1 Axioms and Rounding Rules
We rule out the paradox from our introduction with the axiom of selection monotonicity, which
says that, if the target probabilities of all parties in some set 𝑇 go up, and the target probabilities of

all other parties go down, it should become (weakly) more likely that the set 𝑇 is rounded up:

Definition 3.1 (Selection monotonicity). Let ®𝑝, ®𝑝′ ∈ [0, 1)𝑛 be two residue vectors, summing up to

the same integer 𝑘 . Let 𝑇 be a set of 𝑘 parties such that 𝑝′𝑖 ≥ 𝑝𝑖 for all parties 𝑖 ∈ 𝑇 and 𝑝′𝑖 ≤ 𝑝𝑖 for

all 𝑖 ∉ 𝑇 . A rounding rule 𝑟 satisfies selection monotonicity if it always holds that

P𝑆∼𝑟 ( ®𝑝′ ) [𝑆 = 𝑇 ] ≥ P𝑆∼𝑟 ( ®𝑝 ) [𝑆 = 𝑇 ] .
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As a warm-up to our proof, we will also consider a variant which, like the axiom of population

monotonicity in classical apportionment theory, implies a disjunction: if a coalition 𝑇1 is growing

and a coalition 𝑇2 is shrinking, 𝑇1’s probability of being jointly rounded up should increase or 𝑇2’s
probability of being jointly rounded up should decrease:

Definition 3.2 (Pairwise selectionmonotonicity). Let ®𝑝, ®𝑝′ ∈ [0, 1)𝑛 be two residue vectors, summing

up to the same integer 𝑘 . Let 𝑇1,𝑇2 be two sets of 𝑘 parties (which might overlap) such that 𝑝′𝑖 ≥ 𝑝𝑖
for all parties 𝑖 ∈ 𝑇1 and 𝑝′𝑖 ≤ 𝑝𝑖 for all 𝑖 ∈ 𝑇2. A rounding rule 𝑟 satisfies pairwise selection

monotonicity if it always holds that

P𝑆∼𝑟 ( ®𝑝′ ) [𝑆 = 𝑇1] ≥ P𝑆∼𝑟 ( ®𝑝 ) [𝑆 = 𝑇1] or P𝑆∼𝑟 ( ®𝑝′ ) [𝑆 = 𝑇2] ≤ P𝑆∼𝑟 ( ®𝑝 ) [𝑆 = 𝑇2] .

Note that pairwise selection monotonicity is not implied by selection monotonicity, since the

target probabilities of parties outside of 𝑇1 and 𝑇2 are allowed to vary arbitrarily.

We now introduce several rounding rules from the literature on 𝜋ps sampling:

Systematic rounding [23]. We have already introduced this rule in the introduction, in the con-

text of Grimmett’s randomized apportionment method [19]. A random shift 𝑢 ∼ Uniform( [0, 1))
is drawn and party 𝑖 is selected if the interval [𝑢 +∑

1≤ 𝑗<𝑖 𝑝𝑖 , 𝑢 +
∑

1≤ 𝑗≤𝑖 𝑝𝑖 ) contains an integer.

Pipage rounding [13, 30].5 While at least two parties 𝑖, 𝑗 with target probabilities 0 < 𝑝𝑖 , 𝑝 𝑗 < 1

exist, fix the first two such parties. If 𝑝𝑖 + 𝑝 𝑗 ≤ 1, update 𝑝𝑖 ← 𝑝𝑖 + 𝑝 𝑗 , 𝑝 𝑗 ← 0 with probability

𝑝𝑖/(𝑝𝑖 +𝑝 𝑗 ), and update 𝑝𝑖 ← 0, 𝑝 𝑗 ← 𝑝𝑖 +𝑝 𝑗 with the remaining probability. Else, update 𝑝𝑖 ← 1,

𝑝 𝑗 ← 𝑝𝑖 +𝑝 𝑗 −1with probability (1−𝑝 𝑗 )/(2 − 𝑝𝑖 − 𝑝 𝑗 ), and update 𝑝𝑖 ← 𝑝𝑖 +𝑝 𝑗 −1, 𝑝 𝑗 ← 1with

the remaining probability. Once no such 𝑝𝑖 , 𝑝 𝑗 exist, select the 𝑘 parties with target probability 1.

Conditional Poisson rounding [11]. This rounding rule implements the probability distribution

over

([𝑛]
𝑘

)
with maximal entropy, subject to attaining the target probabilities. To implement this

rule algorithmically, one must determine the unique working probabilities 𝜋1, . . . , 𝜋𝑛 ∈ R≥0 such
that choosing each set 𝑇 ∈

([𝑛]
𝑘

)
with probability

∏
𝑖∈𝑇 𝜋𝑖 satisfies the target probabilities, which

can be achieved using Newton’s method [33].

Sampford rounding [29]. This rounding rule can be implemented with the following rejective

procedure: Randomly sample a party such that each party 𝑖 is selected with probability pro-

portional to 𝑝𝑖 ; call the sampled party 𝑖1. Then, randomly sample 𝑘 − 1 parties 𝑖2, . . . , 𝑖𝑘 , with
replacement from [𝑛], choosing each party 𝑖 with probability proportional to

𝑝𝑖
1−𝑝𝑖 . If the 𝑘

drawn parties are distinct, select them; else, start over. Sampford’s rounding rule can also be

implemented in a non-rejective, polynomial-time manner [18].

It is worth dwelling on how strange (or, in the words of Tillé [33], “very ingenious”) Sampford’s

rounding rule is. If, say, all 𝑘 units were drawn with probability proportional to
𝑝𝑖

1−𝑝𝑖 , each set 𝐴

of 𝑘 parties would be drawn with probability proportional to

∏
𝑖∈𝐴

𝑝𝑖
1−𝑝𝑖 , which means that this

would just be Conditional Poisson rounding, but for incorrect working probabilities 𝜋𝑖 =
𝑝𝑖

1−𝑝𝑖 . But,

whereas the computation of the correct working probabilities for conditional Poisson rounding has

no closed form, adjusting the selection probabilities for only one of the 𝑘 draws perfectly attains

the desired inclusion probabilities (which is nontrivial to show).

Though it is not a rounding rule in ourmodel, our analysis will frequently refer to Poisson sampling
(not to be confused with conditional Poisson sampling). Poisson sampling is not a rounding rule

because it samples sets of nondeterministic size: it simply performs, for each party 𝑖 , an independent

Bernoulli trial with success probability 𝑝𝑖 , and contains 𝑖 in its output if this trial is a success. Clearly,

the probability of sampling a set 𝐴 is just

∏
𝑖∈𝐴 𝑝𝑖

∏
𝑖∉𝐴 (1 − 𝑝𝑖 ).

5
This method was first defined in statistics as the pivotal method [13], but we use the term common in computer science.
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3.2 Rules that Violate Selection Monotonicity
The axiom of selection monotonicity might look so innocuous that one would take its satisfaction

for granted. For example, in Poisson sampling, an increase in the target probabilities of 𝑇 and a

decrease in the other parties’ target probabilities would obviously increase

∏
𝑖∈𝑇 𝑝𝑖

∏
𝑖∉𝑇 (1 − 𝑝𝑖 ),

the probability of sampling 𝑇 . Alas, Poisson sampling need not select the right number of parties.

Selection monotonicity would also be straightforward to show if we used the naïve working

probabilities 𝜋𝑖 = 𝑝𝑖/(1 − 𝑝𝑖 ) in conditional Poisson rounding. However, even though the selection

probabilities asymptotically converge to the targets [20, Thm. 7.3], they are not exactly met.
6

Even though these “almost rounding rules” easily satisfy selection monotonicity, most proper

rounding rules fail the axiom. Indeed, our example from the introduction already proved that

systematic rounding (even with a randomized ordering of parties) fails selection monotonicity, and

we give a similar counterexample for pipage rounding in Appendix B.

Proposition 3.3. Systematic rounding and pipage rounding violate selection monotonicity, even if
the order of parties is uniformly shuffled.

But, perhaps, this violation is to be expected in light of several characteristics common to

systematic and pipage rounding. Both rounding rules depend a lot on the ordering of parties, can

have strange correlations between the inclusion of pairs of parties, and tend to have probability

distributions supported on only few 𝑘-subsets of parties. Sharing none of these properties, and

being the “most natural” rounding rule given its maximum entropy characterization, conditional

Poisson rounding would seem like a promising candidate.

Still, to our own surprise, conditional Poisson rounding also violates selection monotonicity. How

we found the counterexample attests to how close conditional Poisson rounding gets to satisfying

the axiom: For the special case of 𝑛 = 6, 𝑘 = 3, we derived a polynomial over 𝑝1, . . . , 𝑝6 which is

negative exactly for the vectors of target probabilities that would certify a violation of selection

monotonicity. Out of 705 monomials, only a single one had a negative sign, which by setting the

target probabilities just right, at different orders of magnitude, could be made to overpower all

other monomials and render the term as a whole negative. We refer to Appendix B for the proof.

Proposition 3.4. Conditional Poisson rounding violates selection monotonicity.

A final reason to temper optimism about satisfying selection monotonicity all too easily is that a

strengthened axiom, in which the target probabilities outside 𝑇 may increase or decrease, cannot

be satisfied by any rounding rule. To see this, consider a scenario with four parties, which initially

all have residues 1/2 (thus, 𝑘 = 2 parties will be selected). By symmetry, we may assume that the

pair 𝑇 B {1, 2} is selected with probability at least 1/
(
4

2

)
= 1/6. Now let party 3’s target increase to

99% and party 4’s target decrease to 1%. Since party 3 must now almost always be one of the two

selected parties, the pair {1, 2} must be jointly selected much more rarely than 1/6, even though

their target probabilities weakly increased. This example shows that the distribution of target

probabilities outside of 𝑇 can necessitate major changes to the joint selection probability of 𝑇 .

3.3 Sampford Rounding is Monotone
We now more closely consider Sampford rounding, the rounding rule that finally satisfies our

selection monotonicity axioms. Let 𝑆 B 𝑟Sampford ( ®𝑝) be a random variable describing the set of

parties drawn by Sampford rounding. From the rejective sampling procedure described in Section 3.1,

6
These two processes are closely related: the Poisson sample, conditioned on selecting exactly 𝑘 parties, has the same

distribution as this naïve conditional Poisson rounding—hence the name.
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it follows that the probability of a set 𝐴 being selected is

P[𝑆 = 𝐴] =
∑

𝑖∈𝐴 𝑝𝑖
∏

𝑗∈𝐴\𝑖
𝑝 𝑗

1−𝑝 𝑗∑
𝐴′∈( [𝑛]𝑘 )

∑
𝑖∈𝐴′ 𝑝𝑖

∏
𝑗∈𝐴′\𝑖

𝑝 𝑗

1−𝑝 𝑗

. (1)

As an easy warm-up, and an indication that Sampford rounding is indeed well suited for mono-

tonicity, we first show that it satisfies the pairwise variant of selection monotonicity:

Theorem 3.5. Sampford rounding satisfies pairwise selection monotonicity.

Proof. Fix the target probabilities ®𝑝, ®𝑝′, the sample size 𝑘 , and the sets 𝑇1,𝑇2. Considering the

numerator of the probability mass term in Eq. (1), it is easy to see that the numerator of P[𝑆 = 𝑇1]
weakly increases when going from ®𝑝 to ®𝑝′, whereas the numerator of P[𝑆 = 𝑇2] weakly decreases.

Now, we distinguish two cases, depending on whether the denominator, which is common to

𝑇1 and 𝑇2, increases from ®𝑝 to ®𝑝′ or not. If it increases, then, since the numerator for 𝑇2 decreases,

the probability of sampling 𝑇2 must decrease, and we are done. Else, since the numerator for 𝑇1
increases, the probability of sampling 𝑇1 increases, concluding the proof. □

Whereas Sampford rounding satisfies pairwise selection monotonicity quite handily, we show in

Appendix B that the three other rounding rules all violate this axiom.

What made this proof so easy was that we barely had to engage with the denominator term, a

sum over exponentially many terms that indicates the probability of non-rejection for the sampling

procedure. Engaging with how the probability of non-rejection changes with the target probabilities

will be the major obstacle in proving our main result, that Sampford satisfies selection monotonicity.

For this, we slightly reformulate the probability-mass term, and continue Eq. (1):

P[𝑆 = 𝐴] =
∑

𝑖∈𝐴 (1 − 𝑝𝑖 )
∏

𝑗∈𝐴
𝑝 𝑗

1−𝑝 𝑗∑
𝐴′∈( [𝑛]𝑘 )

∑
𝑖∈𝐴′ (1 − 𝑝𝑖 )

∏
𝑗∈𝐴′

𝑝 𝑗

1−𝑝 𝑗

=

∑
𝑖∈𝐴 (1 − 𝑝𝑖 )

∏
𝑗∈𝐴 𝑝 𝑗

∏
𝑗∉𝐴 (1 − 𝑝 𝑗 )∑

𝐴′∈( [𝑛]𝑘 )
∑

𝑖∈𝐴′ (1 − 𝑝𝑖 )
∏

𝑗∈𝐴′ 𝑝 𝑗

∏
𝑗∉𝐴′ (1 − 𝑝 𝑗 )

=
𝑓 (𝐴)∑

𝐴′∈( [𝑛]𝑘 ) 𝑓 (𝐴
′) , (2)

where the second equality expands the fraction with

∏
𝑖∈[𝑛] (1 − 𝑝𝑖 ), and where we introduce the

shorthand 𝑓 (𝐴) for the term ∑
𝑖∈𝐴 (1 − 𝑝𝑖 )

∏
𝑗∈𝐴 𝑝 𝑗

∏
𝑗∉𝐴 (1 − 𝑝 𝑗 ), which will appear extensively

throughout this proof.

In the remainder of this section, we will prove Theorem 1.1, i.e., that Sampford rounding is

selection monotone. By symmetry, we will assume that 𝐴 = [𝑘]. A simple argument (Appendix C)

shows that it suffices to consider the special case where the target probability of one party in 𝐴

(w.l.o.g., party 1) infinitesimally grows and the target probability of one party outside of 𝐴 (w.l.o.g.,

party 𝑛) shrinks by the same infinitesimal amount. Since Sampford’s probability mass function is

differentiable, this reduces to the following inequality of its partial derivatives:

Proposition 3.6. Let ®𝑝 ∈ [0, 1)𝑛 such that
∑

𝑖∈[𝑛] 𝑝𝑖 = 𝑘 for some integer 1 ≤ 𝑘 ≤ 𝑛 − 1, 𝑝1 > 0,
and 𝑆 = 𝑟Sampford ( ®𝑝). Then, (

𝜕
𝜕𝑝1
− 𝜕

𝜕𝑝𝑛

)
P[𝑆 = [𝑘]] ≥ 0.

A crucial quantity throughout our proof will be 𝑠 B
∑

𝑖∈[𝑘 ] (1 − 𝑝𝑖 ), which measures how far the

residues in [𝑘] fall short of being 1. Alternatively, 𝑠 =
∑

𝑖∈[𝑘 ] (1 − 𝑝𝑖 ) = 𝑘 −∑
𝑖∈[𝑘 ] 𝑝𝑖 =

∑
𝑖∉[𝑘 ] 𝑝𝑖

can be seen as how far the residues outside of [𝑘] exceed 0.

Clearly, to bound the partial derivative from Proposition 3.6, we will eventually need to apply

the quotient rule, which requires us to understand and bound the numerator and denominator
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in Eq. (2), as well as their derivatives. While the numerator’s expression is fairly simple, the core

challenge lies in bounding the denominator (and its derivative), which sums up over exponentially

many sets 𝐴′ of parties.
We will overcome this hurdle in Lemma 3.8, which establishes a surprising equality between

this denominator term and the expected value of a natural variable defined over a Poisson trial.

Then, we dedicate Lemmas 3.9 to 3.11 to finding a concise expression of the derivative of the

denominator and clean bounds in terms of our parameter 𝑠 for both of these terms. This established

the foundation for proving Proposition 3.6.

For the remainder of the section (including all lemma statements) we fix ®𝑝 ∈ [0, 1)𝑛 as defined in

Proposition 3.6. To prove our key Lemma 3.8, we require the following auxiliary lemma:

Lemma 3.7. For all 0 ≤ ℓ ≤ 𝑛 − 1 it holds that∑︁
𝐴∈( [𝑛]ℓ+1)

𝑓 (𝐴) −
∑︁

𝐴∈( [𝑛]ℓ )
𝑓 (𝐴) = (𝑘 − ℓ)

∑︁
𝐴∈( [𝑛]ℓ )

∏
𝑗∈𝐴

𝑝 𝑗

∏
𝑗∉𝐴

(1 − 𝑝 𝑗 ).

Proof. We start by reformulating the summation as follows:∑︁
𝐴∈( [𝑛]ℓ+1)

𝑓 (𝐴) =
∑︁

𝐴∈( [𝑛]ℓ+1)

∑︁
𝑖∈𝐴
(1 − 𝑝𝑖 )

∏
𝑗∈𝐴

𝑝 𝑗

∏
𝑗∉𝐴

(1 − 𝑝 𝑗 )

=
∑︁

𝐴∈( [𝑛]ℓ+1)

∑︁
𝑖∈𝐴

𝑝𝑖

∏
𝑗∈𝐴\{𝑖 }

𝑝 𝑗

∏
𝑗∉𝐴\{𝑖 }

(1 − 𝑝 𝑗 ).

In the next step, we will relabel these sums over 𝐴 and 𝑖 . Specifically, we apply a bijection from

the set {(𝐴, 𝑖) | 𝐴 ∈
([𝑛]
ℓ+1

)
, 𝑖 ∈ 𝐴} to the set {(𝐴′, 𝑖′) | 𝐴′ ∈

([𝑛]
ℓ

)
, 𝑖′ ∉ 𝐴′}, which maps (𝐴, 𝑖) to

(𝐴 \ {𝑖}, 𝑖). To see that this is a bijection, observe that it has the inverse (𝐴′, 𝑖′) ↦→ (𝐴′ ∪ 𝑖′, 𝑖′).
Then, the previous summation is equal to

=
∑︁

𝐴∈( [𝑛]ℓ )

∑︁
𝑖∉𝐴

𝑝𝑖

∏
𝑗∈𝐴

𝑝 𝑗

∏
𝑗∉𝐴

(1 − 𝑝 𝑗 ),

where we omit primes for the sake of readability. Finally, we make use that

∑
𝑖∈[𝑛] 𝑝𝑖 = 𝑘 to get

=
∑︁

𝐴∈( [𝑛]ℓ )

(
𝑘 − ℓ + ℓ −

∑︁
𝑖∈𝐴

𝑝𝑖

) ∏
𝑗∈𝐴

𝑝 𝑗

∏
𝑗∉𝐴

(1 − 𝑝 𝑗 )

=
∑︁

𝐴∈( [𝑛]ℓ )
(𝑘 − ℓ)

∏
𝑗∈𝐴

𝑝 𝑗

∏
𝑗∉𝐴

(1 − 𝑝 𝑗 ) +
∑︁

𝐴∈( [𝑛]ℓ )

(∑︁
𝑖∈𝐴

1 − 𝑝𝑖

) ∏
𝑗∈𝐴

𝑝 𝑗

∏
𝑗∉𝐴

(1 − 𝑝 𝑗 )

= (𝑘 − ℓ)
∑︁

𝐴∈( [𝑛]ℓ )

∏
𝑗∈𝐴

𝑝 𝑗

∏
𝑗∉𝐴

(1 − 𝑝 𝑗 ) +
∑︁

𝐴∈( [𝑛]ℓ )
𝑓 (𝐴),

which concludes the proof. □

Lemma 3.7 provides us with the necessary tool to prove the reformulation of the denominator.

In the new expression, the right-hand side is reminiscent of the variance of the random variable

expressing the size of a set sampled via a Poisson trial (a Poisson binomial variable). However, the
expectation is taken over the absolute distance, rather than the squared distance, towards the mean.
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Lemma 3.8. Let 𝐵 ⊆ [𝑛] be a random variable distributed according to a Poisson trial, i.e., 𝐵 contains
each 1 ≤ 𝑖 ≤ 𝑛 independently with probability 𝑝𝑖 . Then,∑︁

𝐴∈( [𝑛]𝑘 )
𝑓 (𝐴) = E

[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
= 1

2
· E

[��|𝐵 | − 𝑘 ��] .
Proof. For the first equality, we simply write its left-hand side as a telescoping sum:∑︁

𝐴∈( [𝑛]𝑘 )
𝑓 (𝐴) =

∑︁
𝐴∈( [𝑛]𝑘 )

𝑓 (𝐴) −
∑︁

𝐴∈( [𝑛]
0
)
𝑓 (𝐴) (second term is 0)

=
∑︁

0≤ℓ≤𝑘−1

( ∑
𝐴∈( [𝑛]ℓ+1) 𝑓 (𝐴) −

∑
𝐴∈( [𝑛]ℓ ) 𝑓 (𝐴)

)
=

∑︁
0≤ℓ≤𝑘−1

(𝑘 − ℓ) ·
∑︁

𝐴∈( [𝑛]ℓ )

∏
𝑗∈𝐴

𝑝 𝑗

∏
𝑗∉𝐴

(1 − 𝑝 𝑗 ) (by Lemma 3.7)

=
∑︁

0≤ℓ≤𝑘−1
(𝑘 − ℓ) · P

[
|𝐵 | = ℓ

]
= E

[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
.

To show the statement’s second equality, recall that the first central moment of any random variable

is zero. Applying this to the variable |𝐵 | together with the fact that E
[
|𝐵 |

]
=

∑
𝑖∈[𝑛] 𝑝𝑖 = 𝑘 yields

that E
[
|𝐵 | −𝑘

]
= 0. Since E

[
|𝐵 | −𝑘

]
= E

[
1
{
|𝐵 | −𝑘 ≥ 0

}
·
(
|𝐵 | −𝑘

) ]
+E

[
1
{
|𝐵 | −𝑘 < 0

}
·
(
|𝐵 | −𝑘

) ]
,

this implies that

E
[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
= −E

[
1
{
|𝐵 | − 𝑘 < 0

}
·
(
|𝐵 | − 𝑘

) ]
= E

[
1
{
|𝐵 | − 𝑘 ≥ 0

}
·
(
|𝐵 | − 𝑘

) ]
.

The desired equality follows by observing that

E
[��|𝐵 | − 𝑘 ��] = E[1{

|𝐵 | − 𝑘 ≥ 0

}
·
(
|𝐵 | − 𝑘

) ]
+ E

[
1
{
|𝐵 | − 𝑘 < 0

}
·
(
𝑘 − |𝐵 |

) ]
= 2E

[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
,

which concludes the proof. □

Below, we provide a concise upper bound for the denominator in terms of our parameter 𝑠 ,

building upon the close connection to the variance of the random variable |𝐵 | pointed out above.

Lemma 3.9. Let 𝐵 be as in Lemma 3.8. Then, E
[��|𝐵 | − 𝑘 ��] ≤ 2𝑠 .

Proof. We start by upper bounding the relevant term by the variance of |𝐵 |. That is,
E
[��|𝐵 | − 𝑘 ��] ≤ E[ ( |𝐵 | − 𝑘 )2] = Var

(
|𝐵 |

)
,

where the first equality uses that |𝐵 | − 𝑘 is integer-valued and the second equality uses that the

expected value of |𝐵 | is 𝑘 . By bounding our term by the variance of |𝐵 |, we can exploit that |𝐵 | is
the sum of 𝑛 independent Bernoulli variables, where the variance of the Bernoulli variable with

bias 𝑝𝑖 is 𝑝𝑖 (1 − 𝑝𝑖 ). Therefore,

Var

(
|𝐵 |

)
=

∑︁
𝑖∈[𝑛]

𝑝𝑖 (1 − 𝑝𝑖 ) ≤
∑︁
𝑖∈[𝑘 ]
(1 − 𝑝𝑖 ) +

∑︁
𝑖∉[𝑘 ]

𝑝𝑖 = 2𝑠,

where the last equality follows from 𝑠 =
∑

𝑖∈[𝑘 ] (1 − 𝑝𝑖 ) =
∑

𝑖∉[𝑘 ] 𝑝𝑖 . □

We now express the derivative of the denominator and link it to the probability that a set sampled

from a Poisson trial is of size 𝑘 − 1. The proof, which we defer to Appendix D.1, takes the derivative

for all sizes ℓ of 𝐵 that are relevant in the term of the expectation, i.e., 0 ≤ ℓ ≤ 𝑘 − 1, and shows

that all terms besides one term for ℓ = 𝑘 − 1 cancel out.
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Lemma 3.10. Let 𝐵 be as in Lemma 3.8. Let �̂� ⊆ {2, 3, . . . , 𝑛 − 1} be distributed according to a
Poisson trial as above, but omitting parties 1 and 𝑛. Then,(

𝜕
𝜕𝑝1
− 𝜕

𝜕𝑝𝑛

)
E
[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
= (𝑝𝑛 − 𝑝1) P

[
|�̂� | = 𝑘 − 1

]
.

The last step before turning towards proving Proposition 3.6 is to provide a lower bound for the

derivative of the denominator, which we just calculated in Lemma 3.10. The key idea is to lower

bound the probability that |�̂� | is of size 𝑘 − 1 by the probability that �̂� equals exactly {2, . . . , 𝑘},
which we can then use to connect this probability to our parameter 𝑠 . At first sight, the bound

appears to be rather weak, e.g., when 𝑠 =
∑

𝑖∉[𝑘 ] 𝑝𝑖 >
1

2
, the bound is dominated by the trivial lower

bound of 0. However, we will only need this bound in the extreme case that 𝑠 < 𝑝1.

Lemma 3.11. Let �̂� be as in Lemma 3.10. Then,

P
[
|�̂� | = 𝑘 − 1

]
≥ 1 − 2𝑠

𝑝1 (1 − 𝑝𝑛)
.

Proof. One way in which |�̂� | could equal 𝑘 − 1 is if �̂� is exactly {2, . . . , 𝑘}. Thus,

P
[
|�̂� | = 𝑘 − 1

]
≥

∏
2≤ 𝑗≤𝑘

𝑝 𝑗

∏
𝑘+1≤ 𝑗≤𝑛−1

(1 − 𝑝 𝑗 ) =
∏

𝑗∈[𝑘 ] 𝑝 𝑗

∏
𝑘+1≤ 𝑗≤𝑛 (1 − 𝑝 𝑗 )

𝑝1 (1 − 𝑝𝑛)
=
P
[
𝐵 = [𝑘]

]
𝑝1 (1 − 𝑝𝑛)

.

We lower-bound P
[
𝐵 = [𝑘]

]
using a union bound. Specifically, we need to rule out that any of the

Bernoulli trials indexed 1 ≤ 𝑗 ≤ 𝑘 fails or that any of the Bernoulli trials indexed 𝑘 + 1 ≤ 𝑗 ≤ 𝑛

succeeds. Thus,

P
[
𝐵 = [𝑘]

]
≥ 1 −

∑︁
1≤ 𝑗≤𝑘

(1 − 𝑝 𝑗 ) −
∑︁

𝑘+1≤ 𝑗≤𝑛
𝑝 𝑗 = 1 − 2𝑠,

since 𝑠 =
∑

𝑖∈[𝑘 ] (1 − 𝑝𝑖 ) =
∑

𝑖∉[𝑘 ] 𝑝𝑖 . The claim follows by combining both inequalities. □

We are now ready to prove that the partial derivative of P[𝑆 = [𝑘]] is nonnegative. We start by

expressing the partial derivatives of the numerator of Equation (2), then apply the quotient rule and

finally distinguish the two cases 𝑠 ≥ 𝑝1 and 𝑠 < 𝑝1. The former case will require little additional

effort, while the latter requires the application of Lemma 3.9 and Lemma 3.11.

Proof of Proposition 3.6. Recall that we want to bound the partial derivatives of the term

𝑓 ( [𝑘])/∑
𝐴′∈( [𝑛]𝑘 ) 𝑓 (𝐴

′), where 𝑓 (𝐴) = ∑
𝑖∈𝐴 (1−𝑝𝑖 )

∏
𝑗∈𝐴 𝑝 𝑗

∏
𝑗∉𝐴 (1−𝑝 𝑗 ). We begin by computing

partial derivatives for the numerator 𝑓 ( [𝑘]):
𝜕
𝜕𝑝1

𝑓 ( [𝑘]) = 𝜕
𝜕𝑝1

∑
𝑖∈[𝑘 ]\1 (1 − 𝑝𝑖 ) ·

∏
𝑗∈[𝑘 ] 𝑝 𝑗

∏
𝑗∉[𝑘 ] (1 − 𝑝 𝑗 ) (3)

+ 𝜕
𝜕𝑝1

1 ·∏𝑗∈[𝑘 ] 𝑝 𝑗

∏
𝑗∉[𝑘 ] (1 − 𝑝 𝑗 ) − 𝜕

𝜕𝑝1
𝑝1 ·

∏
𝑗∈[𝑘 ] 𝑝 𝑗

∏
𝑗∉[𝑘 ] (1 − 𝑝 𝑗 )

=
∑

𝑖∈[𝑘 ]\1 (1 − 𝑝𝑖 ) ·
∏

𝑗∈[𝑘 ]\1 𝑝 𝑗

∏
𝑗∉[𝑘 ] (1 − 𝑝 𝑗 )

+∏
𝑗∈[𝑘 ]\1 𝑝 𝑗

∏
𝑗∉[𝑘 ] (1 − 𝑝 𝑗 ) − 2𝑝1

∏
𝑗∈[𝑘 ]\1 𝑝 𝑗

∏
𝑗∉[𝑘 ] (1 − 𝑝 𝑗 )

=
∑

𝑖∈[𝑘 ] (1 − 𝑝𝑖 ) ·
∏

𝑗∈[𝑘 ]\1 𝑝 𝑗

∏
𝑗∉[𝑘 ] (1 − 𝑝 𝑗 ) −

∏
𝑗∈[𝑘 ] 𝑝 𝑗

∏
𝑗∉[𝑘 ] (1 − 𝑝 𝑗 )

=

(
1

𝑝1
− 1∑

𝑖∈[𝑘 ] (1 − 𝑝𝑖 )

)
𝑓 ( [𝑘]) =

(
1

𝑝1
− 1

𝑠

)
𝑓 ( [𝑘]) .

𝜕
𝜕𝑝𝑛

𝑓 ( [𝑘]) = −∑
𝑖∈[𝑘 ] (1 − 𝑝𝑖 ) ·

∏
𝑗∈[𝑘 ] 𝑝 𝑗

∏
𝑗∉[𝑘 ]
𝑗≠𝑛

(1 − 𝑝 𝑗 ) = −
𝑓 ( [𝑘])
1 − 𝑝𝑛

. (4)
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We now apply the quotient rule and plug in equalities we have derived so far:(
𝜕
𝜕𝑝1
− 𝜕

𝜕𝑝𝑛

) 𝑓 ( [𝑘])∑
𝐴′∈( [𝑛]𝑘 ) 𝑓 (𝐴

′) =
(

𝜕
𝜕𝑝1
− 𝜕

𝜕𝑝𝑛

) 𝑓 ( [𝑘])
E
[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

] (by Lemma 3.8)

=

((
𝜕
𝜕𝑝1
− 𝜕

𝜕𝑝𝑛

)
𝑓 ( [𝑘])

)
·E

[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
− 𝑓 ( [𝑘]) ·

(
𝜕
𝜕𝑝1
− 𝜕

𝜕𝑝𝑛

)
E
[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
E
[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
2

=

(
1

𝑝1
− 1

𝑠
+ 1

1−𝑝𝑛

)
· 𝑓 ( [𝑘]) · E

[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
− 𝑓 ( [𝑘]) · (𝑝𝑛 − 𝑝1) P

[
|�̂� | = 𝑘 − 1

]
E
[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
2

(by Eqs. (3) and (4) and Lemma 3.10)

=
𝑓 ( [𝑘])

E
[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
2︸                            ︷︷                            ︸

≥0

((
1

𝑝1
− 1

𝑠
+ 1

1−𝑝𝑛

)
· E

[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
−(𝑝𝑛−𝑝1) P

[
|�̂� | = 𝑘 − 1

] )

Thus, it suffices to show the nonnegativity of the factor(
1

𝑝1
− 1

𝑠
+ 1

1 − 𝑝𝑛

)
· E

[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
− (𝑝𝑛 − 𝑝1) P

[
|�̂� | = 𝑘 − 1

]
. (5)

We will prove the nonnegativity by distinguishing two cases, depending on whether 𝑠 ≥ 𝑝1 or not.

Surprisingly, the case 𝑠 ≥ 𝑝1—which intuitively seem more common because the residues of all

parties outside of [𝑘] outweigh that of the single party 1— is straight-forward. The hard case of

the proof is when 𝑠 < 𝑝1, i.e., when the residues in [𝑘] are almost 1 and the residues outside [𝑘]
almost 0.

Case 𝑠 ≥ 𝑝1. Under this assumption, clearly 1/𝑝1 − 1/𝑠 ≥ 0, which allows us to ignore these terms

in Eq. (5). Next, we observe that E
[
1{|𝐵 | < 𝑘}·(𝑘 − |𝐵 |)

]
≥ P

[
|𝐵 | = 𝑘 − 1

]
. Moreover, since one way

for the number of successes |𝐵 | in a Poisson trial being equal to 𝑘 − 1 is if there are 𝑘 − 1 successes
among the Bernoulli variables indexed 2, . . . , 𝑛 − 1 and additionally the Bernoulli variables indexed

1 and 𝑛 both fail, it must hold that P
[
|𝐵 | = 𝑘 − 1

]
≥ (1 − 𝑝1) (1 − 𝑝𝑛) P

[
|�̂� | = 𝑘 − 1

]
. These two

inequalities together imply that E
[
1{|𝐵 | < 𝑘} · (𝑘 − |𝐵 |)

]
/(1 − 𝑝𝑛) ≥ (1 − 𝑝1) P

[
|�̂� | = 𝑘 − 1

]
≥

(𝑝𝑛 − 𝑝1) P
[
|�̂� | = 𝑘 − 1

]
, which shows the claimed nonnegativity of the term in Eq. (5).

Case 𝑠 < 𝑝1. Note that 𝑝1 > 𝑠 =
∑

𝑖∉[𝑘 ] 𝑝𝑖 ≥ 𝑝𝑛 . Thus, the term (𝑝𝑛 − 𝑝1) P
[
|�̂� | = 𝑘 − 1

]
we

subtract in Eq. (5) is nonpositive, i.e., it can only help us in proving nonnegativity. If the coefficient

1

𝑝1
− 1

𝑠
+ 1

1−𝑝𝑛 was nonnegative, Eq. (5) would be trivially nonnegative; hence, we will assume that

it is negative instead. Knowing the signs of these coefficients allows us to apply the bounds we

have previously derived:(
1

𝑝1
− 1

𝑠
+ 1

1 − 𝑝𝑛

)
· E

[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
− (𝑝𝑛 − 𝑝1) P

[
|�̂� | = 𝑘 − 1

]
≥

(
1

𝑝1
− 1

𝑠
+ 1

1 − 𝑝𝑛

)
· 𝑠 − (𝑝𝑛 − 𝑝1)

1 − 2 𝑠
𝑝1 (1 − 𝑝𝑛)

(by Lemmas 3.8, 3.9, and 3.11)

=
1

𝑝1 (1 − 𝑝𝑛)
· ((1 − 𝑝𝑛) 𝑠 − 𝑝1 (1 − 𝑝𝑛) + 𝑝1 𝑠 − (𝑝𝑛 − 𝑝1) (1 − 2 𝑠))

=
1

𝑝1 (1 − 𝑝𝑛)
·
(
𝑠 − 𝑝1 𝑠 + 𝑝1 𝑝𝑛 − 𝑝𝑛 + 𝑝𝑛 𝑠

)
(note 𝑠 − 𝑠𝑝1 ≥ 0)
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≥ 1

𝑝1 (1 − 𝑝𝑛)
·
(
𝑝𝑛 (𝑝1 − 1 + 𝑠)

)
≥ 𝑝𝑛

𝑝1 (1 − 𝑝𝑛)
·
(
𝑝1 − 1 + (1 − 𝑝1)

)
= 0.

This establishes that, in both cases,

(
𝜕
𝜕𝑝1
− 𝜕

𝜕𝑝𝑛

)
P[𝑆 = [𝑘]] is nonnegative as claimed. □

Since we have established (informally in this section and formally in Appendix C) that Proposi-

tion 3.6 implies selection monotonicity, the above proof implies our main result, Theorem 1.1.

3.4 Potential Implications for Dependent Randomized Rounding
The three properties that turned pipage rounding into such a successful tool — ex-ante proportion-

ality, selecting exactly 𝑘 units without replacement, and notions of negative correlation [30]— are

equally satisfied by Sampford rounding [6]. Hence, in all algorithms that use dependent rounding

(subject to a cardinality constraint) as a black-box subroutine [e.g., 8, 9, 12], swapping out pipage

rounding for Sampford rounding would preserve the algorithm’s guarantees, while gaining Samp-

ford’s monotonicity properties “for free”. Though we have yet to explore how to leverage this

monotonicity in specific applications, we sketch below one path in which Sampford’s monotonicity

could add incentive guarantees to algorithms using dependent rounding.

Dependent randomized rounding is commonly used in computer science to develop algorithms,

in particular approximation algorithms, for combinatorial problems. Dependent rounding can be

seen as randomly rounding a point 𝑥 within an integral polytope 𝑃 to a vertex 𝑋 of 𝑃 , ensuring

that the expected value of 𝑋 equals 𝑥 . This is a useful subroutine in many algorithms for NP-hard

optimization problems: First, locate a point in the space of the polytope, typically achieved by

solving a fractional relaxation of the problem. Then, this point is rounded in a way that ensures

that a linear function (or a continuous extension of a submodular function) satisfies Chernoff-

style concentration bounds. These guarantees can then be used to bound the objective value with

high probability, thus delivering approximation guarantees. As Brändén and Jonasson [6] showed,

Sampford sampling, like pipage rounding, satisfies the strong Rayleigh property, which implies

extremely general concentration properties.

In such applications of dependent rounding, selection monotonicity (and similar monotonicity

properties that Sampford rounding might possess, see Conjecture 4.4) might for example allow to

construct approximation algorithms that can be implemented as truthful mechanisms. In our case,

the polytope 𝑃 is simply the base polytope of the uniform matroid, which has proved influential

in applications including Steiner tree problems [30], 𝑘-median [9], committee selection [12], and,

recently, online algorithms [25].

Concretely, consider an approximation algorithm that consists of the two steps mentioned above:

(1) determine a point 𝑥 inside 𝑃 , then (2) randomly round 𝑥 to select a vertex 𝑋 of 𝑃 . Let each

agent 𝑖 have a preferred vertex 𝑋𝑖 of 𝑃 with utility 𝜏𝑖 · P[𝑋 = 𝑋𝑖 ], which depends on their private

type 𝜏𝑖 ∈ R. These types are inputs to the approximation algorithm, whose objective need not be

related to the utilities. Suppose that step (1) of the algorithm is monotone in the reported types,

i.e., whenever agent 𝑖 increases their reported type, this causes 𝑥 𝑗 to weakly increase for the 𝑘

many matroid elements 𝑗 that correspond to the vertex 𝑋𝑖 and 𝑥 𝑗 to weakly decrease for all other 𝑗 .

Then, the selection monotonicity of Sampford rounding implies an overall monotonicity: if agent 𝑖

increases their report, 𝑋𝑖 will be more likely to be sampled. Hence, by charging the agents Myerson

payments [24], we obtain a mechanism that is incentive compatible in expectation (and hence

the approximation algorithm receives truthful inputs). Should Sampford sampling even satisfy

stronger notions of proportionality (as we conjecture in Section 4.2), this blueprint extends to richer

utilities; for example, agent 𝑖 could care about a subset 𝑇𝑖 of matroid elements, have a monotone
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nondecreasing function 𝑓𝑖 : N→ R that expresses diminishing returns or returns to scale, and the

agent’s utility would be 𝜏𝑖 · E [𝑓𝑖 ( |𝑋 ∩𝑇𝑖 |)].

3.5 Selection Monotonicity Implies Continuity
We note that all rules discussed in this paper are continuous: small changes to the input residues

do not result in large changes to the probability that any set is selected. As the following result

shows, this is a necessary requirement for selection monotonicity.

Theorem 3.12. Any selection monotone rounding rule is Lipschitz continuous. Specifically, let ®𝑝, ®𝑝′
be two residue profiles, and let 𝑇 be a set of 𝑘 parties. Then,��P[𝑟 ( ®𝑝′) = 𝑇

]
− P

[
𝑟 ( ®𝑝) = 𝑇

] �� ≤ ∥ ®𝑝 − ®𝑝′∥1.
As in the proof of Theorem 1.1, we first consider the special case when only two residues are

changing at a time.

Lemma 3.13. Consider a selection monotone rounding rule 𝑟 , a residue profile ®𝑝 , and 0 < 𝛿 <

min(𝑝2, 1 − 𝑝1). Define a residue profile ®𝑝′, in which 𝑝′
1
B 𝑝1 + 𝛿 , 𝑝′2 B 𝑝2 − 𝛿 , and all other 𝑝′𝑖 B 𝑝𝑖 .

Then, for any set 𝑇 of 𝑘 parties, it holds that��P [
𝑟 ( ®𝑝′) = 𝑇

]
− P

[
𝑟 ( ®𝑝) = 𝑇

] �� ≤ 2𝛿. (6)

Proof. We may assume w.l.o.g. that P
[
𝑟 ( ®𝑝′) ⊇ {1, 2}

]
≥ P

[
𝑟 ( ®𝑝) ⊇ {1, 2}

]
; otherwise, simply

change the roles of parties 1 and 2, and the roles of ®𝑝, ®𝑝′. We break the proof up into three cases,

depending on how 𝑇 intersects {1, 2}.

Case 1: Sets 𝑇 such that 1 ∈ 𝑇 ∌ 2. By ex-ante proportionality,

∑
𝑇 ∈( [𝑛]𝑘 ),1∈𝑇 P[𝑟 ( ®𝑝) = 𝑇 ] = 𝑝1

and

∑
𝑇 ∈( [𝑛]𝑘 ),1∈𝑇 P[𝑟 ( ®𝑝

′) = 𝑇 ] = 𝑝1 + 𝛿 . For all 𝑇 that contain 1 but not 2, selection monotonicity

ensures that P[𝑟 ( ®𝑝′) = 𝑇 ] ≥ P[𝑟 ( ®𝑝) = 𝑇 ]. Hence,

𝛿 = (𝑝1 + 𝛿) − 𝑝1
=

∑︁
𝑇 ∈( [𝑛]𝑘 )
1∈𝑇

P[𝑟 ( ®𝑝′) = 𝑇 ] −
∑︁

𝑇 ∈( [𝑛]𝑘 )
1∈𝑇

P[𝑟 ( ®𝑝) = 𝑇 ]

=
∑︁

𝑇 ∈( [𝑛]𝑘 )
1∈𝑇∌2

(
P[𝑟 ( ®𝑝′) = 𝑇 ] − P[𝑟 ( ®𝑝) = 𝑇 ]

)
+

∑︁
𝑇 ∈( [𝑛]𝑘 )
𝑇 ⊇{1,2}

P[𝑟 ( ®𝑝′) = 𝑇 ] −
∑︁

𝑇 ∈( [𝑛]𝑘 )
𝑇 ⊇{1,2}

P[𝑟 ( ®𝑝) = 𝑇 ]

︸                                                  ︷︷                                                  ︸
=P[𝑟 ( ®𝑝′ )⊇{1,2}]−P[𝑟 ( ®𝑝 )⊇{1,2}]≥0

≥
∑︁

𝑇 ∈( [𝑛]𝑘 )
1∈𝑇∌2

(
P[𝑟 ( ®𝑝′) = 𝑇 ] − P[𝑟 ( ®𝑝) = 𝑇 ]

)︸                                 ︷︷                                 ︸
≥0

.

Hence, for each set𝑇 in the sum, 0 ≤ P[𝑟 ( ®𝑝′) = 𝑇 ] −P[𝑟 ( ®𝑝) = 𝑇 ] ≤ 𝛿 ; i.e., Equation (6) holds for all

sets𝑇 containing 1 but not 2. Note that this chain of inequalities also shows that P
[
𝑟 ( ®𝑝′) ⊇ {1, 2}

]
−

P
[
𝑟 ( ®𝑝) ⊇ {1, 2}

]
≤ 𝛿 , which we will use in the second case.

Case 2: Sets 𝑇 such that 2 ∈ 𝑇 ∌ 1. By ex-ante proportionality,

∑
𝑇 ∈( [𝑛]𝑘 ),2∈𝑇 P[𝑟 ( ®𝑝) = 𝑇 ] = 𝑝2

and

∑
𝑇 ∈( [𝑛]𝑘 ),2∈𝑇 P[𝑟 ( ®𝑝

′) = 𝑇 ] = 𝑝2 − 𝛿 . For all 𝑇 that contain 2 but not 1, selection monotonicity
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ensures that P[𝑟 ( ®𝑝′) = 𝑇 ] ≤ P[𝑟 ( ®𝑝) = 𝑇 ]. Hence,

𝛿 = 𝑝2 − (𝑝2 − 𝛿)

=
∑︁

𝑇 ∈( [𝑛]𝑘 )
2∈𝑇

P[𝑟 ( ®𝑝) = 𝑇 ] −
∑︁

𝑇 ∈( [𝑛]𝑘 )
2∈𝑇

P[𝑟 ( ®𝑝′) = 𝑇 ]

=
∑︁

𝑇 ∈( [𝑛]𝑘 )
2∈𝑇∌1

(
P[𝑟 ( ®𝑝) = 𝑇 ] − P[𝑟 ( ®𝑝′) = 𝑇 ]

)
+

∑︁
𝑇 ∈( [𝑛]𝑘 )
𝑇 ⊇{1,2}

P[𝑟 ( ®𝑝) = 𝑇 ] −
∑︁

𝑇 ∈( [𝑛]𝑘 )
𝑇 ⊇{1,2}

P[𝑟 ( ®𝑝′) = 𝑇 ]

︸                                                  ︷︷                                                  ︸
=P[𝑟 ( ®𝑝 )⊇{1,2}]−P[𝑟 ( ®𝑝′ )⊇{1,2}]≥−𝛿

,

which implies Eq. (6) for this case:

2𝛿 ≥
∑︁
2∈𝑇∌1

(
P[𝑟 ( ®𝑝) = 𝑇 ] − P[𝑟 ( ®𝑝′) = 𝑇 ]

)︸                                 ︷︷                                 ︸
≥0

.

Case 3: Sets 𝑇 such that 1, 2 ∉ 𝑇 or 1, 2 ∈ 𝑇 . Pick a different party whose membership in 𝑇 is

opposite that of 1 and 2, i.e., if 1, 2 ∈ 𝑇 , then choose a party in 𝑇 , and if 1, 2 ∈ 𝑇 , choose a party
outside of 𝑇 . Without loss of generality, let this party be party 3. We may also assume without loss

of generality that 𝛿 is less than 1−𝑝3 (which is positive since residues are less than 1, by definition).

Else, i.e., if 𝛿 is larger, we can split up the increase of 𝑝1 by 𝛿 and decrease of 𝑝2 by 𝛿 into finitely

many steps in which these residues successively increase or decrease, by some 𝛿 ′ < 1 − 𝑝3 in each

step. Our claim for the original 𝛿 then follows by applying the triangle inequality to the bounds for

the smaller steps.

Let ®𝑝′′ be a new residue profile, where 𝑝′′
1
B 𝑝1 = 𝑝′

1
−𝛿 , 𝑝′′

2
= 𝑝2+𝛿 = 𝑝′

2
and 𝑝′′

3
= 𝑝3+𝛿 = 𝑝′

3
+𝛿 .

Note that this is a valid residue profile by how we chose ℓ . The key observation is that we already

know the bound in Equation (6) holds going from ®𝑝 to ®𝑝′′ and from ®𝑝′′ to ®𝑝′, since the residues
changing involve one party in 𝑇 and one party outside of 𝑇 . Thus,��P [

𝑟 ( ®𝑝′) = 𝑇
]
− P

[
𝑟 ( ®𝑝) = 𝑇

] ��
=

�� (P [
𝑟 ( ®𝑝′) = 𝑇

]
− P

[
𝑟 ( ®𝑝′′) = 𝑇

] )︸                                     ︷︷                                     ︸
∈[−2𝛿,2𝛿 ]

+
(
P

[
𝑟 ( ®𝑝′′) = 𝑇

]
− P

[
𝑟 ( ®𝑝) = 𝑇

] )︸                                    ︷︷                                    ︸
∈[−2𝛿,2𝛿 ]

��.
Naïvely, this would yield a bound of 4𝛿 , but we can sharpen it by observing that selection mono-

tonicity ensures that both of the terms above have opposite signs: If 1, 2 ∉ 𝑇 and 3 ∈ 𝑇 , then the

first of these two terms is ≤ 0 and the second ≥ 0, whereas if 1, 2 ∈ 𝑇 and 3 ∉ 𝑇 , then the first term

is ≥ 0 and the second term is ≤ 0. Either way, the sum of these terms is at most 2𝛿 , so Equation (6)

holds. □

Proof of Theorem 3.12. Let ®𝑝, ®𝑝′ be an arbitrary pair of residue profiles. Define the following

sets of parties:

𝑆+ B { 𝑗 ∈ [𝑛] | 𝑝′𝑗 > 𝑝 𝑗 },
𝑆− B { 𝑗 ∈ [𝑛] | 𝑝′𝑗 < 𝑝 𝑗 }.

Consider the following algorithm, which transforms ®𝑝 into ®𝑝′:
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®𝑝1 ← ®𝑝;
𝑖 ← 1;

while ®𝑝𝑖 ≠ ®𝑝′ do
𝑗1 ← any element of 𝑆+ such that 𝑝′

𝑗1
> 𝑝𝑖

𝑗1
;

𝑗2 ← any element of 𝑆− such that 𝑝′
𝑗2
< 𝑝𝑖

𝑗2
;

𝛿𝑖 ← min{𝑝′
𝑗1
− 𝑝𝑖

𝑗1
, 𝑝𝑖

𝑗2
− 𝑝′

𝑗2
};

®𝑝𝑖+1 ← copy of ®𝑝𝑖 , except 𝑝𝑖+1
𝑗1
B 𝑝𝑖

𝑗1
+ 𝛿𝑖 and 𝑝𝑖+1𝑗2

B 𝑝𝑖
𝑗2
− 𝛿𝑖 ;

𝑖 ← 𝑖 + 1;
end

Observe that, in each round of this algorithm, we make a new component of ®𝑝𝑖 equal to that of

®𝑝′. Thus, the algorithm terminates after at most 𝑛 − 1 iterations, producing a sequence of residue
profiles ®𝑝 = ®𝑝1, ®𝑝2, ®𝑝3, . . . , ®𝑝ℓ = ®𝑝′ for some ℓ ≥ 𝑛. It is easy to see that the total sum of the changes

𝛿𝑖 at each iteration is precisely the sum of differences between ®𝑝 and ®𝑝′ across 𝑆+ (or, alternatively,
across 𝑆−). Thus,

ℓ−1∑︁
𝑖=1

𝛿𝑖 =
∑︁
𝑗∈𝑆+
(𝑝′𝑗 − 𝑝 𝑗 ) ≤ max

𝑆⊆[𝑛]

∑︁
𝑗∈𝑆
(𝑝′𝑗 − 𝑝 𝑗 ) = 𝑑TV ( ®𝑝, ®𝑝′) =

1

2

∥ ®𝑝′ − ®𝑝 ∥1, (7)

where we have applied the well-known formula for the total variation distance 𝑑TV.
7

Note that Lemma 3.13 applies to each consecutive pair of residue profiles ®𝑝𝑖 and ®𝑝𝑖+1, since they
differ in only two coordinates by 𝛿𝑖 . Hence, we have��P [

𝑟 ( ®𝑝′) = 𝑇
]
− P

[
𝑟 ( ®𝑝) = 𝑇

] �� ≤ ℓ−1∑︁
𝑖=1

��P [
𝑟 ( ®𝑝𝑖+1) = 𝑇

]
− P

[
𝑟 ( ®𝑝𝑖 ) = 𝑇

] ��
(triangle inequality)

≤
ℓ−1∑︁
𝑖=1

2𝛿𝑖 (from Lemma 3.13)

≤ 2 · 1
2

∥ ®𝑝 − ®𝑝′∥1 (from Equation (7))

= ∥ ®𝑝 − ®𝑝′∥1. □

4 MONOTONICITY OF APPORTIONMENT METHODS
Returning to our full setting of randomized apportionment, what does the (pairwise) selection

monotonicity of Sampford rounding win us? Fix an “old” and a “new” election with respective

votes ®𝑣, ®𝑣 ′ and the same house size ℎ, as well as a coalition 𝑇 of parties. Suppose that each party

𝑖 ∈ 𝑇 has increased its share of the vote from the old election to the new one, whereas each party

𝑖 ∉ 𝑇 has lost in vote share. Then, if no party’s vote share has shifted by so much that its lower

quota changed and the sum of residues equals |𝑇 |, the apportionment method induced by Sampford

rounding gives 𝑇 a higher chance of jointly being rounded up, by Theorem 1.1. As a result, the

paradox from Section 1.1 cannot happen for this method.

When lower quotas change between elections, however, the entire concept of “𝑇 being jointly

rounded up” stops making much sense. Returning to the example from the introduction, suppose

that, instead of the exodus of voters from the left-wing party 5, 40 voters from the right-wing

party 4 had moved to party 5, which among other things would increase party 5’s lower quota from

0 to 1. Since this shift also decreases the sum of all residues from 3 to 2, no apportionment method

7
This formula still holds even when probabilities sum to some constant other than 1. Also, we really have equality in the

middle transition as well, but that is not necessary to argue for this proof.
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satisfying quota can “round up” all three left-wing parties. But this line of thinking muddles that

the increase of party 5’s lower quota is good news for the left-wing coalition: party 5 receiving one

seat has turned from a possibility into certainty, and party 5 might even receive a second seat!

In our view, the right generalization of the paradox to changing lower quotas is by considering

how likely the coalition is to exceed certain thresholds of house seats. In our example, the relevant

threshold was that of a majority of seats; broadly speaking, party 5 increasing its lower quota ought

to increase the prospects of the coalition gaining such a majority. Besides the simple majority, a

coalition might care about its probability of exceeding other seat thresholds, which might turn it

into a supermajority, a blocking minority, or a parliamentary group with certain privileges [e.g., 14,

rules 33–34]. Ideally, an apportionment method should have the property that the probability of 𝑇

exceeding a threshold is monotone, for all thresholds simultaneously.

In this section, we capture a monotonicity in the probability of crossing thresholds in four

axioms. Two of them will not be achievable for any randomized apportionment method, and one

more axiom is at least impossible if the apportionment method satisfies a natural condition. The

satisfiability of the fourth monotonicity axiom is the most tantalizing open question of our work;

we conjecture that it is satisfied by the Sampford apportionment method, and show that Grimmett’s

method satisfies it for coalitions of size 𝑇 = 2.

4.1 Axioms and Apportionment Methods
The apportionment methods we study are induced by the rounding rules from the last section,

through the construction defined in Section 2. We refer to the apportionment method induced by

conditional Poisson rounding as the conditional Poisson method, to the method induced by Sampford

rounding as the Sampford method, and so forth. An exception is the method induced by systematic

rounding, which we refer to as Grimmett’s method [19]. Recall that all of these apportionment

methods satisfy quota and ex-ante proportionality.

The main way in which we strengthen monotonicity for apportionment is threshold monotonicity:

Definition 4.1 (Threshold monotonicity). Let ®𝑣, ®𝑣 ′ ∈ R𝑛≥0 be two vote vectors, and let ℎ ∈ N. Let
𝑇 be a set of parties such that 𝑞′𝑖 ≥ 𝑞𝑖 for all 𝑖 ∈ 𝑇 8

and 𝑞′𝑖 ≤ 𝑞𝑖 for all 𝑖 ∉ 𝑇 . An apportionment

method 𝑎 satisfies threshold monotonicity if it always holds, for all thresholds 𝜗 ∈ N, that
P ®𝛼∼𝑎 (®𝑣′,ℎ) [

∑
𝑖∈𝑇 𝛼𝑖 ≥ 𝜗] ≥ P ®𝛼∼𝑎 (®𝑣,ℎ) [

∑
𝑖∈𝑇 𝛼𝑖 ≥ 𝜗] .

In other words, the axiom requires the random variable

∑
𝑖∈𝑇 𝑎(®𝑣 ′, ℎ)𝑖 , which describes the

total number of seats awarded to 𝑇 for the votes ®𝑣 ′, to first-order stochastically dominate the

corresponding random variable for the votes ®𝑣 . We also define a pairwise analogue to the axiom:

Definition 4.2 (Pairwise threshold monotonicity). Let ®𝑣, ®𝑣 ′ ∈ R𝑛≥0 be two vote vectors, and let

ℎ ∈ N. Let 𝑇1,𝑇2 be two sets of parties such that 𝑞′𝑖 ≥ 𝑞𝑖 for all 𝑖 ∈ 𝑇1 and 𝑞′𝑖 ≤ 𝑞𝑖 for all 𝑖 ∈ 𝑇2. An
apportionment method 𝑎 satisfies pairwise threshold monotonicity if always at least one of the

following two statements holds:

∀𝜗 ∈ N, P ®𝛼∼𝑎 (®𝑣′,ℎ) [
∑

𝑖∈𝑇1 𝛼𝑖 ≥ 𝜗] ≥ P ®𝛼∼𝑎 (®𝑣,ℎ) [
∑

𝑖∈𝑇1 𝛼𝑖 ≥ 𝜗] or

∀𝜗 ∈ N, P ®𝛼∼𝑎 (®𝑣′,ℎ) [
∑

𝑖∈𝑇2 𝛼𝑖 ≥ 𝜗] ≤ P ®𝛼∼𝑎 (®𝑣,ℎ) [
∑

𝑖∈𝑇2 𝛼𝑖 ≥ 𝜗] .

Though these axioms (for apportionment methods) cannot syntactically be compared to our

previous monotonicity axioms (for rounding rules), they should be thought of as strengthenings

of their selection equivalents. This relationship can be made formal using the embedding from

Section 2: Any apportionmentmethod satisfying (pairwise) thresholdmonotonicity, when translated

8
Or, equivalently, we can require that 𝑖’s share of the vote

𝑣𝑖∑
𝑗 ∈ [𝑛] 𝑣𝑗

= 𝑞𝑖/ℎ increases rather than its quota.
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into a rounding rule, satisfies (pairwise) selection monotonicity, by selecting the threshold so that

all parties in the coalition must be selected to meet the threshold.

We will show that pairwise threshold monotonicity is incompatible with a natural condition on

apportionment methods:

Definition 4.3 (Full support). An apportionment method 𝑎 satisfies full support if, for all vote

vectors ®𝑣 , house sizes ℎ, and apportionment vectors ®𝛼 that satisfy quota (i.e., ®𝛼 ∈ N𝑛 , ∑𝑖∈[𝑛] 𝛼𝑖 = ℎ,

and 𝛼𝑖 ∈ {⌊𝑞𝑖⌋, ⌈𝑞𝑖⌉} for all 𝑖 ∈ [𝑛]), 𝑎(®𝑣, ℎ) will take on the value ®𝛼 with positive probability.

The definitions of Sampford rounding immediately implies that the Sampford method has full

support. Similarly, the conditional Poisson method has full support, since, if the residue of any

party 𝑖 is non-zero, its working probability 𝜋𝑖 must also be positive by ex-ante proportionality.

Finally, we define variants of the two preceding axioms whose precondition argues about changes

not to the standard quotas or vote shares, but to changes in the raw vote counts: Vote-count threshold
monotonicity is defined just like threshold monotonicity, except requiring that 𝑣 ′𝑖 ≥ 𝑣𝑖 for all 𝑖 ∈ 𝑇
and 𝑣 ′𝑖 ≤ 𝑣𝑖 for all 𝑖 ∉ 𝑇 , instead of the matching assumptions for the 𝑞𝑖 and 𝑞

′
𝑖 . In the same way,

we define pairwise vote-count threshold monotonicity like its non-vote-count variant, where we

now require that 𝑣 ′𝑖 ≥ 𝑣𝑖 for all 𝑖 ∈ 𝑇1 and 𝑣 ′𝑖 ≤ 𝑣𝑖 for all 𝑖 ∈ 𝑇2. Under the mild assumption that

an apportionment method satisfies homogeneity, i.e., that scaling the vote vector by a constant

doesn’t change the apportionment, (pairwise) vote-count threshold monotonicity implies (pairwise)

threshold monotonicity.

4.2 Conjecture and |𝑇 | = 2 Possibility for Threshold Monotonicity
We leave the most pressing question, finding an apportionment method that satisfies threshold

monotonicity, unresolved. Based on extensive computational search for counterexamples, however,

we conjecture that the Sampford method satisfies this axiom:

Conjecture 4.4. The Sampford method satisfies threshold monotonicity.

Proving this conjecture, of course, appears technically very difficult. A major complication

relative to our proof of selection monotonicity is that, in many of the apportionment outcomes

forming the event “𝑇 receives at least 𝜗 seats”, some of the rounded seats go to parties outside of 𝑇

whose vote share is shrinking, which means that the probability of many of these outcomes will

decrease for the Sampford method. Thus, a proof for our conjecture will require a way to charge

the decreases in probability of some outcomes to increases in probability of other outcomes.

Still, we do have some limited good news: Though Grimmett’s method does not satisfy threshold

monotonicity for coalitions of three and more parties (not even selection monotonicity, as we saw

in Section 1.1), it satisfies the axiom for coalitions of size 2.

Theorem 4.5. Grimmett’s method satisfies threshold monotonicity for coalitions 𝑇 of size ≤ 2.

Proof of Proposition 4.5. We prove threshold monotonicity of the variant of Grimmett’s

method that uses an arbitrary fixed ordering of the states, clearly implying threshold monotonicity

for a randomized order as well. For our analysis, we will modify our presentation of Grimmett’s

method in two ways. First, instead of giving all parties their lower quotas and then lining up their

residues as intervals on the number line, we directly line up their standard quotas as intervals on

the number line. Then each party gets a number of seats equal to the number of integers their

interval contains. This is clearly equivalent: since extending the interval of each party 𝑖 from length

𝑝𝑖 to length 𝑞𝑖 = 𝑝𝑖 + ⌊𝑞𝑖⌋ adds an integral length ⌊𝑞𝑖⌋, the party’s interval will contain exactly ⌊𝑞𝑖⌋
more integers than previously, and the shift of other parties remains the same modulo 1. Second,

we arbitrarily shift all the intervals to the right by some amount 𝑢0. Again, this has no bearing on
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Previous

election

New

election

𝐴 𝐵 𝐶 𝐷 𝐸

𝐴′ 𝐵′ 𝐶′ 𝐷′ 𝐸′𝑢0

Fig. 2. Illustration of the proof of Theorem 4.5 stating that Grimmett’s method satisfies thresholdmonotonicity
for |𝑇 | = 2. Intervals corresponding to growing parties are gray.

the probability distribution of numbers of seats awarded, since all intervals are additionally shifted

by a random 𝑢 drawn uniformly from [0, 1), and the distribution of 𝑢 + 𝑢0 modulo 1 is identical to

that of 𝑢 modulo 1. We call this equivalent implementation of Grimmett’s method 𝐺 (𝑢0).
If |𝑇 | = 1, there is nothing to show: proportionality alone implies threshold monotonicity. So

suppose |𝑇 | = {𝑖, 𝑗}, where 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. First consider running 𝐺 (0) on an arbitrary input

(®𝑣, ℎ). Before adding the random shift 𝑢, let 𝐴 ∪ 𝐵 ∪𝐶 ∪ 𝐷 ∪ 𝐸 be the partition of [0, ℎ) where 𝐴 is

the union of all intervals for parties numbered lower than 𝑖 , 𝐵 is the interval for party 𝑖 , 𝐶 is the

union of all intervals numbered between 𝑖 and 𝑗 , 𝐷 is the interval for party 𝑗 , and 𝐸 is the union of

all intervals for parties numbered higher than 𝑗 . Though we know that the sizes of the intervals

corresponding to 𝑖 and 𝑗 increase when going from (®𝑣, ℎ) to (®𝑣 ′, ℎ) for 𝐺 (0), it need not be true

that the new intervals contain the previous ones. To overcome this issue, we show in Lemma D.1

in Appendix D.2 that there exists a shift 𝑢0 ∈ R such that, when 𝐴′, 𝐵′, 𝐶′, 𝐷 ′, and 𝐸′ are the new
respective intervals in running𝐺 (𝑢0) on input (®𝑣 ′, ℎ), it holds that 𝐵 ⊆ 𝐵′ and 𝐷 ⊆ 𝐷 ′. See Figure 2
for an illustration of an example. Thus, for any realization of the random shift 𝑢 that awarded a

given threshold of 𝑡 seats to the parties in 𝑇 when running 𝐺 (0) on (®𝑣, ℎ), the same value of 𝑢 will

award at least 𝑡 seats to the parties in 𝑇 when running 𝐺 (𝑢0) on (®𝑣 ′, ℎ), since the same 𝑡 integers

that were included in 𝐵 and 𝐷 will be contained within 𝐵′ and 𝐷 ′. Since 𝐺 (0) and 𝐺 (𝑢0) are both
equivalent to Grimmett’s method, we have shown that it satisfies threshold monotonicity. □

As discussed, the fact that systematic rounding violates selection monotonicity for coalitions of

size 3 implies that Grimmett’s method violates threshold monotonicity for |𝑇 | = 3. Our example

in Figure 1 also illustrates why the approach applied in the proof of Theorem 4.5 fails for larger

coalitions: For the old interval of party 3 to be included in its new interval, we would need to have

a positive shift 𝑢0 > 0. However, any positive shift would violate the same constraint for party 1.

4.3 Impossibility of Pairwise Threshold Monotonicity
Whenwe considered selectionmonotonicity and its pairwise variant in Section 3, themost promising

rounding rules seemed thosewhose probability distributions spread theirmass smoothly and broadly

over the possible outcomes (like conditional Poisson and Sampford rounding, and unlike systematic

and pipage rounding). Furthermore, an easy argument showed that Sampford rounding satisfied

the pairwise variant of selection monotonicity.

In contrast, when moving to pairwise threshold monotonicity, we show that no apportionment

method whose distributions have such a full support, and thus neither the conditional Poisson

method nor the Sampford method, can satisfy the axiom.

Theorem 4.6. No (ex-ante proportional and quota) apportionment method that has full support
can satisfy pairwise threshold monotonicity.

Proof. Let 𝑎 be any proportional and optimistic apportionment algorithm. We fix ℎ = 3 and

consider a collection of vote vectors of size 𝑛 = 12 where all lower quotas are zero. Thus, we may
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think of the input to 𝑎 as just being the residue vector (which is the same as the vector of standard

quotas). For any integer𝑚 ≥ 2, we define the residues

®𝑝 (𝑚) B
(
1

5

,
1

5

,
1

5

,
1

5

,
1

5

,
1

5

,
1

5

,
1

5

,
1

5

,
1

5

,
1

𝑚
, 1 − 1

𝑚

)
and let 𝑆𝑚 be the random variable defined as the set of parties that 𝑎 rounds up on input 𝑝 (𝑚). By
applying union bound over all events in which 𝑆𝑚 contains at least two elements from {1, . . . , 10},
we get ∑︁

𝑅∈({1,...,10}
2
)
P[𝑆𝑚 ⊇ 𝑅] ≥ P[|𝑆𝑚 ∩ {1, . . . , 10}| ≥ 2] = P[|𝑆𝑚 ∩ {11, 12}| ≤ 1]

= 1 − P[𝑆𝑚 ⊇ {11, 12}] ≥ 1 − P[11 ∈ 𝑆𝑚]

= 1 − 1

𝑚
≥ 1

2

.

Therefore, by the averaging principle there must exist some 𝑅 ⊆ {1, . . . , 10} of size 2 such that

P[𝑆𝑚 ⊇ 𝑅] ≥ 1

2 ·
(
10

2

) =
1

90

.

Thus, for each𝑚 ∈ {2, 3, 4, . . . }, choose some 𝑅𝑚 ⊆ {1, . . . , 10} of size 2 such that

P[𝑆𝑚 ⊇ 𝑅𝑚] ≥
1

90

.

Since the sequence 𝑅2, 𝑅3, 𝑅4, . . . only takes finitely-many different values, by the pigeonhole

principle there must be some infinite subsequence of indices𝑚1,𝑚2,𝑚3, . . . such that 𝑅𝑚𝑖
is the

same for each positive integer 𝑖 . Call this set 𝑇2 and choose an arbitrary set 𝑇1 ⊆ {1, . . . , 10} \𝑇2 of
size 3. Without loss of generality, we re-label the states so that 𝑇2 = {1, 2} and 𝑇1 = {3, 4, 5}. Now
consider the alternative residue vector

®𝑝′ B
(
1

4

,
1

4

,
1

6

,
1

6

,
1

6

,
1

500

,
1

500

,
1

500

,
1

500

,
1

500

, 1 − 1

200

, 1 − 1

200

)
and let 𝑆 ′ be the random set that 𝑎 rounds up on input ®𝑝′. By full support, we know that

P[𝑆 ′ ⊇ 𝑇1] C 𝜀 > 0.

Choose 𝑖 large enough so that
1

𝑚𝑖
< 𝜀. We claim that the pair of residue vectors ( ®𝑝′, ®𝑝 (𝑚𝑖 )) violates

pairwise threshold monotonicity for the sets𝑇1 and𝑇2, with respective thresholds 𝜗1 = 3 and 𝜗2 = 2

(so we are interested in the probabilities that all elements of 𝑇1 or 𝑇2 are rounded up).

First consider the set 𝑇2. Observe that, in passing from ®𝑝′ to ®𝑝 (𝑚𝑖 ), residues within 𝑇2 have

decreased from
1

4
to

1

5
. However, since selecting both states in 𝑇2 entails excluding at least one of

states 11 and 12, we have

P[𝑆 ′ ⊇ 𝑇2] ≤ P[11 ∉ 𝑆 ′ or 12 ∉ 𝑆 ′] ≤ P[11 ∉ 𝑆 ′] + P[12 ∉ 𝑆 ′] (by the union bound)

= 2 − P[11 ∈ 𝑆 ′] − P[12 ∈ 𝑆 ′] = 2 −
(
1 − 1

200

)
−

(
1 − 1

200

)
(by proportionality)

=
1

100

<
1

90

≤ P[𝑆𝑚𝑖
⊇ 𝑅𝑚𝑖

] = P[𝑆𝑚𝑖
⊇ 𝑇2],

so the probability of selecting all states in 𝑇2 has increased.
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Next consider the set 𝑇1. In passing from ®𝑝′ to ®𝑝 (𝑚𝑖 ), residues in 𝑇1 increased from
1

6
to

1

5
, but

P[𝑆 ′ ⊇ 𝑇1] = 𝜀 >
1

𝑚𝑖

= 1 −
(
1 − 1

𝑚𝑖

)
= 1 − P[12 ∈ 𝑆𝑚𝑖

] (by proportionality)

= P[12 ∉ 𝑆𝑚𝑖
] ≥ P[𝑆𝑚𝑖

⊇ 𝑇1],
where in the final inequality we have used the fact that selecting 𝑇1 entails not selecting any other

state, as 𝑇1 has size 3. Thus, the probability of selecting all states in 𝑇1 has decreased, and so we

have shown that pairwise threshold monotonicity is violated. □

Though this theorem only rules out methods having full support, we see this as a consequence

of the difficulty of making a uniform argument over many partially degenerate apportionment

methods, not as an invitation to explore apportionment methods without full support. In particular,

the failure of systematic and pipage rounding to satisfy pairwise selection monotonicity implies

that their induced methods fail pairwise threshold monotonicity, as described in Section 4.1.

We also remark that our proof leans heavily on the fact that pairwise threshold monotonicity

allows vote shares outside of the coalitions to both grow and shrink, which is why we see no

indication that threshold monotonicity would be subject to a similar impossibility.

4.4 Impossibility of Monotonicity in Raw Vote Counts
In the previous two axioms for apportionment, what entitled a coalition to more seats was if its

constituent parties increased their share of the votes. This seems especially natural in the party-

apportionment setting— for example, when elections are covered in the media, the vote percentages

are typically reported as the central statistics of interest. Alternatively, one could consider increases

in the raw vote counts as what entitles a coalition to more joint representation. (There is precedent

for both perspectives in classical apportionment theory, though this latter perspective is arguably

more prominent [e.g., 4, p. 106–108].) The two axioms coincide whenever the total population does

not change. When the overall number of votes shifts, however, axioms based on the vote counts

may grant a coalition increases in joint representation in additional scenarios.

Unfortunately, formulating (pairwise) threshold monotonicity in terms of vote counts is too

much to ask, i.e., the resulting axioms cannot be satisfied by any method. The proof is (as often in

apportionment theory) based on the fact that, when we rescale the populations after a decrease in

the total number of votes, this rescaling increases the standard quota of large parties by a larger

absolute amount than the standard quota of small parties, which can bring the residue of such a

large party close to one and force us to select this party almost always.

Theorem 4.7. No (ex-ante proportional and quota) apportionment method can satisfy vote-count
threshold monotonicity or pairwise vote-count threshold monotonicity.

Proof. Let 𝑎 be any proportional apportionment method. We fix the house size be ℎ = 8 and

consider the initial vote vector

®𝑣 B (380, 140, 140, 140) .
Let 𝑆 be the random variable defined as the set of parties that 𝑎 rounded up on input (®𝑣, ℎ). Observe
that the total number of votes is 800, and thus the lower quotas and residues are given by

⌊®𝑞⌋ = (3, 1, 1, 1) and ®𝑝 = (0.8, 0.4, 0.4, 0.4).
Hence, 𝑆 must be of size 2. By proportionality,

0.8 = P[1 ∈ 𝑆] = 1 − P[1 ∉ 𝑆]
= 1 − (P[𝑆 = {2, 3}] + P[𝑆 = {2, 4}] + P[𝑆 = {3, 4}]) .
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Rearranging, we get

P[𝑆 = {2, 3}] + P[𝑆 = {2, 4}] + P[𝑆 = {3, 4}] = 0.2.

Thus, by the averaging principle, at least one of these three probabilities must be at least 0.2/3 = 0.06.

Since ®𝑣 is symmetric with respect to parties 2, 3, and 4, we may assume without loss of generality

that this holds for the first term. That is, letting 𝑇1 B {2, 3}, we have

P[𝑆 = 𝑇1] ≥ 0.06.

Now consider the alternative vote vector

®𝑣 ′ B (376, 142, 142, 100).

The total population is now 760, and the lower quotas remain unchanged. However, the residues

are now

®𝑝′ = (0.96, 0.05, 0.49, 0.49)
(rounded to two decimal places). Let 𝑆 ′ be the random set of size 2 that 𝑎 rounds up on input (®𝑣 ′, ℎ).
Since the residues still sum to 2, rounding up both parties in 𝑇1 precludes rounding up party 1, so

P[𝑆 ′ = 𝑇1] ≤ P[1 ∉ 𝑆 ′] = 1 − P[1 ∈ 𝑆 ′]
= 1 − 0.96 = 0.04. (by proportionality)

We claim that 𝑎 violates pairwise vote-count threshold monotonicity for the pair of vote vectors

(®𝑣, ®𝑣 ′), with 𝑇1 = {2, 3} and 𝑇2 B {1}, with thresholds 𝜗1 = 𝜗2 = 4.

First consider 𝑇2, which controls at least 4 seats if and only if it is rounded up, since the lower

quota for party 1 (the only party in 𝑇2) is 3. In passing from ®𝑣 to ®𝑣 ′, the number of votes for this

party has decreased from 380 to 376, yet, by proportionality, the probability that𝑇2 is selected must

have increased from 0.8 to 0.96.

Next consider𝑇1, which controls at least 4 seats if and only if both of parties 2 and 3 are rounded

up, since the lower quotas for these parties are each 1. In passing from ®𝑣 to ®𝑣 ′, the numbers of votes

for both parties in 𝑇1 have increased from 140 to 142, yet we have shown that

P[𝑆 = 𝑇1] = 0.06 > 0.04 ≥ P[𝑆 ′ ⊇ 𝑇1],

so the probability that 𝑇1 controls 4 seats has decreased. Thus, 𝑎 violates pairwise vote-count

threshold monotonicity. Since 𝑣 ′𝑖 ≤ 𝑣𝑖 for all 𝑖 ∉ 𝑇1, this also shows that 𝑎 violates vote-count

threshold monotonicity for 𝑇1. □

Note that the proof requires𝑛 = 4 states. This is tight since for𝑛 = 3 there is only one proportional

rounding rule to use, and it is easy to see that it satisfies all monotonicity properties.

5 CONCLUSION
From our results, a landscape of monotonicity notions in randomized apportionment and rounding

is taking shape. On one side lie the (pairwise) selection monotonicity axioms, which can be attained

by Sampford sampling. On the other side, we have the vote-count variants and pairwise threshold

monotonicity, overly strong axioms that cannot be satisfied (at least, for the latter, by natural

apportionment methods). The next step in the exploration of monotonicity will focus on the axiom

in their middle: threshold monotonicity, which we conjecture to be feasible but could not yet show

for general-size coalitions.

One motivation to pursue threshold monotonicity is that it would imply a general notion of

strategy-proofness for randomized apportionment. Consider a voter who approves a subset of the
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parties, in the sense that they want as many legislative seats as possible to be filled from this subset.
9

Suppose that the voter maximizes an expected utility that is a monotone function in the number

of seats— a very general assumption, which can in particular capture the value of certain seat

thresholds, as well as risk-averse or risk-seeking preferences. A simple consequence of threshold

monotonicity is that this voter can never profit from strategically voting for a disapproved party,

and this even holds for coalitions of such voters.

Beyond the setting of apportionment, we are broadly intrigued by the prospect of relational

axioms [32] on higher-order correlations, i.e., axioms that capture how the higher-order correlations

of a random process vary as a function of changes in the process’s parameters. Going beyond

rounding subject to cardinality constraints, where else can we obtain such guarantees, and where

in algorithms, mechanism design, and statistics could they prove useful?
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APPENDIX
A RELATIONSHIP WITH PRIORWORK

Observation A.1. Neither Grimmett’s method, the pipage method, the conditional Poisson method,
nor the Sampford method, nor any apportionment method satisfying full support satisfies the house
monotonicity axiom of Gölz et al. [17].

Proof. As Gölz et al. [17] show in Section 4.1 of their paper that, in a scenario with four parties,

vote vector 𝑣1 = 1, 𝑣2 = 2, 𝑣3 = 1, 𝑣4 = 2, and house size 2, no method satisfying quota and house

monotonicity may give both seats to parties 1 and 3 with positive probability. By definition, any

method satisfying full support would do so, and thus cannot satisfy house monotonicity, which

rules out the conditional Poisson and the Sampford method. Gölz et al. [17] show in the same

section that Grimmett’s method (with or without a randomized order) fails this test and thus fails

house monotonicity. Finally, one easily verifies that the pipage method, when presented with the

parties in the above worst-case order, also has a positive probability of awarding both seats to

parties 1 and 3. When the order of parties is chosen uniformly at random, the order will with

nonzero probability be the one above, showing again that the method fails house monotonicity. □

B SELECTION MONOTONICITY COUNTEREXAMPLES FOR SPECIFIC RULES
Here we prove Propositions 3.3 and 3.4 by way of counterexamples, showing that none of the

rounding rules mentioned in this paper satisfy selection monotonicity except for Sampford sampling.

We then compliment this result with Proposition B.1, which states that these rules also all violate

pairwise selection monotonicity.

Proposition 3.3. Systematic rounding and pipage rounding violate selection monotonicity, even if
the order of parties is uniformly shuffled.

Proof. We start by showing the statement for pipage rounding. For the sake of illustration, we

start with a counterexample for a fixed order corresponding to the order of the indices. Let

®𝑝 =

(
1

3

,
1

2

,
1

3

,
2

3

,
2

3

,
1

2

)
and 𝑇 = {1, 3, 6}. We claim that

P[𝑆 = 𝑇 ] > 0.

To see this, consider the following update sequence which happens with positive probability by the

definition of pipage rounding:

Step 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6

1
1

3

1

2

1

3

2

3

2

3

1

2

2
5

6
0

1

3

2

3

2

3

1

2

3
1

6
0 1

2

3

2

3

1

2

4
5

6
0 1 0

2

3

1

2

5 1 0 1 0
1

2

1

2

6 1 0 1 0 0 1

Now, consider the new residue vector

®𝑝′ =
(
1

3

,
1

3

,
1

3

,
2

3

,
2

3

,
2

3

)
.
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We claim that for this profile P[{1, 3} ⊆ 𝑆] = 0. To see this, first consider the case that 𝑝1 is set to
2

3

in the first step. Then, in the second step, either 𝑝1 is fixed to 1 and 𝑝3 to 0 or vice versa. Otherwise,

𝑝1 is set to 0 already in the first step. Thus P[𝑆 = 𝑇 ] = 0.

We also give the following counterexample that works for the version of pipage rounding in

which we randomize over all possible orders. Let 𝑇 = {2, 3, 4} and

®𝑝 =

(
0.07, 0.9, 0.57, 0.37, 0.99, 0.1

)
.

Computing the probabilities by a straight-forward brute-force implementation of the method yields

P[𝑆 = 𝑇 ] ≥ 0.0043.

However, decreasing the residue for party 1 and increasing it for party 2 as follows

®𝑝′ =
(
0.06, 0.91, 0.57, 0.37, 0.99, 0.1

)
yields

P[𝑆 = 𝑇 ] ≤ 0.0042,

showing that also the random order version of pipage rounding violates selection monotonicity.

For systematic rounding with fixed order, the counterexample for Grimmett’s apportionment

method, given in Section 1 directly provides a counterexample when using the residues given in

Table 1 as input for systematic rounding. For random order, a straightforward brute-force check

shows that in the first election there exists no order for which the left-wing parties get all three

additional seats with positive probability. □

Proposition 3.4. Conditional Poisson rounding violates selection monotonicity.

Proof. The following counterexample was discovered and verified with considerable computa-

tional effort, using symbolic and rational arithmetic to ensure there were no numerical errors. It

involves such orders of magnitude that it is not detectable using standard Python packages with

floating-point arithmetic. Consider the following pair of scaled working probabilities for 𝑛 = 6 and

𝑘 = 3:

®𝜋 B (99620001435175085845613951348591, 33206667145059699577734936400435,
33206667145059699577734936400435, 23244667001544291253373835102276586,

23244667001544291253373835102276586, 1660333357252963458777541885429371)
®𝜋 ′ B (99620001435175193801835755646020, 33206667145059681577227243883092,

33206667145059681577227243883092, 23244667001544299141767505142336500,

23244667001544299141767505142336500, 1660333357252962147206216649823732)

Note that, to get the true working probabilities, these must be scaled down by the following

respective normalization constants, which do not fit on one line:

𝑁 = 999999999999999999999999999999997683569039326925979

611190826394109716067937415025227822500962454159264
1/3

𝑁 ′ = 999999999999999999999999999999999031428737331175393

563500944194957519703813036589912171397358763602688
1/3
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One may verify that these correspond to a pair of residue vectors ®𝑝 and ®𝑝′ such that 𝑝1 ≤ 𝑝′
1
,

𝑝2 ≤ 𝑝′
2
, 𝑝3 ≤ 𝑝′

3
, 𝑝4 ≥ 𝑝′

4
, 𝑝5 ≥ 𝑝′

5
, 𝑝6 ≥ 𝑝′

6
, and yet

𝜋1𝜋2𝜋3

𝑁
≥

𝜋 ′
1
𝜋 ′
2
𝜋 ′
3

𝑁 ′
,

i.e., the set {1, 2, 3} is more likely under ®𝑝 than ®𝑝′. □

Proposition B.1. Systematic rounding, pipage rounding, and conditional Poisson rounding violate
pairwise selection monotonicity.

Proof. For pipage rounding (with random order), consider the following vector of residues

®𝑝 = (0.03, 0.59, 0.07, 0.42, 0.47, 0.42),
summing up to 𝑘 = 2. We consider the two coalitions 𝑇1 = {1, 2} and 𝑇2 = {5, 6}. A straight-

forward implementation of pipage rounding (with randomized order) yields the following selection

probabilities for the two coalitions:

P[𝑆 = 𝑇1] ≥ 0.011 and P[𝑆 = 𝑇2] ≤ 0.12.

Now, consider the new vector of residues

®𝑝′ = (0.03, 0.59, 0.16, 0.33, 0.47, 0.42).
Note that, while residues for 𝑇1 and 𝑇2 remained unchanged, the residues of parties 3 and 4 did

change. This leads to coalition 𝑇1 losing selection probability and coalition 𝑇2 gaining selection

probability. Precisely,

P[𝑆 = 𝑇1] ≤ 0.01 and P[𝑆 = 𝑇2] ≥ 0.1204,

which proves the violation of pairwise selection monotonicity.

For systematic rounding, we let 𝑛 = 6 and 𝑘 = 2, and suppose ®𝑝 = (0.1, 0.1, 0.2, 0.2, 0.5, 0.9). Let
𝑇1 be the set of parties with residue 0.1 and 𝑇2 be the set of parties with residue 0.2. Then one can

check that, if we increase 0.5→ 0.6 and decrease 0.9→ 0.8 (without changing the total population

or state quotas), the probability of selecting 𝑇1 decreases (to zero) while the probability of selecting

𝑇2 increases, which violates pairwise selection monotonicity.

Finally, for conditional Poisson rounding, we must resort to computational verification as in the

proof of Proposition 3.4. We unfortunately do not have a closed form for the working probabilities,

but the pair of residue profiles is

®𝑝 B (0.0618342562928861, 0.0207176796116814,
0.0207176796116814, 0.9933997806603289,

0.9933997806603289, 0.9099308231630933)
®𝑝′ B (0.0618342562928862, 0.0207176796116814,

0.0207176796116814, 0.9933997806603289,

0.9933997806603289, 0.9099308231630932)

Observe that the only residues that changed in going from ®𝑝 to ®𝑝′ were 𝑝1, which increased, and 𝑝6,

which decreased. The unique working probabilities are algebraic numbers given by complicated

expressions. Using Mathematica, we computed that the set 𝑇1 B {1, 2, 3} (which contains only

residues that weakly increased) decreased in probability by roughly 5 × 10−26 while 𝑇2 B {3, 4, 5}
(which contains only residues that weakly decreased, because they all stayed the same) increased

in probability by roughly 2 × 10−18. Thus, pairwise selection monotonicity is violated. □



José Correa, Paul Gölz, Ulrike Schmidt-Kraepelin, Jamie Tucker-Foltz, and Victor Verdugo 29

C SUFFICIENT CONDITION FOR SELECTION MONOTONICITY
We call a rounding rule neutral, if reordering of the input vector ®𝑝 does not change the selection

probabilities. Clearly, Sampford rounding is neutral. Under neutrality, we can assume without loss

of generality that the set of parties of interest in the definition of selection monotonicity is 𝑇 = [𝑘].

Lemma C.1. Let 𝑟 be a neutral rounding rule. If, for any ®𝑝 ∈ [0, 1)𝑛 with
∑

1≤𝑖≤𝑛 𝑝𝑖 = 𝑘 for some
integer 1 ≤ 𝑘 ≤ 𝑛 − 1 and 𝑝1 > 0 it holds that(

𝜕
𝜕𝑝1
− 𝜕

𝜕𝑝𝑛

)
P𝑆∼𝑟 ( ®𝑝 ) [𝑆 = [𝑘]] ≥ 0,

then 𝑟 satisfies selection monotonicity.

Proof. Let ®𝑝, ®𝑝′ ∈ [0, 1)𝑛 be two vectors summing up to the same integer 𝑘 . Let 𝑇 be a set of

𝑘 parties such that 𝑝′𝑖 ≥ 𝑝𝑖 for all parties 𝑖 ∈ 𝑇 and 𝑝′𝑖 ≤ 𝑝𝑖 for all 𝑖 ∉ 𝑇 . By neutrality we can

reorder ®𝑝 and ®𝑝′ such that𝑇 = [𝑘] and do not change the selection probabilities of𝑇 . To prove that

𝑟 satisfies selection monotonicity, we aim to show that

P𝑆∼𝑟 ( ®𝑝′ ) [𝑆 = [𝑘]] ≥ P𝑆∼𝑟 ( ®𝑝 ) [𝑆 = [𝑘]] .
We prove the statement by induction over the number of indices in [𝑛] for which 𝑝𝑖 ≠ 𝑝′𝑖 holds.
Since ®𝑝 and ®𝑝′ are normalized, they differ in at least two indices (unless they are equal). Thus, in our

base case, we assume without loss of generality that 𝑝′
1
= 𝑝1 + 𝜖 and 𝑝′𝑛 = 𝑝𝑛 − 𝜖 for some 𝜖 ∈ (0, 1),

where the specific form again follows from normalization. We define the following function, which

linearly interpolates between ®𝑝 and ®𝑝′. That is, for all 𝜆 ∈ [0, 1] we define
®𝑓 (𝜆) = ®𝑝 + 𝜆( ®𝑝′ − ®𝑝).

Note that 𝑓1 (𝜆) = 𝑝1 + 𝜆𝜖 and 𝑓𝑛 (𝜆) = 𝑝𝑛 − 𝜆𝜖 and 𝑓𝑖 (𝜆) = 𝑝𝑖 = 𝑝′𝑖 for all 𝑖 ∈ {2, . . . , 𝑛 − 1}. We get

that

𝜕

𝜕𝜆
P
𝑆∼𝑟 ( ®𝑓 (𝜆) ) [𝑆 = [𝑘]] = 𝜕

𝜕𝑓1
P
𝑆∼𝑟 ( ®𝑓 ) [𝑆 = [𝑘]] 𝜕𝑓1

𝜕𝜆
+ 𝜕

𝜕𝑓𝑛
P
𝑆∼𝑟 ( ®𝑓 ) [𝑆 = [𝑘]] 𝜕𝑓𝑛

𝜕𝜆
(chain rule)

= 𝜖 ·
(
𝜕

𝜕𝑓1
P
𝑆∼𝑟 ( ®𝑓 ) [𝑆 = [𝑘]] − 𝜕

𝜕𝑓𝑛
· P

𝑆∼𝑟 ( ®𝑓 ) [𝑆 = [𝑘]]
)

≥ 0 (precondition of lemma)

Thus, by the fundamental theorem of calculus and the fact that
®𝑓 (0) = ®𝑝 and

®𝑓 (1) = ®𝑝′, we get that

P𝑆∼𝑟 ( ®𝑝′ ) [𝑆 = [𝑘]] − P𝑆∼𝑟 ( ®𝑝 ) [𝑆 = [𝑘]] =
∫

1

0

𝜕

𝜕𝜆
P
𝑆∼𝑟 ( ®𝑓 (𝜆) ) [𝑆 = [𝑘]]𝑑𝜆 ≥ 0.

For the induction step, consider the case when ®𝑝 and ®𝑝′ differ in more than two indices. Let 𝑖 be the

index minimizing |𝑝′𝑖 − 𝑝𝑖 | among all 𝑖 ∈ [𝑛] with 𝑝′𝑖 ≠ 𝑝𝑖 and assume without loss of generality

that 𝑝′𝑖 > 𝑝𝑖 . Then, let 𝑗 ∈ [𝑛] be such that 𝑝 𝑗 < 𝑝′𝑗 . Let ®𝑤 be the vector with 𝑤ℓ = 𝑝ℓ for all

ℓ ∈ [𝑛] \ {𝑖, 𝑗}, 𝑤𝑖 = 𝑝′𝑖 and 𝑤 𝑗 = 𝑝 𝑗 − (𝑝′𝑖 − 𝑝𝑖 ). Note that ®𝑤 ∈ [0, 1)𝑛 , ®𝑤 sums to 𝑘 and ®𝑝 and ®𝑤
differ in two indices, namely 𝑤𝑖 > 𝑝𝑖 and 𝑤 𝑗 < 𝑝 𝑗 , where 𝑖 ∈ [𝑘] and 𝑗 ∈ [𝑛] \ [𝑘] holds. Hence,
using the same argument as in the base case, we can show that

P𝑆∼𝑟 ( ®𝑤 ) [𝑆 = [𝑘]] ≥ P𝑆∼𝑟 ( ®𝑝 ) [𝑆 = [𝑘]] .
Moreover, note that ®𝑤 and ®𝑝′ differ in one less index than ®𝑝 and ®𝑝′, and it also holds that 𝑝′ℓ ≥ 𝑤ℓ

for all ℓ ∈ [𝑘] and 𝑝′ℓ ≤ 𝑤ℓ for all ℓ ∈ [𝑛] \ [𝑘]. Thus, by induction hypothesis it follows that

P𝑆∼𝑟 ( ®𝑝′ ) [𝑆 = [𝑘]] ≥ P𝑆∼𝑟 ( ®𝑤 ) [𝑆 = [𝑘]] ≥ P𝑆∼𝑟 ( ®𝑝 ) [𝑆 = [𝑘]],
which concludes the proof. □
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D DEFERRED PROOFS
D.1 Formula from Section 3
Lemma 3.10. Let 𝐵 be as in Lemma 3.8. Let �̂� ⊆ {2, 3, . . . , 𝑛 − 1} be distributed according to a

Poisson trial as above, but omitting parties 1 and 𝑛. Then,(
𝜕
𝜕𝑝1
− 𝜕

𝜕𝑝𝑛

)
E
[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
= (𝑝𝑛 − 𝑝1) P

[
|�̂� | = 𝑘 − 1

]
.

Proof. We take the derivative for each ℓ ∈ [𝑘 − 1] individually. That is,(
𝜕
𝜕𝑝1
− 𝜕

𝜕𝑝𝑛

)
E
[
1{|𝐵 | < 𝑘}· (𝑘 − |𝐵 |)

]
=

∑︁
0≤ℓ≤𝑘−1

(𝑘 − ℓ) ·
(

𝜕
𝜕𝑝1
− 𝜕

𝜕𝑝𝑛

)
P
[
|𝐵 | = ℓ

]
=

∑︁
0≤ℓ≤𝑘−1

(𝑘 − ℓ) ·
(

𝜕
𝜕𝑝1
− 𝜕

𝜕𝑝𝑛

) (
(1 − 𝑝1) (1 − 𝑝𝑛) P

[
|�̂� | = ℓ

]
+

(
𝑝1 (1 − 𝑝𝑛) + (1 − 𝑝1) 𝑝𝑛

)
P
[
|�̂� | = ℓ − 1

]
+ 𝑝1 𝑝𝑛 P

[
|�̂� | = ℓ − 2

] )
=

∑︁
0≤ℓ≤𝑘−1

(𝑘 − ℓ)
(
(𝑝𝑛 − 𝑝1) P

[
|�̂� | = ℓ

]
+ 2 (𝑝1 − 𝑝𝑛) P

[
|�̂� | = ℓ − 1

]
+ (𝑝𝑛 − 𝑝1) P

[
|�̂� | = ℓ − 2

] )
= (𝑝𝑛 − 𝑝1)

( ∑︁
0≤ℓ≤𝑘−1

(𝑘 − ℓ)
(
P
[
|�̂� | = ℓ

]
− P

[
|�̂� | = ℓ − 1

] )
−

∑︁
0≤ℓ≤𝑘−1

(𝑘 − ℓ)
(
P
[
|�̂� | = ℓ − 1

]
− P

[
|�̂� | = ℓ − 2

] ))
= (𝑝𝑛 − 𝑝1)

( ∑︁
0≤ℓ≤𝑘−1

P
[
|�̂� | = ℓ

]
−

∑︁
0≤ℓ≤𝑘−2

P
[
|�̂� | = ℓ

] )
(telescoping sums, P

[
|�̂� | < 0

]
= 0)

= (𝑝𝑛 − 𝑝1) P
[
|�̂� | = 𝑘 − 1

]
,

which concludes the proof. □

D.2 Auxiliary Lemma for the Proof of Theorem 4.5
Lemma D.1. Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ R be such that 𝑎, 𝑐, 𝑒 ≤ 0, 𝑏, 𝑑 ≥ 0, and 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 = 0. Then

there exists 𝑢0 ∈ R such that the following all hold:
(1) 𝑢0 + 𝑎 ≤ 0

(2) 𝑢0 + 𝑎 + 𝑏 ≥ 0

(3) 𝑢0 + 𝑎 + 𝑏 + 𝑐 ≤ 0

(4) 𝑢0 + 𝑎 + 𝑏 + 𝑐 + 𝑑 ≥ 0

Proof. There are two cases to consider. First suppose 𝑏 ≤ −𝑐 . Then we let 𝑢0 B −𝑎, which
satisfies all four inequalities:

(1) 𝑢0 + 𝑎 = 0

(2) 𝑢0 + 𝑎 + 𝑏 = 𝑏 ≥ 0

(3) 𝑢0 + 𝑎 + 𝑏 + 𝑐 = 𝑏 + 𝑐 ≤ −𝑐 + 𝑐 = 0

(4) 𝑢0 + 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑏 + 𝑐 + 𝑑 = −𝑎 − 𝑒 ≥ 0

On the other hand, if 𝑏 ≥ −𝑐 , we let 𝑢0 B −𝑎 − 𝑏 − 𝑐 , which then also satisfies all four inequalities:
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(1) 𝑢0 + 𝑎 = −𝑏 − 𝑐 ≤ −𝑏 + 𝑏 = 0

(2) 𝑢0 + 𝑎 + 𝑏 = −𝑐 ≥ 0

(3) 𝑢0 + 𝑎 + 𝑏 + 𝑐 = 0

(4) 𝑢0 + 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑑 ≥ 0

This concludes the proof. □

By letting 𝑎 B | |𝐴′ | − |𝐴| |, 𝑏 B | |𝐵′ | − |𝐵 | |, and so on, this lemma implies that 𝐵 ⊆ 𝐵′ and
𝐷 ⊆ 𝐷 ′ in the proof of Theorem 4.5.
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