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Fractional quantum Hall states at a half-filled Landau level are believed to carry an integer number
𝒞 of chiral Majorana edge modes, reflected in their thermal Hall conductivity. We show that this
number determines the primary series of Abelian fractional quantum Hall states that emerge above
and below the half-filling point. On a particular side of half-filling, each series may originate from
two consecutive values of 𝒞, but the combination of the series above and below half-filling uniquely
identifies 𝒞. We analyze these states both by a hierarchy approach and by a composite fermion
approach. In the latter, we map electrons near a half-filled Landau level to composite fermions at
a weak magnetic field and show that a bosonic integer quantum Hall state is formed by pairs of
composite fermions and plays a crucial role in the state’s Hall conductivity.

The nature of the ground state of quantum Hall states
at half-integer filling factors, such as 𝜈 = 5/2 [1], remains
an open question of great interest due to the potential
for hosting non-Abelian excitations useful for topological
quantum computation. Many candidate states [2–4] were
proposed over time, including Moore-Reed Pfaffian [5],
anti-Pfaffian [6], and particle-hole-Pfaffian (PH-Pfaffian)
[7]. It was later realized [8] that these states belong to
an infinite series of states, all sharing an electrical Hall
conductance of 𝜎𝑥𝑦 = 𝑒2

2ℎ but differenting by thermal Hall
conductances 𝜅𝑥𝑦 = 𝜋2𝑇

6ℎ (2 + 𝒞). The topological index 𝒞
is an integer; the state is Abelian if 𝒞 is even and carries
non-Abelian Ising anyons [9] if 𝒞 is odd.

While numerical works seem to favor the Pfaffian
(𝒞 = 1) and anti-Pfaffian (𝒞 = −3) states [10–12] and
early quasiparticle tunneling experiments [13] indicated
an anti-Pfaffian order, there is now accumulating exper-
imental evidence in favor of the PH-Pfaffian (𝒞 = −1)
in narrow-well GaAs samples [14–18], possibly stabilized
by disorder [19–22]. Despite numerous proposed and per-
formed experiments [4, 23–36], the value of 𝒞 and the
precise identification of the half-filled states in different
systems are still under intensive study.

A promising direction has been opened up by recent
experiments on high-mobility GaAs and graphene samples,
attempting to identify the state at a half-filled Landau
level (the “parent state”) through the quantum Hall states
occurring in filling fractions close to it (the “daughter
states”) [37–39]. Levin–Halperin hierarchy [38] of states
spanning from 𝜈 = 5/2 Pffafian (and, by particle-hole
conjugation, anti-Pfaffian) state is particularly interesting,
with recent experiments in wide GaAs wells [40, 41] and
bilayer graphene [42–45] observing fractions corresponding
to the daughter states of Pfaffian and anti-Pfaffian states.

In this work, we calculate the series of daughter states
that emerge from a parent state with an arbitrary 𝒞.
While we start the calculation using the hierarchy ap-
proach employed in earlier works, we then show how the
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FIG. 1: The daughter states on the first two levels of
hierarchy. The thermal conductance refers to the state at

the first level of the hierarchy (black dots).

daughter states can be understood in terms of flux at-
tachment [46] that maps electrons at a half-filled Landau
level to composite fermions at zero magnetic field. This
approach, in which the index 𝒞 corresponds to the Chern
number of the composite fermion superconductor, allows
us to elucidate the relation between the infinite number
of possible values of 𝒞 and the so-called “sixteen-fold way”,
which introduces a 16-fold periodicity in 𝒞 [9, 47].

Specifically, we find that for Abelian parent states (even
𝒞), the series of daughter states is parametrized by two
integers, 𝒞/2 and 𝑚 > 0. Denoting 𝒞′ = 𝒞 +16𝑘 for some
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integer 𝑘 such that −7 ⩽ 𝒞′ ⩽ 8, the filling factors satisfy

𝜈−1 = 2± (8𝑚± 𝒞′
/2)

−1
, (1)

while the thermal Hall conductance is

𝜅𝑥𝑦 =

(︂𝒞
2
+ 1± 1

)︂
𝜅0, (2)

where ± corresponds to holes and particles and 𝜅0 = 𝜋2𝑇
3ℎ .

For non-Abelian parent states (odd 𝒞), we find that
each daughter state has the same filling fraction and
anyonic content as a daughter state of an Abelian parent
state. In particular, for 𝜈 > 1/2, Eqs. (1) and (2) hold
for daughter states of the non-Abelian parent states with
𝒞 + 1 instead of 𝒞 and for 𝜈 < 1/2 with 𝒞 − 1 instead
of 𝒞. The filling fractions of all the daughter states are
visualized in Fig. 1.

Notably, these results imply that identifying two se-
ries of daughter states—above and below the half-filled
Landau level—is sufficient to identify the parent state
from which they emerge. However, an identification of
one series is consistent with two values of 𝒞, separated by
one, corresponding to one Abelian and one non-Abelian
state.

Eq. (1) is written in a suggestive way, drawing an anal-
ogy to the composite fermion theory of the Jain series [46].
In that theory, 𝜈−1 = 2+𝜈−1

CF, where 𝜈CF is the composite
fermions filling factor, and the Jain series corresponds to
integer 𝜈CF. Indeed, all fractions included in (1) are Jain
fractions. However, the thermal Hall conductance of a
Jain state 𝜈 = (2 + 1

𝑝 )
−1 is 𝜅𝑥𝑦 = 𝑝. Remarkably, in the

series we consider here, the variation of the density or
magnetic field changes 𝑚 but keeps 𝒞 constant. Thus, it
changes the electric Hall conductance while keeping the
thermal Hall conductance fixed. As we show below, the
𝑚-dependence of Eq. (1) can be understood as originating
from an integer quantum Hall state of bosons comprised
of pairs of composite fermions.

The sixteen-fold way is apparent in Eq. (1), in which
shifting 𝒞 by 16 yields the same filling fractions. The two
daughter states have a thermal Hall conductance that
differs by 8𝜅0. Since their anyon content is identical, the
difference in thermal conductance can be described as
originating from the attachment of decoupled layers of the
𝐸8 state, a bosonic Abelian state with no anyons [48, 49].

Hierarchy construction—The daughter states of the
Abelian parents can be obtained from the parent states
using the Haldane–Halperin hierarchical construction [50,
51].

We first briefly review the hierarchical construction.
The wavefunction of the daughter state with electrons at
positions {r𝑘} can be written as [3]

Ψd({r𝑘}) =
ˆ

d𝜂Φ*({𝜂𝑗})Ψp({𝜂𝑗}, {r𝑘}) (3)

where Ψp is the parent state at filling 1/2 with 𝑁 quasi-
particles at positions {𝜂𝑗} and d𝜂 =

∏︀
𝑗 d𝜂𝑗 . At a low

density of quasiparticles, the coordinates {𝜂𝑗} are fixed
in a Wigner crystal structure. When the density is suffi-
ciently high, the quasiparticles condense to form the next
level of the FQH hierarchy. Then Φ, which is called a
pseudo wavefunction (since it is not single-valued), can
be written as

Φ*({𝜂𝑗}) = 𝑃 ({𝑤𝑘})𝑄({𝑤𝑘})𝑒
−

∑︀
𝑘

|𝑞||𝑤𝑘|2
4ℓ20 . (4)

Here, 𝑤 = 𝜂𝑥 ∓ 𝑖𝜂𝑦 is a complex coordinate, with the sign
depending on the sign of the quasiparticle charge 𝑞 = 1/4.
The term 𝑄 is

𝑄({𝑤}) =
∏︁
𝑗<𝑘

(𝑤𝑘 − 𝑤𝑗)
∓1/𝜆. (5)

As a result, when two quasiparticles are exchanged, the
wavefunction will change by a phase factor (−1)±1/𝜆, as
expected from the particles with fractional statistics. 𝑃
is a symmetric polynomial, which, in the spirit of the
Laughlin argument [52], is chosen to be

𝑃 ({𝑤}) =
∏︁
𝑗<𝑘

(𝑤𝑘 − 𝑤𝑗)
2𝑚 (6)

to ensure high-degree zeros when two quasiparticles are
brought close together. |Ψd({r})|2 is then describing a
two-dimensional plasma at inverse temperature 𝛽 = 𝜆d.
The value of 𝜆d is given by

𝜆d = 2𝑚± 𝜆−1, (7)

and from the angular momentum of Φ, 𝐿max ∼ 𝜆2d𝑁 ,
we conclude that the the filling of the quasiparticles is
𝜈anyon = 1/𝜆2d. The filling fraction of the state that is
formed is then

𝜈 =
1

2
± 1

16𝜆d
. (8)

We first apply this procedure to Abelian 𝜈 = 1/2 parent
states. Substituting 𝑞 = 1/4, and using the exchange
phase of quasiparticles in the parent state 𝜆−1 = 𝒞+1

8 [9],
we get

𝜆d = 2𝑚∓ 𝒞 + 1

8
=

16𝑚∓ (𝒞 + 1)

8
(9)

𝜈 =
1

2
± 1

2
· 1

16𝑚∓ (𝒞 + 1)
=

8𝑚∓ 𝒞/2
16𝑚∓ (𝒞 + 1)

, (10)

where ∓ again corresponds to particles and holes.
In the non-Abelian case, the pseudo-wavefunction Φ

depends on the conformal blocks 𝛼, which is defined by
the pairwise fusion channels:

Ψd({r}) =
ˆ

d𝜂
∑︁
𝛼

Φ*
𝛼({𝜂})Ψp,𝛼({𝜂}, {r}), (11)
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The pseudo wavefunction can be split into a similar prod-
uct as in Eq. (4) with an additional term, 𝑌𝛼 that captures
the dependence on 𝛼:

Φ*
𝛼({𝜂𝑗}) = 𝑌𝛼({𝑤𝑗})𝑃 ({𝑤𝑗})𝑄({𝑤𝑗})𝑒

−
∑︀

𝑗

|𝑞||𝑤𝑗 |2
4ℓ20 .

(12)

Similarly to the Abelian case, we want Φ*
𝛼 to transform

in opposite manner to the Ψ𝛼 under braiding: if Ψ𝛼 ↦→
𝑈𝛼𝛽Ψ𝛽 , then Φ*

𝛼 ↦→ Φ*
𝛼𝑈

*
𝛽𝛼. The factor 𝑌𝑛,𝛼 can be

expressed as a conformal field theory (CFT) correlator
[53, 54].

The filling fraction of the daughter state is determined
by the maximal angular momentum of Φ𝛼, i.e., by its
scaling as 𝑤𝑖 → ∞. The scaling of 𝑌𝛼 depends on the
relative sign of (𝜈 − 1/2) and 𝒞. If the relative sign is
negative (i.e., quasiholes for 𝒞 > 0 and quasiparticles for
𝒞 < 0), then 𝑌𝛼 is just a correlator of the Ising theory of
the opposite chirality to the one appearing in Ψp,𝛼. For
example, for 𝒞 > 0 the 𝛼-depending part of Ψp,𝛼 is of the
form

⟨∏︀
𝑗 𝜎(𝑤𝑗)

⟩
𝛼
. For quasiholes, Φ𝛼 needs to be anti-

holomorphic, thus we can choose 𝑌𝛼 =
⟨∏︀

𝑗 𝜎
′(�̄�𝑗)

⟩
𝛼
,

which will leave Eq. (11) invariant under braiding. Thus,
for the negative relative sign between (𝜈 − 1/2) and 𝒞,
the contribution of the 𝑌𝛼 part to the angular momentum
does not scale with the system size and hence does not
affect the filling fraction. The scaling of Φ𝛼 as 𝑤𝑖 → ∞
is given by 𝜆2d𝑁 (10) with

𝜆 =
𝒞 + 1− sgn(𝒞′)

8
, (13)

which is identical to the case of the Abelian parent with
Chern number 𝒞−sgn(𝒞′). When (𝜈−1/2) and 𝒞 have the
same sign, we show below that 𝑌𝛼 contributes additional
sgn(𝒞′)/4 to 𝜆, giving a total of

𝜆 =
𝒞 + 1 + sgn(𝒞′)

8
, (14)

corresponding to the case of the Abelian parent with
Chern number 𝒞 + sgn(𝒞′), from which we can get the
filling factor using Eq. (10). In the rest of the paper,
we limit the values of 𝒞 to be between −7 and 8. The
discussion can be easily generalized to other values of 𝒞.
Daughter states of Abelian parent states—The topological
properties of the Abelian daughter states are most con-
cisely described using the combination of 𝐾-matrices and
charge vector 𝑡 [3, 55–57]. The 𝐾-matrices are symmetric
and integer-valued, and their determinant counts the topo-
logically distinct quasiparticles. The Hall conductivity is
𝑡⊤𝐾−1𝑡. Quasiparticles are described by integer-valued
vectors ℓ; the quasiparticle charge is 𝑡⊤𝐾−1ℓ, and the
mutual fractional statistics of two quasiparticles ℓ1, ℓ2 is
ℓ⊤1 𝐾

−1ℓ2. Finally, the same state may be described by
infinitely many pairs of 𝐾, 𝑡, related to one another by

an SL(Z) transformation 𝑊 , such that 𝐾 ′ = 𝑊⊤𝐾𝑊 ,
and 𝑡′ =𝑊⊤𝑡.

We use two choices for 𝐾 and 𝑡 to describe each state.
First, we use a symmetric charge vector 𝑡⊤ =

(︀
1 1 . . . 1

)︀
to construct the 𝐾-matrices of all Abelian parent states.
We start from 113 state with 𝐾-matrix

𝐾 =

(︂
1 3
3 1

)︂
(15)

This state has two counterpropagating modes and vanish-
ing thermal Hall conductance, which corresponds, in our
notation, to 𝒞 = −2.

To construct other Chern number states, we perform
two operations alternately [47]: particle-hole conjugation

𝐾 ↦→
(︂
1 0
0 −𝐾

)︂
that maps 𝒞 ↦→ −2− 𝒞 and flipping the

direction of the neutral modes by changing the direction
of two fluxes (𝐾 ↦→ Σ − 𝐾, where Σ𝑖𝑗 = 4) that maps
𝒞 ↦→ −𝒞. These operations generate all even-𝒞 states.

Denoting by 𝐾𝒞 the 𝐾-matrix of the Abelian parent
states with 𝒞, we now follow the prescription by Wen [57]
to construct 𝐾, 𝑡 for the daughter states. We write the
𝐾-matrix of the daughter state as(︂

𝐾𝒞 ℓ
ℓ⊤ 2𝑚

)︂
, (16)

where ℓ is the integer-valued vector that generates a
quarter-charge quasiparticle. Note that any choice of
ℓ with the same charge and statistical phase would give
the same state.

The filling fraction of the state, which is also its Hall
conductivity, is given by Eq. (10). The elementary charges
are 1/(16𝑚∓(𝒞+1)); the statistical phase is 𝜋± 2𝜋

16𝑚∓(𝒞+1)

with ∓ and ± corresponding quasiparticles and quasiholes.
Thermal Hall conductance is given by the thermal Hall
conductance of the original state ±𝜅0, i.e., 𝜅𝑥𝑦 = (1 +
𝒞/2± 1)𝜅0.

The second choice we use for 𝐾 and 𝑡 allows us to
describe the daughter states in terms of flux attachment.
In this description, the attachment of two flux quanta to
each electron maps a daughter state filling fraction to an
integer filling fraction, and this integer is composed of a
𝒞/2 integer quantum Hall state of electrons in parallel to
a 2𝑚 integer quantum Hall state of charge-two bosons
[49, 58, 59]. To show that, we use the SL transformations
given in Supplementary material [60] to change the charge
vector to be composed of |𝒞|/2 (2 for 𝐾 = 8) entries of
1 (corresponding to single electrons), and two entries of
2 (corresponding to bosonic pairs of electrons), i.e., 𝑡⊤ =(︀
1 . . . 1 2 2

)︀
. The𝐾-matrix then becomes𝐾 = 𝐾0+Φ,

where 𝐾0 is made of a diagonal fermionic |𝒞|
2 × |𝒞|

2 block
(2 × 2 for 𝐾 = 8), describing an integer quantum Hall
state of 𝜈𝑓 = 𝒞/2, and a bosonic 2× 2 block

𝐾0 =

(︂
𝐾𝑓 0
0 𝐾𝑏

)︂
, (17)
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with

𝐾𝑏 =

(︂
0 1
1 2(1−𝑚)

)︂
(18)

The matrix 𝐾𝑏, together with the corresponding elements
of the charge vector, describe a bosonic integer quantum
Hall state of 𝜈𝑏 = 2𝑚, whose contribution to the Hall
conductivity is 8𝑚. The flux attachment part of the
𝐾-matrix is Φ = 2𝑡𝑡⊤, such that Φ𝑖𝑗 = 2𝑡𝑖𝑡𝑗 . Two flux
quanta are attached to each electron, such that a boson,
which is a pair of electrons, carries four flux quanta.

In the study of the Jain series, flux attachment in the
form of composite fermion theory has been successful
in identifying an emergent length scale, the composite
fermion cyclotron radius 𝑅*

𝑐 ∝ 𝜈CF/𝑘𝐹 , with 𝑘𝐹 being the
Fermi wave-vector [61]. This scale may also be written as
ℏ𝑘𝐹 /𝑒*𝐵, where 𝑒* is the quasiparticle charge. Indeed,
it was experimentally observed [62]. The mapping we
have here suggests the existence of two length scales. The
first is a scale that is inversely proportional to 𝑒*, and
hence proportional to 16𝑚∓ (𝒞 + 1). This scale changes
as 𝑚 is varied by changing the distance of the electronic
filling fraction from 1/2. The second scale that emerges
from the fermionic 𝜈𝑓 = 𝒞/2 part, is ∝ 𝒞/𝑘𝐹 and thus
is independent of 𝑚. Interestingly, the corresponding
momentum scale, ℏ𝑘𝐹 /𝒞 has a role in the parent state
of the half-filled Landau level. It is the momentum scale
over which the super-conducting order parameter winds
for the pairing of angular momentum 𝒞. A microscopic
model is needed, however, to investigate the roles of these
two scales, and we leave such an investigation to future
work.
Daughters of non-Abelian parent states—The construc-
tion of the daughter states for a parent state with an
odd 𝒞 starts from the construction of the parent state
wavefunction. This can be done using the CFT of the
𝒞 = (2𝐷 + 1)sgn(𝒞) Ising state [47], which includes 𝐷
neutral bosons 𝜑𝑖, a single downstream charge mode 𝜑𝜌
and an Ising CFT with Majorana mode 𝜓 and spin field
𝜎. The vertex operators 𝑉𝛽(𝑤) = 𝑒𝑖𝛽𝜑(𝑤) satisfy⟨∏︁

𝑗

𝑉𝛽𝑗
(𝑤𝑗)

⟩
=

∏︁
𝑖<𝑗

(𝑤𝑖 − 𝑤𝑗)
𝛽𝑖𝛽𝑗/𝑘, (19)

and have scaling dimension ∆𝛽 = 𝛽2/(2𝑘). Here, 𝜑𝜌 has
𝑘 = 2, and all other bosonic modes have 𝑘 = 1.

There are 2𝐷 + 1 electronic operators

𝜓𝑒 = 𝜓𝑒2𝑖𝜑𝜌 𝜓𝑒 = 𝑒±𝑖𝜑𝑖𝑒2𝑖𝜑𝜌 (20)

and 2𝐷 quasihole operators

𝜓qh = 𝜎𝑒𝑖𝜑𝜌/2
𝐷∏︁
𝑖=1

𝑒±𝑖𝜑𝑖/2. (21)

where 𝜎 is the Ising spin field. The field 𝜑𝜌 is always
holomorphic (downstream), while the direction of 𝜎, 𝜓,
and 𝜑𝑖 depend on the sgn(𝒞).

The parent wavefunction in Eq. (11) with electrons
at positions 𝑧𝑘 and 2𝑁 excitations at fixed positions 𝑤𝑗

fusing to 𝛼 is then

Ψp,𝛼({𝑤𝑗}, {𝑧𝑗}) = Ψ̃p,𝛼(𝑤𝑗 , 𝑧𝑘)𝑒
− 1

4ℓ2

∑︀
𝑘 |𝑧𝑘|2 (22)

Ψ̃p,𝛼(𝑤𝑗 , 𝑧𝑘) =

⟨∏︁
𝑗

𝜓qh(𝑤𝑗)
∏︁
𝑘

𝜓e(𝑧𝑘)

⟩
𝛼

. (23)

As mentioned earlier, Φ𝛼 (12) can be expressed as a
correlator in a CFT, specifically the product of a chiral
Ising model 𝜎′ and a chiral boson 𝜑′, in conformal block
𝛼. For quasiparticle condensate, the fields 𝜎′ and 𝜑′ are
holomorphic and Ψ𝛼({𝑤𝑗}) is given by

Φ*
𝛼({𝑤𝑗}) = 𝑒−

1
16ℓ2

∑︀
𝑗 |𝑤𝑗 |2

⟨∏︁
𝑗

𝜎′(𝑤𝑗)𝑒
𝑖𝜆𝜑′(𝑤𝑗)

⟩
𝛽

𝑅𝛽𝛼,

(24)

with the value of 𝜆 from Eq. (14) and 𝑅𝛽𝛼 is defined
below. For the quasihole condensate, the fields are anti-
holomorphic, and Ψ𝛼({�̄�𝑗}) is obtained from in Eq. (24)
by replacing 𝑤𝑗 by �̄�𝑗 and using 𝜆 from Eq. (13). As a
result, 𝜎 appearing in Eq. (23) and 𝜎′ appearing in 𝑌𝛼
are copropagating if (𝜈 − 1/2) and 𝒞 have the same sign,
and counterpropagating otherwise.

In the counterpropagating case, 𝑅𝛼𝛽 = 𝛿𝛼𝛽 ; since 𝜎 and
𝜎′ have opposite chirality, they also have opposite braiding
phases, which sum up to zero. In the copropagating case,
𝜎 and 𝜎′ have the same chirality, and thus, the phases
do not sum up to zero (correlator involving 𝜎′ transforms
with 𝑈 rather than 𝑈†). To fix that, we apply 𝑅𝛼𝛽 given
by the unique unitary matrix such that 𝑅−1𝑈𝑅 = 𝑈†. In
the conformal block 𝛼, the 𝜎 particles are grouped into
pairs, and every pair fuses to 1 or 𝜓. The matrix 𝑅 swaps
between these two fusion channels (1 ↔ 𝜓). The total
phase is then always −𝜋

8 + 3𝜋
8 = 𝜋

4 . This is the source of
the sgn(𝒞′)/4 factor in Eq. (14). The filling fractions are
then obtained using Eqs. (7) and (8).

The full expression for the daughter state wavefunction
is obtained by substituting Eq. (22) and Eq. (24) into
Eq. (11). The sum over 𝛼 results in the full correlator
without branch cuts:

Ψd({𝑧𝑘}) =
ˆ

d𝑤 Ψ̃d · 𝑒− 1
4ℓ2

∑︀
𝑖 |𝑧𝑘|

2− 1
16ℓ2

∑︀
𝑖 |𝑤𝑗 |2 (25)

Ψ̃d({𝑧𝑘}) =
⟨∏︁

𝑗

𝜓qh(𝑤𝑗)
∏︁
𝑘

𝜓e(𝑧𝑘)

⟩
, (26)

where 𝜓qh and 𝜓e are the modified operators acquired by
gathering all terms depending on quasihole and electron
coordinates, correspondingly, and d𝑤 =

∏︀
𝑗 d𝑤𝑗 .
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The thermal Hall conductance is given by the central
charge of the total CFT in Eq. (26). For the parent state,
𝜅𝑥𝑦 = (1 + 𝒞/2)𝜅0. The thermal Hall conductance of the
added CFT is ±3𝜅0/2 (it is a product of chiral boson 𝜑′
and Ising CFT 𝜎′); in total, we get 𝜅𝑥𝑦 = (5+ 𝒞)𝜅0/2 for
quasiparticles and 𝜅𝑥𝑦 = (𝒞 − 1)𝜅0/2 for quasiholes.

Excitations of the daughter state correspond to the
insertion of an additional operator 𝜓ex into Eq. (26). For
the correlator to be single-valued and non-singular, 𝜓ex
should be local relative to the modified quasihole 𝜓qh

and electron 𝜓𝑒 operators (given explicitly below). By
writing the operator-product expansion 𝜓ex(𝑣)𝜓qh(𝑤) ∼
(𝑣−𝑤)Δfused−Δex−Δqh𝜓fused, we conclude that the scaling
dimension difference ∆fused −∆ex −∆qh should be non-
negative integer for the wavefunction to be single-valued
and non-singular. A similar procedure should be applied
to 𝜓ex(𝑣)𝜓e(𝑤).

In the counter-propagating case, 𝜓qh is given by

𝜓qh(𝑤𝑗 , �̄�𝑗) = 𝜎(𝑤𝑗 , �̄�𝑗)𝑒
𝑖𝜑𝜌/2+𝑖𝜆𝜑′ ∏︁

𝑖

𝑒±𝑖𝜑𝑖/2 (27)

where 𝜎(𝑤𝑗 , �̄�𝑗) is the spin field in the nonchiral Ising
model, and 𝜓e = 𝜓e.

We write a general operator in the combined CFT,
𝜓ex = 𝜒𝑒𝑖(𝑎𝜑𝜌+

∑︀
𝑗 𝑎𝑗𝜑𝑗+𝑏𝜑′) for 𝜒 ∈ {1, 𝜓, 𝜎, 𝜇}, where

𝜇 is the disorder operator of Ising CFT. Denoting 𝑏 =
(𝑏′ − 𝑎/4)/𝜆, the excitations local relative to electrons
and quasiholes have the following constraints: 𝑎 and 𝑎𝑗
are integer if 𝜒 ∈ {1, 𝜓} and half-integer otherwise, 𝑏′ is
integer if 𝜒 ∈ {1, 𝜎} and half-integer otherwise.

When satisfying the above constraints, the excitation
𝜓ex can be written as a product of 𝒪 = 𝜓𝑒𝑖𝜑

′/2𝜆 and
additional 𝜓qh and 𝜓𝑒. The elementary charge can be de-
termined [38] by inserting 𝒪2 into Eq. (25); using Eq. (19)
and the fact that 𝜓2 = 1, this result in factor

∏︀
𝑗(𝑤0−𝑤𝑗).

That means that 𝒪2 creates a Laughlin quasihole in the
condensate. Since the charge of the condensed anyon is
𝑒/4, 𝒪2 creates the charge of 𝜈anyon𝑒/4, and since the
anyon filling is 𝜈anyon = 1

2𝑚+(2𝐷±1)/8 , the elementary
charge is 𝑒

16𝑚+2𝐷±1 . Calculating ⟨𝒪(𝑤1)𝒪(𝑤2)⟩ using
Eq. (19) and ⟨𝜓(𝑤1)𝜓(𝑤2)⟩ = (𝑤1 − 𝑤2)

−1 we find that
topological phase is 𝜋 ± 2𝜋

16𝑚+2𝐷±1 .
In the copropagating case, we make use of an identity

relating correlator of Ising CFT and correlator of a chiral
bosonic field 𝜑′′:⟨∏︁

𝑗

𝜎′(𝑤𝑗)

⟩
𝛼

⟨∏︁
𝑗

𝜎(𝑤𝑗)
∏︁
𝑘

𝜓(𝑧𝑘)

⟩
𝛽

𝑅𝛼𝛽 =

=

⟨∏︁
𝑗

exp(𝑖𝜑′′(𝑤𝑗)/2)
∏︁
𝑘

cos(𝜑′′(𝑧𝑘))

⟩
. (28)

This identity can be understood in two steps. First, the
bosonization of the Dirac fermion formed by the two
Majorana fermions 𝜓, 𝜓′ [63] gives 𝜓 ∼ cos(𝜑′′). Second,

the fusion channel of the two particles (𝜎(𝑤1), 𝜎
′(𝑤1))

and (𝜎(𝑤2), 𝜎
′(𝑤2)) is either (𝜓, 1) or (1, 𝜓′), giving after

summation the full Dirac fermion exp(𝑖𝜑′′), which can be
written as exp(𝑖𝜑′′(𝑤1)/2) exp(𝑖𝜑

′′(𝑤2)/2). In total, we
get

𝜓qh(𝑤𝑗 , �̄�𝑗) = 𝑒
𝑖
2𝜑𝜌+𝑖𝜆𝜑′+𝑖𝜑′′/2

∏︁
𝑖

𝑒±𝑖𝜑𝑖/2 (29)

𝜓e(𝑧𝑘) = 𝑒𝑖2𝜑𝜌(𝑧𝑘) cos(𝜑′′(𝑧𝑘)). (30)

In Eq. (29), 𝜑𝜌 is holomorphic, and 𝜑′, 𝜑′′, 𝜑𝑖 are holo-
morphic for 𝒞 > 0 and anti-holomorphic otherwise.

Repeating the procedure outlined above, we get the
elementary excitation of the form 𝒪 = 𝜓𝑒𝑖(𝜑

′/2𝜆−𝜑′′), with
the elementary charge of 𝑒

16𝑚−2𝐷−2±1 and topological
phase 𝜋 ± 2𝜋

16𝑚−2𝐷−2±1 .
Thus, since all the topological properties of the daugh-

ters of the non-Abelian states are identical to those of the
daughters of the corresponding Abelian states (𝒞 + 1 for
𝜈 > 1/2 and 𝒞 − 1 for 𝜈 < 1/2), we conclude that these
are indeed the same states.

To summarize, we constructed the daughter states of
quantized paired states of half-filled Landau levels. We
showed that the daughter states formed around half-filling
reflect the Chern number of the neutral modes of the half-
filled state from which they emerge. Provided that no
unexpected phase transition occurs as the filling is varied
away from the half-filled level, the daughter states can
be used to identify the topological order of the half-filled
state.
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𝑊 matrices between hierarchical and flux basis

To transform the 𝐾 matrix of the Abelian state of the daughter state to the flux basis, we first write them in
hierarchical basis, by transforming 𝐾𝒞 with 𝑊 = 𝛿𝑖,𝑗 − 𝛿𝑖+1,𝑗 and applying procedure Eq. (16). Now we give here
explicitly the transition matrices 𝑊 for every dimension of the 𝐾 matrix that map the hierarchical basis to the
flux-attached basis, i.e., to 𝐾0 defined in Eq. (17).

𝑊3 =

⎛⎝1 2 2
0 1 1
0 0 1

⎞⎠ (A.1)

𝑊4 =

⎛⎜⎜⎝
1 1 2 2
0 −1 −2 −2
0 0 −1 −1
0 0 0 1

⎞⎟⎟⎠ (A.2)

𝑊5 =

⎛⎜⎜⎜⎜⎝
1 1 1 2 2
0 −1 −1 −2 −2
0 0 1 2 2
0 0 0 1 1
0 0 0 0 −1

⎞⎟⎟⎟⎟⎠ (A.3)

𝑊6 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 1 2 2
0 −1 −1 1 −2 −2
0 0 1 1 2 2
0 0 0 −1 −2 −2
0 0 0 0 −1 −1
0 0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ (A.4)
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