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Abstract 

Vaccination campaigns have both direct and indirect effects that act to control an infectious disease as 

it spreads through a population. Indirect effects arise when vaccinated individuals block disease 

transmission in any infection chains they are part of, and this in turn can benefit both vaccinated and 

unvaccinated individuals.  Indirect effects are difficult to quantify in practice, but here, working with 

the Susceptible-Infected-Recovered (SIR) model, they are analytically calculated in important cases, 

through pivoting on the Final Size formula for epidemics. Their relationship to herd immunity is also 

clarified. Furthermore, we identify the important distinction between quantifying indirect effects of 

vaccination at the “population level” versus the “per capita” individual level, which often results in 

radically different conclusions. As an important example, the analysis unpacks why population-level 

indirect effect can appear significantly larger than its per capita analogue. In addition, we consider a 

recently proposed epidemiological non-pharamaceutical intervention used over COVID-19, referred 

to as “shielding”, and study its impact in our mathematical analysis. The shielding scheme is extended 

by inclusion of limited vaccination. 

Keywords: SIR model; epidemics; indirect vaccination effects; shielding; herd immunity.  

1. Introduction 

Vaccination campaigns have both direct and indirect effects on the transmission of an infectious disease 

as it spreads through a population [1-4].  Direct vaccination effects refer to the reduction in the risk of 

infection due to the protection provided to individuals by the vaccine dose. Indirect vaccination effects 

refer to the protection provided to an individual by any nearby vaccinated neighbors that indirectly act 

to block chains of incoming infections, or just reduce infection possibilities, thereby “shielding” the 

individual [3-5]. The indirect effect of vaccination, via such shielding, makes it more difficult for a 

disease to spread in a population and hence also affects conditions that give rise to herd immunity [6]. 

Indirect vaccination effects are difficult to quantify in practice, but clearly understanding the role and 

magnitude of indirect effects is critical for assisting in the design of vaccination programs [2-4]. A 

deeper theoretical analysis is still lacking and there is a need to better formulate conditions that predict 

when the impact of indirect effects will be significant and when they will be minor [2-4, 7]. Here we 

make use of simple mathematical models to achieve this goal, and in important cases succeed to give 

an exact characterization of indirect effects. In the process, we make clear the important distinction of 

quantifying indirect effects either at the population level or as a “per-capita” quantity, a key distinction 

that is often neglected.  

 Haber [3] gives a simple elegant example that shows how indirect effects matter and how their 

“shielding” property can be taken advantage of. “Consider a population that consists of 10,000 
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individuals in 2,000 households so that the average household size is 5. If 4,000 vaccine doses are 

available, what is the best way to distribute the vaccine?  Perhaps, the simplest way is to select 800 

households and vaccinate everyone in these households.  However, an alternative plan, is to vaccinate 

two persons in each of the 2,000 households. The second plan is more effective, because it utilizes the 

indirect effects of shielding to protect the unvaccinated household members.” In fact indirect effects 

endow additional protection to all households and individuals in the second plan, in contrast to the first 

plan that leaves 1,200 households with no protection. 

The most striking example of indirect effects relates to herd immunity, where the theory predicts 

that there is no need to vaccinate more than a critical proportion of a population to completely protect 

the whole population from a disease [6, 8, 9]. The threshold is predicted, for example, by the simple 

classical SIR epidemic model we will be describing shortly. At the herd immunity threshold, if a 

proportion v of the population is “directly” vaccinated, then the proportion (1-v) of the population does 

not require vaccination since it will be protected indirectly by herd immunity effects [6, 8]. The 

division of the population in this ratio v/(1-v) (i.e., direct : indirect) proves to be important in what 

follows. 

As mentioned, quantifying the direct and indirect effects is of great value in the evaluation of 

vaccination campaigns [1-4, 10]. But it is a complicated procedure. In a number of studies, the indirect 

vaccination effect has been estimated to be unusually large in magnitude. Scutt et al. [11] showed that 

in some cases the indirect vaccination effect can be more than 400% of the direct vaccination effect. 

Eichner et al. [4] discussed an example in Canada, where “vaccination of 83% of children (≤15 years) 

reduced influenza infection incidence in unvaccinated individuals by 61%.” Similarly, in modelling 

COVID-19, Gavish et al. [12] found that among the cases reduced as a result of the booster campaign, 

∼54% were reduced because of direct protection, whereas the remainder were reduced by indirect 

protection.  Gallagher et al. [13] emphasized the critical importance of considering the indirect 

vaccination effect when evaluating SARS-CoV-2 vaccine candidates. Through modelling, they 

emphasized the importance of not automatically selecting a vaccine based solely on the largest direct 

effect. Weidemann et al. [7] pointed out that there are exceptions and that some studies report that the 

impact of indirect effects can be low (e.g., as in the school vaccination programs on US county level 

[14, 15]).  

Mathematical models are used here to explore the extent of indirect effects and the factors that 

enhance them. In contrast to other analyses [4, 11], we use the Final Size formula [16] of the epidemic 

which allows us to draw analytical conclusions from the mathematical models without relying on 

numerical simulations. 

2. SIR epidemics with vaccination  

The standard SIR model assumes that at any time 𝑡, each individual in a population can only belong 

to any one of three classes: Susceptible, Infected or Recovered. Taking the proportions of individuals 

as 𝑆, 𝐼 or 𝑅, then clearly 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1. In a randomly mixing population, new infections 

are generated when infected individuals come into contact with susceptible individuals at a rate 

proportional to the product 𝑆 ∙ 𝐼, which leads to the following well known SIR equations: 

     
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼, 
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𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼,                                                              (2.1) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼. 

In this scheme, over time individuals move from the 𝑆 class to the 𝐼 class, and finally end up in 

the recovered 𝑅  class i.e., 𝑆 → 𝐼 → 𝑅 . Here 𝛽 is the transmission rate (𝑆 → 𝐼 ) between individuals, 

while 𝛾 is the recovery rate (𝐼 → 𝑅). The basic reproduction number is defined as 𝑅0 = 𝛽/𝛾. Initial 

conditions are such that almost all members of the population are susceptible, and the number of 

initially infected individuals are infinitesimally small, so that we may approximate 𝑆(0) = 1, 𝐼(0) =

𝑅(0) = 0. According to standard theory, for these initial conditions, if a single infected individual 

enters the system, an epidemic will occur only if 𝑅0 > 1, since it ensures that 𝑑𝐼/𝑑𝑡 > 0 at 𝑡 = 0. 

A simple model of vaccination can be explored by changing the initial conditions. Suppose that 

initially a proportion 𝑣 of a fully susceptible population has been vaccinated and has thus become fully 

protected from infection. The population’s vaccination coverage is said to be 𝑣,  and we set:  

𝑆(0) = 1 − 𝑣,   𝐼(0) = 0,   𝑅(0) = 𝑣  . (2.2) 

In this case, standard theory shows that an epidemic can only occur if the effective reproduction 

number 𝑅𝑒 = 𝑅0 𝑆(0) > 1, which is equivalent to vaccination level  𝑣 < 𝑣ℎ   where the herd immunity 

threshold is: 

                                                                           𝑣ℎ = 1 −
1

𝑅0
                                                                          (2.3) 

Under this condition, the epidemic’s Final Size or proportion of the population infected over the 

epidemic, is given by 𝑍(𝑣) and is the solution of the following equation [16]:                               

𝑍(𝑣) = (1 − 𝑣)(1 − 𝑒−𝑅0𝑍(𝑣))  . (2.4) 

The solid lines in Fig. 1, show the Final Size 𝑍(𝑣) as a function of vaccination 𝑣, repeated for different 

values of the reproduction number 𝑅0. In the absence of vaccination (𝑣 = 0), we denote the Final Size 

as  𝑍∗ = 𝑍(0) and is given by the solution of: 

𝑍∗ = 1 − 𝑒−𝑅0𝑍∗
. (2.5) 

The Final Size 𝑍∗ in the absence of vaccination is plotted in Fig. 1a (dashed lines), as a reference 

indicating the case where 𝑣 = 0. Thus, for a high reproduction number (e.g., 𝑅0 = 4, yellow curve), 

and no vaccination (𝑣 = 0 ), the Final Size 𝑍∗ = 0.99  and the epidemic would infect 99% of the 

population. The Final Size decreases with 𝑣, and for any 𝑅0 is zero at the herd immunity threshold 

 𝑣 = 𝑣ℎ = 1 − 1/𝑅0. Given 𝑅0 = 4, at the herd immunity threshold (𝑣 = 0.75), an epidemic is not 

possible despite the fact that 25% of the population remain unvaccinated and thus susceptible. In this 

situation, the vaccination is protecting the unvaccinated population indirectly.  
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Figure 1. (a) The relationship between the Final Size of the epidemic and the proportion 𝑣   of 

individuals vaccinated for 𝑅0 = 1.5, 2, 2.5, 3, 3.5, 4 as calculated by solving Eq. (2.4). Note that the 

herd immunity threshold, e.g., for 𝑅0 = 2.5 is at 𝑣 = 0.6. The black marked points identify the Final 

Size of the epidemic when 𝑣 = 0, i.e., 𝑍∗ for different values of 𝑅0. (b) The relationship between the 

proportion of individuals vaccinated, 𝑣, and the infections averted by direct vaccination effect ∆𝐷=

𝑣𝑍∗, and indirect vaccination effect ∆𝐼= (1 − 𝑣)𝑍∗ − 𝑍.  See Eq.2.8 and 2.9. 

2.1.  Calculating direct and indirect effects of vaccination 

For any level of vaccination coverage 𝑣 , it is possible to determine the total proportion of the 

population protected by the vaccine or equivalently the proportion ∆𝑇  of infections that has been 

averted, as compared to the situation had there been no vaccination. Most methods use simulation or 

approximation techniques to achieve this [4, 11, 12]. Here we find a solution based on the Final Size 

equation for the SIR model. The proportion ∆𝑇 is simply the difference between the Final Size with no 

vaccination 𝑍∗, and the Final Size with vaccination 𝑍 = 𝑍(𝑣), namely: 

∆𝑇= 𝑍∗ − 𝑍. (2.6) 

The proportion of total infections averted, ∆𝑇 , as a function of 𝑣 can be visualized as the gap between 

the solid line for 𝑍  and the dashed line for 𝑍∗  in Fig. 1a. It is important to note that ∆𝑇  has two 

components: 

i) the direct vaccination effect (∆𝐷), which is the proportion of infections averted among those 

vaccinated who achieved a level of protection provided by the vaccine, 

ii) and the indirect vaccination effect (∆𝐼), which is the proportion of infections averted among 

the unvaccinated individuals due to population-level immunity.  

That is: 

∆𝑇 = ∆𝐷 +  ∆𝐼 . (2.7) 

It is not straightforward to disentangle the two components ∆𝐷 and ∆𝐼. In the case of the SIR model, 

since there is no Vaccinated compartment, it is difficult to track the fate of vaccinees and thus obtain 

the direct effect ∆𝐷. Eichner [4] describes a method that  adds a Vaccinated compartment and simulates 

the number of infections generated by vaccinees who received a completely ineffective vaccine.  

Tallying the total number of new infections generated from this subgroup gives the direct effect. Based 

on a similar concept we show, using a Final Size formulation, that the proportion of infections directly 

averted ∆𝐷 is given by: 
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∆𝐷= 𝑣 ∙ 𝑍∗. (2.8) 

where 𝑍∗ = 𝑍(0), is the size of the epidemic in the absence of vaccination. Supplementary Note 1 

provides a proof based on the continuous-time SIR model.  

Equation (2.8) is an important result that is also to some degree intuitive. For example, if the 

epidemic infected all members of the population (𝑍∗ = 1) , it is clear that the proportion of those 

infected who are vaccinated is:  ∆𝐷= 𝑣𝑍∗. The relationship in Eq. (2.8) was also noted by Scutt et al. 

[11] for a different discrete time epidemic model.  

From Eqs. (2.6-2.8), the proportion of infections averted by indirect vaccination as a function of 

𝑣 is:  

∆𝐼= ∆𝑇 − ∆𝐷= 𝑍∗ − 𝑍 − 𝑣 𝑍∗ =  (1 − 𝑣)𝑍∗ − 𝑍 ≤ (1 − 𝑣)𝑍∗ , (2.9) 

where again we use the notation that 𝑍 = 𝑍(𝑣). The indirect effect thus comprises all unvaccinated 

infected individuals (1 − 𝑣)𝑍∗ that there would have been with no vaccination, but taking away the 

total number of infected individuals under a vaccination program (see Fig. 1b).   

 Notice in Fig. 1a that the Final Size as a function of v may be roughly approximated by the linear 

relationship 𝑍 = 𝑍∗ (1 − 𝑣/(1 − 1/𝑅0))  as long as 𝑣 ≤ 𝑣ℎ. The approximation ensures that 𝑍(0) =

𝑍∗, and at the herd immunity threshold  𝑣ℎ = 1 − 1/𝑅0, it gives 𝑍(𝑣ℎ) = 0. Substituting this linear 

expression into Eq. (2.9) results in:  

∆𝐼≃ 𝑍∗ −  𝑍∗  (1 −
𝑣

1 −
1

𝑅0

) − 𝑣 𝑍∗ =
𝑣 𝑍∗

𝑅0 − 1 
.  (2.10) 

The proportions of infections averted by direct ( ∆𝐷 ) and indirect ( ∆𝐼 ) vaccination effect 

respectively, are shown in Fig. 1b and found from solving Eqs. (2.4-2.9). In Fig. 1b, the dotted green 

line shows the linear relationship between (1 − 𝑣)𝑍∗  and 𝑣 . Thus, the infections averted by direct 

vaccination effect is the gap between the dashed and the dotted lines, and the infections averted by 

indirect vaccination effect ∆𝐼 is the gap between the dotted and the solid green lines. 

Figure 2 unpacks the impact of the vaccination effect as a function of 𝑣. The infections averted by 

total, direct and indirect vaccination effect respectively are plotted in Fig. 2 as a function of 𝑣, for 

𝑅0=1.5, 2.0, 2.5, 3.0, 3.5, 4.0.  In the Supplementary Note 2 we use an SIRV simulation model with a 

vaccination compartment to independently determine ∆𝑇, ∆𝐷, and ∆𝐼 and retrieve identical results that 

corroborate those shown in Fig. 2. 

There are several interesting features seen in Fig. 2. First, the total infections averted by 

vaccination, ∆𝑇 clearly increases with v, until the herd immunity threshold is reached at 𝑣ℎ =  1 −

1/𝑅0 . Hence the most effective campaign is the one with highest vaccination levels despite the 

presence of prominent indirect effect at lower vaccination levels. Second, the proportion of infections 

averted by the direct vaccination effect ∆𝐷  is linear in 𝑣 . In contrast, the proportion of infections 

averted by the indirect vaccination effect ∆𝐼 increases nonlinearly in 𝑣 as long as 𝑣 <  𝑣ℎ = 1 − 1/𝑅0. 

Beyond the herd immunity threshold (𝑣 > 𝑣ℎ), the indirect effect decreases linearly until ∆𝐼= 0 is 

reached when  𝑣 = 1. When 𝑣 is increased beyond the herd immunity threshold 𝑣ℎ, the epidemic has 

died out and there are zero infectives in the population. 
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Figure 2. The proportion of infections averted by vaccination as a function of vaccination level 𝑣. (a) 

Total vaccination effect ∆𝑇; (b) Direct vaccination effect ∆𝐷; (c) Indirect vaccination effect ∆𝐼. This is 

repeated for 𝑅0 = 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 . The dashed lines in each panel represent the “herd 

immunity” vaccination coverage levels 𝑣ℎ =  (1 − 1/𝑅0), with values from left to right corresponding 

to increasing 𝑅0 values. 

2.2.  Ratio of indirect to direct vaccination effects 

According to the formulae developed so far, the ratio of indirect to direct vaccination effects is: 

∆𝐼

∆𝐷
=

(1 − 𝑣)𝑍∗ − 𝑍

𝑣 𝑍∗
=

1 − 𝑣

𝑣
−

𝑍

𝑣 𝑍∗
. (2.11) 

 

In Fig. 3a, the ratio ∆𝐼/∆𝐷 is plotted for different 𝑅0 values. Three properties of this ratio are evident 

from Eq. (2.11) and making use of the fact that 𝑍 = 0 when 𝑣 ≥ 𝑣ℎ for any specified 𝑅0:  

i) when 𝑣 ≥ 𝑣ℎ, the ratio ∆𝐼/∆𝐷 can be determined by: 

∆𝐼

∆𝐷
=

(1 − 𝑣)𝑍∗ − 𝑍

𝑣 𝑍∗ =
1 − 𝑣

𝑣
; (2.12) 

 

ii) when 𝑣 ≥ 𝑣ℎ, the ratio ∆𝐼/∆𝐷 reaches its maximum at  𝑣 = 𝑣ℎ., we get: 

∆𝐼

∆𝐷
|(𝑣=𝑣ℎ) =

1 − 𝑣ℎ

𝑣ℎ
=

1
𝑅0 − 1

; (2.13) 

 

iii) the ratio reaches zero when the entire population is vaccinated: 
∆𝐼

∆𝐷
|(𝑣=1) = lim

𝑣→1

1 − 𝑣
𝑣

= 0; (2.14) 

 

In Supplementary Note 3 we show that the indirect- to direct-effect ratio, when only a few individuals 

are vaccinated (i.e., 𝑣 = 0+), can be calculated analytically as: 

∆𝐼

∆𝐷
|

(𝑣=0+)
=

1

1 − 𝑅0(1 − 𝑍∗
)

− 1. (2.15) 

Recall that from Eq. (2.10), as long as 𝑣 ≤ 𝑣ℎ, ∆𝐼≃ 𝑣 𝑍∗/(𝑅0 − 1). Thus, a simple approximation 

for the ratio ∆𝐼/∆𝐷 in the outbreak phase can be obtained by: 

∆𝐼

∆𝐷
≃

𝑣 𝑍∗

(𝑅0 − 1) (𝑣 𝑍∗)
 =

1

𝑅0 − 1
. (2.16) 
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This approximation is confirmed in Fig. 3b where the exact ratio ∆𝐼/∆𝐷 is compared with the RHS of 

Eq. (2.16) (dotted grey curve), both versus 𝑅0. Figure 3b shows the ratio ∆𝐼/∆𝐷 as a function of the 

basic reproduction number 𝑅0 , for 𝑣 = 0.1, 0.2, 0.3, 0.4 , in all cases for a range of 𝑅0  where the 

vaccination level falls below the herd immunity threshold, i.e.,  𝑅0 > 1/(1 − 𝑣).   

The approximation in Eq. (2.16) shows that the indirect and direct effects of vaccination are 

approximately equal when 𝑅0 = 2.  In the regime of 1 < 𝑅0 < 2, the indirect vaccination effect can 

be significantly larger than the direct vaccination effect. For 𝑅0 > 2, the indirect vaccination effect is 

always less than the direct vaccination effect, and it is almost negligible for 𝑅0 > 4.  The dotted grey 

line shows the relationship between the ratio and 𝑅0 as predicted by Eq. (2.16). The black marked 

points in Figs. 3b and Fig. 3c identify where 𝑣=1-1/𝑅0, indicating the respective lowest 𝑅0 required to 

initiate an epidemic given a vaccination level. 

 In a related study, Eichner et al. [4] also examined the ratio of indirect to direct vaccination effects 

in an SIR model having a vaccination compartment. However, their analysis assumes the presence of 

demographic birth and death processes, and is carried out when the system reaches an endemic 

equilibrium state, rather than over a dynamic epidemic as done here. Nevertheless, and intriguingly, 

they still find the ratio is given by Eq. (2.16) namely ∆𝐼/∆𝐷= 1/(𝑅0 − 1). Using an approximate form 

of the number of infected individuals for a discrete-time SIR model and examining the mortality rate 

of the disease, Scutt et al. [11] calculated the ratio ∆𝐼/∆𝐷 for deaths averted.  

 

Figure 3. (a) The ratio of indirect to direct vaccination effects ∆𝐼/∆𝐷 versus the vaccination level 𝑣, 

for different values of 𝑅0; using Eq. (2.11). The dashed lines (each associated with the curve of the 

same color) indicate where herd immunity has been reached for a particular value of 𝑅0. The dotted 

red curve shows (1 − 𝑣)/𝑣, which the ratio collapses to, when 𝑣 ≥ 𝑣ℎ for any value of 𝑅0 (see Eq. 

(2.12)). (b) The ratio of indirect to direct vaccination effects ∆𝐼/∆𝐷 as a function of 𝑅0 for different 

values of 𝑣. The dashed grey line plots 1/(𝑅0 − 1); see Eq. (2.16). (c) PCR as a function of 𝑅0 for 

different vaccination levels 𝑣 between 0 and 0.8; PCR (Eq. (2.17)) is the indirect vaccination effects 

per unvaccinated individual against the direct vaccination effects per vaccinated individual. The 

dashed black curve shows the trend in PCR versus increasing 𝑅0 for 𝑣 = 0.2. 

2.3.  When does the indirect vaccination effect play a major role? 

The indirect vaccination effect can be substantial, in some cases exceeding 900% of the direct 

vaccination effect as seen in Fig. 3b. However, here, we show that this does not imply that unvaccinated 

individuals gain more benefit from the vaccination campaign than vaccinated individuals. To this end, 

we use the theoretical analysis presented so far and an intriguing example inspired by [11].  
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 Consider a population of 𝑁 = 500,000  where 50,000 susceptible individuals were vaccinated 

(𝑣 = 0.1). A virus with basic reproduction number 𝑅0 = 1.2 invades the population. By solving Eq. 

(2.4) we obtain that in the ensuing epidemic, 𝑁 ∙ 𝑍(0.1) = 65,000 individuals become infected.  Had 

there been no vaccine, from Eq. (2.5) we find the estimate indicating that 𝑁𝑍∗ = 𝑁𝑍(0) = 157,000 

would have been infected altogether.  Thus, because of the vaccine 𝑁(𝑍∗ − 𝑍(𝑣)) = 92,000 people 

avoided infection.  This can be broken down into:  

i) direct vaccination effect, i.e., 𝑁∆𝐷= 𝑣 𝑁 𝑍∗ = 15,700 infections were averted in the vaccinated 

population, as found from Eq. (2.8), and  

ii) indirect vaccination effect, i.e.,  𝑁 ∆𝐼= 76,300  infections were averted in the unvaccinated 

population, using Eq. (2.9).  

The ratio of indirect to direct vaccination effects is thus (𝑁∆𝐼)/(𝑁∆𝐷) = 4.9. Also, Eq. (2.16) gives 

an excellent approximation for ∆𝐼/∆𝐷 that may be found without any of the above calculations, namely:   

∆𝐼/∆𝐷≃ 1/(𝑅0 − 1) = 5. 

 The above example is intriguing because it demonstrates that at the population level the indirect 

vaccination effect can have a significant impact and, in this case, averts a relatively large number of 

infections, here some five times that of the direct vaccination effect.  But the ratio is slightly misleading 

in that the unvaccinated pool where the indirect effects takes place is particularly large (450,000), in 

fact nine times larger than the relatively small vaccinated pool (50,000). To clearly understand this 

phenomenon, it essential to examine the effects on a “per capita” basis: 

i) Direct vaccination effects are (𝑁∆𝐷)/(𝑁𝑣) = 15,700/ 50,000 = 0.314 infections averted per 

vaccinated individual. 

ii) Indirect vaccination effects are (𝑁∆𝐼)/[𝑁(1 − 𝑣)] = 76,300 / 450,000 = 0.169  infections 

averted per unvaccinated individual. 

The ratio of indirect vaccination effect per unvaccinated individual to direct vaccination effect per 

vaccinated individual is the per-capita ratio (PCR): 

𝑃𝐶𝑅 =  
𝑁 ∆𝐼

[(1 − 𝑣) 𝑁]
/

𝑁 ∆𝐷

𝑣 𝑁
 =    

𝑣

(1 − 𝑣)  
∙

∆𝐼

 ∆𝐷
. (2.17) 

Thus, even though the indirect vaccination effect can be very large compared with direct vaccination 

effect (here five times larger), the per capita ratio of indirect to direct vaccination effect is 𝑃𝐶𝑅 = 0.54. 

This measurement clearly shows that a vaccinated individual will still get much more benefit than an 

unvaccinated individual from vaccination, as might be expected.  

2.4. The “per capita” effect 

In summary, the Per Capita Ratio (PCR) of indirect to direct vaccination effects is defined as in Eq. 

(2.16), which combined with Eq. (2.11) gives: 

𝑃𝐶𝑅 =   
𝑣

1 − 𝑣
  

∆𝐼

∆𝐷
=

𝑣

1 − 𝑣
  (

1 − 𝑣

𝑣
 −  

𝑍

𝑣 𝑍∗
) ≤ 1. (2.18) 

Figure 3c depicts PCR as a function of 𝑅0 for a range of vaccination levels. It is important to note that, 

for a vaccine having 100% efficacy, all infections occur exclusively in unvaccinated individuals, so 

that indirect vaccination effects only impact the unvaccinated population. 

As it is seen in Fig. 3c, the per capita PCR is always between 0 and 1. (PCR equals unity when the 

vaccination level equals or exceeds the herd immunity threshold 𝑣ℎ, and below the herd immunity 
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threshold, the per capita ratio PCR is always smaller than 1.) Thus PCR indicates that the protection 

for unvaccinated individuals through the indirect vaccination effect cannot be larger than the direct 

vaccination effect for vaccinated individuals on a per capita basis. However, comparing this with the 

data from Fig. 3b, in the scenario where 1 < 𝑅0 < 2, we observe that ∆𝐼/∆𝐷 > 1, implying that the 

indirect vaccination effect consistently dominates the direct vaccination effect. As a result, solely 

focusing on the ratio ∆𝐼/∆𝐷  can potentially exaggerate the perceived role of indirect vaccination 

effects, especially when the unvaccinated population is very large. Furthermore, it can be seen in Fig. 

3c that given a particular 𝑅0, a higher 𝑣 corresponds to a higher per capita ratio (PCR), suggesting that 

unvaccinated individuals can benefit more from a higher vaccination coverage. In contrast, as it can 

be seen in Fig. 3b or deduced from the approximation given in Eq. (2.16), the indirect- to direct-effect 

ratio ∆𝐼/∆𝐷 is almost independent of the vaccination level. This clearly shows how ∆𝐼/∆𝐷 can lead to 

misconceptions and highlights the importance of PCR for analysis of the effects of vaccination. 

3. Shielding model of epidemics 

In 2020, the SARS-CoV-2 virus emerged and led to a devastating global pandemic over the next years. 

Initially, and for at least a year, no vaccination was available for protection—it appeared the entire 

world population was susceptible. In the absence of vaccination, Weitz et al. [5] devised a mitigation 

strategy based on the fact that recovered individuals will always gain (at least short-term) immunity 

and can be used as “shields” to limit SARS-CoV-2 transmission. We will examine different shielding 

approaches and also discuss the role of indirect effects. 

3.1. Shielding through recovered individuals 

In practice, the strategy attempts to place susceptible members of the population as close as possible 

to anyone who has recovered from the disease. In other words, a susceptible individual will then tend 

to come into contact with recovered individuals more than other susceptible or infected individuals.  

In theory, the recovered individual will act to block transmission and reduce the number of chains of 

infection that could potentially reach the susceptible.  The epidemic Final Size would also be expected 

to reduce. By relocating individuals and their contacts, the population mixing becomes non-random 

and thus more difficult to model.  Nevertheless, Weitz et al. [5] devised a simple model to approximate 

the “shielding” effect. Their model assumes that there is a relative preference of 1 + 𝛼 that a given 

individual will interact with a recovered individual in what would be otherwise an interaction with a 

random individual. This type of interaction substitution is equivalent to assuming an effective contact 

rate ratio of 1 + 𝛼 for recovered individuals relative to the rest of the population.  The larger is 𝛼, the 

more chance that a susceptible individual is in the vicinity of a recovered, and therefore the larger is 

the shielding effect.  

The following modified SIR equations [5] involve shielding into the process: 

                 
𝑑𝑆

𝑑𝑡
= −𝛽

𝑆𝐼

1 + 𝛼𝑅
 , 

                      
𝑑𝐼

𝑑𝑡
= 𝛽

𝑆𝐼

1 + 𝛼𝑅
− 𝛾𝐼, (3.1) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼, 



10 

 

where 𝑆, 𝐼, 𝑅 are the fractions of susceptible, infectious, and recovered individuals, respectively, and 

𝑆(0) = 1, 𝐼(0) = 𝑅(0) = 0. Given that 𝑆 + 𝐼 + 𝑅 = 1, the term 1 + 𝛼𝑅 can be thought of as 𝑆 + 𝐼 +

(1 + 𝛼)𝑅. This assumes an effective contact ratio of 1 + 𝛼 for a recovered individual relative to the 

rest of the population (𝑆 + 𝐼). The transmission rate is given by the term 𝛽/[1 + 𝛼𝑅(𝑡)], and thereby 

clearly, the more recovered individuals there are, or the higher is 𝛼, the lower will be the epidemic 

transmission through the population. The time-varying basic reproduction number is defined as 

𝑅0(𝑡) = 𝛽/[(1 + 𝛼𝑅(𝑡)) ∙ 𝛾] , where 𝛽 is the infection rate, and 𝛾 is the recovery rate.  

Through numerical simulations Weitz et al. [5] show that shielding acts to reduce the epidemic 

peak and shortens the duration of epidemic spread. By directly solving the following Eqs. (3.4, 3.5), 

without relying on numerical simulations, we show here the effect of shielding on the Final Size of the 

epidemic as a function of the basic reproduction number 𝑅0 = 𝛽/𝛾 in Fig. 4a, and as a function of 

shielding strength 𝛼 in Fig. 4b. It is clear from the results that very large levels of shielding are required 

to make a substantial impact on the size of the epidemic. An important observation is that any shielding, 

no matter how strong (even for 𝛼 = 20), slows down the epidemic but never stops it completely (i.e., 

via crossing the herd immunity threshold). Intuitively, this might be expected, since in situations when 

there are few recovered individual available to provide protection, shielding becomes less effective. In 

other words, shielding via “recovered” population has a large effect when the epidemic is largely 

spreading, and the more shielding is applied, slowing down the epidemic results in a decrease in the 

shielding effect itself; see Fig. 4b where increasing shielding strength asymptotically loses effect. 

 

Figure 4. (a) The Final size of the epidemic 𝑍 as a function of the basic reproduction number 𝑅0 for 

initial vaccination coverage 𝑣 = 0 with shielding strength 𝛼 = 𝛼𝑅 = 0, 2, 5, 20. (b) The Final size of 

the epidemic 𝑍 as a function of the shielding strength 𝛼 (or 𝛼𝑅, since shielding is implemented on 

Recovered individuals only) for 𝑅0 = 2.5 separately for different vaccination levels 𝑣; calculated by 

solving Eqs. (3.4-3.5). 

3.2.  Shielding through both vaccinated and recovered individuals 

Here we extend the shielding strategy [5] to a more general mitigation strategy where some (even 

limited) vaccination is available and thus both recovered and/or vaccinated individuals can be used as 

shields. In the extended shielding model, a susceptible individual has a relative preference of 1 + 𝛼𝑉 

for contact with a vaccinated and 1 + 𝛼𝑅 with a recovered individual relative to other individuals. The 

new model can be formally presented with the following equations:  
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𝑑𝑆

𝑑𝑡
= −𝛽

𝑆𝐼

1 + 𝛼𝑉𝑣 + 𝛼𝑅𝑅
 , 

                                                                         
𝑑𝐼

𝑑𝑡
= 𝛽

𝑆𝐼

1 + 𝛼𝑉𝑣 + 𝛼𝑅𝑅
− 𝛾𝐼,                                    (3.2) 

                                                                               
𝑑𝑅

𝑑𝑡
= 𝛾𝐼, 

                 
𝑑𝑁

𝑑𝑡
= 𝛼𝑅𝛾𝐼,                        

where 𝑆, 𝐼, 𝑅 is the fraction of susceptible, infectious, and recovered individuals, respectively, and we 

define the function 𝑁(𝑡) = 1 + 𝛼𝑉𝑣 + 𝛼𝑅𝑅(𝑡) which plays a key role in our analysis of the model. 

The fraction of vaccinated individuals is set as a constant 𝑣, and thus 𝑆(0) = 1 − 𝑣, 𝐼(0) = 𝑅(0) = 0. 

Similar to the base shielding model (Eq. (3.1)), given 𝑆 + 𝐼 + 𝑅 + 𝑣 = 1, the term 1 + 𝛼𝑉𝑣 + 𝛼𝑅𝑅 

can be thought of as 𝑆 + 𝐼 + (1 + 𝛼𝑉)𝑣 + (1 + 𝛼𝑅)𝑅. Then, the transmission rate is given by the term 

𝛽/[1 + 𝛼𝑉𝑣 + 𝛼𝑅𝑅(𝑡)], and thus, the time-varying basic reproduction number is given by 𝑅0(𝑡) =

𝛽/[(1 + 𝛼𝑉𝑣 + 𝛼𝑅𝑅(𝑡))𝛾], where 𝛽 is the infection rate, and 𝛾 is the recovery rate.  

3.3. Analysis of the extended shielding model 

The extended shielding model (Eq. (3.2)) can be investigated analytically to characterize the effect of 

shielding when both vaccinated and recovered population are participating. Here, we examine the 

relationship between the Final Size of the epidemic (𝑍) and the shielding strength 𝛼𝑉 and 𝛼𝑅. 

Shielding via vaccinees only (𝜶𝑽 > 𝟎, 𝜶𝑹 = 𝟎). This is the case where recovered individuals are 

not used as shields, and the shielding is based entirely on vaccinated individuals. As before, we assume 

that at 𝑡 = 0 initial conditions are 𝑆(0) = 1 − 𝑣, 𝐼(0) = 𝑅(0) = 0.  Since 𝛼𝑅 = 0,  the system in Eq. 

(3.2) is equivalent to a standard SIR epidemic except now with 𝑅0(𝑣) = 𝛽/[(1 + 𝛼𝑉𝑣)𝛾]. Thus, the 

effective reproduction number is given by 𝑅eff(𝑡) = 𝑅0(𝑣) 𝑆(𝑡), and an epidemic will occur at 𝑡 = 0 

only if 𝑅eff(0) > 1, so that 𝐼(𝑡) would have initial positive growth. The condition for epidemic break-

out can be worked out for the vaccinated shielding strength as:  

𝛼𝑉 < [𝛽(1 − 𝑣)/𝛾 − 1]/𝑣. (3.3) 

The Final Size of the epidemic 𝑍(𝑣) is as before defined by Eq. (2.4). Thus, increasing vaccinated-

shielding (𝛼𝑉), decreases 𝑅0, and this in turn decreases the Final Size 𝑍 until it reaches zero when 

𝛼𝑉 = [𝛽(1 − 𝑣)/𝛾 − 1]/𝑣. This means that with a large enough vaccinated-shielding, an epidemic 

can be prevented. 

Shielding via both vaccinees and recovered individuals (𝜶𝑽, 𝜶𝑹 > 𝟎). The equilibrium of Eq. 

(3.2) occurs when all time-derivatives are set to zero. Note that at equilibrium we must have 

lim𝑡→∞ 𝐼(𝑡) = 𝐼∗ = 0 . Suppose also that at equilibrium lim𝑡→∞ 𝑁(𝑡) = 𝑁∗  and lim𝑡→∞ 𝑅(𝑡) = 𝑅∗ . 

Since the Final Size of the epidemic 𝑍 is exactly 𝑅∗, and 𝑁∗ = 1 + 𝛼𝑉𝑣 + 𝛼𝑅𝑅∗, thus 𝑍 can be derived 

as: 

𝑍 =  (𝑁∗ − 1 − 𝛼𝑉𝑣)/𝛼𝑅. (3.4) 

Our analysis of the extended shielding model (Eq. 3.2) in Supplementary Note 4 reveals that 𝑁∗ 

satisfies the equation below: 

𝑁∗𝑐+1 − (𝛼𝑅(1 − 𝑣) + 1 + 𝛼𝑉𝑣)𝑁∗𝑐 + 𝛼𝑅(1 − 𝑣) (1 + 𝛼𝑉𝑣)𝑐 = 0, (3.5) 
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where 𝑐 = 𝛽/𝛼𝑅𝛾  and 1 + 𝛼𝑉𝑣 ≤ 𝑁∗ ≤ 1 + 𝛼𝑉𝑣 + 𝛼𝑅(1 − 𝑣). In Supplementary Note 4 we show in 

detail that there is always only one root of Eq. (3.5) that satisfies the range of 𝑁∗. Using numerical 

procedures, Eq. (3.5) can be solved to obtain the unique value of  𝑁∗, and substituting 𝑁∗ in Eq. (3.4), 

gives the Final Size of the epidemic 𝑍.  For this scenario, the time-varying basic reproduction number 

is given by 𝑅0(𝑡) =𝛽/[(1 + 𝛼𝑉𝑣 + 𝛼𝑅𝑅(𝑡))𝛾] , the effective reproduction number is given by 

𝑅eff(𝑡) = 𝑅0(𝑡) 𝑆(𝑡), and an epidemic will occur only if 𝑅eff(𝑡) > 1 at 𝑡 = 0, i.e., 𝛼𝑉 < [𝛽(1 − 𝑣)/

𝛾 − 1]/𝑣. (Note that the condition for epidemic break out is the same as Eq. (3.3) calculated for the 

case where 𝛼𝑅 = 0, investigated earlier.) 

The effect of shielding via vaccinated population is demonstrated by the results in Fig. 5a, obtained 

by applying Eqs. (3.4) and (3.5) derived for the extended shielding model formulation (Eq. (3.2)). The 

solid curves represent the case where there is no recovered shielding (𝛼𝑅 = 0) and dashed curves 

represent the case where recovered- and vaccinated shielding increase together (𝛼𝑅 = 𝛼𝑉). As one can 

expect, the larger is 𝛼𝑉, the smaller is the Final Size of the epidemic. Clearly, for different vaccination 

levels color-coded in Fig. 5a, the Final Size of the epidemic reaches zero only when vaccinated 

shielding strength crosses the herd immunity threshold 𝛼𝑉 = [𝛽(1 − 𝑣)/𝛾 − 1]/𝑣  (see Eq. (3.3)), 

regardless of the recovered shielding strength 𝛼𝑅. Moreover, the results in Fig. 5a show that for a 

higher initial vaccination coverage 𝑣, the herd immunity threshold for vaccinated shielding strength 

𝛼𝑉 is lower (consistent with Eq. (3.3)).  In other words, the higher is the vaccination level, the less 

vaccinated shielding is required to achieve herd immunity. Interestingly, adding recovered-shielding 

further reduces the Final Size between 0 ≤ 𝛼𝑉 < [𝛽(1 − 𝑣)/𝛾 − 1]/𝑣, but only increasing 𝛼𝑉 is able 

to make 𝑅eff(0) ≤ 1 and completely curb the epidemic. This is seen by solid and dashed curves of 

each particular color (corresponding to a particular vaccination level) reaching 𝑍 = 0 at the same 𝛼𝑉 

threshold independent of 𝛼𝑅 . In Supplementary Note 4, we use numerical simulations to find the 

relationship between the Final Size of the epidemic and 𝛼𝑉, 𝛼𝑅, and obtain identical results that confirm 

those shown in Fig. 5a. 

It is intuitive that using vaccinated individuals as shields can increase the indirect vaccination 

effect, thereby increasing the PCR. It is thus helpful to use PCR to explain the curbing effect of 

vaccinated-shielding strength 𝛼𝑉 on epidemics. In Fig. 5b, we show the effect of shielding on the PCR 

as a function of shielding strength 𝛼𝑉, for different levels of vaccination 𝑣 in the initial population. As 

it is seen in Fig. 5b, increasing vaccinated-shielding strength 𝛼𝑉 directly increases PCR, with higher 

vaccination level strengthening this effect. Also the results confirm the epidemic break-out (or herd-

immunity if viewed inversely) condition in Eq. (3.3), with PCR reaching unity exactly at 𝛼𝑉 =

[𝛽(1 − 𝑣)/𝛾 − 1]/𝑣 (marked by the dashed lines associated with different vaccination levels).  
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Figure 5. (a) The Final size of the epidemic 𝑍 as a function of the shielding strength 𝛼𝑉 for different 

vaccination levels 𝑣 = 0, 0.1, 0.2, 0.3, 0.4, separately demonstrated for no recovered-shielding 𝛼𝑅 =

0 (solid curves), and increasing recovered-shielding 𝛼𝑅 = 𝛼𝑉 (dashed curves). (b) PCR as a function 

of vaccinated-shielding strength 𝛼𝑉  for different vaccination levels 𝑣 = 0, 0.1, 0.2, 0.3, 0.4 . The 

results in both panels are calculated based on the PCR definition in Eq. (2.18) and the solution of Eqs. 

(3.4) and (3.5); all data are generated with assumed 𝑅0 = 2.5. 

4. Discussion and conclusion 

Unlike the approaches used in previous studies, such as the equilibrium analysis of Eichner et al. [4]  

and the approximate discrete-time SIR model of Scutt et al. [11], this paper adopts the Final Size 

formula to explore the impact of vaccination. This method allows us to obtain many useful results all 

analytically and unpack vaccination effects and mitigation strategies, and also paves the way for 

advanced analytical evaluation of current and future strategies. Our results indicate that the ratio of 

indirect to direct vaccination peaks at the herd immunity threshold 𝑣ℎ = 1/𝑅0 − 1 (Fig. 3a), with the 

ratio being substantial for outbreaks with lower vaccination coverage 𝑣 (Figs. 3a and 3b).  Although 

the indirect vaccination effect can be substantial—potentially many times greater than the direct 

vaccination effect— the presence of a large unvaccinated population can change how this should be 

interpreted.  The influence of the size of unvaccinated population is reflected better in per capita ratio 

of indirect- to direct-effect of vaccination (which we denoted PCR), and can be an important tool to 

analyze vaccination strategies as shown by analytical results in this manuscript. As expected, the PCR 

measure reveals that the benefits of the indirect vaccination effect for an unvaccinated individual can 

never surpass the direct protection of vaccine for a vaccinated individual. 

       Either limiting the transmission of the infectious disease or reducing the number of susceptible 

individuals (e.g., through vaccination) can effectively reduce the Final Size of the epidemic. While the 

strategy of using recovered individuals as shields to limit the transmission of SARS-CoV-2 has been 

widely discussed [17-19], it has the disadvantage of requiring large-scale serologic testing, making it 

virtually impractical [5]. With regards to vaccination, achieving an initial coverage beyond the herd 

immunity threshold can reduce the Final Size of the epidemic to zero, but that usually requires 

vaccinating a substantial proportion of a population. Moreover, vaccine availability may be limited, 

especially in less developed countries. Our proposed extension of the shielding model can be an 

effective response. It suggests using vaccinated individuals as shields without the help of, or in addition 

to, the shielding of the recovered population. This model achieves the goal of reducing the Final Size 

of the epidemic to zero for any non-zero vaccination coverage, given that the shielding strength via 

vaccinated population 𝛼𝑉  is sufficiently large, i.e.,  𝛼𝑉 ≥ [𝛽(1 − 𝑣)/𝛾 − 1]/𝑣. Tracking vaccinated 

individuals is more feasible than tracking recovered individuals, making the extended shielding a more 

practical mitigation strategy, assuming a vaccine is available. 

 It is important to mention that our study primarily focused on epidemics with fixed 𝑅0 and initial 

vaccination coverage 𝑣 , assuming a 100% vaccination efficacy. In more realistic scenarios, these 

parameters change over time instead of remaining constant. Therefore, in certain extreme cases, our 

main conclusions regarding indirect and direct vaccination effects may not be applicable. For instance, 

if no one is vaccinated before the epidemic and the rate of vaccination during the epidemic is slow, the 

epidemic may conclude before a significant fraction of the population is vaccinated. Additionally, the 

rate of immunity loss from infection or vaccination will also impact the results [9, 20, 21]. These 

complications suggest important future research directions.  
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