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Hyperuniform point patterns can be classified by the hyperuniformity scaling exponent α > 0, that
characterizes the power-law scaling behavior of the structure factor S(k) as a function of wavenumber
k ≡ |k| in the vicinity of the origin, e.g., S(k) ∼ |k|α in cases where S(k) varies continuously with
k as k → 0. In this paper, we show that the spreadability is an effective method for determining α
for quasiperiodic systems where S(k) is discontinuous and consists of a dense set of Bragg peaks. It
has been shown in [Torquato, Phys. Rev. E 104, 054102 (2021)] that, for media with finite α, the
long-time behavior of the excess spreadability S(∞) − S(t) can be fit to a power law of the form

∼ t−(d−α)/2, where d is the space dimension, to accurately extract α for the continuous case. We first
transform quasiperiodic and limit-periodic point patterns into two-phase media by mapping them
onto packings of identical nonoverlapping disks, where space interior to the disks represents one
phase and the space in exterior to them represents the second phase. We then compute the spectral
density χ̃

V
(k) of the packings, and finally compute and fit the long-time behavior of their excess

spreadabilities. Specifically, we show that the excess spreadability can be used to accurately extract
α for the 1D limit-periodic period doubling chain (α = 1) and the 1D quasicrystalline Fibonacci
chain (α = 3) to within 0.02% of the analytically known exact results. Moreover, we obtain a value
of α = 5.97± 0.06 for the 2D Penrose tiling, which had not been computed previously, and present
plausible theoretical arguments strongly suggesting that α is exactly equal to 6. We also show that,
due to the self-similarity of the structures examined here, one can truncate the small-k region of
the scattering information used to compute the spreadability and obtain an accurate value of α,
with a small deviation from the untruncated case that decreases as the system size increases. This
strongly suggests that one can obtain a good estimate of α for an infinite self-similar quasicrystal
from a modestly-sized finite sample. The methods described here offer a simple way to characterize
the large-scale translational order present in quasicrystalline and limit-periodic media in any space
dimension that are self-similar. Moreover, the scattering information extracted from these two-phase
media encoded in χ̃

V
(k), can be used to estimate their physical properties, such as their effective

dynamic dielectric constants, effective dynamic elastic constants, and fluid permeabilities.

I. INTRODUCTION

Hyperuniformity generalizes the traditional concept
of long-range order and allows for the classification of
all perfect crystals, perfect quasicrystals, and special
disordered systems with strongly correlated, suppressed
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long wavelength density fluctuations [1–3]. Hyperuni-
formity is am emerging interdisciplinary field, impinging
on a wide range of physical phenomena relevant to pho-
tonic and phononic band-gap materials [4–8], antenna
and laser design [9], thermal properties of stealthy sys-
tems [10, 11], transport properties and critical currents
in superconductors [12], diffusion processes in two-phase
media [13–15], and pure mathematics [16–19]. Past in-
vestigations of the novel properties of hyperuniform two-
phase media [20] are particularly relevant to this work.

Hyperuniform point configurations (patterns) in d-
dimensional Euclidean space R

d, possess structure fac-
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tors S(k) with the property

lim
|k|→0

S(k) = 0. (1)

When the structure factor has a power-law scaling in the
vicinity of the origin, i.e. S(k) ∼ |k|α, hyperuniform
systems are divided into three distinct hyperuniformity
classes using the scaling exponent α. Class I (α > 1) is
the “strongest” form of hyperuniformity, containing all
perfect crystals [1], some quasicrystals [3, 21, 22], stealthy
and other hyperuniform disordered ground states [23, 24],
perturbed lattices and other systems [25, 26]. Class II
(α = 1) contains some quasicrystals [21], classical dis-
ordered ground states [23, 27], zeros of the Riemann
zeta function [28, 29], and a few other systems (see Refs.
28, 30 and 31 for more examples). Class III (0 < α < 1)
is the “weakest” form of hyperuniformity which contains
classical disordered ground states [32], random organiza-
tion models [33, 34], perfect glasses [27], and perturbed
lattices [35].

The concept of hyperuniformity can also be extended
to two-phase heterogeneous media, which are hyperuni-
form when [3, 36, 37]

lim
|k|→0

χ̃
V
(k) = 0, (2)

where the spectral density χ̃
V
(k) is the two-phase

medium analog to S(k). When the spectral density scales
as a power-law near the origin, i.e. χ̃

V
(k) ∼ |k|α, one can

analogously divide hyperuniform two-phase media into
three distinct classes based on α [3, 37].

Quasicrystals are a state of matter that possesses
long-range orientational order, but exhibits quasiperiodic
rather than periodic translational order [38]. Character-
izing the hyperuniformity of a quasicrystal based on the
behavior of S(k) at small k is problematic because it is
discontinuous, consisting of a dense set of Bragg peaks
separated by gaps of arbitrarily small size [39]. In Ref.
21, Oğuz et al. demonstrated that a better approach for
extracting α is to use the integrated intensity function
given by

Z(k) = sd

∫ k

0

S(q)qd−1dq, (3)

where sd = dπd/2/Γ(1+ d/2) is the surface area of the d-
dimensional unit sphere and S(q) is the angular-averaged
structure factor. Specifically, for 1D quasicrystals, Z(k)
is bounded by functions of the form c−kα+1 ≤ Z(k) ≤
c+k

α+1, where c−/+ are constants. While the constants
c−/+ can be found exactly for the quasiperiodic point
patterns used in Ref. 21, it is not currently known what
these constants are for more general classes of quasiperi-
odic point patterns. Without these constants, it is dif-
ficult to extract α from Z(k) via direct fitting because
it is oscillatory as a function of log(k) [21]. Therefore,
we propose using the diffusion spreadability, which has

been shown to accurately extract α from a plethora of
different two-phase media [13–15, 40, 41].

The recently introduced spreadability concept, de-
veloped by Torquato [13], serves as a link between time-
dependent diffusive processes and the microstructure of
heterogeneous media across different length scales [13–
15, 40]. Consider the mass transfer problem in a two-
phase medium as a function of time. Assume that ini-
tially solute is distributed uniformly only in phase 2
which occupies a volume fraction φ2 and absent from
phase 1 which occupies a volume fraction φ1. Assume
also that both phases have the same diffusion coefficient
D at all times. The time-dependent fraction of total so-
lute that is present in phase 1 is termed the spreadability

S(t), as it is a measure of the spreadability of informa-
tion from phase 2 to phase 1. Torquato expanded the
original work done in R

3 by Prager [42] and showed that
in any dimension d, the spreadability is related to the mi-
crostructure in direct space through the autocovariance
function χ

V
(r) (defined in Sec. II C) or in Fourier space

via the spectral density χ̃
V
(k) [13]:

S(∞)− S(t) = 1

(4πDt)d/2φ2

∫

Rd

χ
V
(r)e−r2/4Dtdr

=
1

(2π)dφ2

∫

Rd

χ̃
V
(k)e−k2Dtdk.

(4)

Here S(∞) = φ1, and S(∞) − S(t) is called the excess

spreadability.
Torquato demonstrated that the small-,

intermediate-, and long-time behaviors of S(t) are
directly determined by the small-, intermediate-, and
large-scale structural features of the material [13]. Specif-
ically, in instances where the spectral density behaves
as a power law near the origin, lim|k|→0 χ̃V

(k) ∼ |k|α,
the long time excess spreadability scales as ∼ t−(d+α)/2.
Hence, the spreadability serves as a dynamical tool
to probe and categorize all translationally invariant
two-phase media using their long-time scaling, including
periodic media [13].

The spreadability has been used to classify systems
of any hyperuniformity class, including ordered and dis-
ordered stealthy systems (α = ∞), nonhyperuniform sys-
tems (α = 0), and antihyperuniform systems (−d < α <
0) [13–15, 40, 41]. Moreover, the spreadability can be
measured experimentally and used to quantify the hype-
runiformity of a two-phase medium when accurate scat-
tering data near |k| = 0 is not available [15]. Lastly,
note that the spreadability involves a Gaussian smooth-
ing of either the autocovariance or spectral density [see
Eq. (4)], which is particularly useful for characterizing
systems in which S(k) is discontinuous and consists of a
dense set of Bragg peaks in the vicinity of the origin.

The ability of the spreadability to probe systems of
different hyperuniformity classes, and perform a smooth-
ing of the spectral density motivates us to extract α from
quasiperiodic point configurations in the special case of
two-phase media in which the points are decorated with
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(a)

(b)

FIG. 1: An illustration of the mapping of vertices of quasicrystalline point configurations (black circles at left) to two-phase
media (at right), where the white background is phase 1 and the pink (gray) disks are phase 2. The points for the (a)
Fibonacci chain are the endpoints of the long and short segments that compose the chain and the points for the (b) portion of
a Penrose tiling and the vertices of the acute and obtuse rhombi that compose the tiling.

identical nonoverlapping d-dimensional spheres, i.e., to
create corresponding sphere packings, where the space in-
terior to the spheres represents one phase and the space

exterior to them represents the second phase. This par-
ticular decoration scheme endows the resulting two-phase
medium with the same α as the underlying point pat-
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tern (details in Sec. II C). Specifically, we produce such
decorations of periodic approximants of one- and two-
dimensional quasiperiodic patterns (cf. Fig. 1) and use
the excess spreadability to accurately extract their hype-
runiformity exponents α. We first benchmark the spread-
ability using media with discontinuous χ̃

V
(k) for which

α is known theoretically, namely, those derived from the
period-doubling and Fibonacci chains (α = 1 and 3, re-
spectively). Then, we use the spreadability to measure
the value of α of a two-dimensional Penrose quasicrystal
point pattern, whose points are the vertices of a Penrose
tiling composed of acute and obtuse rhombi (see Sec. III).

Extracting α from the excess spreadabilities of me-
dia with quasiperiodic order requires a more nuanced
fitting scheme than the one presented in Ref. 14; see
Sec. III. We find that the ensemble-averaged values of α,
extracted from a collection of periodic approximants of
infinite quasicrsytals, increase monotonically as the sys-
tem size increases, and subsequently employ a finite-size
scaling analysis to predict the value of α in the thermo-
dynamic limit. We confirm that this scheme is able to
accurately extract the hyperuniformity exponent α from
the 1D two-phase media derived from the Fibonacci and
period-doubling chains with less than 0.02% error when
compared to known analytic results. We then use this
scheme on excess spreadability the 2D Penrose tiling-
derived medium. The value of α has not been computed
previously for a Penrose tiling; here we report a value of
α = 5.97± 0.06 (see Sec. VII).

Moreover, by leveraging the self-similarity of the
structures considered herein, we demonstrate that one
can truncate the small-k region of the spectral density
and still extract an accurate value of α, with a small de-
viation from that of the untruncated spectral density that
decreases as the system size increases. Because one can
obtain an accurate α by only considering length scales
that are a small fraction of the overall system size, this
strongly suggests that one can obtain a good estimate of
α for an infinite quasicrystal or limit-periodic system by
examining a finite quasicrystal or limit-periodic system
that is significantly smaller than the largest ones exam-
ined in this work, so long as the structure is self-similar.
This is of practical and computational importance be-
cause it means one need not examine large quasicrys-
talline samples, or generate large quasiperiodic point pat-
terns, which are computationally expensive to produce.

This paper is organized as follows: Section II pro-
vides mathematical definitions and preliminaries for hy-
peruniformity and spreadability. Section III, discusses
the one- and two-dimensional models used in the study,
their construction, and the procedures used to extract
α from the excess spreadability. Some exact spreadabil-
ity results are recounted in Sec. IV. The values of α
extracted from the excess spreadability are reported for
the period-doubling chain, Fibonacci chain, and Penrose
tiling in Secs. V, VI, and VII, respectively. Section VIII
provides conclusions and directions for further work.

II. DEFINITIONS AND PRELIMINARIES

A. Structure factor and number variance in

hyperuniform point patterns

A system of point particles in R
d can be com-

pletely characterized by a set of probability functions
ρn(r1, r2, . . . , rn) that are proportional to the probabil-
ity of finding n particles in positions r1, r2, . . . , rn. For
statistically homogeneous systems, the pair correlation
function g2(r12) is defined as g2(r12) = ρ2(r12)/ρ

2, where
r12 = r2− r1, and ρ = ρ1(r1) is the number density. The
ensemble-averaged structure factor S(k) can be defined
as:

S(k) = 1 + ρh̃(k), (5)

where h̃(k) is the Fourier transform of the total correla-
tion function h(r12) = g2(r12) − 1. For a single periodic
configuration of points, S(k) is [36]:

S(k) =
|∑N

j=1 e
−ik·rj |2

N
, k 6= 0. (6)

The integrated intensity function Z(k) given in Eq. (3)
is an integral over the structure factor, and so tends to
smooth over the dense distributions of Bragg peaks and
other discontinuities that S(k) may include [21].

A hyperuniform point pattern is one in which the
number variance σ2

N (R) ≡ 〈N(R)2〉 − 〈N(R)〉2 of parti-
cles in a spherical observation window of radius R grows
more slowly than the the window volume in the large-R
limit (i.e., more slowly than Rd). For a general trans-
lationally invariant point configuration in R

d, the lo-
cal number variance can be expressed exactly in Fourier
space using the structure factor [1]:

σ2
N (R) = 〈N(R)〉

[

1

(2π)d

∫

Rd

S(k)α̃2(k;R)dk

]

. (7)

The number variance can also be written in terms of the
integrated intensity function [21]:

σ2
N (R) = −ρv1(R)

[

1

(2π)d

∫ ∞

0

Z(k)
∂α̃2(k;R)

∂k
dk

]

. (8)

Here, α̃2(k;R) is the Fourier transform of

α2(r;R) =
vint2 (r;R)

v1(R)
, (9)

which is called the scaled intersection volume function,
where

vint2 (r;R) =

∫

R

w(r + x0;R)w(x0;R)dx0 (10)

is the intersection volume of two windows with identical
orientations whose centers are separated by a displace-
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ment vector r. In the case of spherical windows, the
function v1(R) is given as the volume of a d-dimensional
spherical window of radius R:

v1(R) =
πd/2

Γ(1 + d/2)
Rd. (11)

It is possible to write the Fourier transform of α2(r;R)
as

α̃2(k,R) = 2dπd/2Γ(1 + d/2)
[Jd/2(kR)]2

kd
, (12)

where Jd/2(kR) is the Bessel function of the first kind.
From equations (7) and (8), it follows [1, 32] that when
the structure factor goes to 0 continuously at the origin,
i.e., S(k) ∼ |k|α, hyperuniform systems are divided into
three distinct hyperuniformity classes, and the number
variance asymptotically scales as:

σ2
N (R) ∼











Rd−1, α > 1 (Class I)

Rd−1 ln(R), α = 1 (Class II)

Rd−α, (0 < α < 1), (Class III).

B. Hyperuniformity in two-phase media

A two-phase medium is a partition of space into two
disjoint regions called phases [2]. Let phase one occupy
a volume fraction φ1 and phase two occupy a volume
fraction φ2 = 1 − φ1. Here, phase 2 is the packing of
identical, nonoverlapping disks (or rods), so φ2 is also
called the packing fraction. The two-phase medium can
be fully statistically characterized by the n-point corre-
lation functions

S(i)
n (x1, . . . ,xn) ≡ 〈I(i)(x1) . . . I(i)(xn)〉 , (13)

where I(i)(x) is the indicator function of phase i = 1, 2,
and the angular brackets indicate an ensemble average.

The function S
(i)
n (x1, . . . ,xn) gives the probability of

finding the vectors x1, . . . ,xn all in phase i. The au-
tocovariance function χ

V
(r) is related to the two-point

correlation function S
(i)
2 (r) by

χ
V
(r) ≡ S

(1)
2 (r)− φ2

1 = S
(2)
2 (r)− φ2

2 (14)

assuming statistical homogeneity. A useful length scale
associated with two-phase media is the specific surface
s, which is the expected interfacial area between the two
phases per unit volume. For sphere packings, s is given
by d · φ2/a, where a is the sphere radius [43].

Following Ref. 37, for statistically homogeneous and
isotropic two-phase media, the autocovariance function
χ

V
(r), which depends only on r ≡ |r|, has the asymptotic

form [2],

χ
V
(r) = φ1φ2 − β(d)sr +O(r2), (15)

in the vicinity of the origin, where

β(d) =
Γ(d/2)

2
√
πΓ((d+ 1)/2)

. (16)

As a consequence, the large-k decay of the correspond-
ing spectral density is controlled by the exact following
power-law form:

χ̃
V
(k) ∼ γ(d)s

kd+1
, k → ∞, (17)

where

γ(d) = 2dπ(d−1)/2Γ((d+ 1)/2). (18)

The local volume-fraction variance, σ2
V (R), can be

written in terms of χ
V
(r) as [3, 44]:

σ2
V (R) =

1

v(R)

∫

Rd

χ
V
(r)α2(r;R)dr. (19)

Via Parseval’s theorem and Eq.(19), the volume-fraction
variance has the following Fourier-space representation:

σ2
V (R) =

1

v(R)(2π)d

∫

Rd

χ̃
V
(k)α̃2(k;R)dk. (20)

Following [45], a hyperuniform two-phase medium is
one with spectral density that vanishes at the origin:

lim
|k|→0

χ̃
V
(k) = 0. (21)

As with point configurations, when the spectral den-
sity behaves as a power law near the origin, i.e.,
lim|k|→0 χ̃V

(k) ≈ |k|α, the volume fraction variance of
a hyperuniform two-phase medium scales as:

σ2
V (R) ∼











R−(d+1), α > 1 (Class I)

R−(d+1) ln(R), α = 1 (Class II)

R−(d+α), (0 < α < 1), (Class III).

For packings of identical spheres, the spectral den-
sity is exactly given by the product of the structure fac-
tor, α̃2(k; a), and packing fraction [2, 37, 46], i.e.,

χ̃
V
(k) = φ2α̃2(k; a)S(k). (22)

Because α̃2(k; a) scales as a constant as |k| → 0, Eq.
(22) implies that the scaling exponent α of χ̃

V
(k) will

be the same as the structure factor S(k). This does not
generally apply to packings of polydisperse spheres, or
packings of nonspherical particles [37].

We note here that σ2
V (R) and σ2

N (R) cannot be
used to extract a precise value of α from class I sys-
tems because there is a degeneracy: the number (volume-
fraction) variance scales the same way for all class I point
patterns (media). For example, such functions are unable
to extract precise values of α for the Fibonacci (α = 3) or
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Penrose (α ≈ 6, see Sec. VII) quasicrystals. It is there-
fore necessary to directly fit the small-k behavior of S(k)
(χ̃

V
(k)), or employ a smoothing method such as Z(k) or

the spreadability (see below) to determine α for class I
point patterns or media.

C. Spreadability

Torquato [13] showed that the excess spreadability
defined via Eq. (4) can be written in terms of angular-
averaged autocovariance function χ

V
(r) as follows:

S(∞) − S(t) = dωd

(4πDt)d/2φ2

∫ ∞

0

rd−1χ
V
(r)e−r2/4Dtdr,

(23)
where ωd is the volume of a d-dimensional sphere of unit
radius. Similarly, in Fourier space, the excess spread-
ability can be written in terms of the angular-averaged
spectral density χ̃

V
(k)[13]:

S(∞) − S(t) = dωd

(2π)dφ2

∫ ∞

0

kd−1χ̃
V
(k)e−k2Dtdk.

(24)
Note that the Gaussian kernel in Eq. (24) can be re-
garded as a smoothing of χ̃

V
(k), which we expect to

effectively smooth the high-frequency variations of the
χ̃

V
(k) of the two-phase media considered in this work,

which are highly discontinuous in the vicinity of the ori-
gin.

Torquato also showed that for two-phase media
where the spectral density scales as a power law in the
vicinity of the origin, i.e.,

lim
|k|→0

χ̃
V
(k) ≈ |k|α, (25)

the long-time behavior of the excess spreadability can be
written as [13]

S(∞)− S(t) ∼ 1/t(d+α)/2. (26)

Using this last equation, it is then possible to extract α
from the long time behavior of the spreadability, and so
to probe the microstructure of the media.

III. METHODS

A. Generating point configurations and decoration

of points

Following Oğuz et al. [22], the 1D Fibonacci chain
was generated via substitution rules. Starting from a sin-
gle seed “link”, a set of substitutions is then applied iter-
atively to replace it with sets of other links. For example,
the Fibonacci chain is a particular case of the substitu-
tion rule tiling, constructed by repeated iterations of a
substitution of long L and short S links such that S → L,

and L → LS, where L is of length τ = 1+
√
5

2 and S is of
length 1 (see Table I). This kind of substitution can be

# of substitutions Chain
0 S
1 L
2 LS
3 LSL
4 LSLLS
5 LSLLSLSL

TABLE I: Construction of the Fibonacci chain out of
consecutive substitutions of the type S → L, and L → LS

characterized by a substitution matrix M given by:

M =

(

0 1
1 1

)

, (27)

which gives the number of S′s and L′s after a substi-
tution by acting on the two-dimensional column vector
(NS , NL) which represents the number of S′s and L′s of
the current iteration. A substitution rule for two link
types is characterized by the substitution matrix

M =

(

a b
c d

)

, (28)

where a, b, c, d are integers. Oğuz et al. [22] conjectured a
closed form formula for the hyperuniformity scaling ex-
ponent α given by the eigenvalues of the substitution
matrix:

α = 1− 2
ln |λ2|
ln |λ1|

, (29)

with λ1 > λ2. In this study, Fibonacci chains with be-
tween N = 2584 and N = 514229 links (particles) were
considered, which are class I hyperuniform point patterns
with α = 3. Similarly, the limit-periodic period dou-
bling chain can be produced via the substitution rules
L → LSS and S → L, where L is length 2 and S is
length one, starting from a seed link S [22]. In this study
we also consider period doubling chains with between
N = 21845 and N = 22369621 links, which are class II
hyperuniform with α = 1.

The 2D Penrose tiling periodic approximants were
created using the Generalized Dual Method, which is a
mapping from regions created by infinite intersections of
straight lines to points [47–49]. A periodic grid is an
infinite set of parallel, equally spaced, straight lines —
the spacing between lines here is 1. One can then label
each line by m ∈ Z according to its ordinal position in
the grid. Five of these grids are then stacked one atop
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the other with the ith grid oriented normal to:

r̂0 = (1, 0), r̂1 = (cos[2π/5], sin[2π/5]),

r̂2(n) = (−1, τ−1
n ) · (r̂0, r̂1),

r̂3(n) = −(τ−1
n , τ−1

n ) · (r̂0, r̂1),
r̂4(n) = (τ−1

n ,−1) · (r̂0, r̂1),

(30)

where τn = Fn+1/Fn, Fn is the nth Fibonacci num-
ber, and each grid is displaced by some phase γi from
the origin. The grids partition space into open re-
gions which can be labeled uniquely by the five integers
J ≡ (j0, j1, . . . , j4). Each point x in some open region
will lie between the lines ji and ji + 1 of the ith grid.
These open regions J are then mapped to the vertices
t of a tiling by the transformation t =

∑4
i=0 jir̂i. This

method yields a Penrose tiling if the sum of γi is an in-
teger multiple of the spacing between the parallel lines.
The number of tiles in the Penrose periodic approximants
is determined by the index n and different renditions of
the same size of tiling can be obtained by changing the
individual values of γi. Here, we use 50 renditions of
Penrose tiling periodic approximants with n ∈ [13, 17]
(N between 1149851 and 54018521).

In order to probe the hyperuniformity of the Fi-
bonacci chains, period-doubling chains, and Penrose
tilings described above using the excess spreadability, we
map the one- and two-dimensional point configurations
into packings. Packings can be viewed as two-phase me-
dia, where phase V1 is the void (pore) space between the
particles, and the particle phase V2 is the space occu-
pied by the particles [2]. To map chains (tilings) into
two-phase media, the vertices of each link (tile) are dec-
orated by identical rods (disks), of radius a centered at
the vertices, where a is chosen such that the rods (disks)
do not overlap. The packing fraction of phase 2, φ2, is
given as φ2 = ρv1(a), where v1(a) is the volume of a rod
or disk of radius a defined in Eq. (11), and ρ = N/V is
the number density, where N is the number of disks and
V is the total volume of the unit cell of the finite system.
For the 1D and 2D systems we use packing fractions φ2 =
0.35 and 0.25, respectively. Note that α does not depend
on the value of a or φ2, so long as the rods (or disks)
do not overlap. Moreover, the packing fractions can take
any value in the range 0 < φ2 ≤ φ2,max where φ2,max is
the largest packing fraction for identical rods in d = 1 or
identical disks in d = 2 subject to the nonoverlap con-
straint. In particular, φ2,max = 4 − 2τ ≈ 0.764 for the
1D Fibonacci-chain packings and

φ2,max =
π

(2τ)2





2

τ2
√
4− τ2

+





(

1− 1

τ

)

2τ
√

4− 1
τ2









=
2π

√

130 + 58
√
5
≈ 0.390

(31)

for 2D Penrose-tiling packings. One can easily obtain

the spectral density corresponding to any other pack-
ing fraction in the range above by simply multiplying
our numerically computed spectral densities by the ratio
φ2,new/φ2,i, where φ2,i is the value used in this work.

B. Calculation and extraction of α from the excess

spreadability

To compute the spreadability, we first compute the
structure factor using Eq. (6), where points of the lattice,
r, are the points at the end of each link in one dimension
or the vertices of the rhombi in the Penrose tiling in two
dimensions. The structure factor is then substituted into
Eq. (22) to compute the spectral density, which is subse-
quently substituted into Eq. (24) to compute the excess
spreadability. In the 2D Penrose case, we first perform a
binned, angular average of the structure factor to yield a
radial spectral density via Eq. (22).

As shown in Eq. (26), one can use the long-time be-
haviour of the excess spreadability to determine the value
of the exponent α. To extract α, we fit the long-time
regime of the excess spreadability on a log-log scale to

y = c0 − (d+α)
2 t over a period of time that minimizes the

error on the measurement of α. To avoid finding a local
error minimum that corresponds to a fit over a very small
time period, we choose fit end points that are at least one
decade apart in t. We expect this fitting scheme to out-
perform the previous method [14] — in which the point in
the excess spreadability where the long-time scaling sets
in is found via an iterative scheme and all subsequent
time points are fit to a set of trial functions — especially
for numerically sampled or experimental spreadabilities,
because the new scheme removes the finite-size effects
that occur at long times by construction, while the pre-
vious method requires one to do so manually. To then
determine α for the Fibonacci, period doubling, and Pen-
rose media in the thermodynamic limit, we fit the α val-
ues extracted using the above method as a function of
1/N to a function of the form α = α̂ − A

NB , where α̂,
A, and B are all free parameters, and α̂ symbolizes the
value of α in the thermodynamic limit. We find that this
method can reproduce the theoretically known results for
the Fibonacci and period doubling chains to within 0.02%
error compared to exact analytic results.

IV. EXACT EXPRESSIONS FOR

REPRESENTATIVE EXCESS SPREADABILITY

CASES

Here, we review the spreadability results from Ref.
[13] for the stealthy (α = ∞) integer lattice, nonhyper-
uniform (α = 0) Debye random media, and a disordered
hyperuniform medium (α = 2). We later compare these
results to the excess spreadabilities of the quasicrystaline
and limit-periodic two-phase media (see Sec. VI).

On long timescales, the spreadability distinguishes
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between the different systems according to their degree of
order on large length scales. Torquato [13] showed that
the spreadability of the nonhyperuniform Debye media
scales as

S(∞)−S(t) ∼ (d− 1)!dωdφ2

(4πDt/a2)d/2
− (d+ 1)!dωdφ2

(4πDt/a2)(d+2)/2
, (32)

which implies asymptotic scaling of ∼ t−1/2 (which, ac-
cording to Eq. (26), corresponds to α = 0) for d = 1. For
the one-dimensional disordered hyperuniform medium,
Torquato [13] found the scaling

S(∞) − S(t) ∼ φ1

4π1/2(Dt/a)3/2
, (33)

which suggests asymptotic scaling of the form ∼
t3/2 (α = 2). For any periodic packing, Torquato
showed that the spreadability is given exactly by [13]:

S(∞) − S(t) = φ2

∑

n=1

Z(Qn)
α̃2(Qna)

v1(a)
e−Q2

nDt. (34)

Here Z(Qn) is the expected coordination number at ra-
dial distance Qn and a is the radius of the particles.
Thus, at long times the excess spreadability of the in-
teger lattice takes the form:

S(∞)− S(t) ∼ e−Q2

1
Dt (Dt/a2 ≫ 1), (35)

where Q1 is the smallest positive Bragg wave number,
which corresponds to α → ∞.

We note that for all two-phase media considered in
this section the spectral density approaches the origin
continuously. The structure factor of the stealthy integer
lattice is identically zero for wavenumbers smaller than
the first Bragg peak (excluding forward scattering). (For
this reason, a stealthy system, strictly, speaking, is not
one in which α tends to infinity.) Hence, Eq. (22) implies
that for a packing of identical spheres whose centers are
at the lattice points, the spectral density too will be 0
before the first Bragg peak. For the disordered hyper-
uniform medium the spectral density is given by [13]

χ̃
V
(k)

φ1φ2
=

4(ka)2a

(ka)4 + 4
, (36)

implying that for k ≪ 1, the spectral density approaches
0 continuously as ∼ k2. The one-dimensional nonhype-
runiform medium possesses a spectral density which at
small wavevectors scales as [13]

χ̃
V
(k) = φ1φ2

2a

ω0

[

1− (ka)2 +O(ka)4
]

. (37)
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FIG. 2: An example excess spreadability S(∞)− S(t)
curve as a function of dimensionless time tDs2, scaled by the
diffusion coefficient D and specific surface s, on a log-log
scale for the two-phase medium derived from the
period-doubling chain with a packing fraction φ2 = 0.35 and
N = 22369621. The dashed red (gray) line shows the
error-minimizing fit with α = 0.99980.

V. HYPERUNIFORMITY OF THE PERIOD

DOUBLING CHAIN

The limit-periodic period doubling chain, which also
has scattering information consisting of a dense set of
Bragg peaks, and a known hyperuniformity scaling expo-
nent α = 1 [16], is an ideal system for benchmarking the
methods described above. Here, we compute the spec-
tral density and subsequently the excess spreadability for
the two-phase media derived from period doubling chains
generated using the substitution method (described in
Sec. III) with 13 sizes between N = 21845 and 22369621
to show, for the first time, that the excess spreadability
can be used to accurately extract α for the period dou-
bling chain. In the N → ∞ limit, the tiling is a union of
periodic systems, which is termed limit-periodic. In this
limit, the structure factor associated with the S links is
given by[16, 50]:

S(k) =
4π

3

∞
∑

m=1

δ(k− 2πm)+

4π

3

∞
∑

n=1

2−2n
∞
∑

m=1

δ

(

k − (2m− 1)π

2n−1

)

,

(38)

assuming unit lattice spacing, which shares properties
with S(k) for quasiperiodic systems, most importantly
the presence of dense Bragg peaks. In Ref. 16, Torquato
et al. showed that Eq. (38) scales linearly in the vicinity
of the origin, i.e., α = 1, and thus the period-doubling
chain is class II hyperuniform. As stated in Sec. II B,
χ̃

V
(k) will inherit α = 1 from the S(k) given in Eq. (38).

Thus, we expect our fitting scheme to extract α = 1 from
the long-time scaling of the excess spreadability.
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FIG. 3: A semi-log plot of the values of α extracted from
the excess spreadability as a function of 1/N , where N is the
number of particles in the media derived from the period
doubling chains. The solid red (gray) line shows the fit to
α = α̂− A

NB , where α̂ = 0.99984 ± 0.00001 is the value of α
in the thermodynamic limit.

Figure 2 shows the excess spreadability curve for the
largest of the period doubling chain systems considered
in this work, which clearly exhibits a large range over
which the power law scaling corresponds to a hyperuni-
formity scaling exponent α = 0.99980 ± 0.000011. The
exponentially fast drop-off at very large t is a finite-size
effect associated with lack of scattering information be-
tween k = 0 and k = kmin, where kmin = 2π/L is the
smallest admissible wavenumber, and L is the length of
the medium. Clearly, the error-minimizing fit scheme
described in Sec. III is insensitive to these finite-size
effects. Figure 3 shows the values of α extracted from
the excess spreadability curves of the 13 period doubling
chain systems as a function of 1/N . The error bars on the
individual α measurements are those extracted from the
error-minimizing fits. Fitting this data to α = α̂ − A

NB

reveals that, in the thermodynamic limit, α approaches
a value of α̂ = 0.99984± 0.00001, which is within 0.02%
of the theoretically known value of α = 1, and whose
error comes from the standard deviation of the α̂ esti-
mate. Thus, we have confirmed that the proposed fitting
method is able to accurately extract the expected value
of α from the excess spreadability.

VI. HYPERUNIFORMITY OF THE FIBONACCI

CHAIN

Having established that the proposed methodology
can accurately extract α from the spreadability of a
medium whose S(k) is discontinuous in the vicinity of
the origin, we will show that it also works for quasicrys-
talline media. We compute the spectral density and
subsequently the excess spreadability for packings de-
rived from 15 Fibonacci chains with N between 2584 and
514229 particles. Oğuz et al. [21] have analytically shown

10
0

10
5

10
10

tDs
2

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

�
(∞
)-
�
(t
)

� = 2������ Fit

FIG. 4: An example excess spreadability S(∞)− S(t)
curve as a function of dimensionless time tDs2, scaled by the
diffusion coefficient D and specific surface s, on a log-log
scale for the two-phase medium derived from the Fibonacci
chain with a packing fraction φ2 = 0.35 and N = 514229.
The dashed red (gray) line shows the error-minimizing fit
with α = 2.99976.

that S(k) for the Fibonacci chain scales with α = 3 in the
vicinity of the origin, meaning it is class I hyperuniform.

Figure 4 shows the excess spreadability curve for the
largest of the Fibonacci chain systems considered in this
work, which has a large range of times over which the
power law scaling corresponds to α = 2.99976±0.000008.
One can also observe the same exponential drop-off at
large times as the period doubling chain excess spread-
ability curve, due to the same finite size effect. Fig-
ure 5 shows the values of α extracted from the excess
spreadabilities for all of the Fibonacci chains as a func-
tion of 1/N . The error bars on the individual α mea-
surements are those extracted from the error-minimizing
fits. Fitting this data to α = α̂ − A

NB reveals that,
in the thermodynamic limit, α approaches a value of
α̂ = 2.99979±0.000008, which is within 0.01% of the the-
oretically known value of α = 3, and whose error comes
from the standard deviation of the α̂ estimate. This re-
sult confirms the ability of our α extraction method to
accurately extract α for quasiperiodic two-phase media
whose spectral functions are dense and discontinuous in
the vicinity of the origin.

We note here that the substitution tilings consid-
ered here are self-similar. This self-similarity manifests
in the small-k behavior of S(k) and χ̃

V
(k), where one

can observe patterns in the peak heights that repeat
with a regular period when k is scaled logarithmically.
In the thermodynamic limit, this pattern will repeat in-
finitely many times as k → 0. We will now show that,
due to this self-similarity, it is possible to truncate the
small-k region of the spectral density at a wavenumber
kcutoff and recover a value of α from the correspond-
ing excess spreadabilty equal to that of the untruncated
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FIG. 5: A semi-log plot of the values of α extracted from
the excess spreadability as a function of 1/N , where N is the
number of particles in the media derived from the period
doubling chains. The solid red (gray) line shows the fit to
α = α̂− A

NB , where α̂ = 2.99979 ± 0.000008 is the value of α
in the thermodynamic limit.
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FIG. 6: A log-log plot of the spectral density χ̃
V
(k) as a

function of the wavenumber k scaled by the number density
ρ of a two-phase medium derived from a Fibonacci chain
with a packing fraction φ2 = 0.35 and N = 4181. The
vertical green (gray) lines denote the wavenumbers

k = 2π/τm, where τ = 1+
√

5
2

, and m ∈ [2, 13] is an integer.
Note that the vertical green (gray) lines coincide with the
tallest peaks relative to those surrounding them.

spectral density within a small error that decreases as
N increases. Figure 6, which shows χ̃

V
(k) for a two-

phase medium derived from an N = 4181 Fibonacci
chain, demonstrates that this periodic pattern of peak
heights occurs at integer powers of 1/τ (modulo a factor
of 2π) for Fibonacci chains. For this particular chain,
when considering the entire small-k region of the spec-
tral density, fitting the corresponding excess spreadabil-
ity yields α = 2.99901± 0.00003. As an example, we find
that by considering only k > kcutoff = 2π/τ12, which

corresponds to only considering real-space length scales
that are smaller than 1/10 of the entire system size, we
can extract α = 2.99971 ± 0.000008, which differs from
the untruncated value by less than 0.2%. The difference
between the truncated and untruncated α values dimin-
ishes as the system size increases. It is important to note
that this is only possible with structures whose struc-
ture factors are self-similar at small k, in particular, one
should not expect this procedure to yield the correct α
for general disordered hyperuniform media.

Figure 7 compares the excess spreadabilities of the
Fibonacci and period-doubling chains to those of the 1D
two-phase media described in Sec. IV. Equation (26)
implies long-time scaling of t−2 and t−1 for the limit-
periodic and Fibonacci chains with α = 1 and α = 3,
respectively. In Fig. 7, one can clearly see how the dif-
ferent values of α translate to different decay behavior
in the large-time regime of the excess spreadability. The
fastest decay of the spreadability (∼ e−t) occurs for a
two-phase medium derived from the integer lattice, which
is stealthy with α = ∞. The slowest decay (∼ t−1/2) oc-
curs for the nonhyperuniform Debye random medium,
which is the most disordered system examined here at
large length scales, with α = 0. Falling between these
two, the Fibonacci decays with ∼ t−2 (α = 3), the disor-
dered hyperuniform medium with ∼ t−3/2 (α = 2), and
the period-doubling with ∼ t−1 (α = 1).

The agreement between the theoretical values of α
for the two-phase media derived from the Fibonacci and
period-doubling chains and the results obtained here us-
ing the procedure given in Sec. III suggest that it can
accurately extract α from two-phase media derived from

3/2

�
(∞
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�
(t
)

FIG. 7: Log-log plot of the excess spreadability,
S(t)− S(∞), for dimensionless time 10−2 ≤tDs2≤ 101 of
different 1D systems with φ2 = 0.35. The long-time behavior
of the spreadability is determined by the degree of
large-scale order of the systems where the fastest decay
(∼ e−t) is for the integer lattice, which is the most ordered

system, and the slowest (∼ t−1/2) is for the Debye, which is
the most disordered at large length scales. The rest of the
systems fall between the two. Debye, disordered
hyperuniform, and integer lattice taken from [13].
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FIG. 8: A log-log plot of the spectral density χ̃
V
(k) as a

function of the wavenumber k scaled by the number density
ρ of a two-phase medium derived from a Penrose tiling
periodic approximant chain with a packing fraction
φ2 = 0.25 and n = 14 (N = 3010349). The vertical green
(gray) lines denote the wavenumbers k = 2π/τm, where

τ = 1+
√

5
2

, and m ∈ [8, 10] is an integer. Note that the
vertical green (gray) lines coincide with the tallest peaks
relative to those surrounding them.

quasicrystals and limit-periodic point patterns. More-
over, Fig. 7 clearly demonstrates that the spreadability
can be used to accurately extract the value of α, for ma-
terials of any hyperuniformity class, including nonhype-
runiform materials and materials whose S(k) is discon-
tinuous in the vicinity of the origin. We note that while
Z(k) has been used in the past to characterize the hyper-
uniformity of the Fibonacci chain [21], it is difficult to do
so for arbitrary systems with dense Bragg peaks in the
vicinity of the origin because one requires the constants
derived from an analytical S(k) (described in Sec. I) to
fit Z(k) reliably.

In addition to examining the small-k behavior of the
1D Fibonacci-chain packing, like we have done above,
one can consider the large-k, i.e., small-wavelength, be-
havior of the Fibonacci-chain packing. In Appendix A,
we present the numerically computed spectral density of
a Fibonacci-chain packing for a wide range of k values,
and show that the large-k scaling behavior is controlled
by the power law scaling given in Eq. (17).

VII. HYPERUNIFORMITY OF THE PENROSE

TILING

Having established that the procedure described in
Sec. III can extract α from 1D systems whose structure
factor consists of a dense set of Bragg peaks, we now
use the excess spreadability to extract α for the 2D Pen-
rose tiling. Here, we compute the spectral densities and
subsequently the excess spreadabilties of 50 renditions
of packings derived from Penrose tiling periodic approx-
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FIG. 9: An example excess spreadability S(∞)− S(t)
curve as a function of dimensionless time tDs2, scaled by the
diffusion coefficient D and specific surface s, on a log-log
scale for the two-phase medium derived from Penrose tiling
periodic approxiamnt with a packing fraction φ2 = 0.25 and
n = 17 (N = 54018521). The dashed red (gray) line shows
the error-minimizing fit with α = 5.9729.

imants with n ∈ [13, 17], i.e., N between 1149851 and
54018521 (see Sec. III for more details).

Penrose tilings are also self-similar [51], so one would
expect there to be a repeating pattern of peaks in the
small-k region as k → 0, similar to those seen in Fig. 6.
In practice, however, we find that there is a breakdown
of this self-similarity in the spectral density at small k,
i.e., at large length scales. Figure 8 shows a transition
from clear “triplets” of peaks at integer powers of 1/τ
(modulo a factor of 2π) to a regime where there are no
well-defined peak triplets that approaches the origin more
slowly. We attribute this breakdown in the self-similarity
at large length scales to the finite size of our Penrose
tiling periodic approximants. Moreover, the length scale
associated with this breakdown in self-similarity becomes
a smaller fraction of the size of the periodic approximant
as the approximant number n increases. Given that the
value of α extracted from the excess spreadability is not
altered significantly by imposing a kcutoff in the spectral
density for the self-similar Fibonacci chains, we do so here
in order to remove this finite size effect. For the system
sizes examined here, we find that kcutoff = 2π/τn−4 is
effective in mitigating these finite size effects.

Figure 9 shows an example excess spreadability
curve for a rendition of an n = 17 Penrose tiling peri-
odic approximant. As in the 1D cases, there is a large
region over which α remains stable at a constant value,
specifically α = 5.9729 ± 0.0003, followed by an expo-
nential drop-off. Note also that imposing kcutoff has
mitigated the effect of the non-self-similar regime of the
spectral density on the excess spreadability, i.e., there
is only a single power-law scaling regime visible in Fig.
9, which corresponds to the self-similar portion of the
spectral density. Figure 10 shows the ensemble-averaged
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FIG. 10: A semi-log plot of the values of α extracted from
the excess spreadability as a function of 1/N , where N is the
number of particles in the media derived from the Penrose
tilings. The solid red (gray) line shows the fit to
α = α̂− A

NB , where α̂ = 5.97 ± 0.06 is the value of α in the
thermodynamic limit.

values of α extracted from each of the 5 ensembles of Pen-
rose tiling periodic approximants as a function of 1/N .
The error bars on the α values come from the standard
deviation of the individual α values extracted from all
renditions of a particular N , which is significantly larger
than the error on any specific measurement of α. Fit-
ting this data to α = α̂ − A

NB shows that α approaches
a value of 5.97±0.06 in the thermodynamic limit, whose
error comes from the standard deviation of the α̂ esti-
mate. The validation our numerical procedure to extract
the expected exact values of α for the 1D self-similar
packings described in Secs. V and VI as well as the
highly plausible expectation that the Penrose tiling and
other Class I tilings obtained by standard projection from
higher dimensional periodic lattices have integer values
of α, strongly supports the conjecture α → 6 in the ther-
modynamic (infinite-volume) limit.

Following what we have done for the 1D Fibonacci-
chain packings, we can additionally consider the behav-
ior of the large-k, i.e., small-wavelength behavior of the
Penrose-tiling packing. In Appendix A, we present the
numerically computed spectral density of a Penrose-tiling
packing for a wide range of k values, and show that the
large-k scaling behavior is controlled by the power law
scaling given in Eq. (17).

VIII. CONCLUSIONS AND DISCUSSION

In this work, we used the spreadability to charac-
terize the hyperuniformity and time dependent diffusion
properties of one- and two-dimensional two-phase me-
dia whose spectral densities comprise dense sets of Bragg
peaks. In particular, we produced sphere packings where
the sphere centroids were the vertices of the Fibonacci

quasicrystal and period-doubling limit-periodic chain in
one dimension and the Penrose quasicrystal in two di-
mensions. To extract α from the excess spreadabilities of
these media with a dense set of Bragg peaks as k → 0, we
formulated a new fitting scheme. Specifically, we showed
that, by leveraging the self-similarity of 1D substitution
tilings and the Penrose tiling, one can ignore a portion
of the small-k region of the spectral density and obtain a
value of α from the excess spreadability that is equal to
the α obtained from the excess spreadability computed
using the complete spectral density, with a small degree
of error. We found that our procedure accurately extracts
the theoretical values of α for the Fibonacci quasicrystal
and period-doubling limit-periodic sequences to within
0.01% and 0.02% error, respectively. We then used the
excess spreadability to measure α for the Penrose qua-
sicrystal, and found that, in the thermodynamic limit,
α = 5.97 ± 0.06. The accuracy of our numerical proce-
dure and plausible theoretical arguments noted in Sec.
VII, implies the exact result α = 6 for the Penrose-tiling
packing and hence the Penrose quasicrystal point pat-
tern. In future work, we will provide more examples and
endeavor to construct a rigorous proof of this conjecture.

The accuracy of the α values extracted from the two-
phase media considered here, whose spectral densities
are discontinuous in the vicinity of the origin, further
demonstrates the utility of the spreadability to extract
the hyperuniformity scaling exponents for an extremely
broad class of two-phase media including a larger class
of quasicrystal-derived materials. Specifically, we expect
the methods described above to be able to easily extract
a value of α for quasicrystalline and limit-periodic me-
dia in any space dimension that are self-similar, includ-
ing, e.g., the prime numbers, which are effectively limit-
periodic [16]. These structural characteristics affect a
wide variety of physical properties of quasicrystalline and
limit-periodic media including: the spreadability of dif-
fusion information [13], the nuclear magnetic resonance
and magnetic resonance imaging measurements [52–54],
rigorous upper bounds on the fluid permeability [55],
the electromagnetic wave characteristics beyond the qua-
sistatic regime [56], and photonic band gaps [6].

To date, Z(k) has been used to extract α from point
patterns whose S(k) are discontinuous with dense sup-
port for arbitrarily small k, which includes quasicrys-
talline and limit-periodic point patterns (see, e.g. Ref.
21). To extract α by fitting Z(k) for the systems in
Ref. 21, coefficients derived from analytical expressions
of S(k) of the point patterns were used to guide the
fit. However, it is not known what these coefficients are
for general quasicrystalline and limit-periodic point pat-
terns, and directly fitting Z(k) without them is prob-
lematic because Z(k) oscillates as a function of log(k)
as k → 0 for S(k) with dense Bragg peaks [21]. The
spreadability, as we have shown here, does not require
an analytical expression for S(k) or χ̃

V
(k) to accurately

extract a value of α from these same types of systems,
which makes it more broadly applicable to other media
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whose spectral density is composed of dense Bragg peaks.
Lastly we note that while Z(k) is essentially an arbitrary
choice of smoothing of the structure factor, the excess
spreadability is a physical, measurable, quantity that can
be measured experimentally even when scattering infor-
mation is not available [15].

To build on the characterization of the diffusion
properties of the two-phase quasicrystalline media pre-
sented here, future work should focus on the characteri-
zation of their other physical properties e.g., the effective
dynamic dielectric constant [56–59], dynamic effective
elastic constant [60], fluid permeability [55], and trap-
ping constant [55], all of which can be estimated from
the spectral densities. Such a mapping of quasicrystalline
point patterns to two-phase media could also allow for
the characterization of the hyperuniformity of a wider
class of 2D point patterns generated using the General-
ized Dual Method [47–49], as well as 3D quasicrystalline
point patterns. The characterization of the small- and
intermediate-length scale properties of two-phase mate-
rials derived from substitution tilings and the General-
ized Dual Method [47–49] using the excess spreadability
is also of interest.

Finally, it is instructive to remark on the fundamen-
tal and practical implications of the small-wavenumber
scaling of the spectral density for 1D Fibonacci-chain
and 2D Penrose-tiling packings, given by χ̃

V
(k) ∼ k3

and χ̃
V
(k) ∼ k6, respectively. First, we note that as one

goes from such quasiperiodic 1D to 2D packings, the hy-
peruniform systems become more “stealthy-like”, i.e., the
spectral function gets flatter as d increases (α goes from 3
to 6) [37, 61, 62], which has implications for attenuation
of waves at long wavelengths [56, 58–60], for example.
Importantly, the fact that α = 3 for 1D Fibonacci-chain
packings means that χ̃(k) is nonanalytic at the origin,
since it is an odd power, which in turn implies the decay
of the corresponding direct-space autocovariance func-
tion χ

V
(r) to zero is controlled by the inverse power-law

1/r4 [36]. Note that a spectral density that is analytic at
the origin possesses a series expansion about k = 0 that
contains only even powers of k, which implies that χ

V
(r)

decays to zero exponentially fast or faster [36]. At first
glance, our conjectured result for Penrose packings that
α = 6, an even power in k, seems to suggest that χ̃

V
(k) is

analytic at the origin, but this conclusion would be incon-
sistent with the corresponding nonanalytic behavior for

the 1D Fibonacci packings, since the latter patterns are
encoded in the former. Moreover, a leading order even
power does not ensure analyticity becuase higher order
terms may include odd powers [36, 63]. We have verified
that this situation is indeed the case by performing nu-
merical fits of the spectral density for small k and find
that there is a substantial k7 term, whose coefficent is of
order one but about an order of magnitude larger than
that of the coefficient k6. This small-k behavior means
that χ

V
(r) decays to zero like 1/r9, which is much faster

than the decay rate for 1D Fibonacci packings. We note
that 4D maximally random jammed hypersphere pack-
ings provides another example of a packing with an even-
valued α and nonanalytic spectral density [41].
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APPENDIX A: LARGE-k AND SMALL-k
SCALING OF THE SPECTRAL DENSITIES OF

QUASICRYSTALLINE PACKINGS

Here we present our numerically determined spectral
densities for the 1D Fibonacci-chain and 2D Penrose-
tiling packings for a wide range of wavenumbers. Fig-
ure 11 clearly shows that the large-k regions of the spec-
tral densities of the two-phase packings derived from the
Fibonacci and Penrose quasicrystals decay like k−2 and
k−3, respectively, as required by Eq. (17). The presence
of such scaling supports the accuracy of our numerical
calculations. In these plots, one can also clearly see that
the spectral density of the 2D Penrose-tiling packing has
a substantially faster decay in the small-k region (α = 6)
than that of the 1D Fibonacci-chain packing (α = 3).
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