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The anomalous bulk-boundary correspondence in non-Hermitian systems featuring an intricate
interplay between skin and boundary modes has attracted enormous theoretical and experimental
attention. Still, in dimensions higher than one, this interplay remains much less understood. Here we
provide insights from exact analytical solutions of a large class of models in any dimension, d, with
open boundaries in dc ≤ d directions and by tracking their topological origin. Specifically, we show
that Amoeba theory accounting for the separation gaps of the bulk skin modes augmented with
higher-dimensional generalizations of the biorthogonal polarization and the generalized Brillouin
zone approaches accounting for boundary modes provide a comprehensive understanding of these
systems.

Introduction.– The non-Hermitian skin effect (NHSE)
and the anomalous bulk-boundary correspondence of
non-Hermitian systems has attracted enormous amounts
of theoretical [1–3] as well as experimental [4–10] inter-
est in recent years [11–15]. The intense research has
amounted to deep insights in one dimension in terms of
winding invariants a generalized Brillouin zone (GBZ)
[2, 16], biorthogonal polarization and (de)localization
transitions [3], spectral winding [17–20], Green’s func-
tions [21, 22], transfer matrices [23] and spectral sensi-
tivity [24–29].

The general case in higher dimensions has been much
less explored and remains controversial [30, 31]. Approx-
imate methods [32, 33] as well as hybrid boundary con-
ditions [34, 35] have been considered, yet there are issues
including the problem of defining the GBZ beyond 1D
since NHSE depends on the lattice geometry [30]. Very
recently, the novel idea of using the mathematical the-
ory of Amoebas [36–39] to understand this problem was
suggested [31]. While very promising, a key limitation
in testing this theory lies in the fact that the spectrum
under open boundary conditions (OBC) and its density
of modes (DOS) predicted by the Amoeba both converge
in the limit of large system size, which increases com-
putational cost and is hard to check in absence of exact
solutions. It also ignores boundary geometries, thus los-
ing track of higher-order skin modes of potential interest
[40–43]. In general these boundary modes may signif-
icantly change spectrum properties. To remedy this it
has been suggested to introduce disorder on each bound-
ary site [31] or to consider customized lattice cuts [44]
to recover what has been called the universal spectrum,
which corresponds to the bulk spectrum in the thermo-
dynamic limit [31, 44].

Here, we pursue an alternative path to address the
outstanding problem of the interplay between higher-
dimensional NH skin and boundary modes. We present
an extension of the GBZ approach in 1D to a class of NH
hypercubic models, of which the exact solvability in arbi-
trary spatial dimensions and with arbitrary system sizes

FIG. 1. Lattice geometry of exactly solvable d-dimensional
NH hypercubic models with OBCs in dc ≤ d directions. In the
presence of a magnetic field, the NH Lieb lattice with π flux
per plaquette becomes solvable by projecting to a cylinder.

is associated with a spectral mirror symmetry. The OBC
spectrum and the localization lengths related to NHSE
belonging to all orders of skin modes can be resolved in
the context of the GBZ that we here generalize to sur-
face Brillouin zones. We test the Amoeba formulation in
our models and clarify the topology of higher-order skin
modes through the lens of biorthogonal polarization.

Exact GBZ in higher dimensions.– As illustrated in
Fig. 1, we build the NH Hamiltonian on a d-dimensional
hypercubic lattice expanded by unit vectors e⃗l: H =∑

j⃗

∑d
l=1 t

+
2l−1c

†
j⃗,A
c⃗j,Bl

+t−2l−1c
†
j⃗,Bl

c⃗j,A+t+2lc
†
j⃗,Bl

c⃗j+e⃗l,A
+

t−2lc
†
j⃗+e⃗l,A

c⃗j,Bl
, where t±l = tl ± γl. For simplicity, the

hopping parameters tl and γl are chosen to be real.
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FIG. 2. Total density comparison for the NH Lieb lattice: nRR vs nLR. While nRR of the bulk (a), edge AB (b), edge AB’ (c)
and corner (d) skin modes are centered towards different corners of the Lieb lattice, nLR shows whether the modes are of bulk,
edge, or corner nature. nLR of the bulk modes becomes almost uniform (excluding holes, the empty sites on the Lieb lattice in
Fig. 1). Summing over all types of skin modes, nLR,tot is normalized to 1 on each available site. We take small size N1,2 = 5
and choose hopping parameters t1 = −1, t2 = 2, γ1 = 0.25, γ2 = 0 (t3 = 1, t4 = 0.3, γ3 = 0.5, γ4 = 0) along x1 (x2) direction
denoted by site index i (i′).

c†
j⃗,λ

(c⃗j,λ) creates (annihilates) a particle on the mo-

tif λ ∈ {A,B1, . . . , Bd} inside the j-th unit cell with
j⃗ = (j1, j2, . . . , jd). Along each direction xl, the com-
plete OBC leads to coupled arrays of odd-length NH
SSH chains consisting of Nl unit cells, each exactly solv-
able in 1D [45, 46]. We extend the exact solutions to
higher dimensions. In the eigenvalue equationsH ψ

Rm
=

EmψRm
, H† ψ

Lm
= E∗

mψLm
, the left and right eigenvec-

tors assigned with the band index m respect biorthogo-
nal relations [47]: ψ∗

Lm
· ψ

Rm′ = δm,m′ . The notation

x = (x1, x2, ..., xk)
T is adopted to denote a vector of

scalars or operators. Our real-space multi-band Hamil-
tonian corresponds to a multi-level block Toeplitz matrix

[48]. After Fourier transform c⃗j,λ = 1√
N1...Nd

∑
k⃗ e

ik⃗·⃗jck⃗,λ
with kl =

2πñ
Nl

(ñ = 0, 1, . . . , Nl − 1), its symbol becomes

the Bloch Hamiltonian: H =
∑

k⃗ Ψ
†
k⃗
H(k⃗)Ψk⃗, sharing the

form in the basis Ψk⃗ = (ck⃗,A, ck⃗,B1
, . . . , ck⃗,Bd

)T :

H(k) = (1)
0 t+1 + t−2 e

−ik1 . . . t+2d−1 + t−2de
−ikd

t−1 + t+2 e
ik1 0 0

...
. . .

t−2d−1 + t+2de
ikd 0 0


which exhibits two dispersive and (d−1) zero-energy flat
bands.

Although spectral mirror symmetry is not present with
periodic boundary conditions (PBC), i.e. in the eigen-
values of Eq. (1), it is respected in every direction with
OBCs:

EOBC
α (kl) = EOBC

α (−kl), (2)

where α = ±, 0 and kl =
πm̃
Nl

(m̃ = 1, 2, . . . , Nl − 1). In
analogy with 1D, the OBC and PBC spectra are related
by an imaginary momentum shift [2, 23, 45, 46]: k′l =
kl− i ln rl. This characterizes GBZ by an unconventional
Bloch phase factor βl = eik

′
l hosting a modulus |βl| =

|rl| ≠ 1 in general. In our model, we identify

rl =

√
rR,l

r∗L,l

, rR,l = −
t−2l−1

t+2l
, r∗L,l = −

t+2l−1

t−2l
. (3)

The higher-order skin modes shown in Fig. 2 are ob-
tained through a systematic dimension reduction [49]
by identifying associated Bloch Hamiltonians as sub-
blocks of H(k) in Eq. (1). The one involving pairs
(t±2l1−1, t

±
2l1

), . . . , (t±2ln−1, t
±
2ln

) generates a total number
of O(Nn) skin modes living on motifs ABl1 · · ·Bln with

momentum k⃗ = (kl1 , . . . , kln , 0, . . . , 0). We take n =
0, 1, . . . , d, and for n < d, it refers to boundary modes.
Our construction leads to the exact spectrum and the
exact GBZ, which is extended to surface Brillouin zones,
of right O(Nn) skin modes [50]:

kl → (1− δkl,0)(kl − i ln rl) + δkl,0(−i ln rR,l), (4)

EOBC
n,± (k⃗) = EPBC

n,± (kl − i ln rl) = ±

√√√√ ln∑
l=l1

g2l−1,2l(kl).

Here, rR,l plays the role of cancelling the interfer-
ence from neighbouring sites on unoccupied motifs, and
the even g-functions read gi,j(q) = t+i t

−
i + t+j t

−
j +

2
√
t+i t

+
j

√
t−i t

−
j cos q. Additionally, there exist (n − 1)

zero-energy boundary (bulk) flat bands EOBC
n, 0 (k⃗) = 0 for

1 < n < d (n = d). The GBZ approach also predicts the
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FIG. 3. Gap comparison for the NH Lieb lattice: surface
gap vs separation gap formed by the edge skin mode AB′.
While its surface gap with the bulk closes when biorthogonal
polarization P1 jumps at |r∗L,1rR,1| = 1, its separation gap
closing is accompanied by a vanishing Amoeba hole. In (a),
we take size N1,2 = 26 and choose a parameter path with
t1 = t3 and fixed t2,4 = 1, γ1,3 =

√
3, γ2 = 1.5, γ4 = 0. (b)

shows the distribution of energies of bulk (+) and edge AB′

skin modes, displaying a closed separation gap (upper panel)
and a finite surface gap (lower panel).

hybrid localization behaviour:

ψ
nR,(α,⃗k)

(⃗j) ∝
∏
l∈l̄n

(rl)
jl

∏
l′ /∈l̄n

(rR,l′)
jl′ ,

ψ
nL,(α,⃗k)

(⃗j) ∝
∏
l∈l̄n

(r∗l )
−jl

∏
l′ /∈l̄n

(rL,l′)
jl′ , (5)

with l̄n = {l1, . . . , ln}. The dispersive part of the eigen-
vectors can be built as a superposition of non-Bloch
waves at opposite momentum ±kl [45, 46], fulfilling the
requirement that its component vanishes at emptyB sites
in last broken unit cells (see Fig. 1).

Let us consider 2D NH Lieb lattice as an example (see
Fig. 2). Based on our exact solutions [50], Fig. 2 com-
pares localization properties of different types of skin
modes in terms of nRR(j) =

∑
m⟨ψRm|Πj |ψRm⟩ and

nLR(j) =
∑

m⟨ψLm|Πj |ψRm⟩, with Πj =
∑

λ |⃗j, λ⟩⟨⃗j, λ|
and |⃗j, λ⟩ = c†

j⃗,λ
|0⟩. While in nRR, all types of skin modes

are centered at corners of the Lieb lattice under the in-
fluence of localization factors, the biorthogonal density
nLR exhibits localization properties analogous to Hermi-
tian systems and thereby motivates their categorization
in terms of bulk, edge and corner modes.

Biorthogonal polarization.– We proceed to locate topo-
logical phase transitions of higher-order edge skin modes
through biorthorgonal polarization [3, 41]. It is built on
the zero-energy corner skin mode, the associated right
and left eigenvectors of which normalized by ⟨ψ

L0
|ψ

R0
⟩ =

1 live on the motif A only: EOBC
n=0 = 0,

|ψR/L,0⟩ = NR/L

∑
j⃗

d∏
l=1

(rR/L,l)
jlc†

j⃗,A
|0⟩. (6)

The product encoding localization information can be
viewed as a special case of Eq. (5) with l̄0 = ∅. The

polarization vector P⃗ = (P1, P2, . . . , Pd) is quantized in
the definition

Pl = 1− lim
Nl→∞

1

Nl
|⟨ψL0|

∑
j⃗

jlΠj |ψR0⟩|. (7)

Pl = 1 (0) when |r∗L,lrR,l| < 1 (> 1). In the non-Bloch
band theory in presence of chiral symmetry, this polar-
ization is equivalent to another topological invariant in
GBZ, namely the winding number of edge skin modes [2]:

Wl =
i

2π

∫
q−1
l dql, |Wl| = Pl, (8)

with ql = −(t+2l−1+t
−
2lr

−1
l e−ikl)/EOBC

ABl,+
(kl). In Fig. 3 (a)

and Fig. 4 (a), we identify phase transitions of the second-
order and third-order edge skin modes in 2D and 3D ac-
cording to the value of P⃗ (W⃗ ) along selected parameter
paths. As a diagnostic of bulk-boundary correspondence,
the jump of P⃗ at |r∗L,lrR,l| = 1 predicts surface gap clos-

ings between the bulk O(Nd) and higher-order O(Nn)
skin modes. It is convenient to introduce surface energy
gap [51, 52]: |∆ESurf.(k⃗n)| = min∀q⃗,α,α′{|EOBC

d,α (k⃗n, q⃗) −
EOBC

n,α′ (k⃗n, 0⃗)|} where k⃗n = (kl1 , . . . , kln) denotes the non-
zero surface momentum of higher-order skin modes and
α, α′ ∈ {±}. If |∆ESurf.| ≠ 0, the gap between their spec-
tra and the bulk remains open at any surface momentum
(see Fig. 3 (b), lower panel). It can be established that

∆ESurf.|N→∞ = 0, if ∆Ptot ̸= 0. (9)

From Fig. 4 (a), one further observes the total change in
polarization ∆Ptot =

∑
l |∆Pl| imposes a constraint on

the type of higher-order skin modes that can enter the
bulk spectrum across the transition lines,

n ≥ d−∆Ptot. (10)

It results from the fact that ∆Ptot registers the number
of zeros in the g-functions in Eq. (4): g2l−1,2l(π) = 0 at
r∗L,lrR,l = 1 and g2l−1,2l(0) = 0 at r∗L,lrR,l = −1.
Amoeba formulation.– Next, we apply the Amoeba

formulation [31] to locate the separation gap [51,
52] on the complex-energy plane: |∆ESep.| =

min∀k⃗,⃗k′,α,α′{|EOBC
d,α (k⃗)− EOBC

n,α′ (k⃗′)|}. When |∆ESep.| =
0, the spectra of O(Nn) skin modes are inseparable
from the bulk at normally different momenta [see Fig. 3
(b), upper panel]. The Amoeba is defined as a log-
arithmic map of solutions to the characteristic equa-
tion: Af = {µ = log |β| : f(β) = 0} where f(β) =
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FIG. 4. NH cubic lattice. (a) Surface gap vs Amoeba hole
closings of O(Nn) skin modes (marked by the motifs they
occupy ABl1,l2,...,ln) across topological phase transition lines
of edge skin modes. ∆P = 3, 2, 1 according to |r∗L,lrR,l| = 1.
Amoeba hole disappears at different places signaling separa-
tion gap closings. We choose N1,2,3 = 26 and keep t2,4,6 = 1,
γ1,3,5 =

√
3, γ2,4,6 = 0. The path varies with t1: t1 = t3,5

for t1 ∈ [0.8, 1.5]; t3 = t1, t5 = 1.5 for t1 ∈ (1.5, 2.5];
t3 = 2.5, t5 = 1.5t1−2.25 for t1 ∈ (2.5, 3.5]; (b) Difference be-
tween Coulomb potential and Ronkin minimum as a function
of system size N = N1,2,3 at E = 0, t1 = 0.8. In Rmin, we
take µmin = µc and an integral grid with size M1,2,3 = 100;
(c) Illustration of 3D Amoeba hole in terms of Ronkin mini-
mum and “vacuole” inside Amoeba body at E = 0, t1 = 1.8.

det[H(β) − E]/Ed−1. H(β) denotes the Bloch Hamilto-
nian in Eq. (1) with eikl → βl and E the reference energy.
By dividing Ed−1, we neglect trivial solutions from (d−1)
zero-energy bulk flat bands. Notably, as observed from
Fig. 3 (a), the separation gap closings are captured by
an absence of hole inside Amoeba body [31]:

∆ESep.|N→∞ = 0, if Vhole|E=EOBC
n,min

= 0. (11)

Vhole denotes the volume of Amoeba hole at the en-
ergy EOBC

n,min that minimizes the separation gap, with ∆µl

the longest distance it extends along the direction xl.
One can prove Eq. (11) in our models using the ex-
act GBZ. Let us introduce the convex Ronkin function
[37–39]: Rf (µ) =

∫
Td

ddq
(2π)d

log |f(eµ+iq)|, which reaches

its minimum in the Amoeba hole [see Fig. 4 (c)]. The
exact GBZ predicts the center of the hole Γ = µc =
(log |r1|, log |r2|, . . . , log |rd|). It can be verified [50] that
∂µRf (µ)|µ=µc = 0,minµRf (µ) = Rf (µc). Taking into
account log |f(eµc+iq)| =

∑
α=± log |EOBC

d,α (q⃗)−E|, when

varying E /∈ EOBC
bulk , the Amoeba hole always encloses µc

[f(eµc+iq) ̸= 0] and changes shape continuously in its
vicinity. Once E enters EOBC

bulk , the hole closes at µc.

We further compare in Fig. 4 (a) the analytical tools of
polarization and Amoeba, and find the Amoeba fails to
predict topological phase transitions of higher-order edge
skin modes since the gaps they capture are intrinsically
different: ∆ESurf. ̸= ∆ESep.. The two only match at
boundary modes of codimension zero, e.g. the corner skin
mode. Indeed, the jump of P⃗ is related to the Amoeba
hole closing defined on edge Bloch Hamiltonians f(β̃l) =
det[Hedge,ABl

(β̃l)]: ∆Pl = 1,∆µ̃l = 0.

Finally, we address the influence of higher-order skin
modes on the universal spectrum. Let us focus on the
isolated spectrum in Fig. 4 (a) at small t1 and compare
its Coulomb potential with Ronkin function minimum
[31]:

Φ(E) = Rmin +O(N−1). (12)

Here, Φ(E) = 1
M

∑
m log |Em − E| with a total number

ofM eigenenergies Em selected from our exact solutions,
determines the DOS through ρ(E) = 1

2π∆Φ(E). While
Φ(E) depends on the linear system size N , Rmin by def-
inition is a universal quantity. Fig. 4 (b) indicates as N
increases, the convergence to the universal spectrum goes
slower when the potential profile includes more types of
boundary modes.

Discussion.– In this work we have exactly solved a
class of NH models in any dimension. Our exact solu-
tions make it explicit that no previously suggested ap-
proach is able to fully account for the interplay of bulk
and boundary modes in these systems due to the presence
of higher-dimensional NHSEs. However, we here success-
fully remedied these problems by combining and extend-
ing several previously distinct approaches. Specifically,
we showed that the very recently proposed Amoeba the-
ory [31] fully accounts for the O(Nd) bulk modes. While
the Amoeba approach does not account for any of the
O(Ndc) boundary modes, we managed to fully describe
those by generalizing the GBZ [2] and biorthogonal po-
larization [3] approaches to higher dimensions. While
full analytical solvability of our models facilitates a di-
rect confirmation of the aforementioned approaches, this
is in general an exceedingly challenging task relying es-
sentially on numerical tests. Some insights can however
be obtained analytically by suitably extending the mod-
els described here. First of all, a prominent feature of
our models is a generalized chiral symmetry. Insights can
be gleaned from breaking chiral symmetry in one dimen-
sion where the GBZ winding numbers and the biorthogo-
nal polarization still provide key information about phase
transitions despite the winding number (but not the po-
larization) loosing its quantization [53, 54]. Our models
are still solvable when distinct mass is added to each mo-
tif with broken chiral symmetry in every direction, and
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when Amotif includes internal degrees of freedom. More-
over, while we in the main text focused on complete OBC
in all directions (dc = d), the general case with hybrid
boundary conditions dc < d, can be accounted for ana-
lytically, as detailed in the supplementary material [50].
A concrete example comes from the cylinder geometry in
Fig. 1, making it a convenient setting to study the effect
of a magnetic field. At π flux, with six sites in one unit
cell, biorthogonal polarization and Amoeba formulation
are generalized to capture four chiral edge skin modes.
Here two zero-energy flat bands emerge reminiscent of
the recently studied NH flat band topology in the quasi-
1D diamond chain [55]. We also note that our models can
be generalized to open quantum systems where the non-
Hermiticity described by engineered Lindblad dissipators
gives rise to the Liouvillian skin effect [46, 56–61]. A dy-
namical distillation [62–64] of higher-order skin modes in
the full master equation framework will be featured in a
future work.

In conclusion, our present work marks a significant
step towards a general quantitative understanding of the
NHSE and its interplay with boundary modes in higher
dimensions.
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measures, and triangulations of the Newton polytope,
Duke Math. J. 121, 481 (2004).

[39] L. I. Ronkin, Introduction to the theory of entire func-
tions of several variables (American Mathematical Soci-
ety, Providence, 1974).

[40] K. Kawabata, K. Shiozaki, and M. Ueda, Anomalous heli-
cal edge states in a non-Hermitian Chern insulator, Phys.
Rev. B 98, 165148 (2018).

[41] E. Edvardsson, F. K. Kunst, and E. J. Bergholtz, Non-
Hermitian extensions of higher-order topological phases
and their biorthogonal bulk-boundary correspondence,
Phys. Rev. B 99, 081302 (2019).

[42] C. H. Lee, L. H. Li, and J. B. Gong, Hybrid higher-order
skin-topological modes in nonreciprocal systems, Phys.
Rev. Lett. 123, 016805 (2019).

[43] K. Kawabata, M. Sato, and K. Shiozaki, Higher-order
non-Hermitian skin effect, Phys. Rev. B 102, 205118
(2020).

[44] H.-P. Hu, Non-Hermitian band theory in all dimensions:
uniform spectra and skin effect, arXiv:2306.12022.

[45] E. Edvardsson, F. K. Kunst, T. Yoshida, and E. J.
Bergholtz, Phase transitions and generalized biorthog-
onal polarization in non-Hermitian systems, Phys. Rev.
Research 2, 043046 (2020).

[46] F. Yang, Q.-D. Jiang, and E. J. Bergholtz, Liouvillian
skin effect in an exactly solvable model, Phys. Rev. Re-
search 4, 023160 (2022).

[47] D. C. Brody, Biorthogonal quantum mechanics, J. Phys.
A 47, 035305 (2013).
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Supplementary Material for “Anatomy of Higher-Order Non-Hermitian Skin and Boundary Modes”

In this supplementary material, we provide details on the derivation of the exact GBZ for the NH hybercubic models
in arbitrary dimension d with open boundaries in arbitrary dc ≤ d directions. Exact solutions to the skin modes of
all orders are presented for the NH Lieb lattice under the complete OBC. We also relate the GBZ approach to the
Amoeba formulation through an analysis of the Ronkin function. In the end, we study one example of our models
with hybrid boundaries, the NH Lieb model at π flux on a cylinder. The interplay between four chiral edge skin
modes and the bulk can be captured by generalized biorthogonal polarization and Amoeba formulation.

Exactly solvable NH hypercubic lattices

GBZ in arbitrary spatial dimension under complete OBC

To begin with, we give a proof of the existence of exact GBZ for the O(Nn) skin modes in our NH hypercubic
models under complete OBC (dc = d) in Eq. (4) of the main text, which is one of the most important results in this
work.

As a first step to diagonalize the multi-level block Toeplitz matrix, we generalize the method of the transformation
matrix previously developed in 1D [2, 46], and map the original NH Hamiltonian to its effective Hermitian counterpart.
Since it is more convenient to express the matrix algebra in the operator form, let us define a transformation matrix
S as a gauge transform on the annihilation operators,

∀l : c⃗j,A →
d∏

i=1

(ri)
ji−1 · c⃗j,A, c⃗j,Bl

→ rl,1

d∏
i=1

(ri)
ji−1 · c⃗j,Bl

. (13)

The creation operators undergo the gauge transform simultaneously,

∀l : c†
j⃗,A

→
d∏

i=1

(ri)
−(ji−1) · c†

j⃗,A
, c†

j⃗,Bl
→ r−1

l,1

d∏
i=1

(ri)
−(ji−1) · c†

j⃗,Bl
. (14)

We recall our NH lattice Hamiltonian with asymmetric real hopping amplitudes (t±l = tl ± γl ∈ R),

H =
∑
j⃗

d∑
l=1

t+2l−1c
†
j⃗,A
c⃗j,Bl

+ t−2l−1c
†
j⃗,Bl

c⃗j,A + t+2lc
†
j⃗,Bl

c⃗j+e⃗l,A
+ t−2lc

†
j⃗+e⃗l,A

c⃗j,Bl
. (15)

If we introduce a set of localization parameters into S,

rl,1 =

√
t−2l−1

t+2l−1

, rl,2 =

√
t−2l
t+2l
, rl = rl,1rl,2 =

√
t−2l−1t

−
2l

t+2l−1t
+
2l

, (16)

after the transform, an effective Hermitian Hamiltonian arises

H̃ = S−1HS =
∑
j⃗

d∑
l=1

t̃2l−1c
†
j⃗,A
c⃗j,Bl

+ t̃2lc
†
j⃗,Bl

c⃗j+e⃗l,A
+H.c., (17)

where

t̃l =
√
t+l t

−
l . (18)

Our goal is now simplified to diagonalize the Hermitian counterpart H̃ in terms of O(Nn) Hermitian bulk and
boundary modes |ψ̃n,m⟩ assigned with band index m,

H̃ =
∑
n

∑
m

ẼOBC
n,m |ψ̃n,m⟩⟨ψ̃n,m|. (19)
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Here, the summation over n also includes all possible realizations of O(Nn) eigenmodes that cover different motifs
ABl1 · · ·Bln over the entire lattice. For convenience, we adopt the notation l̄n = {l1, . . . , ln}. To achieve the decom-
position in Eq. (19), we perform another gauge transform Un, which projects the physical space from dimension d to
codimension D = n in the limit ϵ→ 0+,

l ∈ l̄n, l
′ /∈ l̄n : c⃗j,A →

∏
i/∈l̄n

(r̃i)
ji · c⃗j,A, c⃗j,Bl

→
∏
i/∈l̄n

(r̃i)
ji · c⃗j,Bl

, c⃗j,Bl′
→ ϵ c⃗j,Bl′

,

c†
j⃗,A

→
∏
i/∈l̄n

(r̃i)
−ji · c†

j⃗,A
, c†

j⃗,Bl
→

∏
i/∈l̄n

(r̃i)
−ji · c†

j⃗,Bl
, c†

j⃗,Bl′
→ ϵ−1 c†

j⃗,Bl′
. (20)

Applying Un to H̃, one arrives at U−1
n H̃Un = H̃n + H̃ ′

n with

H̃n =
∑
j⃗

∑
l∈l̄n

t̃2l−1c
†
j⃗,A
c⃗j,Bl

+ t̃2lc
†
j⃗,Bl

c⃗j+e⃗l,A
+H.c., (21)

H̃ ′
n

∣∣∣
ϵ→0+

=
∑
j⃗

∑
l′ /∈l̄n

ϵ−1[
∏
i/∈l̄n

(r̃i)
ji ](t̃2l′−1c

†
j⃗,Bl′

c⃗j,A + t̃2l′ · r̃l′c†j⃗,Bl′
c⃗j+e⃗l′ ,A

).

When t̃2l′−1 + t̃2l′ · r̃l′ = 0, the interference from neighbouring occupied A sites on the unoccupied Bl′ sites vanishes:
H̃ ′

n ≃ 0. Therefore, a second mapping is established in the physical limit ϵ→ 0+:

U−1
n H̃Un = H̃n, for r̃l = − t̃2l−1

t̃2l
= −

√
t+2l−1t

−
2l−1

t+2lt
−
2l

. (22)

To obtain the exact OBC spectrum of H̃n, it is important to employ symmetries associated with different boundary
conditions. Indicated by Fig. 1, for the hypercubic lattice under complete OBC, the last unit cells of which are broken
in every direction, H̃n inherits the spectral mirror symmetry: ẼOBC

n,α (kl) = ẼOBC
n,α (−kl),∀l ∈ l̄n. As a consequence, its

OBC and PBC spectra coincide with each other: ẼOBC
n,α (k) = ẼPBC

n,α (k). Here, α ∈ {0,±} comes from the generalized
chiral symmetry of the Bloch Hamiltonian, in the representation C = diag{1,−1,−1, . . . ,−1},

H̃n(k) =


0 t̃2l1−1 + t̃2l1e

−ikl1 . . . t̃2ln−1 + t̃2lne
−ikln

t̃2l1−1 + t̃2l1e
ikl1 0 0

...
. . .

t̃2ln−1 + t̃2lne
−ikln 0 0

 , CH̃n(k)C−1 = −H̃n(k). (23)

Given k, apart from one pair of energies ẼPBC
n,+ (k) = −ẼPBC

n,− (k), there emerge (n − 1) zero-energy boundary (bulk)

flat bands for 1 < n < d (n = d): ẼPBC
n,0 (k) = 0. From the second mapping in Eq. (20) and Eq. (22), one resolves the

eigenvalue decomposition problem of the Hermitian Hamiltonian in Eq. (19):

ẼOBC
n,α (k) = ẼPBC

n,α (k), |ψ̃n,α(k, j)⟩ ∝
∏
i/∈l̄n

(r̃i)
ji · eik·j |ũn,α(k)⟩, (24)

where |ũn,α(k)⟩ denotes normalized eigenvectors of the Bloch Hamiltonian: H̃n(k) =
∑

α,k Ẽ
PBC
n,α (k)|ũn,α(k)⟩⟨ũn,α(k)|.

We are now ready to go back and derive the analytical solutions to the original NH Hamiltonian by taking the
inverse of the first mapping in Eq. (17),

H = SH̃S−1 =
∑
n

∑
α,k

ẼPBC
n,α (k)SP̃n,α(k)S

−1, P̃n,α(k) = |ψ̃n,α(k)⟩⟨ψ̃n,α(k)|. (25)

Thanks to its Hermitian counterpart, the NH Hamiltonian is already decomposed in a formal form of O(Nn) NH
skin modes. The projection operator P̃n,α(k) also enables us to focus on the subspace of occupied motifs where an
effective basis ψ(j) = (c⃗j,A, c⃗j,Bl1

, . . . , c⃗j,Bln
)T can be constructed for each unit cell. In this basis, the transformation

matrix S of Eq. (13) finds expression as

SP̃S−1 = SnP̃S
−1
n , Sn =

⊕
j

∏
i∈l̄n

(ri)
ji · Snj , Snj = diag{1, rl1 , . . . , rln} ·

∏
i∈l̄n

(ri)
−1. (26)
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It is straightforward to identify in Eq. (25) that in the j-th unit cell,

SnjH̃n(k)S
−1
nj =


0 t+2l1−1 + t−2l1r

−1
l1
e−ikl1 . . . t+2ln−1 + t−2lnr

−1
ln
e−ikln

t−2l1−1 + t+2l1rl1e
ikl1 0 0

...
. . .

t−2ln−1 + t+2lnrlne
ikln 0 0

 . (27)

Comparing with the subblocks of the original NH Bloch Hamiltonian in Eq. (1) which act on motifs ABl1 · · ·Bln , an
equality can be established by a momentum shift:

SnjH̃n(k⃗)S
−1
nj = Hn(kl − i ln rl), ∀l ∈ l̄n. (28)

Taking into account Hn(k) =
∑

α,k E
PBC
n,α (k)|unR,α(k)⟩⟨unL,α(k)| in the biorthogonal basis ⟨unL,α(k)|unR,α′(k)⟩ =

δα,α′ , we obtain the eigenvalue decomposition of the NH Hamiltonian:

H =
∑
n

∑
α,k

EOBC
n,α (k)|ψnR,α(k)⟩⟨ψnL,α(k)|,

EOBC
n,± (k⃗) = EPBC

n,± (kl − i ln rl), EOBC
n,0 (k⃗) = 0 (n > 1), (29)

with the analytical functions,

EPBC
n,± (k⃗) = ±

√√√√ ln∑
l=l1

f2l−1,2l(kl), fi,j(q) = t+i t
−
i + t+j t

−
j + 2(titj + γiγj) cos q + 2i(tiγj + tjγi) sin q,

EOBC
n,± (k⃗) = ±

√√√√ ln∑
l=l1

g2l−1,2l(kl), gi,j(q) = t+i t
−
i + t+j t

−
j + 2

√
t+i t

+
j

√
t−i t

−
j cos q. (30)

While the spectrum under OBC inherits the spectral mirror symmetry reflected in the even-g functions, the PBC
spectrum is not invariant under kl → −kl. From Eqs. (24)-(26), the left and right O(Nn) skin modes exhibit hybrid
localization behaviours:

|ψnR,(α,k)(⃗j)⟩ ∝
∏
l∈l̄n

(rl)
jl

∏
l′ /∈l̄n

(rR,l′)
jl′ · eik·j |unR,α(kl − i ln rl)⟩,

⟨ψnL,(α,k)(⃗j)| ∝
∏
l∈l̄n

(rl)
−jl

∏
l′ /∈l̄n

(r∗L,l′)
jl′ · eik·j⟨unL,α(kl − i ln rl)|, (31)

where the localization parameters read

rR,l = rlr̃l = −
t−2l−1

t+2l
, r∗L,l = r−1

l r̃l = −
t+2l−1

t−2l
. (32)

Eq. (31) can also be obtained by performing imaginary momentum shifts on k⃗ = (kl1 , . . . , kln , 0, . . . , 0), which leads
to the exact GBZ for the right O(Nn) skin modes:

kl → (1− δkl,0)(kl − i ln rl) + δkl,0(−i ln rR,l). (33)

The exact skin modes can be further built from Eq. (31) by taking a superposition of non-Bloch waves at opposite
momenta ±kl, such that the total wavefunction meets the boundary condition with vanishing component on the
empty Bl sites of last broken unit cells (see Fig. 1). It is also interesting to comment on the structures of biorthogonal
eigenvectors |unR/L⟩ associated with the non-Bloch Hamiltonian in Eq. (27). It can be checked that while the
eigenvectors of the two dispersive bands in Eq. (29) live on all ABl1 · · ·Bln motifs, the ones for those flat bands have
zero occupancy on the A motif. And by satisfying one more condition from the eigenvalue equation, they can be built
as (n− 1) linearly independent states covering all Bl1 · · ·Bln motifs, thus fulfilling the requirement of a codimension
D = n.
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Meanwhile, with gauge transforms, we are able to retrieve the phase transitions of higher-order edge skin modes in
our models. It immediately follows from Eq. (17) that on motifs ABl, the complex gap of the edge skin mode closes

as soon as its Hermitian counterpart H̃ABl
=

∑
j⃗ t̃2l−1c

†
j⃗,A
c⃗j,Bl

+ t̃2lc
†
j⃗,Bl

c⃗j+e⃗l,A
+H.c. becomes gapless:

|t̃2l−1| = |t̃2l| ⇐⇒ |r∗L,lrR,l| = 1. (34)

From the biorthogonal bulk-boundary correspondence, these gapless lines are accompanied by a quantized change in
topological invariants in NH systems compatible with open boundaries: the biorthogonal polarization of the corner
skin mode or the GBZ winding number of the edge skin modes in presence of chiral symmetry [see Eq. (7) and Eq. (8)
of the main text].

GBZ for boundaries of arbitrary codimension

Next, we address our NH hypercubic models under hybrid boundary conditions (dc < d): OBCdc
+ PBCd−dc

.

In the spatial dimension d with open boundary conditions in dc directions and periodic boundary conditions in
d − dc directions, it yields boundary skin modes of codimension D = 0, 1, . . . , dc − 1, the total number of which is
proportional to O(Nn) with n = d− dc +D or n = d− dc, . . . , d− 1. For bulk skin modes, D = dc, n = d. To further
simplify notations, we adopt symbols ⊥ and ∥ to denote elements in the OBC and PBC directions. In this manner, the
spectral mirror symmetry related to momenta along the OBC directions, is manifested as E(k⊥, k∥) = E(−k⊥, k∥).

In the full NH lattice Hamiltonian H = H⊥ + H∥, it is convenient to first diagonalize H∥ and create a new Ã

motif from its eigenmodes, such that the original A motif and the B⊥ motifs are all absorbed into the Ã motif as
(d− dc + 1) internal degrees of freedom. To acheive this, we perform the Fourier transform along the PBC directions
on the operators,

cj⊥,λ(j∥) =
1√∏
l∈l̄∥

Nl

∑
k∥

eik∥·j∥cj⊥,λ(k∥), (35)

where λ ∈ {A,B1, · · ·Bd} = A ∪ B⊥ ∪ B∥ with B⊥ = {B1, · · ·Bd} − B∥, B∥ = {Bm1
, · · ·Bmd−dc

}, and k∥,l =
2πñ
Nl

(ñ = 0, 1, . . . , Nl − 1) for l ∈ l̄∥ = {m1, . . . ,md−dc
}. The subscript j⊥ can be ignored for the moment. Given each k∥,

in the basis φ(k∥) = (cA(k∥), cB∥(k∥))
T , the Bloch Hamiltonian of H∥ shares the form

H∥(k∥) =


0 t+2m1−1 + t−2m1

e−ikm1 . . . t+2md−dc−1 + t−2md−dc
e−ikmd−dc

t−2m1−1 + t+2m1
eikm1 0 0

...
. . .

t−2md−dc−1 + t+2md−dc
eikmd−dc 0 0

 . (36)

After the diagonalization, there emerge two dispersive bands and (d− dc − 1) zero-energy flat bands:

H∥(k∥) =
∑
α

ϵÃ,α(k∥)|φR,α(k∥)⟩⟨φL,α(k∥)|,

ϵÃ,±(k∥) = ±
√∑

l∈l̄∥

f2l−1,2l(k∥), ϵÃ,0(k∥) = 0 (d− dc > 1), (37)

with the f -functions given by Eq. (30). Identifying each eigenmode of H∥(k∥) as a particle on the new Ã motif,

|φR,i(k∥)⟩ = c†
Ãi
(k∥)|0⟩, ⟨φL,i(k∥)| = ⟨0|cÃi

(k∥), (38)

we arrive at

H∥(k∥) =

d−dc+1∑
i=1

ϵÃi
(k∥)c

†
Ãi
(k∥)cÃi

(k∥). (39)
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It is interesting to see the coexistence of non-skin modes and skin modes under hybrid boundary conditions. Particles
on the Ã motifs are coupled to the B⊥ motifs through the original A sites,

c†A(k∥) =
∑
i

φ∗
L,i(k∥, 1)c

†
Ãi
(k∥), cA(k∥) =

∑
i

φR,i(k∥, 1)cÃi
(k∥), (40)

where we have applied to Eq. (38) |φR/L,i(k∥)⟩ =
∑

λ∈A∪B∥
φR/L,i(k∥, λ)c

†
λ(k∥)|0⟩ and the identity 1λ =∑

i |φR,i(k∥, λ)⟩⟨φL,i(k∥, λ)|. Taking into account the zero-energy eigenmodes of PBC flat bands in Eq. (37) van-
ish on the A motif: φ∗

L,α=0(k∥, 1) = φR,α=0(k∥, 1) = 0, they constitute (d − dc − 1) non-skin (non-localized) modes
living exclusively on the B∥ motifs that can be described by the normal BZ along the PBC directions. On the other
hand, the two eigenmodes with opposite energies (α = ±) belonging to the PBC dispersive bands are elevated to
localized skin modes when NHSEs along OBC directions come into play.

Restoring the unit cell index j⊥ in Eq. (35), one builds on the effective ÃB⊥ motifs a generalized NH hypercubic
model under complete OBC: H =

∑
k∥

H(k∥),

H(k∥) =
∑
α=±

∑
j⃗⊥

∑
l∈l̄⊥

ϵÃ,α(k∥)c
†
j⃗⊥,Ãα

(k∥)c⃗j⊥,Ãα
(k∥) + t+2l−1,αc

†
j⃗⊥,Ãα

(k∥)c⃗j⊥,Bl
(k∥) + t−2l−1,αc

†
j⃗⊥,Bl

(k∥)c⃗j⊥,Ãα
(k∥)

+ t+2l,αc
†
j⃗⊥,Bl

(k∥)c⃗j⊥+e⃗l,Ãα
(k∥) + t−2l,αc

†
j⃗⊥+e⃗l,Ãα

(k∥)c⃗j⊥,Bl
(k∥), (41)

with renormalized asymmetric hopping parameters from Eq. (40),

t+2l−1,α = t+2l−1φ
∗
L,α(k∥, 1), t−2l−1,α = t−2l−1φR,α(k∥, 1), t+2l,α = t+2lφR,α(k∥, 1), t−2l,α = t−2lφ

∗
L,α(k∥, 1). (42)

Although the effective mass term ϵÃ,α(k∥) ̸= 0 breaks generalized chiral symmetry, the solvability of our models
remains unaffected since spectral mirror symmetry is still respected along the OBC directions E(k⊥, k∥) = E(−k⊥, k∥),
and equally important, the same localization parameter rαl is shared by two independent particles on the Ã motif:

rαR,l = −
t−2l−1,α

t+2l,α
= −

t−2l−1

t+2l
= rR,l, rα∗L,l = −

t+2l−1,α

t−2l,α
= −

t+2l−1

t−2l
= rL,l,

rαl =

√
rαR,l

rα∗L,l

=

√
t−2l−1t

−
2l

t+2l−1t
+
2l

= rl. (43)

As a consequence, the two exact mappings S and U for the Hamiltonian H(k∥) in Eq. (41) under complete OBC can
be established by simply replacing in Eqs. (13)-(14) and Eq. (20):

l̄d → l̄⊥, l̄n → l̄D, c⃗j,λ → c⃗j⊥,λ(k∥), (44)

where l̄d = l̄⊥ ∪ l̄∥, and l̄D = {l1, . . . , lD} ∈ l̄⊥ denotes the motifs ÃαBl1 · · ·BlD covered by the O(Nn) skin modes
of codimension D = 0, 1, . . . , dc with n = d− dc +D. The extra (d− dc) arises from the degrees of freedom in PBC
dimensions encoded in each Ãα particle in Eq. (38). Moreover, the solvability can be further relaxed to different values
of rαR/L,l, which corresponds to different localization factors r̃αl = rαR,l/rl in U , as the contributions from the occupied

Ãα sites on the unoccupied B⊥ motifs can be cancelled independently (see the example of the cylinder geometry at
π flux). However, the transformation matrix S acts on the common B⊥ motifs, leading to a unique rl factor.

Performing the Fourier transform along the OBC directions on the Hamiltonian H(k∥) of Eq. (41),

cj⊥,λ(k∥) =
1√∏
l∈l̄⊥

Nl

∑
k⊥

eik⊥·j⊥cλ(k⊥, k∥), (45)

with λ ∈ Ã ∪ B⊥, followed by imaginary momentum shifts in the GBZ, we can obtain the non-Bloch Hamiltonian
for the O(Nn) skin modes of codimension D = 0, 1, . . . , dc. As the eigen energies do not change with a different
biorthogonal basis, we can either stay with the new basis Ã∪BD

⊥ or choose the original basis with motifs A∪B∥∪BD
⊥ ,

where BD
⊥ = {Bl1 , . . . , BlD}. It turns out that while the former is convenient for identifying corner skin modes, the

latter is a more natural choice to get access to the skin modes of codimension D > 0. In the original basis ψ(k⊥, k∥) =

(cA(k⊥, k∥), cB∥(k⊥, k∥), cBD
⊥
(k⊥, k∥))

T , the non-Bloch Hamiltonian for O(Nn) skin modes has the structure

HD(kl − i ln rl, k∥) =

 0 H∥,− H⊥,−
HT

∥,+ 0 0

HT
⊥,+ 0 0

 , (46)



12

with the matrix elements

H∥,± = (t∓2m1−1 + t±2m1
e±ikm1 , . . . , t∓2md−dc−1 + t±2md−dc

e±ikmd−dc ),

H⊥,± = (t∓2l1−1 + t±2l1(rl1)
±1e±ikl1 , . . . , t∓2lD−1 + t±2lD (rlD )

±1e±iklD ). (47)

The exact spectrum follows

EOBC
D,± (k⃗) = ±

√∑
l∈l̄∥

f2l−1,2l(kl) +
∑
l∈l̄D

g2l−1,2l(kl), ED,0(k⃗) = 0 (D > 0), (48)

where f and g-functions are given in Eq. (30). There are two corner skin modes of codimension D = 0 at l̄D = ∅
endowed with opposite energies ϵÃ,±(k∥) in Eq. (37), and they are localized on the Ã+ and Ã− motifs. By taking

l̄∥ = ∅, the two dispersive bands under hybrid boundary conditions (dc < d) are connected to those under the
complete OBC (dc = d) in Eq. (30). At the same time, in addition to (d − dc − 1) zero-energy bulk flat bands in
normal BZ along the PBCs in Eq. (37) accounting for non-localized modes that cover only the B∥ motifs, there exist
D zero-energy boundary (bulk) flat bands in GBZ as well for 1 ≤ D < dc (D = dc) accounting for the skin modes
that are exponentially localized (delocalized) on the B⊥ (B∥) motifs and vanish completely on the A motif. In this
way, we retrieve in total n = 2 + d− dc − 1 +D = d− dc +D bands for the O(Nn) skin modes.

Under hybrid boundary conditions, given the surface momentum k⃗ = (k⊥, k∥) = (kl1 , . . . , klD , 0, . . . , 0; k∥), the exact
GBZ for the right O(Nn) skin modes is generalized to

∀l ∈ l̄⊥ : kl → (1− δkl,0)(kl − i ln rl) + δkl,0(−i ln rR,l), (49)

which is consistent with hybrid localization behaviours in the exact mappings (α = ±, 0),

|ψD,R,(α,k)(⃗j)⟩ ∝
∏
l∈l̄D

(rl)
j⊥,l

∏
l′∈(l̄⊥−l̄D)

(rR,l′)
j⊥,l′ · eik⃗·⃗j |uD,R,α(kl − i ln rl, k∥)⟩,

⟨ψD,L,(α,⃗k)(⃗j)| ∝
∏
l∈l̄D

(rl)
−j⊥,l

∏
l′∈(l̄⊥−l̄D)

(r∗L,l′)
j⊥,l′ · eik⃗·⃗j⟨uD,L,α(kl − i ln rl, k∥)|, (50)

where |uD,R/L,α⟩ represent the biorthogonal eigenvectors of the non-Bloch Hamiltonian in Eq. (46).
In the end, we comment briefly on the analytical tools that can be developed to detect the gap closings in our

models with hybrid boundaries. In absence of chiral symmetry in the non-Bloch Hamiltonian of Eq. (46), the GBZ
winding number is no longer a good invariant. In order to capture the surface gap closings of the higher-order skin
modes, one can extend the more robust biorthogonal polarization to include two corner skin modes,

|ψR/L,0,α=±(k∥)⟩ = NR/L,α(k∥)
∑
j⃗⊥

∏
l∈l̄⊥

(rR/L,l)
j⊥,lc†

j⃗⊥,Ãα
(k∥)|0⟩. (51)

We define the generalized polarization vector P⃗ with

l ∈ l̄⊥, Pl = 2− lim
Nl→∞

1

Nl

∑
α=±

|⟨ψL0,α(k∥)|
∑
j⃗⊥

j⊥,lΠj⊥(k∥)|ψR0,α(k∥)⟩|. (52)

Here, Πj⊥(k∥) =
∑

λ∈Ã |⃗j⊥, λ, k∥⟩⟨⃗j⊥, λ, k∥| and |⃗j, λ, k∥⟩ = c†
j⃗⊥,λ

(k∥)|0⟩. Since the localization factors of two corner

skin modes do not depend on k∥ and ⟨ψL0,α(k∥)|ψR0,α(k∥)⟩ = 1, Pl does not vary with k∥. Pl = 2 (0) when
|r∗L,lrR,l| < 1 (> 1). In a similar manner, the separation gaps with the bulk skin modes on the motifs AB∥B⊥ can be
captured by the generalized Amoeba of codimension dc as a function of k∥: Af (k∥) = {µ(k∥) = log |β(k∥)| : f(β) = 0}
where f(β) = det[H(β, k∥) − E]/Ed−1 and E denotes the reference energy. The trivial solutions from (d − 1) zero-
energy bulk flat bands are excluded by the denominator. By analogy to the complete OBC, here H(β, k∥) comes from

the bulk Bloch Hamiltonian with βl = eikl for any l ∈ l̄⊥ = {l1, . . . , ldc
} along the OBC directions,

H(β, k∥) =

 0 H∥,−(k∥) H⊥,−(β)
HT

∥,+(k∥) 0 0

HT
⊥,+(β) 0 0

 , H⊥,±(β) = (t∓2l1−1 + t±2l1β
±
l1
, . . . , t∓2ldc−1 + t±2ldc

β±
ldc

). (53)
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FIG. 5. (a) Lattice geometry of the NH Lieb lattice; (b) Comparison of complex eigenvalues between the numerical (dark
blue) and analytical (light blue) results for a finite-size Lieb lattice with N1,2 = 3. We choose distinct values for all hopping
parameters: {t1, t2, t3, t4} = {1.5, 1, 1.6, 1.2}, {γ1, γ2, γ3, γ4} = {

√
3, 0.2,

√
2, 0.4}; (c) Quantization of polarization P1 with

varying system size as a function of t1. We keep t1 = t3 and fix t2,4 = 1, γ1,3 =
√
3, γ2,4 = 0. P1 jumps at |r∗L,1rR,1| = 1.

Exact solutions to the NH Lieb lattice under complete OBC

In this section, we give an explicit example of the diverse types of skin modes in our NH hypercubic models in
2D, the NH Lieb lattice. Starting from the results of the exact mappings in Eq. (31), we finalize the construction of
eigenmodes by taking into account spectral mirror symmetry and boundary constraints under complete OBC.

Fig. 5 (a) illustrates the geometry of the NH Lieb lattice of size (2N1 − 1) × (2N2 − 1) where we designate
three motifs ABB′ in each unit cell at the position j⃗ = (j, j′) with j = 1, . . . , N1 and j′ = 1, . . . , N2. There are
Ntot = 3N1N2 − N1 − N2 sites, equal to the total number of O(Nn) skin modes (n = 0, 1, 2). Among them, we
recognize one corner skin mode at k0 = (0, 0), 2(N1 − 1) + 2(N2 − 1) edge skin modes at kedge = (k1, 0), (0, k2) and
3(N1−1)(N2−1) bulk skin modes at kbulk = (k1, k2). They correspond to the third-order, second-order and first-order
NHSEs in two dimensions. Let us first test the exact spectrum in Eq. (29) related to imaginary momentum shifts in
the GBZ,

O(1) : EOBC
corner(0, 0) = 0,

O(N) : EOBC
edge,AB,±(k1, 0) = EPBC

edge,AB,±(k1 − i ln r1) = ±
√
g1,2(k1),

EOBC
edge,AB′,±(0, k2) = EPBC

edge,AB′,±(k2 − i ln r2) = ±
√
g3,4(k2),

O(N2) : EOBC
bulk,0(k1, k2) = 0,

EOBC
bulk,±(k1, k2) = EPBC

bulk,±(k1 − i ln r1, k2 − i ln r2) = ±
√
g1,2(k1) + g3,4(k2), (54)

with

r1 =

√
t−1 t

−
2

t+1 t
+
2

, r2 =

√
t−3 t

−
4

t+3 t
+
4

. (55)

Recalling our convention for the momentum under OBC: kl = πm̃/Nl, with m̃ = 1, 2, . . . , Nl − 1 and the form of
g-function in Eq. (30), we find our analytical solutions are consistent with numerical diagonalization of the real-space
NH Hamiltonian of arbitrary system size and arbitrary hopping parameters. Fig. 5 (b) shows the precision of complex
eigenvalues on a finite 5× 5 NH Lieb lattice.

Apart from the eigenvalues, we can also construct the exact eigenvectors of O(Nn) skin modes on hypercubic
lattices of any finite size. On the NH Lieb lattice, the zero-energy corner skin mode lives on the A motif only, and by
setting l̄0 = ∅ in Eq. (31), it is given by

|ψR/L,0⟩ = NR/L

N1∑
j=1

N2∑
j′=1

rjR/L,1r
j′

R/L,2c
†
A,(j,j′)|0⟩, (56)
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where NR/L denote the normalization factors coming from the biorthogonal relation: ⟨ψL0|ψR0⟩ = 1, and N ∗
LNR =

(r∗L,1rR,1r
∗
L,2rR,2)

−1(r∗L,1rR,1 − 1)(r∗L,2rR,2 − 1)/{[(r∗L,1rR,1)
N1 − 1][(r∗L,2rR,2)

N2 − 1]}. Depending on the choice of
parameters {|rR,1|, |rL,1|} and {|rR,2|, |rL,2|} from Eq. (32),

rR,1 = − t
−
1

t+2
, r∗L,1 = − t

+
1

t−2
, rR,2 = − t

−
3

t+4
, r∗L,2 = − t

+
3

t−4
. (57)

the localization of the left and right corner modes would be different as soon as the spectral winding number of the
associated edge Bloch Hamitonian becomes non-trivial [26, 46],

l = 1, 2 : HABl
(kl) =

(
0 t+2l−1 + t−2le

−ikl

t−2l−1 + t+2le
−ikl 0

)
, ωl =

1

2πi

∫ π

−π

dkl∂kl
log{det[HABl

(kl)]},

|ωl| = 1 ⇐⇒ sgn[log(|rR,l|)] ̸= sgn[log(|rL,l|)]. (58)

For the edge and bulk skin modes, both spectra under OBC respect spectral mirror symmetry:

EOBC
AB,±(k1) = EOBC

AB,±(−k1), EOBC
AB′,±(k2) = EOBC

AB′,±(−k2),
EOBC

± (k1, k2) = EOBC
± (−k1, k2) = EOBC

± (k1,−k2) = EOBC
± (−k1,−k2). (59)

It enables us to build their eigenvectors as a superposition of non-Bloch waves in Eq. (31) at opposite momenta ±kl.
The edge skin modes share the form,

ψAB

R,(±,k1)
(j, j′) = NR,AB

rj1r
j′

R,2√
2N1

[eik1juR,±(k1)− e−ik1juR,±(−k1)],

ψAB′

R,(±,k2)
(j, j′) = NR,AB′

rjR,1r
j′

2√
2N2

[eik2j
′
uR,±(k2)− e−ik2j

′
uR,±(−k2)], (60)

where uR,±(k1,2) denote the right eigenvectors of two edge non-Bloch Hamiltonians,

Hedge,AB(k1) =

(
0 t+1 + t−2 r

−1
1 e−ik1

t−1 + t+2 r1e
ik1 0

)
, Hedge,AB′(k2) =

(
0 t+3 + t−4 r

−1
2 e−ik2

t−3 + t+4 r2e
ik2 0

)
, (61)

in the basis ψ
AB

(k1) = (cA(k1), cB(k1))
T and ψ

AB′(k2) = (cA(k2), cB′(k2))
T respectively. Correspondingly,

uR,±(k1) = uPBC
R,± (k1 − i ln r1) =

1√
2

(
(t+1 + t−2 r1

−1e−ik1)/EOBC
AB,±(k1)

1

)
,

uR,±(k2) = uPBC
R,± (k2 − i ln r2) =

1√
2

(
(t+3 + t−4 r

−1
2 e−ik2)/EOBC

AB′,±(k2)

1

)
. (62)

The relative minus sign in Eq. (60) comes from the boundary condition where the wavefunction vanishes on the empty
B and B′ sites in last unit cells [see Fig. 5 (a) and Fig. 1]. The left edge eigenmodes are obtained in a similar way:

ψAB

L,(±,k1)
(j, j′) = NL,AB

(r∗1)
−j(rL,2)

j′

√
2N1

(
eik1juL,±(k1)− e−ik1juL,±(−k1)

)
,

ψAB′

L,(±,k2)
(j, j′) = NL,AB′

(rL,1)
j(r∗2)

−j′

√
2N2

(
eik2j

′
uL,±(k2)− e−ik2j

′
uL,±(−k2)

)
, (63)

where

uL,±(k1) =
1√
2

(
[(t−1 + t+2 r1e

ik1)/EOBC
AB,±(k1)]

∗

1

)
,

uL,±(k2) =
1√
2

(
[(t−3 + t+4 r2e

ik2)/EOBC
AB′,±(k2)]

∗

1

)
. (64)

As the eigenvectors of non-Bloch edge Hamiltonians are already biorthogonal u∗L,α(k1) · uR,α′(k1) = u∗L,α(k2) ·
uR,α′(k2) = δα,α′ , to realize ψAB∗

Lm
· ψAB

Rm′ = ψAB′∗
Lm

· ψAB′

Rm′ = δm,m′ , we can fix the normalization factors by

N ∗
L,ABNR,AB =

(r∗L,2rR,2)
−1(r∗L,2rR,2 − 1)

(r∗L,2rR,2)N2 − 1
, N ∗

L,AB′NR,AB′ =
(r∗L,1rR,1)

−1(r∗L,1rR,1 − 1)

(r∗L,1rR,1)N1 − 1
. (65)
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For the right bulk skin modes at k⃗ = (k1, k2), we start from a superposition of non-Bloch waves containing all possible
combinations of ±k1,2 allowed by spectral mirror symmetry of Eq. (59):

ψ
R,(α,⃗k)

(j, j′) =
rj1r2

j′

2
√
N1N2

[
C1e

i(k1j+k2j
′)uR,α(k1, k2) + C2e

i(−k1j+k2j
′)uR,α(−k1, k2)

+C3e
i(k1j−k2j

′)uR,α(k1,−k2) + C4e
−i(k1j+k2j

′)uR,α(−k1,−k2)
]
. (66)

Here, uR,α(k⃗) denote three eigenvectors (α = 0,±) of the non-Bloch bulk Hamiltonian,

H(k1, k2) = HPBC(k1 − i ln r1, k2 − i ln r2) =

 0 t+1 + t−2 r
−1
1 e−ik1 t+3 + t−4 r

−1
2 e−ik2

t−1 + t+2 r1e
ik1 0 0

t−3 + t+4 r2e
ik2 0 0

 , (67)

in the basis ψ(k⃗) = (cA(k⃗), cB(k⃗), cB′(k⃗))T . A convenient choice for uR,α(k⃗) turns out to be

uR,0(k1, k2) = NR,0(k1, k2)

 0
t+3 + t−4 r

′−1e−ik2

−(t+1 + t−2 r
−1e−ik1)

 ,

uR,±(k1, k2) = NR,±(k1, k2)

EOBC
± (k1, k2)[(t

−
1 + t+2 re

ik1)(t−3 + t+4 r
′eik2)]−1

(t−3 + t+4 r
′eik2)−1

(t−1 + t+2 re
ik1)−1

 , (68)

with mirror-symmetric normalization factors

NR,0(k1, k2) =
1√

g1,2(k1) + g3,4(k2)
, NR,±(k1, k2) =

√
g1,2(k1)g3,4(k2)

2[g1,2(k1) + g3,4(k2)]
,

NR,α(k1, k2) = NR,α(−k1, k2) = NR,α(k1,−k2) = NR,α(−k1,−k2). (69)

Again, the coefficients Ci in Eq. (66) can be determined by ensuring the total wavefunction vanishes on the B and

B′ sites in the last broken unit cells in the NH Lieb lattice [see Fig. 5 (a) and Fig. 1]. With our choice of uR,α(k⃗) in
Eq. (68), the spectral mirror symmetry in the normalization factors and the independence of the remaining component
of the B (B′) motif on the associated momentum k1 (k2) greatly simplify the boundary constraints [these two features
are also present in the eigenvectors for edge non-Bloch Hamiltonian in Eq. (62)]. For α = {0,±}, it is easy to verify
that

ψ
R,(α,⃗k)

(N1, j
′)
∣∣∣
B
= 0,∀j′ : C1 = −C2, C3 = −C4,

ψ
R,(α,⃗k)

(j,N2)
∣∣∣
B′

= 0,∀j : C1 = −C3, C2 = −C4. (70)

Choosing (C1, C2, C3, C4) = (1,−1,−1, 1), we arrive at a closed form for the right bulk skin modes:

ψ
R,(α,⃗k)

(j, j′) =
rj1r2

j′

2
√
N1N2

[
ei(k1j+k2j

′)uR,α(k1, k2)− ei(−k1j+k2j
′)uR,α(−k1, k2)

−ei(k1j−k2j
′)uR,α(k1,−k2) + e−i(k1j+k2j

′)uR,α(−k1,−k2)
]
. (71)

The left bulk eigenmodes can be constructed in the same manner:

ψ
L,(α,⃗k)

(j, j′) =
(r∗1)

−j(r∗2)
−j′

2
√
N1N2

[
ei(k1j+k2j

′)uL,α(k1, k2)− ei(−k1j+k2j
′)uL,α(−k1, k2)

−ei(k1j−k2j
′)uL,α(k1,−k2) + e−i(k1j+k2j

′)uL,α(−k1,−k2)
]
, (72)

where

uL,0(k1, k2) = NL,0(k1, k2)

 0
(t−3 + t+4 r

′eik2)∗

−(t−1 + t+2 re
ik1)∗

 ,

uL,±(k1, k2) = NL,±(k1, k2)

{EOBC
± (k1, k2)[(t

+
1 + t−2 r

−1e−ik1)(t+3 + t−4 r
′−1

e−ik2)]−1}∗
[(t+3 + t−4 r

′−1
e−ik2)−1]∗

[(t+1 + t−2 r
−1e−ik1)−1]∗

 , (73)
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FIG. 6. Ronkin function and the Amoeba in the NH Lieb lattice. We choose the reference energy E = 0 of the corner skin mode
and fix t2,4 = 1, γ1,3 =

√
3, γ2,4 = 0. The Ronkin integral is evaluated on a grid with M1,2 = 100. The minimum of the Ronkin

function locates the hole inside Amoeba body. As shown in (a), when the hole closes at its center point Γ = (log(|r1|), log(|r2|))
given by the GBZ, the corner skin mode enters the bulk with a separation gap closing, which is equivalent to the surface gap
in dc = 0. Therefore, this transition takes place at |r∗L,1rR,1| = |r∗L,2rR,2| = 1, ∆Ptot = 2, fulfilling the criteria dc ≥ d−∆Ptot.

and NL(k1, k2) = N ∗
R(k1, k2). Meanwhile, uR/L,α(k⃗) are biorthogonal to each other: u∗L,α(k1, k2)·uR,α′(k1, k2) = δα,α′ .

In the end, it can be checked that our analytical wave functions for the corner mode in Eq. (56), the edge modes in
Eq. (60) and Eq. (63), and the bulk modes in Eq. (71) and Eq. (72) mutually satisfy biorthogonal relations. Therefore,
we obtain the entire set of eigenmodes of the NH Lieb model under complete OBC:

ψ∗
Lm

· ψ
Rm′ = δm,m′ , HNH

Lieb =
∑
m

EOBC
m |ψ

Rm
⟩⟨ψ

Lm
|, (74)

with the band index m = (n, α, k⃗) designated for the O(Nn) skin modes of Eq. (54). In particular, our exact solutions
are valid for the NH Lieb lattice of arbitrary system sizes 2(N1 − 1) × 2(N2 − 1). In Fig. 5 (c), we further show its
biorthogonal polarization vector along x1 direction given by Eq. (7) of the main text. P1 jumps at |r∗L,1rR,1| = 1, the
quantization of which becomes more and more ideal when the system size increases.

Ronkin function, Amoeba hole and the relation to the GBZ

In this section, we relate the center of the Amoeba hole to the localization parameters of the GBZ through the
Ronkin function.

From Ref. [31], the minimum of the Ronkin function lies in the Amoeba hole for a reference energy E /∈ EOBC
bulk .

Apart from the example of 3D NH cubic lattice in the main text, here we can also observe the evidence in 2D,
the NH Lieb lattice shown in Fig. 6. We fix E = 0 at the energy of the corner skin mode and vary the hopping
parameters, thus changing the shape of the Amoeba and the radius (|r1|, |r2|) of the GBZ. The Amoeba is given by
µ⃗ = (log |β1|, log |β2|) from the solutions to f(β) = det[H(β)− E] = 0,

E = 0,

4∑
i=1

t+i t
−
i + t−1 t

−
2 β

−1
1 + t−3 t

−
4 β

−1
2 + t+1 t

+
2 β1 + t+3 t

+
4 β2 − E2 = 0. (75)

As expected, when the corner skin mode is separated from the bulk spectrum in Fig. 6 (b)-(c), the Ronkin function

Rf (µ) =
∫
T 2

d2q
(2π)2 log |f(e

µ+iq)| reaches its mininum in the Amoeba hole. In contrast, when the corner mode enters
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the bulk spectrum in Fig. 6 (a), the Amoeba body contains no hole and the Ronkin minimum shrinks to a single
point. Moreover, we observe that the center of the Amoeba hole is consistently given by the localization factors of the
GBZ: Γ = µc = (log |r1|, log |r2|). It is true for our NH hypbercubic lattices in any dimension d with open boundaries
in any dc ≤ d directions. Without loss of generality, we consider the complete OBC (dc = d) as in the main text.

Let us take a gradient of the real Ronkin function along the xl direction,

∂µl
Rf (µ) =

∫
Td−1

∏
i ̸=l dqi

(2π)d−1
ωl(µ), ωl(µ) =

1

2πi

∫ π

−π

dql∂ql log |f(eµ+iq)|, (76)

where the relation i∂µl
f(eµ+iq) = ∂qlf(e

µ+iq) is applied. With the Amoeba defined on two dispersive bulk bands,

f(eµ+iq) = det[H(eµ+iq)− E]/Ed−1

=

d∑
l=1

t+2l−1t
−
2l−1 + t+2lt

−
2l + t−2l−1t

−
2le

−µl−iql + t+2l−1t
+
2le

µl+iql − E2, (77)

the generalized winding number ωl vanishes at µc = (log |r1|, . . . , log |rd|),

ωl(µ)|µ=µc
=

1

2πi

∫ π

−π

dql
∂qlf(e

µc+iq)

f(eµc+iq)

=
√
t+2l−1t

+
2l

√
t−2l−1t

−
2l

∫ π

−π

dql
2π

eiql − e−iql

[EOBC
d,± (q⃗)]2 − E2

= 0. (78)

Here, [EOBC
d,± (q⃗)]2 =

∑d
l′=1 g2l′−1,2l′(ql′) is defined for a given q⃗ in the integrand with the form of g-function in Eq. (30).

In the last step, we perform ql → −ql in the second half of the integral which cancels the first half by taking into
account spectral mirror symmetry EOBC

± (ql) = EOBC
± (−ql). We thus arrive at ∂µl

Rf (µ)|µ=µc
= 0 for any l = 1, 2, . . . d.

Considering the convexity of the Ronkin function,

min
µ
Rf (µ) = Rf (µc) =

∫
Td

ddq

(2π)d
log |f(eµc+iq)| =

∫
Td

ddq

(2π)d

∑
α=±

log |EOBC
d,α (q⃗)− E|. (79)

If EOBC
d,α (q⃗) − E ̸= 0 for any q⃗ and α, it leads to f(eµc+iq) ̸= 0, indicating there is a hole at µc inside the Amoeba.

On the contrary, if there exist q⃗ and α such that EOBC
d,α (q⃗) = E, f(eµc+iq) = 0, the Amoeba has no hole at µc. As the

shape of the hole changes continuously with E, µc becomes the center of the hole when the separation gap opens.

NH Lieb Lattice in a magnetic field

For completeness, in the last section we give an example of our solvable NH hypercubic models under hybrid
boundary conditions, the NH Lieb lattice on a cylinder geometry of codimension dc = 1 < d shown in Fig. 7 (a).
Additionally, an external magnetic field is introduced at π flux per plaquette, which enriches the phase diagram in
Fig. 8 (a). We derive the exact spectrum for the bulk and four chiral edge skin modes. Their complex gap closings
are studied with the biorthogonal polarization and the Amoeba formulation both generalized for systems with hybrid
boundaries, falling into the general framework of Eq. (52) and Eq. (53).

Exact spectrum on a cylinder at π flux

As illustrated in Fig. 7 (a), the external magnetic field imposes a π flux on a square plaquette of the NH Lieb lattice.
One can fix the gauge by assigning (+/−) signs alternatively on the t±4 bonds. Yet, this gauge choice explicitly breaks
spectral mirror symmetry along x2 direction under the complete OBC, rendering the case no longer solvable. To
retrieve the solvability and get access to the chiral edge modes, we can put the lattice on a cylinder with PBC in
x2 direction and OBC in x1 direction, such that spectral mirror symmetry is still present along the open boundary
direction: E(k1, k2) = E(−k1, k2). Each unit cell is now enlarged to include six sites at π flux, which guided by
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FIG. 7. (a) Cylinder geometry for the NH Lieb lattice of size (4N1−1)×(2N2−1) at π flux which can be mapped to a generalized
NH SSH model along the open x1 direction respecting spectral mirror symmetry. The four boundary modes arising from the
NH SSH chain form two chiral edge pairs; (b) Comparison of complex eigenvalues between the numerical (dark dots) and
analytical (light dots) results for a finite-size cylinder with N1 = 3 at given momenta k2 = π/10 (purple) and k2 = π (orange).
Different values are taken for the whole set of parameters: {t1, t2, t3, t4} = {0.8, 1, 0.9, 1.2}, {γ1, γ2, γ3, γ4} = {

√
3, 0.1,

√
2, 0.2}.

spectral mirror symmetry we group into two motifs A ∪ B2, where the motif A = {A1, B1, B
′
1, A2, , B

′
2} holds five

internal degrees of freedom.

By analogy to Eq. (41), we can map the model on the cylinder to a generalized NH SSH chain in Fig. 7 (a). After
diagonalizing the Hamiltonian inside the A motif, all internal degrees of freedom become independent from each
other with the only remaining couplings from the external B2 motif. Let us first perform a Fourier transform along
the PBC direction, cj,λ(j

′) = 1√
N2

∑
k2
eik2·j′cj,λ(k2) where k2 = 2πñ

N2
, ñ = 0, 1, . . . , N2 − 1. j⃗ = (j, j′) denotes the

unit cell index with j = 1, . . . , N1, j
′ = 1, . . . , N2 and λ ∈ A ∪ B2 represents different motifs. Since the part of the

Hamiltonian Hj,A that involves exclusively the A motif keeps the same form for any j, we can ignore the j index
for the moment. In the basis φ

A
(k2) = (cA1(k2), cB1(k2), cB′

1
(k2), cA2(k2), cB′

2
(k2))

T , its Bloch Hamiltonian reads:

HA =
∑

k2
φ†
A
(k2)HA(k2)φA

(k2),

HA(k2) =


0 t+1 t+3 − t−4 e

−ik2 0 0
t−1 0 0 t+2 0

t−3 − t+4 e
ik2 0 0 0 0

0 t−2 0 0 t+3 + t−4 e
−ik2

0 0 0 t−3 + t+4 e
ik2 0

 . (80)

The sign change in front of t±4 reproduces the π flux. A direct diagonalization leads to

HA(k2) =

4∑
i=0

ϵi(k2)|φR,i(k2)⟩⟨φL,i(k2)|, ϵ0 = 0, ϵi(k2) = ±
√
h1 ±

√
h2(k2), (81)

with

h1 = t+1 t
−
1 + t+2 t

−
2 + 2(t+3 t

−
3 + t+4 t

−
4 ), h2(k2) = [t+1 t

−
1 − t+2 t

−
2 − 2(t+3 t

+
4 e

ik2 + t−3 t
−
4 e

−ik2)]2 + 4t+1 t
−
1 t

+
2 t

−
2 . (82)

Here, we assign the subscript i = 1, 2, 3, 4 to denote four dispersive ϵ(k2) bands: (+,+), (−,+), (+,−), (−,−), respec-
tively. In particular, the zero-energy mode has no occupancy on A1 and A2 sites, thus decoupled from the B2 motif
as shown in Fig. 7 (a):

|φR,0,bulk(k2)⟩ ∼ (0, t+3 − t−4 e
−ik2 , −t+1 , 0, −t

−
2 (t

+
3 − t−4 e

−ik2)/(t+3 + t−4 e
−ik2))T ,

⟨φL,0,bulk(k2)| ∼ (0, t−3 − t+4 e
ik2 , −t−1 , 0, −t

+
2 (t

−
3 − t+4 e

ik2)/(t−3 + t+4 e
ik2)). (83)

ϵ0 corresponds to one zero-energy bulk flat band in the normal BZ along the PBC direction, and its left and right
eigenmodes are non-localized modes that reside on B1, B

′
1 and B2 motifs only, thus immune from the NHSE in the
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OBC direction. Next, from four dispersive eigenmodes of HA(k2) we build the new Ã motif:

c†
Ãi
(k2)|0⟩ = |φR,i(k2)⟩ ∼ (ϵi, t

−
1 si, t

−
3 − t+4 e

ik2 , − t
−
1

t+2
(1− si)ϵi, −

t−1
t+2

(1− si)(t
−
3 + t+4 e

ik2))T ,

⟨0|cÃi
(k2) = ⟨φL,i(k2)| ∼ (ϵi, t

+
1 si, t

+
3 − t−4 e

−ik2 , − t
+
1

t−2
(1− si)ϵi, −

t+1
t−2

(1− si)(t
+
3 + t−4 e

−ik2)), (84)

where

si(k2) =
1

t+1 t
−
1

[ϵ2i − (t+3 − t−4 e
−ik2)(t−3 − t+4 e

ik2)]. (85)

The couplings from the Ãi motif to B2 in Fig. 7 (a) can be read from the change of basis associated with A1 and A2

sites originally coupled to B2:

c†A1
(k2) =

4∑
i=1

φ∗
L,i(1)c

†
Ãi
(k2), cA1

(k2) =

4∑
i=1

φR,i(1)cÃi
(k2),

c†A2
(k2) =

4∑
i=1

φ∗
L,i(4)c

†
Ãi
(k2), cA2

(k2) =

4∑
i=1

φR,i(4)cÃi
(k2). (86)

As a result, after restoring the j index, one maps the original Hamiltonian on the cylinder to a generalized NH SSH
chain along the OBC direction for each k2: H =

∑
k2

H(k2),

H(k2) =

N1∑
j=1

4∑
i=1

ϵi(k2)c
†
j,Ãi

(k2)cj,Ãi
(k2) + t+1,ic

†
j,Ãi

(k2)cj,B2(k2) + t−1,ic
†
j,B2

(k2)cj,Ãi
(k2)

+ t+2,ic
†
j,B2

(k2)cj+1,Ãi
(k2) + t−2,ic

†
j+1,Ãi

(k2)cj,B2
(k2), (87)

where

t+1,i = t+1 φ
∗
L,i(4), t−1,i = t−1 φR,i(4), t+2,i = t+2 φR,i(1), t−2,i = t−2 φ

∗
L,i(1). (88)

We can now apply the generic results for the O(Nn) skin modes under hybrid boundary conditions in Eq. (48) and
Eq. (51) to the cylinder geometry (dc = 1). Given k2, there are four chiral edge skin modes of codimension D = 0
with a dispersive OBC spectrum equal to the effective mass term in Eq. (81):

Eedge,i(k2) = ϵi(k2), |ψedge
R/L,i(k2)⟩ = NR/L,i(k2)

N1∑
j=1

rjR/L,i(k2)c
†
j,Ãi

(k2)|0⟩. (89)

In contrast to Eq. (43), the case without a magnetic field, the localization factors now vary with k2 under the influence
of π flux:

rR,i(k2) = −
t−1,i

t+2,i
=

(
t−1
t+2

)2

[1− si(k2)], r∗L,i(k2) = −
t+1,i

t−2,i
=

(
t+1
t−2

)2

[1− si(k2)]. (90)

The normalization factors are given by N ∗
L,i(k2)NR,i(k2) = [r∗L,i(k2)rR,i(k2)]

−1[r∗L,i(k2)rR,i(k2) −
1]/{[r∗L,i(k2)rR,i(k2)]

N1 − 1}. The total number of each edge skin mode is proportional to O(N2), equal to
the degrees of freedom in k2 and in consistency with n = d− dc +D = 1. It is noted that the four chiral edge modes
form two pairs, each pair with the same localization length but opposite energies,

i = 1, 2 or (+,+), (−,+) : rR/L,1(k2) = rR/L,2(k2), ϵ1(k2) = −ϵ2(k2);
i = 3, 4 or (+,−), (−,−) : rR/L,3(k2) = rR/L,4(k2), ϵ3(k2) = −ϵ4(k2). (91)

The two chiral edge pairs (CEPs) also hint a unique localization factor for the bulk skin modes:

r =

√
rR,i(k2)

r∗L,i(k2)
=
t−1 t

−
2

t+1 t
+
2

= r21, (92)
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where r1 is hosted by the NH Lieb model under two OBCs at 0 flux. Intuitively, π flux makes the unit cell twice in
size, thus increasing the localization factor in the exponential: log |r| = 2 log |r1|. The existence of a single localization
factor r along the OBC direction together with spectral mirror symmetry lead to an exact GBZ, manifested in the
method of gauge transforms in Eq. (44) (see also related discussion below it). Then, the bulk spectrum can be obtained
conveniently through an imaginary momentum shift in the Bloch Hamiltonian in the original basis as Eq. (46). Let
us perform a second Fourier transform along x1 direction, cj,λ(k2) =

1√
N1

∑
k1
eik1·jcλ(k1, k2). In the original basis

ψ(k⃗) = (cA1
(k⃗), cB1

(k⃗), cB′
1
(k⃗), cA2

(k⃗), cB′
2
(k⃗), cB2

(k⃗))T , , the Bloch Hamiltonian shares the form

H(k1, k2) =


0 t+1 t+3 − t−4 e

−ik2 0 0 t−2 e
−ik1

t−1 0 0 t+2 0 0
t−3 − t+4 e

ik2 0 0 0 0
0 t−2 0 0 t+3 + t−4 e

−ik2 t+1
0 0 0 t−3 + t+4 e

ik2 0 0
t+2 e

ik1 0 0 t−1 0 0

 , (93)

which gives rise to the exact OBC bulk spectrum in the GBZ:

EOBC
bulk,(α,α′)(k⃗) = EPBC

bulk,(α,α′)(k1 − i ln r, k2)

= α

[
4∑

l=1

t+l t
−
l + α′

√
4t+1 t

−
1 t

+
2 t

−
2 cos2(k1/2) + (t+3 t

+
4 e

ik2 + t−3 t
−
4 e

−ik2)2

]1/2

;

EOBC
bulk,0(k⃗) = 0, (94)

where k1 = πm̃
N1

(m̃ = 1, . . . , N1 − 1) and α, α′ = ±. π flux doubles the number of dispersive bands and by the 1/2
factor, establishes the magnetic BZ: k1/2 ∈ (0, π/2). Apart from the non-localized zero-energy flat band in normal BZ
of k2 along PBC direction, there emerges a second zero-energy flat band in the GBZ which generates bulk skin modes
that are exponentially localized on the B2 motif with the localization factor r, vanish completely on the A1 and A2

motifs and delocalized on all other three motifs. Whereas, the bulk skin modes belonging to the four dispersive bands
cover all six motifs in spite of sharing the same localization factor.

To sum up, Eq. (81), Eq. (89) and Eq. (94) give the complete spectrum of the NH Lieb lattice at π flux on a cylinder
geometry, which includes zero-energy bulk non-localized modes, four chiral edge skin modes at each k2 and bulk skin
modes. Shown in Fig. 7 (b), our analytical solutions of the eigen energies are consistent with numerical results for
different k2 values.

Generalized biorthogonal polarization and Amoeba formulation for chiral edge pairs

With the addition of the effective mass terms in Eq. (86), the chiral symmetry is broken. The GBZ winding number
is no longer a good invariant for predicting the gap closings at π flux. Yet, one can apply the generalized biorthogonal
polarization for hybrid boundary conditions in Eq. (52). Based on four chiral edge skin modes constructed in Eq. (89),
we define

P (k2) =M − lim
N1→∞

1

N1

M∑
i=1

|⟨ψedge
L,i (k2)|

N1∑
j=1

j ·Πj(k2)|ψedge
R,i (k2)⟩|, M = 4. (95)

Here, Πj(k2) =
∑

λ∈Ã |j, λ, k2⟩⟨j, λ, k2| with |j, λ, k2⟩ = c†j,λ(k2)|0⟩. Due to π flux, the polarization varies with k2 in
contrast to being independent of k∥ at 0 flux in Eq. (52). Meanwhile, as shown in Fig. 8 (b), the quantization of P (k2)
is still well-defined for different system sizes. By further varying one of the hopping parameters, Fig. 8 (a) depicts the
pattern of polarization over the (t1, k2)-space, the boundaries of which are captured by |r∗L,l(k2)rR,l(k2)| = 1. Taking
into account the four edge skin modes form two CEPs, each sharing the same localization length, P (k2) jumps by 2
or 4 every time it crosses the phase boundary. To restore bulk-boundary correspondence for NH bulk and edge skin
modes, we introduce the complex energy gap at each k2, analogous to the surface energy gap under complete OBC:

|∆E(k2)| = min
∀k1

{|Ebulk(k1, k2)− Eedge(k2)|}. (96)
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FIG. 8. Generalized biorthogonal polarization in the NH Lieb lattice at π flux with a cylinder geometry. The existence of two
pairs of chiral edge skin modes with opposite energies but same localization length leads to P ∈ {0, 2, 4}. We keep t1 = t3 and
choose t2,4 = 1, γ1,3 = 0.2 and γ2,4 = 0. In (a), the orange arrow denotes a parameter path with fixed t1 = 0.8 and varying k2,
along which the quantization of polarization with varying system size N1 is shown in (b). P jumps at |r∗L,1(k2)rR,1(k2)| = 1
(red dashed lines) and |r∗L,3(k2)rR,3(k2)| = 1 (green dashed lines).

Fig. 9 (a) shows the complex energy gap closings at the transition lines |rR,i(k2)r
∗
L,i(k2)| = 1 where the polarization

of the chiral edge skin modes jumps.
One can also extend the Amoeba formulation to the cylinder of codimension dc = 1 < d, following the general

approach in Eq. (53). As a function of k2, the generalized Amoeba is reduced to 1D, capable of predicting complex
energy gap closings of chiral edge skin modes. We define Af (k2) = {µ(k2) = log |β(k2)| : f(β, k2) = 0} where
f(β, k2) = det[H(β, k2) − E]/E2 and H(β, k2) is given by the Bloch Hamiltonian in Eq. (93) with the replacement
eik1/2 → β, in consistency with the magnetic BZ: k1/2 ∈ (0, π/2). Two zero-energy bulk flat bands are excluded by
the denominator. The Amoeba is solvable in 1D. From f(β, k2) = 0, one obtains β±(k2) = (−b±

√
b2 − 4ac)/(2a) with

a = (t+1 t
+
2 )

2, b = −[(E2 −
∑4

l=1 t
+
l t

−
l )

2 − 2t+1 t
−
1 t

+
2 t

−
2 − (t+3 t

+
4 e

ik2 + t−3 t
−
4 e

−ik2)2] and c = (t−1 t
−
2 )

2. The two solutions
become degenerate at b2 − 4ac = 0, indicating an absence of a Amoeba hole. Choosing the reference energy E at the
eigenenergy of one of the four chiral edge skin modes, it can be checked that

E = ϵi(k2) : β+(k2) = β−(k2) = − t
−
1 t

−
2

t+1 t
+
2

= −r, at |r∗L,i(k2)rR,i(k2)|k2=k2,c
= 1. (97)

As expected, the Amoeba hole closes when the corresponding chiral edge skin mode enters the bulk [compare Fig. 9 (a)-

FIG. 9. Spectrum properties of NH Lieb lattice on a cylinder at π flux. (a) Complex energy gap closings between chiral edge
pairs and bulk skin modes. CEP1 and CEP2 correspond to the edge modes at i = 1, 3 or equivalently (+,+) and (+,−);
(b)-(c) Real and imaginary energy spectra at ReE > 0 of bulk skin modes [(+,+) mode in blue and (+,−) mode in light green]
and two chiral edge skin modes (in red and dark green). We take a system size N1 = 26 (N2 = 200) along the OBC (PBC)
direction. The parameter path follows the orange arrow in Fig. 8 (a). For each edge skin mode, there are two solutions (red
and dark green dashed lines) to |r∗L,i(k2)rR,i(k2)| = 1 over k2 ∈ [0, 2π), accompanied by a jump of 2 in generalized biorthogonal
polarization. Across these transition lines, the complex energy gap closes and the chiral edge mode enters the bulk.
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FIG. 10. Generalized Amoeba on a cylinder as a function of k2 in the NH Lieb lattice at π flux. In (a), the reference energies
are chosen at the eigen energies of two CEPs, the codimension of which becomes zero at given k2. Along the same parameter
path as the orange arrow in Fig. 8 (a), their Amoeba hole closes where the polarization jumps, both predicting a complex gap
closing with the bulk. In (b) and (c), we take the reference energy from the spectrum of the chiral edge mode (+,+) belonging
to CEP1. At Γ points (gray), given by Γ = (k2,c, µc), µc = log(|r|) and |r∗L1

(k2,c)rR1(k2,c)| = 1, the Amoeba hole disappears
and the Ronkin function descends to a single mininum. The integral grid for the Ronkin function takes a size M1 = 100. We
choose N2 = 200 unit cells in the PBC direction of the cylinder.

(b) with Fig. 10 (a)]. The transition is accompanied by a jump of polarization, demonstrating the consistency of the
two approaches for predicting gap closings of boundary modes of codimension zero. Moreover, the center of the
Amoeba hole is located at µc = log |r| linked to the imaginary momentum shift in the GBZ. Fig. 10 (c) also shows
the Ronkin function descends quickly from a line of minima to a single minimum at (k2,c, µc) where the Amoeba hole
disappears.

To conclude, from the simplest example on a cylinder, the biorthogonal polarization and the Amoeba formulation
we generalize to hybrid boundary conditions prove to be robust analytical tools to study the interplay between the
bulk and higher-order boundary skin modes. The introduction of π flux with the magnetic field enriches the phase
diagram and creates more diverse types of chiral edge skin modes, as well as more intricate structure in the NH bulk
flat band, which leaves possibilities for future exploration.
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