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Abstract: A scenario of ghost imaging with hybrid transform approach is proposed by integrating Hadamard, discrete 

cosine, and Haar matrices. The measurement matrix is formed by the Kronecker product of the two different transform 

matrices. The image information can be conveniently reconstructed by the corresponding inverse matrices. In experiment, 

six hybridization sets are performed in computational ghost imaging. For an object of staggered stripes, only one bucket 

signal survives in the Hadamard-cosine, Haar-Hadamard, and Haar-cosine hybridization sets, demonstrating flexible 

image compression. For a handmade windmill object, the quality factors of the reconstructed images vary with the 

hybridization sets. Sub-Nyquist sampling can be applied to either or both of the different transform matrices in each 

hybridization set in experiment. The hybridization method can be extended to apply more transforms at once. Ghost 

imaging with hybrid transforms may find flexible applications in image processing, such as image compression and 

image encryption. 

 

1. Introduction 

Hybrid transforms integrate the advantages of two or 

more different transforms. Rao et al. proposed the hybrid 

Hadamard-Haar transform for efficiently fast algorithms 

in image processing [1]. Petrosian investigated some 

classes of hybrid Hadamard-wavelet transforms for 

signal-image processing [2]. Sarukhanyan and Petrosian 

analyzed methods for construction and implementation of 

various parametric and hybrid wavelet transforms [3]. 

Recently, hybrid transforms have been widely used in 

image encryption, watermarking, and compression. 

Kumar et al. used the Kronecker product of two random 

matrices along with the double random phase encoding 

scheme to enhance the security in an optical image 

encryption system [4]. Selvam et al. proposed a hybrid 

transform-based reversible watermarking technique in 

telemedicine applications without any additional key 

information [5]. Thakur et al. used a hybrid transform of 

wavelet packet transform and block-discrete-cosine 

transform to achieve high-quality image compression [6]. 

Thayammal et al. proposed a hybrid transform-based 

multispectral compression to preserve image edges [7]. 

Sheela et al. exploited a hybrid random matrix transform 

to perform confusion operation which is controlled by 5D 

hyperchaotic system, and performed image encryption [8]. 

Computational ghost imaging (CGI) [9] uses a bucket 

detector to collect the object beam. Image reconstruction 

is performed by correlating the (known) random projected 

patterns and the bucket detection signals. In conventional 

ghost imaging experiments, the measurement matrix is 

composed of random patterns [9-12]. The orthogonal 

transform matrices are used in recent works in CGI. 

Zhang et al. [13,14] utilized Fourier transform bases to 

reconstruct high-quality images. Walsh-Hadamard bases, 

in normal order, cake-cutting order, Russian doll order, 

and origami order, as a measurement matrix were widely 

investigated [15-18]. Haar wavelet base [19] and other 

wavelet [20] were applied to accurately extract the target 

information. These orthogonal transforms have greatly 

improved the image quality and reconstruction speed. 

However, ghost imaging with a single transform is 

limited in complex image processing. In this paper, we 

propose an approach of ghost imaging with hybrid 

transforms (GIHT) to exploit the transform hybridization. 

We adopt Hadamard, discrete cosine, and Haar 

transform matrices in GIHT. The measurement matrix is 

formed by the Kronecker products of the hybrid matrices. 

The images are conveniently reconstructed with the 

corresponding inverse transform matrices. For an object 

of staggered stripes, only one bucket signal is nonzero in 

Hadamard-cosine, Haar-Hadamard, and Haar-cosine 

hybridization sets, demonstrating flexible image 

compression. For a handmade windmill object, the peak 

signal-to-noise (PSNR) and structural similarity (SSIM) 

of the reconstructed image vary with the hybridization 

sets. Sub-Nyquist sampling is applied to either or both of 

the two hybrid transform matrices. A non-square 

measurement matrix is formed by the Kronecker product 

of the truncated transform matrices. Generally, the 

hybridization method can be extended to the case of three 

and more transform matrices at once. The measurement 

matrix can be obtained by sequential Kronecker products 

of these transform matrices. 

2. Theory 

In CGI, a sequence of random patterns from a thermal 

light are projected onto the object. The object beam is 

collected by a bucket detector, then converted into a 

series of bucket signals 
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1 1,M M N N  =y A x  (1) 

where the vector x  is the one-dimensional distribution of 

the object, and the measurement matrix A  is composed 

of M row vectors. For simplicity, the footnotes, which 

indicate the matrix sizes, are ignored below. The image 

can be reconstructed by the intensity correlation function 

between the bucket signals and random patterns that 
† , =x A y  (2) 

where †  represents matrix transpose conjugation. 

The reconstructed image by Eq. (2) suffers from low 

contrast, due to the inevitable constant background [21]. 

Many efforts were made to improve the reconstructed 

images in early investigations of ghost imaging with 

thermal light, such as differential method [22], high-order 

correlation function [23], and compressed sensing [10]. 

2.1 Review of Fourier CGI 

Recently, orthogonal transforms [13-17] have been 

widely adopted in ghost imaging. With Fourier transforms 

[13,14], the ghost imaging system reduces time, and 

improves the image quality. The matrix elements of the 

discrete Fourier transform are 
2
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where , 0,1, 2, , 1n n N = − . The bucket signals in Eq. 

(1) and image reconstruction in Eq. (2) are now written as 

=y Fx , and 
†=x F y , respectively.  

In general, we assume that the object/image is 

distributed over a range of M N  pixels. By replacing 

the Fourier transform matrix F  with two smaller matrices 

1F  and 
2F , the bucket signals and reconstructed image in 

matrix form are written as 
†

1 2=Y F XF , 
†

1 2=X F YF , (4) 

where Y  and X  are two-dimensional. The extended 

theory is also valid for Hadamard CGI [15-17, 19]. 

Let us take an object/image of resolution 32 64  as 

an example to estimate the RAM requirements in image 

reconstruction. In one-dimensional case of Eq. (1), the 

vector of the object/image x  is composed of 

32 64 2,048 =  pixels. The measurement matrix F  and 

reconstruction matrix †
F  are both composed of 

2048 2048 4,194,304 =  pixels. In two-dimensional case 

of Eq. (4), however, 
1F  is of size 64 64 4,096 = , and 

2F  is of size 32 32 1,024 = . In comparison, the RAM 

requirement and time consumed for image reconstruction 

in two-dimensional case can be greatly reduced. 

2.2 GIHT theory 

In this paper, we propose a scenario of ghost imaging 

with hybrid orthogonal transforms, by generalizing the 

mechanism of Fourier ghost imaging. By replacing 
1F  

and 
2F  with different orthogonal transform matrices L  

and R , we rewrite Eq. (4) in a general form as 
† .=LXR Y  (5) 

For two-dimensional images, L  and R  can be different 

transforms of different sizes. 

Due to the matrix orthogonality, the reconstructed 

image is obtained from 
† ,=X L YR  (6) 

which will produce a perfect image if there is no ambient 

noise in the imaging system. 

With respect to Eq. (5), we have two statements. 

Statement I: The measurement matrix is = A L R . 

Proof: According to the properties of Kronecker 

products, Eq. (5) can be rewritten as  
†( ) ( ) ( ),vec vec= LXR L R X  (7) 

where the vectorization 

11 12 1 21 22( ) [ , , , , , , , ]T

N MNvec X X X X X X=X  (8) 

is to stack the rows of matrix X  to form a column vector, 

T stands for matrix transpose. Combining Eqs. (5) and (7), 

we obtain the standard form of ghost imaging 

( ) , = =L R x Ax y  (9) 

where ( )vec=x X , ( )vec=y Y . Equation (9) is the 

same one-dimensional case as Eq. (1). 

Statement II: Matrix A  is orthogonal since L  and 

R  are orthogonal. 

Proof: For the orthogonal matrices L  and R , we 

obtain the inner products of their row vectors 

n n n n n n

n

R R    = , 
m m m m m m

m

L L    = , (10) 

where the Dirac delta function is 1n n   =  for n n =  and 

0n n   =  for n n  . Then we obtain the inner product of 

two different vectors of the measurement matrix 

,l l l l l ll
A A    =  (11) 

which insures matrix orthogonality of A . 

 
Fig. 1. (a) Hadamard (D), DCT (C), and Haar (H) 

matrices. (b) Experimental setup. 

 

The orthogonality of the measurement matrix will be 

beneficial for image reconstruction and compression. In 

experiment, each row of A  is reshaped to a projected 

pattern which is of the same size as X , and then is 

projected onto the object. The k-th projected pattern can 

be obtained by 
†[ ( ,:)]{ [ (:, )]}T

k vec m vec n=I L R , (12) 



 3 

where ( 1)k m N n= −  + . 

2.3 Three matrices 

Three orthogonal matrices, Hadamard, discrete cosine 

transform (DCT) and Haar matrices, are adopted in GIHT. 

The three matrices of 32 32  are shown in Fig. 1(a). 

Specifically, the 2-order and 2n -order Hadamard 

matrices are expressed as 

2 2

1 11
,

1 12


 
=  

− 
D  

1 1

1 1

2 2

2 2

2 2

1

2

n n

n n

n n

− −

− −


 
=  

− 

D D
D

D D
, (13) 

where 2,3,n = .  

The DCT matrix C  consists of elements as 

0.5
cos ,m m m

m
C c m

M
  

 + 
=  

 
 (14) 

where the coefficients 0 1/c M= , 0 2 /mc M = , and 

, 0,1,2, , 1m m M  = − . 

The Haar matrix is composed of Haar bases as 

( )1

0 1 1 2 2 2 2 1

1 0 0 1 0 1 2 32 2 2 1
, , , , , , , , , , , ,n n n

T j n

kw h h h h h h h h h −

−

 −
=H  (15) 

where the 2n -dimensional (column) vectors are 

( )1 1 1 1 ,
T

w =  (16) 

1
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k i
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

 +    +
= 

−  + +   + 
 +  +  

 (17) 

with 0 1j n  − , 0 2 1jk  − , and (1,2, , 2 )ni . 

3. Experimental results of image compression 

The setup of GIHT experiment is depicted in Fig. 1(b). 

A projector (LG: PF1500G-GL) is used to play patterns 

out of the measurement matrix. The reflected object beam 

is collected by a charge coupled device (Mintron: MTV-

1881EX), which serves as a bucket detector. The 

projected patterns and bucket signals are processed in a 

computer for image reconstruction. 

In practice, the values of the projected patterns are 

normalized to [-1, 1]. Each pattern I  is represented by 

two positive patterns 
( ) (1 ) / 2+ = +I I  and 

( ) (1 ) / 2− = −I I  

that ( ) ( )+ −= −I I I . 

A binary (-1 and 1) virtual object of staggered stripes, 

as shown in Fig. 1(b) and Fig. 2(a), is loaded to the 

projector along with the projected patterns. Similarly, the 

object function is represented as ( ) ( )+ −= −X X X , where 

the two positive patterns are ( ) (1 ) / 2+ = +X X  and 

( ) (1 ) / 2− = −X X . That is, it takes four projections to get a 

bucket detection signal, which is the sum of 
( ) ( ) ( ) ( )[ ] [ ]+ − + − = −  −I X I I X X , where the dot means 

Hadamard product. The subplots in Fig. 1(b) show the 

processes of pattern representation and projection, where 

the object of 32 16  pixels and the measurement matrix 

32 32 16 16 = A D C  are exhibited. 

 

Fig. 2. Experimental results with an object of 

staggered stripes. (a) The virtual object. (b1-g1) The 

reconstructed images. (b2-g2) The corresponding 

bucket detection signals. (h) The PSNRs and SSIMs 

of the images. The hybrid matrices are specified. 

 

The specific object X ( 32 16 ) is shown in Fig. 2(a). 

The images in Figs. 2(b1), 2(c1), 2(d1), 2(e1), 2(f1), and 

2(g1) are reconstructed with hybridization sets of 

32 32=L D , 
16 16=R C ; 

32 32=L D , 
16 16=R H ; 

32 32=L C , 
16 16=R D ; 

32 32=L C , 
16 16=R H ; 

32 32=L H , 
16 16=R D ; and 

32 32=L H , 
16 16=R C , 

respectively. The corresponding bucket detection signals 

Y  are shown in Figs. 2(b2), 2(c2), 2(d2), 2(e2), 2(f2), 

and 2(g2). The PSNRs and SSIMs [24] of these 

reconstructed images are plotted by the blue circles and 

orange squares in Fig. 2(h). We can see that all the 

reconstructed images are of good quality. The PSNR and 

SSIM of the image in Fig. 2(b1) reach their maximums 
19.45PSNR =  and 0.97SSIM = , and those in Fig. 2(g1) 

arrive at their minimums 13.07PSNR =  and 

0.85SSIM = . The image quality fluctuates slightly due 

to the uncontrollable ambient noise. 

In Figs. 2(b2), 2(f2) and 2(g2), an interesting feature 

is that only one peak exists in each pattern of the bucket 

signals Y , and other bucket detection signals are almost 

zero. Indeed, the theoretical values are exact zeros. This 

feature indicates that GIHT is flexible for image 

compression. 

4. GIHT experiment with a real object 

In what follows, we perform the GIHT experiment of 

image reconstruction with a real object, a handmade 

windmill object as shown in Fig. 3(a). The image 

resolution is 32 64 . 

4.1 GIHT under full sampling 

Similar to that in Fig. 2, the hybridization sets for the 

images in Figs. 3(b), 3(c), 3(d), 3(e), 3(f), and 3(g) are 
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32 32=L D , 
64 64=R C ; 

32 32=L D , 
64 64=R H ; 

32 32=L C , 
64 64=R D ; 

32 32=L C , 
64 64=R H ; 

32 32=L H , 
64 64=R D ; and 

32 32=L H , 
64 64=R C , 

respectively. The PSNRs and SSIMs of all the areas in the 

red frames of the images are plotted by the blue line with 

circles and the orange line with squares in Fig. 3(h). 

All the SSIM values are very small since the 

corresponding area of the object in the red frame is empty. 

The maximum (
56.346 10− ) and minimum (

50.32 10− ) 

of SSIM values exist in Figs. 3(d) and 3(g), respectively. 

And the maximum ( 13.58 ) and minimum ( 6.96 ) of 

PSNR values exist in Figs. 3(b) and 3(e), respectively. 

 
Fig. 3. Experimental results in the full-sampling case. 

(a) Object of handmade windmill. (b-g) The 

reconstructed images with different hybrid matrices. 

(h) The PSNR and SSIM of the areas inside the red 

frames in all the reconstructed images. 

4.2 Sub-Nyquist sampling 

In the above experimental results, full sampling is 

performed that †

M M M N N N M N   =L X R Y . The 

measurement matrix is of size MN MN  that 

MN MN M M N N  = A L R . However, this does not mean 

full sampling is the only choice. 

The sub-Nyquist sampling can be applied in GIHT by 

under-sampling the two transform matrices that 

, ,
L RM M M M N N N N   → →L L R R  where 

LM M  and 

RN N . Therefore, under the condition of sub-Nyquist 

sampling, the measurement matrix becomes 

,
L R L RM N MN M M N N  = A L R  (18) 

and the bucket signals are 
† .

L R L RM N M M M N N N   =Y L X R  (19) 

The image can then be reconstructed by  
† .

L L R RM N M M M N N N   =X L Y R  (20) 

In experiment, the sampling parameters are chosen as 

0.906 29LM M= =  and 0.906 58RN N= =  for the 

Hadamard, cosine, and Haar matrices in the hybridization 

sets in experiment. The total sampling rate is about 

/ 0.821L RM N MN = . The reconstructed images in the 

sub-Nyquist sampling case are shown in Fig. 4. The 

hybridization sets for the images in Figs. 4(a)-4(f) are the 

same as that in Figs. 3(b)-3(g). The PSNRs and SSIMs of 

all the areas in the red frames of the images are plotted by 

the blue line with circles and the orange line with squares 

in Fig. 4(g). 

In the sub-Nyquist sampling case, the quality factors 

of the reconstructed images in Fig. 4 are quite well, 

compared with that in Fig. 3. The PSNR maximum 

(13.66 ) and minimum ( 7.70 ) of the reconstructed images 

are in Figs. 4(a) and 4(f), respectively. And the SSIM 

maximum (
55.23 10− ) and minimum (

50.41 10− ) of 

the reconstructed images are in Figs. 4(c) and 4(d), 

respectively. 

 

 
Fig. 4. Experimental results in the sub-Nyquist 

sampling case. (a-f) The reconstructed images with 

different hybrid matrices. (g) The PSNR and SSIM 

of the areas inside the red frames in all the 

reconstructed images. 

 

There is not much difference between the quality 

factors of the images in the full sampling and sub-Nyquist 

sampling cases in Figs. 3 and 4, due to the large sampling 

rate. The image quality will become worse if the 

sampling rate is low. 

5. Discussion and conclusion 

Anyway, ghost imaging with two hybrid transform 

matrices are illustrated. By extending the idea, GIHT can 

be implemented with many more transform matrices. 

Obviously, the extended version of GIHT in Eq. (5) can 

be directly written as 
† † †( ) (2) (1) (1) (2) ( )[ ] [ ] [ ] ,j k =L L L X R R R Y  (21) 

where j matrices on the left side and k matrices on the 

right side of X . The measurement matrix in experiment 

can be obtained by 
(1) (1) (2) (2) ( ) ( )[ ][ ] [ ],k k=   A L R L R L R  (22) 

where j k=  has been considered. In the case when 

j k , identity matrices should be supplied. The image 

reconstruction can be implemented by 
†† †(1) (2) ( ) ( ) (2) (1)[ ] [ ] [ ] .j k =L L L Y R R R X  (23) 

In fact, GIHT can be performed with any hybrid 

transform matrices, no matter unitary, orthogonal, or 

random. Since many transforms can be applied, the 

transform types and matrix positions provide convenience 

for image processing, such as image compression, 

encryption, encoding, etc. 

In summary, we have proposed a scenario of ghost 

imaging with hybrid transform matrices in two-

dimensional case. In experiment, three orthogonal 

transform matrices (Hadamard, DCT, and Haar) have 
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been adopted. The dimensions of the two matrices do not 

need to be the same, they can just match the size of the 

2D images. The measurement matrix is obtained by the 

Kronecker products of the two hybrid transform matrices. 

GIHT can exploit the characteristics of the hybridization. 

For an object of staggered stripes, convenient image 

compression is obtained since only one bucket detection 

signal survives in several hybridization sets. Image 

reconstruction and sub-Nyquist sampling are investigated 

for a handmade windmill object. The image PSNR and 

SSIM vary with the hybridization sets, due to the ambient 

noise. Therefore, GIHT can find its wide applications in 

image processing. 
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