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Abstract— The exponential growth of artificial in-
telligence (AI) and machine learning (ML) applica-
tions has necessitated the development of efficient
storage solutions for vector and tensor data. This pa-
per presents a novel approach for tensor storage in a
Lakehouse architecture using Delta Lake. By adopting
the multidimensional array storage strategy from ar-
ray databases and sparse encoding methods to Delta
Lake tables, experiments show that this approach has
demonstrated notable improvements in both space
and time efficiencies when compared to traditional se-
rialization of tensors. These results provide valuable
insights for the development and implementation of
optimized vector and tensor storage solutions in data-
intensive applications, contributing to the evolution
of efficient data management practices in AI and ML
domains in cloud-native environments.

Index terms—Tensor Storage, Sparse Tensor En-
coding, Object Storage, Database Management, Dis-
tributed Training, Cloud Computing

I. Introduction

The increasing importance of vector and tensor storage in
the realm of artificial intelligence (AI) and machine learn-
ing (ML) is undeniable. Large language models (LLMs), or
more broadly, foundation models [1], characterized by their
billions of parameters, require massive datasets for train-
ing and operation. Their input data come in various forms.
These include diverse modalities such as text, voice, im-
ages, and videos. In many instances, the volume scales to
petabytes. These extensive datasets are used to perform tasks
in natural language processing (NLP) and computer vision
(CV).

The data often take the form of vectors and tensors. Be-
yond simple serialization, vector database management sys-
tems (VDBMS) have emerged as a crucial solution for stor-
ing embedding vectors and their raw feature data. They of-
fer a range of capabilities, including query optimization,

transactions, scalability, fault tolerance, and privacy and se-
curity for unstructured data [2], [3]. These systems can be
broadly classified into two types: “native” systems, specifi-
cally developed for vectors, and “extended” systems that in-
corporate vector indexing and embedding capabilities into
existing database systems through extensions.

While numerous studies in VDBMS have contributed to
the storage and retrieval of vectors, research dedicated to
the efficient storage of both vectors and, their higher-order
format, tensors remains limited. Tensors have capabilities
that extend beyond those of vectors. They can manage not
only embedding vectors but also input datasets and model
parameters like weights and biases. It’s a unified approach
to handling multi-dimensional data. Exploring tensor stor-
age strategies could improve data accessibility and computa-
tional efficiency. They are vital for processing complex data
types in AI applications. The project aims to bridge this re-
search gap by investigating and developing tensor storage
optimization techniques, potentially significantly impact-
ing future developments in the field. Efficient storage tech-
niques for tensors could also be adapted for vectors, provid-
ing a general solution.

This project focuses on investigating storage efficiency us-
ing an “extended” system, more specifically, the Lakehouse
architecture [4]. Unlike vector database systems, this archi-
tecture uses Photon [5], a proprietary fine-tuned Spark [6]
variant, as its query engine on the Delta Lake storage layer.
The choice of the Lakehouse architecture stems from read-
ing complex data like vectors and tensors needs complex
non-SQL code. Standard data reading methods like ODBC/
JDBC may not offer optimal efficiency. The architecture also
benefits from the disaggregation between computation and
storage, utilizing cloud object storage, designed with cost
and scalability as primary considerations. Tested in Data-
bricks, it has proven its robustness and scalability in han-
dling exabytes of data per day, with the largest instances
managing exabyte-scale datasets and billions of objects [7].
The combination of large-scale data processing and cost-
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effective storage makes the Lakehouse architecture partic-
ularly suitable for investigating efficient vector and tensor
storage.

In the context of “cloud-native” VDBMS, the storage of
vectors and tensors also typically employs cloud object stor-
age such as Amazon S3 and Azure Blob Storage. These
services offer significant advantages over traditional file sys-
tems or data warehouses that use distributed file systems
like Hive [8] on HDFS [9]. They free users from maintaining
the storage systems and provide benefits including pay-as-
you-go billing, economies of scale, and expert management
[10].

Despite these advantages, most cloud object storages
function primarily as key-value stores. To fully leverage their
potential, solutions such as Snowflake [11], an enterprise-
ready data warehousing solution for the cloud, have a dedi-
cated storage layer and store their data directly in S3. Simi-
larly, Photon utilizes Delta Lake [7], an open-source ACID
table storage layer built on top of cloud object storages. This
project has chosen to use Delta Lake as the storage layer with
S3 being the underlying object storage service. Photon, being
closed-source proprietary software, lacks accessible source
code. Therefore, the open-sourced Spark has been chosen as
the query engine. While the performance of object storage
services can differ among various cloud providers, the find-
ings should still provide valuable insights.

The paper is structured as follows. Section II reviews vari-
ous techniques and methodologies related to vector and ten-
sor storage formats, along with encoding strategies aimed at
enhancing storage efficiency. Section III presents the prob-
lem statement. Section IV describes the employed methods
and algorithms for tensor storage and optimization. Sec-
tion V outlines the experimental setup and benchmarks the
performance of the proposed methods. Section Section VI
summarizes the contributions and findings. Section VII dis-
cusses the limitations of current work and identifies future
research directions.

II. Related Work

A. Multidimensional Array Storage

This project extends investigations beyond vectors to also
include tensors, which are typically represented as n-dimen-
sional arrays in most ML frameworks. Baumann et al. ex-
amined the multi-dimensional data management systems
under the “array databases” paradigm. The storage formats
they used are tiles [12] or chunks [13] under the assump-
tion that access patterns on arrays are strongly linked to
the Euclidean neighborhood of array cells [14]. Thus, by di-
viding large multi-dimensional arrays into smaller chunks,
chunk storage makes data easier to manage. It also allows
for quicker and more efficient data retrieval. This is because

only the necessary chunk is loaded into memory for process-
ing. Given its advantages, the chunk storage format merits
further exploration in the context.

B. Sparse Encoding Methods

Storing tensors (considering vectors as rank-1 tensors) as
n-dimensional arrays can be space-inefficient if the majority
of the elements are zeros. A more space-efficient alternative
involves encoding the tensors. One such method, referred to
as sparse encoding, selectively stores only the non-zero ele-
ments along with their positions, resulting in less space us-
age.

Common sparse encoding methods include Coordinate
(COO), Compressed Sparse Row (CSR), Compressed Sparse
Column (CSC), and Block Compressed Sparse Row (BCSR).
Shahnaz, Usman, and Chughtai et al. [15] give their com-
parative analysis of the storage efficiency of these meth-
ods. COO stores each non-zero element along with its row
and column indices. Despite being less space-efficient, COO
serves as the foundational schema for these methods. CSR
and CSC, on the other hand, compress the tensor or vector
row-wise or column-wise, respectively, thus saving space by
reducing the redundancy in storing positional information.
BCSR extends the CSR format to handle blocks of non-zero
elements, further optimizing storage for tensors with block-
wise non-zero patterns.

These sparse encoding methods have demonstrated effec-
tiveness in compressing sparse matrices as well as vectors
without loss of information. However, to apply those meth-
ods on tensors, which are multi-dimensional matrices, these
methods require further adaptation and generalization.

To adapt sparse encoding methods for tensors, the study
conducted by Parker Allen Tew et al. [16] presents the
Compressed Sparse Fiber (CSF) format as a notable exam-
ple. This format extends the principles of CSR/CSC, used
for sparse matrices, to tensor storage. CSF achieves greater
storage efficiency by employing additional layers of index
pointer arrays, which compress the tensor’s additional di-
mensions. This method forms a tree-like structure, where
each split node, representing a tensor dimension, eliminates
the redundancy of index values. The Mode Generic sparse
tensor format extends the concept of BCSR to higher-order
tensors. It represents a tensor as a sparse collection of dense
blocks of any order, with the coordinates of these blocks
stored in COO format [17], [18].

C. Vector Databases

Vector databases serve as specialized platforms designed
to store and query vectors and tensors, commonly used for
representing unstructured data.

Milvus [19] is an open-source vector database offering
rapid and efficient similarity search capabilities for high-di-



mensional unstructured data. This is achieved through the
utilization of advanced indexing and search algorithms. Mil-
vus adopts a storage approach where vectors are continu-
ously stored and arranged in a columnar format, resulting in
reduced storage overhead and an enhanced cache hit rate.
Additionally, Milvus adopts quantization techniques such
as product quantization (PQ) or scalar quantization (SQ) to
compress vectors, leading to further reductions in storage
space and increased query speed.

Deep Lake [20] is a novel lakehouse designed for deep
learning applications. Deep Lake can store complex data
types, such as images, videos, annotations, and tabular data,
in the form of tensors. Tensors are stored in chunks using
a columnar storage format as arrays with types and shapes.
Each tensor comes equipped with an index map for sample
retrieval, and they can be grouped and nested to illustrate
relationships. Deep Lake also possesses the ability to track
changes in the dataset’s schema and content over time.

D. Limitations and/or Gaps

Existing research on VDBMS primarily addresses aspects
such as query optimization, transactions, scalability, fault
tolerance, and privacy and security. However, the special-
ized subject of vector storage has not been thoroughly ex-
plored. This project investigates vector storage by examining
it in its more generalized form - tensors. The high dimen-
sionality and properties of tensors introduce specific chal-
lenges as the shape and dimensions can vary arbitrarily.

Despite extensive research [15], [16] in sparse matrix en-
coding, there remains a notable gap in generalizing these
techniques for high-dimensional applications. Many studies
focus on lower-dimensional vectors and matrices. They do
not address the challenges of data structures with higher
dimensions. Furthermore, these studies use traditional file
systems. Their findings may not apply to cloud-native stor-
age. The research intends to fill this gap by adapting existing
storage formats and encoding methods to meet the specific
needs of a cloud-native storage environment, specifically,
the delta lake table storage layer on top of S3. This project
aims to focus on generalizing these methods for high-dimen-
sional data, exploring their practicality and effectiveness in
high-dimensional, large-scale data environments.

III. Problem Statement

A. Terminology

Currently, tensor data are usually stored as binary serial-
ization blob files in databases. In most of the cases, tensor
tends to be sparse. This naive serialization method does not
optimally utilize storage space. Given the substantial data
volumes that can scale up to petabytes, this method results
in significant and unnecessary space waste. This project

aims to apply existing storage and encoding techniques to
tensors to improve efficiency and performance, which forms
the central focus of the research.

Tensor is the generalized form of vector and matrix. In ML
tasks, tensors are usually represented as multidimensional
arrays. A vector, also known as a one-dimensional tensor,
is commonly denoted as 𝒂 = [𝑎1, 𝑎2,…, 𝑎𝑛], where 𝑛 repre-
sents the size of the vector. A two-dimensional tensor, a ma-
trix, is represented as

𝐴 =

⎣
⎢
⎢
⎡
𝑎11
𝑎21
⋮
𝑎𝑚1

𝑎12
𝑎22
⋮
𝑎𝑚2

…
…
⋱
…

𝑎1𝑛
𝑎2𝑛
⋮

𝑎𝑚𝑛⎦
⎥
⎥
⎤

(1)

where 𝑚 and 𝑛 denote the size of the matrix, and each row
and column can also be viewed as a vector.

A tensor can have arbitrary dimensions. An N-dimen-
sional tensor 𝑋 with dimension 𝐷 = (𝑑1, 𝑑2,…, 𝑑𝑁) can be
represented as
𝑋 = {𝑥𝑖1,𝑖2,…,𝑖𝑁 | 𝑖𝑗 ∈ [1, 𝑑𝑗] for 𝑗 = 1, 2,…,𝑁} where

𝑥𝑖1,𝑖2,…,𝑖𝑁  represents an element in the tensor 𝑋, and 𝑖𝑗  are
the indices of that element in dimension 𝑑𝑗.

The slice operation on a tensor 𝑋 selects a subset of 𝑋 by
fixing one or more indices to a specific value. If we denote
the slice indices as 𝑆 = (𝑠1, 𝑠2,…, 𝑠𝑀), then a slice of 𝑋
𝑋𝑆 = {𝑥𝑖1,𝑖2,…,𝑖𝑁 | 𝑖𝑗 = 𝑠𝑗 for 𝑗 ∈ [1,𝑀]

∪ 𝑖𝑗 ∈ [1, 𝑑𝑗] for 𝑗 ∈ [𝑀 + 1,𝑁]}
(2)

where 𝑀  is less than or equal to 𝑁 . For example, the equiv-
alent of X[0:100,:,:,:] in Python numpy notation could be
represented as

𝑋𝑠 = {𝑥𝑖1,𝑖2,𝑖3,𝑖4 | 𝑖1 ∈ [1, 100]

∪ 𝑖𝑗 ∈ [1, 𝑑𝑗] for 𝑗 ∈ [2, 4]}.
(3)

For simplicity, the part that collects all the indices in a di-
mension 𝑑𝑗 (∪ 𝑖𝑗 ∈ [1, 𝑑𝑗] for 𝑗 ∈ [𝑀 + 1,𝑁]) is ommited,
thus the equivalents of (2) and (3) are:

𝑋𝑆 = {𝑥𝑖1,𝑖2,…,𝑖𝑁 | 𝑖𝑗 = 𝑠𝑗 for 𝑗 ∈ [1,𝑀]}

𝑋𝑠 = {𝑥𝑖1,𝑖2,𝑖3,𝑖4 | 𝑖1 ∈ [1, 100]}
(4)

Fibers serve as the higher-order analogs to rows and
columns in matrices. In the context of matrices, a column
corresponds to a mode-1 fiber, while a row represents a
mode-2 fiber. In the case of third-order tensors, there are
column, row, and tube fibers, denoted as 𝑋:jk, 𝑋𝑖:𝑘, and 𝑋ij:
respectively [21]. If a slice operation covers all the indices
in some dimensions, the result can be referred to as the
corresponding fiber such as 𝑋𝑖::, 𝑋:𝑗:, and 𝑋::𝑘. For conve-
nience, this notation is used to denote both the slice opera-
tion and the result of such a slice operation of the tensor. For
the previous example, X[0:100,:,:,:] can be represented
as 𝑋[1:100]:::.



An encoding method, denoted as 𝐹 , converts 𝑋 into a dif-
ferent format 𝑋encode. This transformation is mathematically
represented as:

𝑋encode = 𝐹(𝑋) (5)
Additionally, this encoding method is accompanied by a cor-
responding inverse operation, functioning as the decoding
process, which can be expressed as:

𝑋 = 𝐹−1(𝑋encode) (6)

B. Performance Metrics

The evaluation of the efficiency of proposed methods
can be categorized into two main aspects: storage space effi-
ciency and processing time efficiency.

To elaborate, concerning storage space, the compression
ratio for a tensor is defined as follows:

𝐶𝑟 =
𝑆encode
𝑆binary

(7)

where 𝑆binary represents the original space occupied by a ten-
sor when serialized as binary file, while 𝑆encode denotes the
space required after the tensor is encoded.

Regarding time efficiency, it can be broken down into read
efficiency and write efficiency. Both reading and writing in-
volve considerations of the time taken for input/output op-
erations, indicated as 𝑡ser for serialization during writing and
𝑡des for deserialization during reading. Additionally, it is nec-
essary to account for the time required for encoding and de-
coding individual tensors, represented by 𝑡en(𝑋) and 𝑡de(𝑋)
respectively, and defined as follows:

𝑡en(𝑋) = 𝐸𝑙𝑎𝑝𝑠𝑒𝑑(𝐹(𝑋))

𝑡de(𝑋encode) = 𝐸𝑙𝑎𝑝𝑠𝑒𝑑(𝐹−1(𝑋encode))
(8)

For write efficiency, it comprises the time spent on data se-
rialization, along with the time taken for encoding, defined
as follows:

𝑡write = 𝑡ser + 𝑡en(𝑋) (9)
The efficiency of reading involves the time dedicated to

data deserialization and decoding for each tensor. Read op-
erations can be further categorized into two types: read the
entire tensor or a slice of the tensor. The time spent for
the above two read operations is denoted as 𝑡read_tensor, and
𝑡read_slice respectively, and defined as follows:

𝑡read_tensor = 𝑡des + 𝑡de(𝑋encode)

𝑡read_slice = 𝑡des + 𝑡de(𝑋S_encode)
(10)

where 𝑋S_encode denotes the slice operation of an encoded
tensor. It’s worth mentioning that the slice operation may
occur either during the deserialization or decoding opera-
tion, depending on the specific implementation of the stor-
age method.

This paper presents the design and implementation of five
distinct tensor storage methods, with a focus on evaluating

their compression ratios and read/write performance using
direct (de)serialization as the baseline of the comparisons.
The novel contribution of this paper lies in enabling efficient
tensor storage within cloud object storage, an area that has
not been thoroughly investigated before.

IV. Methodology

In this section, a distinction is made between two cate-
gories of tensors: general tensors and sparse tensors. This
differentiation aids in determining whether to apply sparse
encoding methods. In the specific subsections detailing spe-
cific encoding methods, a separation is made between the
encoding algorithm and the underlying storage formats.
This is necessary as tensor data structures change based on
the encoding method used.

The storage methods discussed in the following subsec-
tions will eventually persist tensors in the Parquet file for-
mat. Meanwhile, Delta Lake serves as a storage framework
built on top of Parquet, offering features such as ACID
transactions, time travel, and various optimizations [7]. In
online transaction processing, which involves frequent data
writing, the data are usually structured in a row-based for-
mat. Conversely, for online analytical processing, where data
reading predominates, a columnar format is often preferred.
Parquet, however, utilizes a hybrid format that leverages the
advantages of both row-based and columnar formats [22].

A. Flattened Tensor Storage Format

Tensors can be treated as multidimensional arrays. In
the multidimensional array storage format, array elements
are typically organized into fixed-size chunks. These chunks
are hyper-rectangles, with each dimension’s index range de-
fined [23]. When this storage format is applied to tensors,
two crucial parameters need consideration: the chunk size
and the chunk shape. For optimal performance in the file
system, the chunk size is generally matched with the file sys-
tem block size, which is the smallest read and write unit. The
optimal chunk shape, on the other hand, depends on the ac-
cess pattern. Ideally, the chunk shape should be chosen to
minimize the average number of file system block fetches
for a given access pattern.

However, these practices for determining optimal chunk
size and shape cannot be applied in all contexts. For in-
stance, when tensors are stored in a cloud object storage,
the block size of the object storage isn’t exposed to users. Re-
garding the chunk shape, Sarawagi et al. suggested that if the
access pattern isn’t given, the DBMS can use a default chunk
shape and monitor the access statistics for re-chunking later
[13]. This approach, however, is infeasible in projects oper-
ating only on the storage layer, where user statistics are not
available.



1) Algorithm:
The Flattened Tensor Storage Format (FTSF) is proposed

as a solution for general tensors. Instead of storing tensors in
files using the multidimensional array storage format, they
are stored in a Delta Lake table. The tensors are still chun-
ked, but the chunk is a lower-ranked tensor from the original
tensors. Given a chunk dimension 𝐷𝑐, the result of applying
the encoding method 𝐹(𝑋,𝐷𝑐) can be represented as:

𝑋encode = 𝐹(𝑋,𝐷𝑐)

= {𝑋𝑠𝑖 | 𝑠𝑖 for 𝑖 = [1, 𝑑1 ⋅ 𝑑2 ⋅ … ⋅ 𝑑𝑁−𝐷𝑐 ]}

where 𝑁 −𝐷𝑐 is the dimension of the resulting chunked
tensor in which the last 𝐷𝑐 dimensions are “merged” (they
cannot be directly accessed after the chunking). And 𝑠𝑖 con-
tains the indices of first 𝑑1…𝑑𝑁−𝐷𝑐  dimensions.

This equation represents the function 𝐹  that takes a ten-
sor 𝑋 and a chunk dimension 𝐷𝑐, and returns an array of
chunks where each chunk is a fiber 𝑋𝑠𝑖  with dimension flat-
tened to 𝐷𝑐.

2) Storage format:

*Metadata

dim_count dimensions chunk_dim_-
count …

4 [24, 3, 1024, 1024] 3 …

Figure 1: The metadata columns

id chunk (BINARY) Metadata*

6e368… 1

…

6e368… 2

…

6e368… 24

1a234… 1

…

a) The FTSF table

b) A(24, 3, 1024, 1024) tensor
Figure 2: FTSF with 3D chunks

Chunks afterward are stored in the Delta Lake table, and
FTSF will create a row for each chunk with the metadata.
Figure 2 (b) provides a conceptual view of a 4D tensor of a
24-frame sequence of 1024x1024 RGB images chunked by
their 3D tensors. Figure 2 (a) shows an example table with
metadata in Figure 1.

In FTSF, the id: STRING serves as a unique identifier for
each tensor. The chunk: BINARY is a binary chunk with the
semantics of a tensor of a user-specified rank. In this exam-
ple, it’s a 3D tensor. dim_count: INT represents the num-
ber of dimensions of the original tensor, while dimensions:
ARRAY <INT> is an integer array of size dim_count, storing the
size of each dimension of the tensor. chunk_dim_count is the
dimensionn 𝐷𝑐 of the chunk.

When the chunk dimension changes, the metadata ad-
justs accordingly. Figure 3 illustrates the metadata columns
when the same tensors are flattened as 2D chunks. Notably,
the Delta Lake table uses the Apache Parquet format [22]
for data organization, which employs dictionary encoding.
Thus, even though the same metadata recurs across multi-
ple rows, it compresses efficiently. Delta Lake also allows
schema evolution, enabling users to add their own metadata
columns for customization. In this subsection, tensors are
stored in plain serialization. The sparse encoding methods
introduced later will also leverage the schema evolution fea-
ture to apply sparse encoding methods on tensors by modi-
fying the metadata columns.

a) The tensor view when flatten as 2D tensors

*Metadata

dim_count dimensions chunk_dim_-
count …

4 [24, 3, 1024, 1024] 2 …

b) The metadata columns when flatten as 2D tensors
Figure 3: FTSF with 2D chunks

B. Sparse Tensor Characteristics and Encoding

Sparse tensors primarily contain zero elements. The For-
midable Repository of Open Sparse Tensors and Tools
(FROSTT), a collection of publicly accessible sparse tensor
datasets and tools [24], doesn’t set a criterion for classifying
a tensor as sparse. However, almost all tensor datasets in
FROSTT have non-zero elements constituting less than 10%
of the total tensor elements. This trait of sparse tensors al-



lows for storage optimization with sparse encoding methods,
as it eliminates the need to store numerous zero elements.
For general tensors, where most elements are non-zero,
these sparse encoding methods are not applied, as the infor-
mation entropy, i.e., the amount of “information,” “random-
ness,” or “uncertainty” is inherently high.

The determination of the sparsity threshold depends on
the specific application and the balance between time com-
plexity and storage efficiency. Setting a higher threshold may
classify more tensors as sparse, which could potentially im-
prove storage efficiency. However, this could simultaneously
increase the computational load involved in encoding and
decoding. On the other hand, a lower threshold would cate-
gorize fewer tensors as sparse, thus sparing the computation
but possibly giving up storage efficiency. For the purposes of
this research, a rule of thumb: the 10% threshold is used to
decide whether a tensor is categorized as sparse.

Sparse tensors can be managed efficiently using four
methods proposed below: Coordinate Encoding (COO),
Compressed Sparse Row/Compressed Sparse Column
(CSR/CSC), Compressed Sparse Fiber (CSF), and Block
Sparse Generic Storage (BSGS). In addition to COO, which
serves as a foundational and flexible storage method for
sparse tensors, the other techniques, built upon COO, can be
categorized into two groups: Encoding before Partitioning,
and Partitioning before Encoding.

The first group includes CSR/CSC and CSF formats,
which focus on applying encoding methods to the tensor
first, resulting in encoded arrays. Since these arrays can be
large, they are partitioned into separate chunks, thereby sig-
nificantly enhancing tensor writing speed by dramatically
reducing data size.

In contrast, the second group, including BSGS, initially
breaks down the tensor into smaller blocks before applying
encoding methods to each block individually. This approach
enables tensor slicing functionality before decoding, elimi-
nating the necessity to read or decode the entire tensor when
only a specific slice is needed. Consequently, this method ac-
celerates accessing tensor slices.

C. Coordinate Encoding

1) Algorithm:
COO offers an efficient approach for storing sparse ten-

sors. This method involves storing all non-zero elements (ab-
breviated as nnz) of a tensor along with their respective co-
ordinates in separate vectors. The space requirement for this
method is 𝑂(𝑛𝑛𝑧) for the values and 𝑂(𝑚 ⋅ 𝑛𝑛𝑧) for the in-
dex, where 𝑚 represents the number of dimensions. The key
advantage of COO encoding is its ability to save substantial
storage space by excluding all zero values and their indices,
thereby making it an effective solution for handling sparse
tensors. An simple example of COO is provided in Figure 4.

Figure 4: The Coordinate Encoding Method

Decoding a sparse COO-formatted tensor involves a
process of reconstructing the original tensor from the stored
non-zero elements and their corresponding coordinates.
However, this process can occasionally introduce inaccura-
cies due to the absence of explicit information about the ac-
tual size or shape of the original tensor. To mitigate this is-
sue, an additional list is utilized to store the shape of the ten-
sor. This supplementary information assists in the accurate
reconstruction of the tensor, ensuring that the dimensions
of the decoded tensor align with those of the original tensor.

2) Storage Format:

Figure 5: The Coordinate Storage Format

In accordance with the strategy to enhance the reliability
and accuracy of COO, the storage schema includes three ad-
ditional fields: id, layout, and dense shape.

Figure 5 demonstrates the storage format of COO in Delta
Lake table. The id column assigns a common identifier to
all elements of a specific tensor, providing a unified refer-
ence to the entire tensor. The layout column indicates the
encoding method used, and the dense_shape column cap-
tures the shape of original tensor. The indices and value
columns record the position and value of each non-zero el-
ement, respectively. These measures collectively bolster the
robustness of COO storage format in encoding and decoding
sparse tensors.

D. Compressed Sparse Row & Compressed Sparse Column

1) Algorithm:



This section introduces an approach to handle sparse ten-
sors with CSR/CSC encoding formats, which are tradition-
ally used for sparse matrix representations. This method
reshapes sparse tensors into 2D matrices while preserving
their inherent sparsity. Once the 2D matrices are obtained,
CSR/CSC can be applied on them, optimizing storage and
computation for tensor-based data. The CSR algorithm uses
three arrays to efficiently represent the non-zero elements,
their column indices, and row pointers indicating the start
of each row. Conversely, the CSC algorithm applies the same
concept to columns, using three arrays for non-zero ele-
ments, their row indices, and column pointers to denote the
beginning of each column.

The effectiveness of this approach resides in its ability to
maintain the sparsity of the original tensors through the re-
shaping process while reaping benefits from efficient stor-
age. Since only non-zero elements and their positional infor-
mation are stored, the space required to store the sparse ten-
sors can be significantly reduced. Furthermore, this method
allows the utilization of optimized libraries and algorithms
designed for sparse matrix operations, thereby improving
the execution speed for tensor-based computations.

Additionally, this approach offers flexibility in processing
sparse tensors, supporting both row-wise and column-wise
operations. This versatility proves crucial in multidimen-
sional data analysis, as the method of data manipulation can
significantly affect the outcome of the computations.

2) Storage Format:
For CSR/CSC, since only 2-d matrices are supported, ten-

sors are converted to 2-d matrices first. For matrices be-
yond two dimensions, a flattening procedure is applied to
the indices before conversion. Before conversion, the orig-
inal shape of the tensor is recorded as dense_shape; after
conversion, the flattened shape of the 2-d matrix is recorded
as falttened_shape. These 2 shapes help restore the tensor
when needed.

After flattening, CSR/CSC is applied on the 2-d matrix, re-
sulting in three arrays. For CSR: value, represents the non-
zero values in the matrix; col_indices, represents the col-
umn index of the non-zero values; crow_indices, represents
the index in value and col_indices where the given row
starts. For CSC: value, represents the non-zero values in the
matrix; row_indices, represents the row index of the non-
zero values; ccol_indices, represents the index in value and
row_indices where the given column starts. To restore the
original tensor, flatten process is reversed given the original
shape of the tensor.

The internal storage layout for a CSR/CSC-formatted ten-
sor is recorded as follows:

• id: the tensor ID
• layout: the storage type, which is CSR or CSC in this case

• flattened_shape: the shape after tensor reshape/flat-
tening, which is used to restore the 2-d matrix back to
the original tensor

• dense_shape: the original shape of the tensor, used in
the restore process

• crow_indices/ccol_indices,col_indices/row_indic
ces, and value: the 3 essential arrays representing the
non-zero elements and their locations in the 2-d ma-
trix

E. Compressed Sparse Fiber

This section introduces the CSF storage format, an exten-
sion and optimization of the traditional CSC/CSR formats,
specifically designed for higher-order tensors. CSF is a gen-
eral approach to handle sparse tensors with dimensions
greater than two, making it a versatile choice for multidi-
mensional sparse data storage.

1) Algorithm:
For higher-order tensors, CSF format organizes the ele-

ments in tensors into a hierarchical framework of fibers,
each marked by a distinct dimensionality. This methodical
compression initiates from the tensor’s non-zero elements,
and then arranges them into a tree-like architecture where
each layer represents a fiber with unique indices and point-
ers.

a) COO b) CSF
Figure 6: COO and CSF formats for a four-dimension tensor.

Figure 6 illustrates an example of applying CSF format on
a tensor originally represented in COO format. Each level of
the tree corresponds to a dimension of the tensor, with nodes
representing non-zero elements and their index within that
dimension. Edges connect elements along dimensions, with
leaves holding the actual values. When a node is split into
its lower-level subtrees or leaf nodes, duplicate index values
are removed.

2) Storage Format:
Similar to CSR/CSC, in actual implementation, the con-

ceptual tree structure is packed into arrays. For each dimen-
sion, two arrays are added: fiber pointers (fptrs) and fiber
indices (fids). Fptrs indicates how to slice the next dimen-
sion, while fids stores what unique indices are present in
that dimension. In addition, all non-zero values of the ten-
sor are packed into a separate array.

To build the CSF format for a tensor, initially, a root fiber
is defined, encompassing the first dimension of the tensor.



This fiber acts as the entry point to recursively decompose
the tensor into its constituent fibers. A breadth-first search
(BFS) algorithm iterates through the tensor’s dimensions,
systematically compressing each fiber. For each dimension,
a counter is maintained to track the occurrence of indices,
which helps in creating the fiber pointers and indices. These
pointers and indices are essential for navigating the com-
pressed tensor structure. When the tensor is being traversed,
the fiber pointers and indices are dynamically adjusted
based on the encountered non-zero elements, ensuring an
efficient compression that reflects the tensor’s sparsity pat-
tern.

The internal storage layout for a CSF-formatted tensor is
structured as follows: Each tensor is identified by a unique
ID that concatenates a prefix, the tensor’s dimensionality,
and a randomly generated ID string. The layout information,
dense shape of the tensor, non-chunked indices and non-
chunked pointers for the first two tensor dimensions are
stored once per tensor. For values, as well as indices and
pointers in the remaining dimensions, storing each of them
in a single array would be time and space inefficient. Instead,
the array representations of the above information are chun-
ked, with each chunk given its own unique sub-identifier
and stored alongside its respective metadata in Delta lake.

The non-chunked data includes:
• id: Unique tensor ID for CSF format.
• layout: CSF
• dense_shape: The full dimensional shape of the tensor.
• fptr_zero and fptr_one: Fiber pointers for the tensor’s

first two dimensions.
• fid_zero and fid_one: Fiber unique indices for the

first two dimensions.

The chunked data is divided into manageable sizes, each
containing:

• Subsets of indices and pointers for dimensions beyond
the first two.

• Corresponding metadata to reconstruct the location
and structure of data within each chunk.

To read and reconstruct the entire tensor, the program first
identifies the tensor’s unique ID and retrieves the associated
chunked and non-chunked data. Then, it aggregates the in-
dices recursively for each dimension to reconstruct the ten-
sor’s structure.

The program could also reconstruct a sub-tensor slice, by
performing slicing operations directly on the indexed data
with values in a specific range.

In summary, the CSF format provides a robust solution
for writing and reading sparse tensors. It reduces storage
costs by compressing duplicate indices and enhances access
speeds through optimized data storage mechanisms like
chunk storage.

F. Block Sparse Generic Storage

This section introduces BSGS, which builds upon the con-
cepts of BCSR and Mode Generic tensor format. It’s a de-
rived format that incorporates customizations tailored to fit
specific physical storage arrangements.

1) Algorithm:
The proposed algorithm can be described for both reading

and writing as follows:
For writing a tensor: The tensor is first converted into

Mode Generic sparse tensor format with an appropriate
block shape. This sparse tensor format is then stored with a
customized storage layout in Parquet file format using Delta
Lake.

For reading a tensor: The sparse tensor format is retrieved
using the provided tensor ID and slicing information. Sub-
sequently, the tensor with its original shape or sliced shape
is reconstructed and output.

The BCSR extends the concept of CSR by partitioning the
tensor into smaller groups and storing the dense blocks of
non-zero elements along with their respective block indices.

a) A 4x6 tensor b) BCSR format
Figure 7: BCSR format for a 2d tensor.

a) A 3x4x2 tensor b) Mode Generic format
Figure 8: Mode Generic format for a 3d tensor.

In a 4 x 6 tensor, as illustrated in Figure 7, BCSR would
take the block size of 2 x 3 as input, dividing the tensor into
four blocks. Each non-zero block is then gathered along with
its corresponding row and column indices (represented as
“col” in the figure). Duplicate row values are compressed,
denoted as “c_row” in the figure. For instance, in Figure 7,
the coordinates of the last two rows are duplicated for the
final two blocks.



The Mode Generic sprase tensor format generalized the
idea of BCSR into higher order tensors. It divides the tensor
into blocks of any order and store the non-zero dense blocks
along with their respective block indices.

Given the 3 x 4 x 2 tensor in Figure 8, a block size of 1 x
2 is selected to partition the tensor. Non-zero blocks are col-
lected alongside their corresponding row, column, and tube
indices, as denoted by “row”, “col”, and “tub” respectively in
the figure.

The choice of block size plays a crucial role in the perfor-
mance of both writing and reading tensors, as well as the
space cost of tensor storage. If the block size is too large and
matches the dense shape of the tensor, it results in wastage
of space as many zero values are stored. Conversely, if the
block size is too small, or in the extreme case where each el-
ement is treated as a separate block, similar to the COO for-
mat, it can lead to increased I/O operations, losing the ben-
efit of sequential data scanning provided by larger blocks.

2) Storage Format:

Figure 9: Internal storage layout for the tensor in Figure 8.

The internal storage layout of the Mode Generic tensor
format is structured as follows. Each block in the sparse ten-
sor is flattened into a vector, which is then stored in an in-
ternal table along with its block indices, block shape, and
the dense shape of the original tensor. Additionally, a unique
ID is generated for the entire tensor. The layout resembles
that shown in Figure 9. Notably, given the benefit of columar
storage, the column compression is applied to the duplicate
values like id, dense_shape, and block_shape. Here, the value
4 after the comma signifies that there are 4 consecutive iden-
tical values.

To read an entire tensor, the program first locates the given
ID, scans, and populates all the shape records, indices, and
values to reconstruct the original tensor. Tensor slicing op-
erations can also be easily applied in this storage format. For
instance, if a user needs to obtain the first row of a tensor
with ID 1, denoted as 𝑋[1]::, the program follows these steps:

1. Scan the internal tensor table to locate ID 1.
2. Retrieve the dense shape of the original tensor to form

the shape of the slice, which in this case is 1 x 4 x 2.
3. Obtain the block shape to reshape the values into

blocks in the subsequent step.

4. Scan the indices column to filter the rows that meet
the slicing requirement and retrieve the correspond-
ing values.

5. Reshape the values into blocks using the block shape
and reconstruct the slice using indices and slice shape.

With this layout, users can apply slicing operations to ac-
cess a large tensor without needing to scan and construct the
entire tensor. In scenarios where the block exhibits sparsity,
additional encoding methods such as COO can be applied to
each block to conserve storage space further.

In summary, the proposed method offers several benefits
and contributions. Firstly, it utilizes the Mode Generic ten-
sor format to reduce the space cost of sparse tensors, while
leveraging column compression in columnar storage to min-
imize the storage space by eliminating redundant data.
Additionally, this approach facilitates fast access speeds
through the sequential scanning advantages of block stor-
age. Moreover, it provides efficient slicing operations, en-
abling quick access to specific parts of the tensor without the
necessity of scanning the entire tensor.

V. Experiments

This section presents experiments evaluating the perfor-
mance metrics defined in the Section III. The datasets are
first loaded into a spark cluster of 2 Intel® Xeon® Gold 5215
processors with 128GB RAM. The network bandwidth is 1
Gbps. As suggested in Section IV Methodology, two scenar-
ios are considered:

Figure 10: The evaluation plan for storing a dense tensor

1. Storing a dense tensor (general tensor that has much
more than 10% non-zero elements) derived from the
Flickr-Faces-HQ Dataset (FFHQ) [25]. The FFHQ
dataset contains 70,000 high-quality 1024x1024 reso-
lution PNG images of human faces. Due to the hard-
ware limitation, a subset of 5,000 images are chosen
for the experiment. These images are processed into a
tensor of dimension (5000, 3, 1024, 1024). The pro-
posed FTSF is applied in this scenario with no sparse
encoding method.



2. Storing a sparse tensor constructed from the Uber
Pickups Dataset [26]. This dataset includes Uber
pickup data in New York City from April to August
2014. The resulting tensor has dimensions of (183,
24, 1140, 1717) with 3,309,490 non-zero elements.
When represented in dense format, this tensor occu-
pies 8,596,812,960 elements, highlighting its sparsity
with only 0.038% of non-zero elements. Given that the
original data is already in COO format, there’s no re-
quirement to encode this dataset to COO again. How-
ever, there are encoding and decoding methods avail-
able for converting between COO and various other
formats including CSR, CSF, and BSGS. The methods
for sparse tensor storage including COO, CSR, CSF,
and BSGS from the methodology section are applied
in this scenario.

Figure 11: The evaluation plan for storing a sparse tensor

The dense tensor is in the format of numpy.array [27]
when loaded into memory and serialized as an S3 object.
In contrast, the sparse tensor is represented in memory as
torch.sparse_coo_tensor and stored in S3 using the Py-
Torch PT file format [28]. Performance metrics defined in
Section III.B are evaluated.

A. Experimental results on dense tensors

Storage
Size (GB)

Write
Tensor (s)

Read
Tensor (s)

Read
Slice (s)

Binary 14.6 135.69 379.51 494.33

FTSF 13.3 251.77 474.51 49.24

Δ −8.90% 85.52% 25.02% −90.04%

Figure 12: Performance of different operations on the FFHQ
dataset. For the read slice operation, a random fiber of

𝑋[1:100]::: was fetched (100 images).

The design decision to apply FTSF to general tensors
stems from the practical applications of tensors. Tensors
mostly serve as the training data. Although Stochastic Gra-
dient Descent (SGD) factors into this consideration, the re-
ality of training typically taking place on GPUs with limited
VRAM makes it often unfeasible to load an entire dataset
into memory. The use of batches becomes necessary. As

such, fetching a slice of the tensor is a more common use
case than retrieving the whole tensor. By using a chunking
strategy for the tensor, we can efficiently fetch only the spe-
cific chunks that have a particular batch of the dataset when
needed.

The results shown in Figure  12 demonstrate that FTSF
yields promising outcomes when reading a slice of the ten-
sor, a common use case. This is anticipated as only relevant
chunk rows are fetched, while in contrast, for binary, the en-
tire tensor must be retrieved to read the slice.

An overhead of 85.52% for writing the tensor seems
concerning. However, this should not be seen as a signif-
icant concern for two reasons. First, in practical scenar-
ios, read operations disproportionately surpass write opera-
tions. Compared to the 90.04% reduction in slice reading,
this overhead is a reasonable trade-off. Secondly, 82.413 sec-
onds (accounting for 60.73%) were spent utilizing a Python
for loop to create the Spark Resilient Distributed Dataset
(RDD) [6]. This suggests substantial room for optimization.
For reading the tensor, the overhead 25.02% comes from
Spark scheduling, as there’s a similar overhead of 85.52% −
60.73% = 24.79% (subtracting the time spent on creating
RDDs) in the read operation.

An interesting aspect is the compression rate, 𝐶𝑟 =
𝑆encode
𝑆binary

= 91.09%, even though no actual compression encod-
ing method was applied. Chunks are serialized as bytes us-
ing the numpy.save method. Despite the additional metadata
in other columns, a size reduction of 8.90% is still realized.

B. Experimental results on sparse tensors

To assess performance, methods for sparse tensor storage
including COO, CSR, CSF, and BSGS from the methodology
section are employed for benchmarking against the current
PyTorch PT file format. Due to the interchangeable nature
of CSR and CSC, only CSR is evaluated as a representative
for performance benchmarking.

Figure 13: Storage sizes of Uber Pickiups dataset using dif-
ferent storage methods



Figure 14: Performance of writing Uber Pickiups dataset us-
ing different storage methods

Figure 15: Performance of reading entire Uber Pickiups
dataset using different storage methods

Figure 16: Performance of reading slices of Uber Pickiups
dataset using different storage methods

As depicted in Figure 13, in terms of the storage size, all
proposed sparse tensor storage methods outperform the PT
file format, with compression rates 𝐶𝑟 less than 13.23% of
the original dataset. Among these, BSGS achieves the best
𝐶𝑟 at 4.83%.

Time taken to write and read sparse tensors, denoted in
Section III as 𝑡write, 𝑡read_tensor, 𝑡read_slice are crucial metrics for
evaluation. To mitigate the impact of network conditions,
each of these operations is repeated 100 times, and the av-

erage processing time is calculated as the final result. For
the slice reading operation, a slice of the first dimension, de-
noted as 𝑋[i]:::, where 𝑖 represents the index of the first di-
mension of the Uber Pickups dataset ranging from 0 to 183,
is considered.

As shown in Figure 14, CSF and BSGS demonstrate com-
parable performance in terms of writing tensor, with CSF
being the most efficient among all others, taking 26.68% less
time compared to PT.

Figure 15 and Figure 16 illustrate the efficiency of reading
the entire tensor and its slices, respectively. In terms of read-
ing the entire tensor, both CSF and BSGS show comparable
read efficiency, with BSGS being the most efficient, taking
29.59% less time than PT. When it comes to reading slices of
the tensor, COO, CSF, and BSGS all outperform the PT file
format, with BSGS being the most efficient, taking 55.34%
less time compared to PT.

In summary, all the proposed methods outperform the PT
file format in terms of data storage size, with considerable
compression rates. Among these, CSF and BSGS stand out
as recommended storage solutions for sparse tensors. CSF
excels in writing performance, while BSGS demonstrates su-
perior compression rates and reading efficiency, particularly
for partial reads such as reading tensor slices.

VI. Conclusion

In conclusion, this research has explored and evaluated
diverse methods for optimizing tensor storage in cloud ob-
ject storage, an area that has seen limited exploration to date.
The investigation has covered the storage of both general
and sparse tensors, with the latter being the center as they
are prevalent in machine learning applications. The pro-
posed techniques have been adapted from existing storage
formats and encoding methods, tailored to the Delta Lake
table.

The findings indicate that all the proposed methods im-
proved the space efficiency compared with the serialization
of the numpy.array or PyTorch PT. Notably, the CSF and
BSGS techniques have emerged as the most efficient options.
CSF stands out for its exceptional writing performance,
while BSGS showcases superior compression rates and read-
ing efficiency, particularly for partial reads.

This study contributes to the ongoing advancements in
data management systems in a cloud-native storage environ-
ment, particularly in the context of handling complex data
types such as tensors. By improving the efficiency of tensor
storage, the performance of machine learning applications
can be enhanced, contributing to the broader field of artifi-
cial intelligence.

VII. Future Work



While the current study has made progress toward opti-
mizing tensor storage in cloud object storage environments,
several areas for further exploration and refinement remain:

• Cloud-native Enhancement: The current query en-
gine operates locally due to cost considerations, limit-
ing the network bandwidth to 1Gbps. The use of an
EC2 cluster from Amazon Virtual Private Cloud (Ama-
zon VPC) could potentially increase this bandwidth to
100 Gbps. Therefore, future work should investigate
the write and read performance of the proposed meth-
ods in such high-bandwidth environments while keep-
ing other factors constant.

• More Datasets Benchmarking: The study’s scope
was limited to two datasets. An expansion to larger
and more complex datasets will provide a more com-
prehensive understanding of the storage and retrieval
performance of the proposed methods in real-world
scenarios.

• Overhead Reduction: The current need for Spark
to interact with Delta Lake introduces overhead, and
some operations still rely on Python, which is less effi-
cient for tensor operations. Future work will aim to im-
plement a tensor data type directly in Delta Lake and
use Ray, a distributed computing framework [29], for
interactions, thereby reducing overhead and improv-
ing efficiency.

• Parquet Configuration Analysis: Delta Lake uses
Parquet [22], and the experiments have relied on the
default Parquet configurations. Future studies should
perform a fine-tuned and quantified trade-off analysis
of different Parquet configurations for Delta Lake ta-
bles to optimize storage and retrieval performance fur-
ther.

• Integration with ML Frameworks and vector
databases: The proposed methods’ integration with
popular machine learning frameworks, such as Py-
Torch [28], remains under exploration. Moreover, the
current indexing uses tensor ID, but future work could
explore vector indexing, such as similarity search and
approximate nearest neighbor (ANN), to enhance data
retrieval efficiency.

• Energy Efficiency Analysis: Given the significant
energy consumption of data centers, an analysis of
the energy efficiency of the proposed methods will be
a valuable addition to future work. This analysis will
contribute to the broader goal of sustainable comput-
ing, aligning technological advancements with envi-
ronmental considerations.
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