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Highly disordered NbN thin films exhibit promising superconducting and optical properties. De-
spite extensive study, discrepancies in its basic electronic properties persist. Analysis of the optical
conductivity of disordered ultra-thin NbN films, obtained from spectroscopic ellipsometry by stan-
dard Drude-Lorentz model, provides inconsistent parameters. We argue that this discrepancy arise
from neglecting the presence of quantum corrections to conductivity in the IR range. To resolve
this matter, we propose a modification to the Drude-Lorentz model, incorporating quantum correc-
tions. The parameters obtained from the modified model are consistent not only with transport and
superconducting measurements but also with ab initio calculations. The revisited values describing
conduction electrons, which differ significantly from commonly adopted ones, are the electron relax-
ation rate Γ ≈ 1.8 eV/ℏ, the Fermi velocity vF ≈ 0.7× 106 ms−1 and the electron density of states
N(EF ) = 2 states of both spins/eV/Vf.u..

I. INTRODUCTION

Niobium nitride (NbN) stands out for its excellent
properties, including chemical stability, hardness, op-
tical and superconducting characteristics.1–4 Its rela-
tively high superconducting critical temperature and
large sheet resistance make it suitable for applications
such as superconducting nanowire single photon detec-
tors (SNSPDs)5 and kinetic inductance travelling wave
parametric amplifiers (KITWPAs).6 Transition metal
nitrides, including NbN, nowadays garner interest as
plasmonic materials,7 exhibiting double epsilon-near-zero
(ENZ) behaviour.8 This behaviour means that the real
part of their dielectric function, ϵr(ω), becomes zero at
two frequencies below the UV range. ENZ materials
enable strong interaction of light with plasma oscilla-
tions, offering a wide range of possibilities in photonics.9

NbN has drawn attention as an ENZ material due
to its tunable plasma frequency through composition
adjustments.10 Moreover, the optical response directly
influences the efficiency of SNSPDs, emphasizing the im-
portance of optical characterization of NbN thin films, as
highlighted in Refs. 11.

Despite more than 50 years of extensive study of
NbN films, significant disagreement persists with re-
gards to some of their fundamental properties. The pri-
mary source of mismatch arises from seemingly contra-
dictory results obtained through different measurement
pathways.11,12 First, the characterisation of the disorder
in NbN is routinely obtained from transport and Hall
effect measurements. This is done via the Ioffe-Regel pa-
rameter kF l, where kF is the Fermi wavevector and l is
the electron mean free path. It is well known that kF l
close to unity can be obtained in thin NbN films, i.e. l is
comparable to electron wavelength, and such highly dis-
ordered films are approaching metal-insulator transition
(MIT).13–15 Alternatively, this criterion can be expressed
via electron scattering rate in energy units ℏΓ, which is
comparable to the Fermi energy. Therefore, in highly
disordered metals, ℏΓ is expected to be a couple eV. Sec-

ond, ℏΓ can be obtained from optical response as well,
namely as a parameter of the Drude model for the di-
electric function of conducting electrons. However, these
measurements suggest ℏΓ ≈ 0.33 as obtained from fit-
ting a Drude-Lorentz model to ellipsometric data in the
visible range,11,16 which is an order of magnitude smaller
than expected.
Thin NbN films, especially its δ−phase, have superior

superconducting properties,17 and can be deposited by
various methods,18–20. They typically exhibit a polycrys-
talline structure with grains of various sizes, each possess-
ing a relatively well-defined cubic lattice interrupted by
vacancy defects.1,21 The grain boundaries consist of dis-
ordered NbN alloy, often containing oxygen, as well.22,23

Despite their granularity, NbN thin films can be consid-
ered as homogeneously disordered metal, especially re-
garding their optical response. This is natural in the
case of high intergrain conductivity24 or for mean free
path that is small in comparison to the grain size.14,25

It is known that the presence of disorder in metals,
either granular or homogenous, leads to quantum cor-
rections (QCs) to the Drude conductivity. In highly
disordered metals, the density of states (DOS) at the
Fermi level is suppressed, suppressing their conductivity,
as well.26 The correction to the real part of conductiv-
ity in 3D homogeneously disordered films, as obtained by
Altshuler and Aronov in Ref. 26 as well as from scaling
arguments,27 can be expressed in the following unified
form28,29

δσ(Ω) = −Q2σ0

(
1−

√
Ω

Γ

)
. (1)

Here, σ0 is the Drude conductivity, Q is the strength of
the correction, also called quantumness.28 The electron
relaxation rate relates is defined as reciprocal relaxation
time Γ = 1/τ . The energy Ω is determined by various
energy scales, such as incident photon energy ℏω, tem-
perature ∝ kBT , or magnetic field ∝ µBB. Although
this behaviour is routinely observed at energies of the
order of meV, it is rarely taken into account in optical
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FIG. 1: Thick lines: real (solid) and imaginary (dashed) part
of optical conductivity for NbN films of various thickness, de-
termined by SE. Thin lines are fitted to Eq. (2). Circles:
room-temperature DC conductivities measured by van der
Pauw method.

response analysis.30 Notably, in the study by Neilinger
et al.,28 the square root corrections (1) were observed up
to optical frequencies in MoC thin films. Although not
directly measured, a numerical study proposed a similar
square root behavior in NbN.31

In the following, we argue that these corrections dra-
matically alter the optical properties of NbN films and
explain the ENZ phenomenon. Modeling the optical con-
ductivity by a quantum-corrected Drude-Lorentz model,
we can determine various quantities, including the diffu-
sion coefficient and the superconducting coherence length
in agreement with the transport measurements. More-
over, the determined carrier density and agrees with the
DFT. Additionally, we compare this model to commonly
used models of the NbN dielectric function. The experi-
mental data used to establish a consistent set of parame-
ters, were obtained from spectroscopic ellipsometry (SE)
on δ−NbN films of various thicknesses. Independent
confirmation was provided by transport and magneto-
resistance measurements.

II. OPTICAL PROPERTIES

The optical properties of NbN thin films were inves-
tigated utilizing SE in the range from 300 to 800 nm.
Typically, SE is employed to determine the parameters
(commonly layer thickness) of a chosen optical model for
the studied sample. In our examination, where the goal
is to select an appropriate optical model, we evaluate
the optical constants directly from the SE data for each
wavelength separately via a model-independent way (for
details see Ref. 32).

The complex conductivity in the visible spectral range,
determined from SE (thick lines in Fig. 1) is smooth and
exhibits a clear dependence on the sample thickness. The
real part of σ(ω) decreases with frequency for all samples

which is attributed to the Drude-like 1/ω2 behaviour typ-
ical for metals with finite relaxation rate Γ.
In Ref. 31, a similar NbN film was studied, and a

conductivity peak in the UV range was determined by
means of numerical extrapolation. This spectral weight
was attributed to inter-band transition at ℏω ≈ 5−7 eV.
The presence of the inter-band transition, was observed
through optical measurements10,33 and various ab-initio
simulation, as well.10,34,35

Furthermore, the numerical study presented in our pre-
vious work suggests that thin NbN films exhibit suppres-
sion of σr(ω) in the IR range, accompanied by a peak
at ≈ 1 eV. This ”anti-Drude” behaviour is also known
as anomalous or displaced Drude peak. In Ref. 8, the
peak in the optical conductivity of NbN films was ex-
plained in terms of an effective medium emerging from
granular NbN dissolved in an insulating NbO matrix. We
discuss this approach in Appendix A, where we argue
that it is not appropriate for NbN, as it leads to un-
physical conclusions.36 In Ref. 36, the peak was obtained
within the Drude-Smith model, which we analyze in Ap-
pendix B. In Ref. 30, the σr(ω) of metallic films close to
MIT exhibited a square root dependence at frequencies
below IR range, which was ascribed to quantum correc-
tions to the Drude conductivity due to disorder. In order
to describe the σr(ω) in the optical range, a ”localization-
modified Drude model” was suggested as a simple mul-
tiplication of the Drude formula with a square root term
similar to Eq. (1).29 However, this model leads to incor-
rect behaviour of the conductivity at high frequencies,
which should drop as ω−2. Moreover, this model poorly
fits our data. The same square root behaviour of σr(ω)
up to the visible range was observed in Ref. 28. But, it
was suggested here that the influence of disorder should
disappear at frequencies of the order of the relaxation
rate. A square root correction was smoothly joined to
the bare Drude conductivity at a crossover frequency,
and an excellent agreement with the SE data was further
confirmed by independent transmission measurements.
Therefore, we analyse our SE data utilizing the quantum
corrected Drude model, extended by a Lorentzian peak
centred at ω1 with strength σ1 and width Γ1, describing
the inter-band transition. The quantum correction expo-
nentially vanishes at a scale Γ/2. Finally, we obtained
following model for the complex conductivity

σr(ω) =
σ0

1 + (ω/Γ)2

(
1−Q2(1−

√
Ω/Γ)e−

1
2 (

ω/Γ)2
)
+

σ1

1 +
(

ω2
1−ω2

ωΓ1

)2 , (2)

σi(ω) = H[σr(ω)]− (ϵ∞ − 1)ϵ0ω. (3)

To take into account the temperature smearing of the
steep square root correction at low photon energies, fol-
lowing Ref. 28, an energy scale entering the correction
was introduced as Ω =

√
ω2 + (πkBT/ℏ)2. H[σr(ω)]
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FIG. 2: The real part of the dielectric function ϵ(ω) corre-
sponding to the conductivities in Fig. 1. The inset shows the
lower plasma frequencies (frequencies at which ϵ(ω) = 0) de-
pendent on quantumness Q. The solid line is a plot according
to Eq. (5)

denotes the Hilbert transform of σr(ω), mathematically
manifesting the Kramers-Kronig relations. The Hilbert
transform can be performed numerically, or by approxi-
mative analytical formula for H[σr(ω)], which we derived
in Appendix C. This model of σr(ω) does not consider
the inter-band transitions of bound electrons at high en-
ergies, which affects the imaginary conductivity even at
small frequencies. Their effect is therefore expressed by
the second term in Eq. (3) via the parameter ϵ∞ = 1.6
estimated in Appendix D.

In the Fig. 1, it is shown that the proposed model
(thin lines) produces an excellent fit to both the real
and the imaginary parts of the conductivity. The pa-
rameters of the best fit are listed in Table I. The Drude
conductivity σ0 and the parameters of the inter-band
transition peak exhibit no clear dependence on thick-
ness. On the contrary, the scattering rate Γ slightly
increases with decreasing thickness, as expected. As
Γ rises, Q increases, too. This comes from the ex-
pression for Q being ≈ 1/kF l, where l = vF /Γ and
vF = ℏkF /me is the Fermi velocity, which we estimated

as vF =
√
ℏΓ/(Qme) ≈ 0.7− 0.8× 106 ms−1.26,29

The peak at 5-7 eV agrees with the predictions from
the joint density of states calculation.35 Similarly, the
joint density of states calculation predicted transitions
between the three highest occupied bands, leading to a
peak in the dielectric function at approx. 1 eV. There-
fore, it is tempting to assign the anomalous Drude peak
to the inter-band transitions, as was done in Refs. 11,16.
However, as can be seen from the angle-resolved pho-
toemission spectroscopy (ARPES) measurement, the dis-
order and/or thickness-enhanced scattering smears the
electron structure at the scale ℏΓ ≈ 1.5 eV.37 Further-
more, the DFT simulations suggest that such smear-
ing is necessary to stabilize the crystalline structure of
δ−NbN.38 Therefore, these inter-band transitions should
not be present in the spectra. Also, modelling the dis-

placed Drude peak as an inter-band transition leads to
a puzzling shift of its central frequency to higher ener-
gies with decreasing thickness, whereas for our model it
is explained via the increase of the quantumness Q.
The corresponding real part of the dielectric function

(Fig. 2) given as ϵr(ω) = 1 − σi(ω)/ϵ0ω, exhibits the
discussed double ENZ feature. For Q = 0, the model
gives (for ϵr(ω) and for the ordinary screened plasma
frequency ωp) the well-known results

ϵr(ω) ≈ ϵ′∞ − σ0/ϵ0Γ

(1 + (ω/Γ)2)
→ ω2

p =
σ0Γ

ϵ0ϵ′∞
, (4)

where ϵ′∞ = ϵ∞ + σ1Γ1/(ϵ0Ω
2
1) contains bound electrons

contribution ϵ∞ evaluated in Appendix D and the sec-
ond term is contribution from the inter-band transition
at ≈ 6 eV. From Eq. (C8), it can be shown, that for
low energies ℏω, the imaginary part is dominated by the
square root term. This gives, for epsilon and for the
newly unveiled second plasma frequency ωp2

ϵr(ω) ≈ ϵ′∞ − σ0

ϵ0Γ

(
1−Q2

√
Γ

ω

)
→

ωp2 ∝ ΓQ4,

(5)

clearly showing that, for non-negligible Q, the second,
lower plasma frequency appears. Its value increases as
Q4, whereas the regular plasma frequency slightly de-
creases with Q. In the inset of Fig. 2, the second plasma
frequencies of the samples are plotted. The thickest sam-
ple with the lowest Q does not reach zero, as the tem-
perature smearing sufficiently suppresses the square root
behaviour, which is not taken into account in Eq. (5).

d σ0 ℏΓ Q σ1 ℏΓ1 ℏω1

(nm) (Sµm−1) (eV) (1) (Sµm−1) (eV) (eV)

6.0 0.88 1.86 0.75 0.72 2.38 5.64

10.4 0.94 1.89 0.56 0.77 2.04 5.51

13.6 1.01 1.80 0.64 0.81 1.80 5.36

22.1 0.95 1.84 0.45 0.77 2.23 5.74

33.0 0.95 1.73 0.53 0.68 3.10 6.20

TABLE I: Paremeters of optical model (2) and (3) providing
the best fit to the experimental data.

III. TRANSPORT AND SUPERCONDUCTING
PROPERTIES

The introduced optical model, fitted to ellipsometric
data, predicts the DC conductivity that was indepen-
dently evaluated as σDC(T = 300 K) = 1/(R□d). Here,
R□ is the sheet resistance measured by the van der Pauw
method at room temperature, and d is the thickness of
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d L ρ R□ RRR Tc 2kBTc

(nm) (nm) (gcm−3) (Ω) (1) (K) (meV)

6.0 9 7.8 340 0.76 11.68 2.0

10.4 12 7.8 136 0.88 13.15 2.3

13.6 12 7.8 107 0.81 13.64 2.3

22.1 11 7.9 58 0.89 14.26 2.5

33.0 12 7.8 41 0.83 13.71 2.4

TABLE II: Properties of thin NbN obtained from X-ray mea-
surements and temperature-dependent transport measure-
ments. RRR is obtained as R□/R□(20 K), where R□ is the
room temperature sheet resistance.

the sample determined by the X-Ray reflection (XRR)
measurements. Both values are listed in table II. The re-
sulting DC conductivity is plotted in Fig. 1 as dots, and
they are perfectly recovered by the low-frequency part
of the optical conductivity fit. Here, we emphasize, that
the DC conductivity was not utilized during the fitting
procedure.

In literature, it is common to compute the electronic
parameters (i.e. kF l) from the measured DC conductiv-
ity σDC = 1/(R□d), assuming it is equal to the Drude
conductivity σ0. However, within our approach, the mea-
sured DC conductivity is σDC = σ0(1 − Q2), there-
fore it can not be interchanged with the Drude conduc-
tivity σ0. Following Refs. 26,30, we equate the quan-
tumness Q to 1/kF l, which enables us to easily esti-
mate the Ioffe-Regel parameter as well as the diffusivity
D = vF l/3 = ℏkF l/(3me) = ℏ/(3Qme).
To verify the diffusivity estimated from the optical

measurements, the magneto-resistance at low tempera-
tures was measured (see Fig. 3), and the temperature-
dependence of the upper critical field Bc2(T ) was deter-
mined. We start with the Ginzburg-Landau (GL) result
for the upper critical magnetic field

Bc2 =
Φ0

2πξ2GL(T )
, (6)

where Φ0 is the magnetic flux quantum and ξGL is the
GL coherence length. In the dirty limit, ξGL(T ) satisfies

1

ξ2GL(T )
=

1

0.8552ξ0l

Tc − T

Tc
, (7)

where ξ0 = ℏvF /(π∆) is the BCS coherence length, Tc

is the superconducting critical temperature, and ∆ is
the superconducting gap. Recalling the BCS relation
∆ = 1.764 kBTc, one can express the diffusivity via the
temperature derivative of Bc2 as39

DBc2
= −4kB

πe

(
∂Bc2

∂T

)−1

Tc

. (8)

The diffusivities were estimated from the slope of Bc2(T )
curves showed in Fig. 4. Comparison in the inset of

Fig. 4 shows that the diffusivity DBc2
estimated from

the magneto-resistance is comparable to Dopt, calculated
from the optical model. The expected decrease of the dif-
fusivity at low thicknesses is present in Dopt, but DBC2

is increasing with lowering the film thickness. This para-
doxical behaviour was likewise observed in Ref. 40. In
Ref. 41 relation (8) was corrected to take into account
that NbN is supposed to be a strong coupling super-
conductor. However, this would lead to further increase
of DBc2 . Alternatively, in Ref. 42 the authors showed
that the broadened tunneling spectra of dirty supercon-
ductors, also known as Dynes superconductors, such as
NbN43,44, can be explained by the presence of two types
of scattering processes, namely the pair-conserving and
the pair-breaking scattering. The rate of these scatter-
ings is Γ and ΓD, respectively. They also calculated the
thermodynamic properties of these superconductor, ex-
pressing the GL coherence length as45

1

ξ2GL(T )
=

12[1− ζ(2, 1
2 + α)]

πζ(2, 1
2 + α)

ℏΓ
∆

kB(Tc − T )

∆

1

ξ20
, (9)

where α = ℏΓD/(2πkBTc) and ζ(s, x) is the Hurwitz zeta
function. Then, diffusivity can be expressed as

D′
Bc2

= −K(α)
kB
e

(
∂Bc2

∂T

)−1

Tc

, (10)

where K = 2π[1 − ζ(2, 1
2 + α)]/ζ(2, 1

2 + α) and can be
approximated by the expression

K(α) ≈ 1.273 + 1.155α

1 + 2.432α+ 2.206α2
. (11)

For α = 0, the function K(α) reduces to the BCS value
4/π, however, for thin films, α is non-zero and thus de-
creases the diffusivity. Comparing the diffusivity values
DBc2

for the 6 nm sample and 30 nm samples, α = 0.15
was estimated. This yields an estimate of ℏΓD = 0.9
meV, which is reasonable for thin NbN films. ℏΓD es-
timated from tunneling spectra varies in the range from
negligibly small values up to tenths of meV, and even as
large as ∆/2 for strongly disordered samples with sup-
pressed Tc.

17,43,46–49

The electron mean free path was estimated as l =√
ℏ/QΓme ≈ 2− 3 Å is slightly above half of the lattice

parameter a = 4.4 Å, which indicates that the samples
are close to the Ioffe-Regel limit kF l → 1. The Ginzburg-
Landau coherence length ξGL(0) estimated by both Eqs.
(7) and (9) ranges from 3 nm to 4 nm, which agrees with
a commonly measured value in thin NbN films.41,50,51

IV. DISCUSSION

It is now convenient to compare the revisited param-
eters of NbN with DFT simulations. We estimated
the density of carriers in NbN as n = σ0Γme/e

2 =
9 × 1028 m−3 = 2 V −1

f.u. , where Vf.u. is the formula unit
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d kF l Dopt DBc2 l vF ξ0 ξGL Bc2 N(EF ) EF − Ec n

(nm) (1) (cm2s−1) (cm2s−1) (Å) (106ms−1) (nm) (nm) (T) (eV−1V −1
f.u. ) (eV) (1028m−3)

1/Q ℏ
3Qme

− 4kB
πe

(
∂Bc2
∂T

)−1

Tc

√
ℏ

QΓme

√
ℏΓ

Qme

ℏvF
π∆

0.855
√
ξBCSl Φ0/2πξ

2
GL

3σ0Qme
ℏe2

ℏΓ
2Q

σ0Γme
e2

6.0 1.33 0.51 0.73 2.34 0.66 69.2 3.44 27.0 2.27 1.24 8.82

10.4 1.78 0.69 0.68 2.68 0.77 70.2 3.71 23.1 1.81 1.69 9.57

13.6 1.56 0.60 0.60 2.57 0.70 64.1 3.47 26.5 2.23 1.41 9.80

22.1 2.22 0.86 0.63 3.03 0.85 71.1 3.97 20.2 1.47 2.04 9.42

33.0 1.88 0.73 0.57 2.88 0.76 66.1 3.73 22.9 1.73 1.63 8.86

TABLE III: Electronic properties calculated from the fit parameters of the proposed optical model to optical conductivity. For
comparison, besides the calculated diffusivity Dopt, diffusivity DBc2 obtained from the temperature dependence of critical field
Bc2(T ) is listed, too. For the BCS coherence length ξ0 we used the estimate of superconducting gap from Table II: ∆ ≈ 2kBTc.

9 10 11 12 13 14

T (K)

0

50

100

150

R
�

(Ω
)

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

B = 0 T

B = 6 T

Tc

FIG. 3: Magnetic field variation of the temperature-
dependent sheet resistance R□(T ) for the 10 nm sample.
Black lines are given by the maximal slope of R□(T ) curves
and the temperature of the superconducting transition is de-
termined by the intersect of the maximal slope line (black
solid lines) and the zero resistance line (black dotted line).
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Bc2. The solid lines are linear fits to the Bc2(T ) data. The
color-coding is same as in Fig. 1. The inset shows a com-
parison of the diffusivity obtained from the slope of Bc2(T )
(green) and that estimated from the proposed optical model
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volume, for δ-NbN Vf.u. = a3/4. This result is in excel-
lent agreement with the value obtained by integrating the
DFT DOS from the threshold of the peak responsible for
the modeled inter-band transition (≈ EF − 4 eV) up to
EF .

33,38,52–55 This also contradicts the common assump-
tion, that all 4 Nb d-orbital electrons are conducting.17

We should emphasize here, that the agreement of our
estimation of the number of electrons in the conductive
band with the DFT result was obtained despite the fact
that the DFT DOS itself is two times smaller than the
”Drude” DOS, which we determined from the Einstein
relation N(EF ) = σ0/(e

2Dopt). This can be explained
by the fact that the determined bottom of the conduc-
tive band Ec = EF −2 eV is much closer to EF compared
to DFT result 4 eV. The value of EF −Ec was estimated
from free electron relation between the density of elec-
trons and DOS, given as n = 2N(EF )(EF −Ec)/3. Sim-
ilar effect was observed in ARPES measurement where
the conductive band was significantly flattened in com-
parison to the DFT calculation, naturally leading to
higher DOS at the Fermi level.37 The 1 eV scale of
smearing of the ARPES bandstructure also suggest a
high value of scattering rate Γ. Nevertheless, ARPES
agrees with DFT on the value of the Fermi momentum
being approximately half of the ΓL path with length√
3π/a = 1.24 Å−1. This agrees with the estimated

kF ≈ 0.6 Å−1.

For N(EF ), we obtained 2 states of both
spins/eV/Vf.u.. Omitting the corrections, i.e., uti-
lizing σDC instead of σ0, would lead to suppressed DOS
N ′ = (1−Q2)N(EF ) which is thickness-dependent.12,13

Here we point out that even though in Ref. 13 this
suppressed DOS N ′ from transport measurements was
successfully compared to DFT value, these are by nature
different. Moreover, it should be noted that the DFT
calculations only partially account for electron-electron
or electron-phonon interactions, which are significant
in NbN,56. This implies that even the comparison of
uncorrected Drude DOS N(EF ) with the DFT value 0.8
- 1.2 states of both spins/eV/Vf.u. is questionable.
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V. CONCLUSION

In conclusion, we argue that the quantum corrections
to the conductivity of NbN films are present at op-
tical frequencies and significantly alter their dielectric
function. Therefore, we analyze their optical conduc-
tivities, utilizing the quantum-corrected Drude-Lorentz
model. The proposed model yields to an excellent fit to
the σ(ω) and provides parameters of the electronic fluid
such as: the electron concentration n, the diffusion co-
efficient D, the Ioffe-Regel parameter kF l, and the elec-
tronic density of states N(EF ). The obtained diffusion
coefficient agrees with the magneto-transport measure-
ment, moreover, the estimated n is consistent with ab
initio simulations. The determined electron relaxation
rate ℏΓ ≈ 1.8 eV, consistent with the presence of high dis-
order in NbN films, is an order of magnitude higher than
the commonly considered value obtained from standard
optical models. This emphasizes the importance of quan-
tum corrections in the analysis. Moreover, various puz-
zling phenomena like the double ENZ10, the increase of
sheet resistance at lower thicknesses, and inconsistencies
in electron relaxation rates are explained by this model.
For other reported effects, such as increasing diffusivity
with lowering of the thickness, and high electron density
of states, we have suggested explanations, which could
be verified by further experiments.
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Appendix A: Effective medium theory

In Ref. 8, the double ENZ was explained via Maxwell-
Garnet (MG) effective medium theory, which describes
the optical properties of composite materials consisting
of polarizable inclusions in an insulating matrix. In the
case of NbN, NbN nanoparticles are immersed in a ma-
trix of insulating niobium oxides. Taking the dielectric
function of the oxide from Ref. 57, the resulting MG for-
mula provides ϵ(ω) with two zeros. However, such effec-
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FIG. 5: a) Prediction of Maxwell-Garnet theory for a metal-
lic inclusion in a niobium oxide matrix for various volume
fractions of the inclusion. b) Thin lines are the Drude-Smith
model curves obtained as best fit to data from ellipsometry
depicted by thick lines. Points at zero frequency are the mea-
sured DC conductivities.

tive medium with an insulating matrix is inevitably an
insulator. Moreover, the presence of oxygen in the NbN
films was associated with the degree of porosity and it
manifests itself in a significant increase of the resistance
and/or the residual-resistance ration (RRR).23 Consid-
ering the sheet resistance and RRR (see Table II), our
samples have negligible oxygen content. The presence
of oxygen should affect the density of the films as well,23

which was estimated from XRR, to have a constant value
of 7.8 gcm−3, which is close the ideal cubic NbN value.

If the matrix would be a bad conductor, with a conduc-
tivity peak at 5-7 eV, the MG model indeed reproduces
both the suppression of the DC conductivity and the dou-
ble ENZ behaviour. But, as can be seen in Fig. 5a, by
varying the volume fraction of the inclusion, the model
interpolates between the Drude conductivity and the con-
ductivity of the poorly conducting matrix, i.e., the con-
ductivity varies in the whole frequency range. Besides the
DC conductivity suppression, σ(ω) would vary at energy
≈ ℏΓ, too, and the optical peak would change rapidly its
weight. None of this behaviour was observed in the SE
measurements.

Appendix B: Drude-Smith model

Another approach which yields to the anomalous
Drude peak is the Drude-Smith model, which is based
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d σ0 ℏΓdiff c a σ1 ℏΓ1 ℏΩ1

(nm) (Sµm−1) (eV) (1) (1) (Sµm−1) (eV) (eV)

6.0 1.00 1.38 0.48 1.08 1.00 0.76 5.52

10.4 1.17 1.36 0.38 1.31 1.01 0.72 5.50

13.6 1.18 1.35 0.40 1.11 1.08 0.68 5.50

22.1 1.17 1.32 0.34 1.36 1.05 0.76 5.70

33.0 1.17 1.24 0.37 1.20 0.97 0.91 6.00

TABLE IV: Paremeters of Drude-Smith model (B1) providing
best fit to the experimental data.

on a material formed by granules whose boundaries cause
reflection of electrons. This model, as derived in Ref. 36,
leads to the following corrections to the Drude formula

σ(ω) =
σ0

1− iω/Γdiff

(
1− c

1− iω/a

)
. (B1)

Here, the parameters Γdiff and a are determined by the
granule size L, utilizing the following relations

Γdiff =
1

τ
+

2vth
L

, a =
12vth
L

τ

L/vth + 2τ
, (B2)

where vth =
√

kBT/me is the thermal velocity. This
model fits our experimental data very well (see Fig. 5b).
However, the resulting granule size is 5 Å, which is at
least one order of magnitude smaller than the grain
size estimated by X-Ray diffraction (XRD) measure-
ment. For reasonable parameters (the measured grain
size L ≈ 10 nm and relaxation rate 1/τ = Γ ≈ 2 eV/ℏ),
this model leads to a displaced Drude peak in THz fre-
quency range (meV). Thus, the fit of this model to our
data produces unreasonable parameters. We do not claim
that this effect is not present as it still can play a role at
much smaller energies, where our measurements are not
sensitive.

Appendix C: Approximative formula for imaginary
part of the modelled conductivity

The Drude-Lorentz and Drude-Smith models are con-
venient because both the real and the imaginary part are
accessible in a simple closed formula. Therefore, they can
be easily implemented in a fitting procedure, which are
computationally less demanding. More complex mod-
els, typically expressing one part of the dielectric func-
tion, usually require to compute the other one numer-
ically, as we have indeed done for the proposed model
(2). However, we derived a simple approximative analyt-
ical formula for the KK image of σr(ω), too. We start
by introducing the dimensionless frequency x = ω/Γ and
expanding the exponential function

e−2x2

=
(
1 + 2x2 +

1

2
(2x2)2 + ...

)−1

. (C1)

Taking the first two terms, we obtained the approxima-
tive form of σr(x)

σ̃r(x) =
σ0

1 + x2

(
1−Q2 1−

√
x

1 + 2x2

)
. (C2)

Utilizing the fact that the real part of the conductivity is
an even function of x, the Hilbert transform of Eq. (C2)
is

H[σr(x)] =
2x

π
P.V.

∫ ∞

0

σr(s)

x2 − s2
dx. (C3)

For the imaginary part σ̃i(x) we obtained

σ̃i(x) =
σ0x

1 + x2

(
1−Q2 ax

2 − b+ 1/
√
x

1 + 2x2

)
, (C4)

where

a = 2(2
√
2− 23/4 − 1) ≈ 0.293,

b = (1− 3
√
2 + 27/4) ≈ 0.121.

(C5)

The comparison of Eq. (C4) (red dashed lines) with the
numerical result (green dashed lines) for various values
of quantumness Q = 0, 0.5, 0.75, 1 is in Fig. 6a. One
can see a excellent match, except for the value Q = 1,
where a slight disagreement can be seen. This can be
treated by taking the next term in the expansion (C1).
We calculated the Hilbert transform of the function

˜̃σr(x) =
σ0

1 + x2

(
1−Q2 1−√

x

1 + 2x2 + 2x4

)
, (C6)

with the result

˜̃σi(x) =
σ0x

1 + x2

(
1 +Q2

(√
2−

(αx2 + β)(x2 + 1) + 1 + 1/
√
x

1 + 2x2 + 2x4

))
,

(C7)

where

α =2− 27/4 sin
(π
8

)
+

8

π

∫ ∞

0

x5/2dx

1 + 2x2 + 2x4
≈ 3.136,

β = 25/4 sin
(π
8

)
− 4

π

∫ ∞

0

x1/2dx

1 + 2x2 + 2x4
≈ 0.308.

(C8)
In Fig. 6b we compare numerical transformations of
Eq. (2) (green dashed lines) to the approximative formula
(C6) (red dashed lines), indicating deviations smaller
than 1 %. Finally, fitting the experimental data with
the approximate formula for the imaginary part Eq. (C8)
produces identical results as the numerical transforma-
tion does.

Appendix D: Electron structure and ϵ∞ estimation

The picture of bonding and the configuration for 10
niobium and nitrogen valence electrons in NbN were pro-
posed by many authors,54,56,58 and it was later largely
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FIG. 6: a) Black lines are the modified Drude conductiv-
ity σr(x) with quantum corrections of various strength Q =
0, 0.5, 0.75, 1. Green dashed lines are their corresponding
Kramers-Kronig images obtained numerically. Red dashed
lines are given by the formula (C4) for the Hilbert transforms
of σ̃r(x). b) Green dashed lines are the same as in a), red
dashed lines are plots of the formula (C6) for H[˜̃σr(x)].

confirmed by the partial DOS from DFT calculations and
X-ray photoelectron spectroscopy.33,38 Namely, there is
a complicated Fermi surface created by Nb’s 4d orbitals
occupied by two electrons.35,38. This agrees with the op-
tical estimation of the Drude weight mentioned in the
main text. Next, there is strong hybridization of Nb 4d
and N 2p orbitals containing approx. 6 electrons form-
ing a peak in DOS, approx. 6 eV below EF , providing
electrons for the modelled inter-band transition. A naive
approach utilizing the strength and the width of the op-
tical peak Z = σ1Γ1me/(nNbNe2) gives 3-5 electrons.
Here, nNbN = 1/Vf.u. is the concentration of formula
units. The estimated number of electrons matches well
with the band structure value, considering neglected joint
DOS influence. Finally, the calculations indicate that the
remaining 2 electrons occupy bands low in energy (10-20
eV below EF ), corresponding to N 2s orbitals. Contri-
bution to the optical response due to the transition of
these electrons to Fermi level is included via the param-
eter ϵ∞ together with transitions of relevant remaining

core electrons.
Similarly to the estimation of the electron number in

the DOS peak from the weight of the inter-band transi-
tion peak, we estimated the contribution ϵ∞ to the di-
electric function from high-energy transitions. In Ref. 28,
the ϵ∞ was expressed via the number of core electrons in
their respective atomic level k, i.e. Zk, as follows

ϵ∞ ≈ 1 +
∑
k

ZkΩ
2
k

ω2
k

, Ω2
k =

nNbNe
2

meϵ0
. (D1)

Here ℏωk is the energy of the atomic level k with respect
to the Fermi level. The values of ℏωk are listed in Ref. 59.
The relevant orbitals which are not too low in energy for
niobium are 3s2, 3p6, 3d10, and 4s2, with energies 467
eV, 370 eV, 203 eV, and 56 eV, respectively. Nitrogen
contributes with 1s2 and 2s2, with energies 410 eV and 37
eV, respectively. The energy of the nitrogen’s 2s orbital is
not taken from Ref. 59, but instead, the value 15 eV was
taken, which is suggested by the predictions on the NbN
electronic band structure, summarized in the previous
paragraph. Finally, we obtained ϵ∞ = 1.62.

Appendix E: Sample preparation

The thin NbN films were prepared by pulsed laser de-
position (PLD, Omicron system with Coherent Compex
Pro 201 F laser) by means of a KrF laser with wavelength
of 248 nm and pulse duration of 35 ns. The films were
grown on c-cut sapphire substrates cleaned in ultrasonic
bath in acetone, isopropyl alcohol, and deionized water
in succession. The deposition was performed in high-
vacuum chamber with the residual atmosphere pressure
of 10−7 Pa. The ablation was carried out from a niobium
target in N2+1%H2 reactive atmosphere. The pressure of
the atmosphere was 9.3 Pa and the substrate was heated
up to 600°C. For more details see Ref. 19.
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