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We solve for the decoherence dynamics of two models in which a simple qubit or ‘Central Spin’
couples to a bath of spins; the bath is made from a chain of spins. In model 1, the bath spins are
Ising spins; in Model 2, they are coupled by transverse spin-spin interactions, and the chain supports
spin waves. We look at (i) the case where the Hamiltonian is static, with a constant system/bath
coupling, and (ii) where this coupling varies in time.

I. INTRODUCTION

The dynamics of ‘decoherence’, ie., the gradual entan-
glement of a quantum system with its environment - is of
considerable subtlety. In the simplest picture, one imag-
ines some sort of exponential decay in time of off-diagonal
matrix elements in a reduced density matrix for the cen-
tral system. For a single central spin or ‘qubit’, this
would occur on a timescale T2, distinct from the time T1

for the decay of the diagonal matrix elements.

This simple picture is only correct under very restric-
tive conditions - it is correct, eg., for a central spin cou-
pled to random noise. Solutions for the dynamics of the
‘spin-boson’ model [1, 2] (where the central qubit cou-
ples to an oscillator bath) or the ‘central spin’ model
[3] (where the central spin couples to a bath of spins)
show much more complicated behaviour. In the central
spin model, one can see quite complex non-monotonic
behaviour in time of the density matrix elements. If one
then looks at the correlations between the central system
and the environmental variables, extremely complex fea-
tures emerge, in which entanglement correlators at differ-
ent levels exchange information in interesting ways [4, 5].

Even more complex features can emerge when the cen-
tral system goes beyond a simple two-level ‘qubit’ sys-
tem, to some object hopping on some lattice. This is a
topic of considerable interest to those interested in the
decoherence dynamics of quantum information process-
ing systems (a huge topic), in the dynamics of quantum
walks [7–9], in the well known problem of motion of holes
in insulating magnetic systems [9–13], and anyone inter-
ested in general problems in quantum diffusion.

Quite generally the models that are employed fall into
2 classes, viz.,

(i) Oscillator Bath Models: In such models the envi-
ronment is modelled as a set of independent oscillators
[2]; these are supposed to represent extended modes (like
phonons, photons, electron-hole pairs, gravitons, etc.).
For a system containing N such oscillators, the coupling
of the system to each oscillator is ∝ N−1/2, so that for
large N (or for N → ∞) the effect of the bath on the
central system is independent of N , and one can assume
an equilibrium bath at some temperature T .

(ii) Spin Bath Models: The environment is now mod-
elled as a set of ‘pseudospin’ degrees of freedom [3], each
possessing a finite-dimensional Hilbert space (often a 2-
dimensional space, so that the environment is a set of
2-level systems). These represent localized modes (like
defects, nuclear or paramagnetic spins, or dynamic im-
purities in the system). In this case the coupling between
the central system and each bath ‘spin’ may not depend
on N at all, and certainly there is no requirement that
it be ∝ N−1/2. One cannot assume that this bath is in
equilibrium.

FIG. 1. Illustration of our spin chain model. A central spin
couples to a spin chain.

For an elementary discussion of the difference between
these two baths, see, eg., ref. [14, 15]. A key differ-
ence is that for oscillator baths, decoherence is closely
tied to dissipation: one expects a fluctuation/dissipation
connection to exist. However for spin baths, no such nec-
essary connection exists - in fact, one can have very large
decoherence with almost no dissipation. This makes spin
baths much more dangerous for, eg., quantum computa-
tion.
In this paper we wish to show some very basic features

of decoherence dynamics, by choosing two simple ‘toy’
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models. The models are of some pedagogical interest,
just because they are so simple - indeed, they are suf-
ficiently simple that in one case we easily find an exact
solution, and in the other case a very accurate solution in
the regime of interest. In this short contribution we first
introduce the models, and give the details of their solu-
tions, and then make some observations based on these
solutions. It will be seen that even in these simple mod-
els (about as simple as one can get) there are several
interesting features, which persist in more complicated
models.

It will be clear that much more can be said, which we
have no space for in this short communication. We will
also have no space to discuss the application of models of
decoherence that are similar to the ones discussed here.
For recent discussions of both anomalous diffusion and
localization, which can occur when the decoherence is
non-Markovian, work on optical lattices is of some inter-
est [16–19]; models rather close in spirit to the models
discussed here are examined in ref. [8, 9, 20]. More gen-
eral work on entanglement and decoherence in condensed
matter systems is reviewed by LaFlorencie [6].

In both models, the environment is modelled as a 1-D
spin chain {σi}, and the central system is a single spin
τ , which is coupled to the first spin in the chain. The
models differ only in the form of the bath Hamiltonian.

II. MODEL 1

The first model has an environment or bath with ‘Ising’
Hamiltonian, coupled transversely to a qubit, via a single
coupling J between the qubit and the first spin on the
spin chain. The Hamiltonian is:

H = Jτyσy
0 + V

N−1∑
i=0

σz
i σ

z
i+1, (1)

where τy is the central spin operator and the {σi} are
operators for N bath spins; J is the coupling between
the central qubit and the first bath spin, and NV is the
band width of the bath spins. We do not use periodic
boundary conditions here.

The central spin has the reduced density matrix(
|a|2 a∗bκ(t)

ab∗κ∗(t) |b|2
)
. (2)

This model can be solved exactly. Since H com-
mutes with τy, the diagonal component (represented in
τy eigenstates) of the reduced density matrix does not
change in time. We write the off-diagonal components
ρ12(t) and ρ21(t) as

ρ12(t) = κ(t)ρ12(0), (3)

with κ(t) being the “decoherence factor”

κ = trb

(
e−iH+tρbe

−iH−t
)
, (4)

where H± are the block Hamiltonians in the τy = ±1
subspaces respectively:

H± = ±Jσy
0 + V

N−1∑
i=0

σz
i σ

z
i+1 (5)

The solution to this model is

κ(t) =
V 2 + J2 cos 2

√
1 + J2/V 2t

V 2 + J2

= 1−
2J2 sin2

√
1 + J2/V 2t

V 2 + J2
. (6)

which is clear enough - one is basically dealing with a
2-spin problem, because there is no coupling between
the spins on the chain. Thus all correlations and infor-
mation existing initialy in the qubit are confined to the
qubit/bath spin pair.
It is also interesting to obtain an approximate solution

to this problem. To do this we use a Jordan-Wigner
transformation to diagonalize H, by writing

σz
i = −

∏
j<i

(1− 2c†jcj)(c
†
i + ci), (7)

σx
i = 1− 2c†i ci, (8)

σy
i = i

∏
j<i

(1− 2c†jcj)(c
†
i − ci). (9)

Substituting this into (1) gives

H = iJτy(c†0 − c0)

+V

N−1∑
i=0

(c†i c
†
i+1 − cic

†
i+1 + c†i ci+1 − cici+1).(10)

Introducing the Fourier transform ckn = 1√
N

∑
j cje

ijkn ,

with kn = 2πn
N , and the Bogoliubov transformation

γkn
= e−

ikn
2

(
cos

kn
2
ckn

− i sin
kn
2
c†−kn

)
, (11)

ckn
= cos

kn
2
e

ikn
2 γkn

+ i sin
kn
2
e

ikn
2 γ†

−kn
. (12)

the Hamiltonian becomes

H =
∑
n

(
V (2γ†

kn
γkn

− 1) +
iJ√
N

τy(γ†
kn

− γkn
)

)
=
∑
n

Hn,
(13)

with Hn = V (2γ†
kn
γkn

− 1) + iJ√
N
τy(γ†

kn
− γkn

).

Now the individual Hamiltonians Hn do not commute
with each other; we have

[Hn, Hn′ ] = −2J2

N
(γ†

kn
− γkn

)(γ†
kn′ − γkn′ ). (14)
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However, in the weak interaction limit J/
√
NV ≪ 1,

these commutators can be neglected (see Appendix), and
the Hamiltonian (13) becomes block diagonal. In each

{γ†
kn
, γkn

} subspace, we have

Hn(τ
y = +1) =

(
1 iJ√

NV

− iJ√
NV

−1

)
(15)

Hn(τ
y = −1) =

(
1 − iJ√

NV
iJ√
NV

−1

)
. (16)

Let’s assume the bath is initially in a fully mixed state
ρB = 1

2I. It is then straightforward to calculate κ(t):

κ = 1− 2 sin2(

√
1 +

J2

NV 2
t)

J2

NV 2 + J2

≈ 1− 2 sin2 t
J2

NV 2
.

(17)

so that as N → ∞, we have:

κ = lim
N→∞

(
1− 2 sin2 t

J2

NV 2

)N

= e−2J2 sin2 t/V 2

. (18)

which gives the correct result up to order J2/V 2.

FIG. 2. Decoherence factor κ(t) (18) of model 1 as a function
of time. There is no real decoherence and κ goes back to 1
periodically.

We see that κ is periodic in time (see Fig. 2). This is
because, as already noted, information cannot flow into
the whole spin chain - it is confined to the first local bath
spin and the central spin.

III. MODEL 2

We now consider another model in which the spin chain
is the environment, but in which there are interactions
between the bath spins (here, simple transverse spin-spin
coupling). The model Hamiltonian is

H = Jτyσy
0 + V

N−1∑
i=0

(σ+
i σ

−
i+1 + h.c.). (19)

in which spin waves can propagate down the chain. Thus
the environment is now a set of oscillators (spin waves);
this model is a variant of the spin-boson model.

Again using the Jordan-Wigner transformation, we
have

H =
∑
n

(
2V cos kn(γ

†
kn
γkn − 1

2
)− iJ√

N
τy(γ†

kn
− γkn)

)
.

(20)
which has the same structure as (13), except now with
bath spectrum cos knV instead of a constant. We now
follow the same approximate procedure used for model
1, to get the decoherence factor up to order J2:

1

2
tr
(
e−iH−

n te−iH†
nt
)
= 1−

2 sin2
√

V 2 cos2 kn + J2

N t

cos2 kn + J2

NV 2

· J2

NV 2

≈ 1− 2 sin2(V t cos kn)J
2

NV 2 cos2 kn
; (N → ∞)

≈ e
− 2 sin2(V t cos kn)J2

NV 2 cos2 kn .

(21)
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After including all the Hns, we finally get

κ(t) = exp

(
−
∑
n

2 sin2(V t cos kn)J
2

NV 2 cos2 kn

)
(22)

If we now take the limit N → ∞, this reduces to

κ(t) ≈ exp

(
− J2

πV 2

∫ π

−π

dk
sin2(V t cos k)

cos2 k

)
; (N → ∞)

= exp

(
−2J2t2 1F2

(
1

2
;
3

2
, 2;−V 2t2

))
.

(23)

where 1F2 is a hypergeometric function.
The resulting behaviour of κ(t) is illustrated in Fig. 3. Its long time asymptotic behaviour can still be studied.

When t → ∞, we can expand the generalized hypergeometric function as

(V t)2 1F2

(
1

2
;
3

2
, 2;−V 2t2

)
= V t +

1

2

√
1

πV t
cos
(
2V t− π

4

)
+O

(
1

(V t)
3
2

)
. (24)

and we see that κ → e−J2t/V → 0 as t → ∞.

We see that in this model the system decoheres com-
pletely as t → ∞; the quantum information is forever lost
to the environment, into the spin wave bath. In fact, we
are dealing here with a particular species of spin-boson
model.

FIG. 3. This is the decoherence factor of model 2 as a
function of time. The loss of coherence is clear over time.

IV. TIME-VARYING SYSTEM-BATH
COUPLING

What if we are allowed to switch on or off the cou-
pling between the central system and the bath? One can
envisage several such situations - for example, we can
simply switch the coupling off, or we can switch it off
and then bring it back again, in an effort to reverse the
decoherence.

A. Switch-off process

Let us assume a time-varying coupling J(t) of form:

H = J(t)τyσy
0 +Hbath, (25)

where J(t) → J0 as t → −∞ and J(t) → 0 as t → ∞.
We choose a convenient model form for J(t) to be

J(t) =
J0

ekt + 1
. (26)

so that d
dtJ(t) = −J0ke

kt/(ekt + 1)2.

FIG. 4. Figure of the coupling J(t) over time. These lines
represent k = 0.1, 0.5, 1, 10 respectively.

We see that when k → 0, d
dtJ(t) will go to zero; when

k → ∞, it will become a Heaviside step function with a
jump at t = 0 (see Fig.4 ). These 2 limits describe two
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complementary processes. The k = 0 limit simply adia-
batically decouple the system from the bath, whereas the
k → ∞ limit suddenly switches off the coupling. For this
sudden decoupling case, the result should be the same
as what we get from previous sections since the central
system stops evolving after the turn-off. But for the adi-
abatic decoupling case, things are more complicated - we
need to solve the problem explicitly - we will do this in
the long-time limit.

B. Time-dependent solutions

With the time-dependent J(t) we can follow the same
Jordan-Wigner/Bogoliubov procedure as before, and now
transform the Hamiltonian to

H =
∑
n

2En(γ
†
nγn − 1

2
) +

∑ iJ(t)√
N

(γ†
n − γn), (27)

where En = V for model 1, and En = V cos kn for model
2. Then we have

H±
n =

(
2En ∓ iJ(t)√

N

± iJ(t)√
N

0

)
. (28)

Our goal is to solve this Hamiltonian in each
{γ†

n|0⟩, |0⟩} subspace. A vector (a(t), b(t)) in this sub-
space evolves as

−i

(
d
dta(t)
d
dtb(t)

)
=

(
2En ∓ iJ(t)√

N

± iJ(t)√
N

0

)(
a(t)
b(t)

)
. (29)

so that

a(t) = ∓
√
N

J(t) ḃ(t), (30)

¨b(t)− (iEn + J̇(t)
J(t) )ḃ(t) +

J2(t)
N b(t) = 0. (31)

After some derivation (see Appendix), we get a result
for κ(t) from this. The long time asymptotic limit t → ∞
of κ(t) is then:

κ(t) =
∏
n

(1− 2J2

NE2
n

). (32)

For the two models we then have:

(i) Model 1: Here we have Hbath = V
∑N−1

i=0 σz
i σ

z
i+1,

and En = V for all subspaces. Then the decoherence
factor is

κ1(t) = (1− 2J2

NE2
n

)N = e−2J2
0 . (33)

(ii) Model 2: Now we have Hbath = V
∑N−1

i=0 (σ+
i σ

−
i+1+

h.c.), and En = V cos kn for each subspaces. The deco-
herence factor is

κ2(t) = e−
1
2π

∫ 2π
0

dk 2J2

V 2 cos2 k → 0. (34)
Thus, in this adiabatically decoupled limit, we find

“partial decoherence” for model 1 (κ → e−2J2

)and “com-
plete decoherence” for model 2 (κ → 0). Apparently,
system 1 ends up in a mixed state and the coherence is
partially lost.

However, appearances are deceptive in this case. To
see this, we can imagine reversing the coupling back to
its original value. We therefore consider what happens
for a general slow-varying J(t). In this case (31) still
holds, and we can consider both models 1 and 2.

(i)Model 1: Here again we have En = V . If the cou-

pling is varying slowly, ˙J(t) ≪ J(t)En, we can safely
neglect the dJ/dt term in (31) and we have

b(t) =C1e
−iV t/2−iV t/2

√
1+

4J2(t)

NV 2 + C2e
−iV t/2+iV t/2

√
1+

4J2(t)

NV 2 ,

a(t) =− i2C1

√
N

J(t)
(V + V

√
1 +

4J2(t)

NV 2
)e−iV t/2−iV t/2

√
1+

4J2(t)

NV 2

− i2C2

√
N

J(t)
(V − V

√
1 +

4J2(t)

NV 2
)e−iV t/2+iV t/2

√
1+

4J2(t)

NV 2 .

(35)

We can see that in this adiabatic limit, the result
has no dependence on dJ/dt. The decoherence factor
κ1(t) should therefore be solely dependent on the form
of J(t). This means that if one slowly changes the cou-
pling strength back to its original value, κ1(t) would go
back to its original value regardless of the apparent loss
of decoherence we obtained in (33). One can thus re-
cover the full coherence by decoupling the model 1 to its

environment and then recoupling it back adiabatically.
The coherence is not truly lost into the environment, but
simply encoded there in the entanglement between the
central spin and the first environmental spin. It can be
transferred back to the central spin simply by reversing
the interaction.

(ii)Model 2: In model 2 we cannot neglect the J̇(t)
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term, since En = V cos kn can be zero. The slow varying
condition dJ/dt ≪ J(t)En breaks down for the modes
in the center of the band. Actually it is easy to prove
that κ(t) must stay at 0 after adiabatically decoupling
from the environment, and that never come back to its
initial state even if one reverses the interaction. In this
case, the coherence is truly lost through the modes near
kn ≈ π

2 ,
3π
2 , once we take the limit N → ∞.

This result is of course typical of a system coupled to
an oscillator bath. One can easily generalize the above
considerations to a finite-temperature bath.

V. DISCUSSION

It is always helpful, in discussing some general physical
phenomenon, to have simple toy models which illustrate
basic features of the physics. Decoherence is of course
very general - it has been studied intensively in contexts
ranging from black hole physics [21] and infrared features
of quantum field theory [22], as well as in a huge variety of
condensed matter systems. Understanding decoherence
is also key to doing quantum computation.

As noted in the introduction, there exist thorough
studies of decoherence in several well-known models [1–
3]. Even in a simple central spin model, there are several
decoherence mechanisms in play [3]; these mechanisms
generalize to more general central systems like particles
hopping on rings [23] or moving on hyperlattices [8]. In
all these models one finds no connection between decoher-
ence and dissipation, quite unlike the case for oscillator
bath models like the spin-boson model [1, 2].

The two models here, taken in conjunction with results
for the central spin model [3], make it very clear why this
is the case. Let us recall the form of the central spin
model Hamiltonian: one has

H = HCS +HSB , (36)

where the central spin part is

HCS = [∆oτ̂xe
i
∑

k(ϕk+αk·σk) +H.c.] (37)

+(ϵo +
∑
k

λk · σk)τ̂z (38)

and the spin bath Hamiltonian is

HSB =
∑
k

hk · σk +
∑
k,k′

V αβ
kk′ σ

α
k σ

β
k′ . (39)

in which σk is again the bath spin operator.
Some of the terms in this Hamiltonian are of no spe-

cial interest here. The Berry phase coupling ϕk and the
topological phase αk (which leads to topological decoher-
ence [3]) naturally arise in the truncation of the central
system to a 2-level system, but are usually quite small in
realistic systems.

The ‘orthogonality blocking’ vector coupling λk is not
so easily dismissed - it leads to ‘precessional decoherence’,

which is often the major source of decoherence for sys-
tems at low T . Nevertheless we shall drop it, noting that
further work, in which it is included, will be of consider-
able interest when it comes to applications of these toy
models.

Finally, we note that the interaction V αβ
kk′ between bath

spins is often very small (particularly if the spins are nu-
clear, or if the bath spins are widely separated in space).
On longer time scales it does play an essential role (in
creating ’fluctuational decoherence’ [3]), but at shorter
timescales it can be treated as negligible.

Let us therefore assume that we now drop all these

interactions, so that V αβ
kk′ = 0, and that ϕk = αk = 0.

Then this reduced Central (CS) spin model is simply a
generalization of our ‘model 1’, in which the central spin
now couples simultaneously to all of the bath spins in-
stead of just the first one in the chain. It is known from
the solution to this reduced CS model [3] that decoher-
ence exists in it, provided one averages over the bath spin
states. However, if we do not make such an average, then
an initially pure state gradually distributes itself over the
N spins in the bath [5]. The time evolution will be pe-
riodic, just as for ‘model 1’, but now the period is ex-
ponentially long (with timescale ∝ expN1/3); after this
timescale, the information ‘comes back’ to reconstitute
the original central spin state.

Thus model 1 is just the maximum simplification that
one can make of the original CS model. Because model
1 is essentially just a 2-spin problem, we get the simple
results given above. If we generalize model 1 to allow cou-
pling of the central qubit to some reduced set of M bath
spins, then the basic result of the calculation will now be
clear - quantum correlations and entanglement will sim-
ply be shared over time between the central qubit and
the M bath spins, with entanglement between different
bath spins mediated by the central spin. Very accurate
solutions for a problem of this kind (which is very rel-
evant to experiment) can be found using entanglement
correlator methods [4, 5].

Model 2 is not a simplification of any central spin
model; instead, as already noted, it is just a special case
of the spin-boson model. If we had wanted to, we could
have simply derived the form of the Caldeira-Leggett [1]
spectral function J(ω) for this system, and proceeded
from there. Note however that if the number N of spins
in the chain is finite, we will also get, in model 2, the
quantum analogue of Poincaré recurrences - but in the
calculations given above, we have let N → ∞. In model
2, the spin wave modes with kn ≈ π

2 ,
3π
2 serve the purpose

of carrying quantum information away from the central
spin.

Obviously there is a lot more one can say about these
2 simple models. It will be of interest, for example, to
analyse the higher-spin ‘entanglement correlators’ [4, 5]
in model 2, and to see what happens as one adds fields
{hk} acting on the bath spins, and/or gradually ‘switches
on’ the interaction between the bath spins. Many models
are then possible, all of them generalizations of the 2
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simple central spin models discussed here.
Finally, we note that one can also generalize these 2

models to deal with a central system in which a parti-
cle hops around some site Hamiltonian. This is nothing
but a 1-dimensional ‘polaron’ model - with a spin bath
background, it is a type of spin polaron system. It is also
related to the original model discussed by Feynman for
quantum computation [24]. The central system now has
a Hamiltonian

Ho = −
∑
<ij>

[
tijc

†
i cj e

iA0
ij +H.c.

]
+
∑
j

εjc
†
jcj (40)

in which we also admit a Berry phase A0
ij connected to

hopping between nearest-neighbour sites.
The most general coupling to the spin bath then takes

the form

Vint =
∑N

k [
∑
j

F k
j (σk)ĉ

†
j ĉj

+
∑
ij

(Gk
ij(σk)ĉ

†
i ĉj +H.c.)] (41)

with both diagonal coupling F k
j and non-diagonal cou-

pling Gk
ij of the hoping particle to the k-th bath spin.

We see immediately that if we choose a simple site-
diagonal coupling F k(σk) on each site, making all these
couplings the same for each site, and also let the site
energy εj be the same for each site, then we have another
toy model for which concrete calculations can be done.
A related model was treated some time ago [23], in which
the line was closed to form a ring.

This work was supported by the National Science and
Engineering Council of Canada. We thank Tim Cox for
discussions.
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Appendix A: Appendix

Here we derive two key results used in the text, viz.,
the effect of the non-commutativity of the {Hn} in the
discussion of model 1, and the derivation of the solution
used for adiabatic switching for both models.

1. Neglecting Commutators

In (14), we noticed that the H ′
ns do not commute with

each other; in fact

[Hn, Hn′ ] = −2J2

N
(γ†

kn
− γkn

)(γ†
kn′ − γkn′ ). (A1)

We can use the Zassenhaus formula [26] to get

ei
∑

n Hnt =
∏
n

eiHnt
∏

n1>n2

e
t2

2 [Hn1
,Hn2

]

×
∏

n1≥n2≥n3

e
−it3

6 ([Hn1
,[Hn2

,Hn3
]]+[[Hn1

,Hn2
],Hn3

])....

(A2)

Although the Hamiltonian is not block diagonal in each

{γ†
kn
|0⟩, |0⟩} subspace, if we restrict our model to the

weak interaction region, i.e. J ≪ 1, we can omit
this commutator since it always comes into the final
expression in higher order. For example , for the∏

n1,n2
e

t2

2 [Hn1
,Hn2

] term, we could expand it in powers

of 1/N and take expectation values

trb

( ∏
n1>n2

e
t2

2 [H+
n1

,H+
n2

]
∏

n1,n2

e
t2

2 [H−
n1

,H−
n2

]

)

= trb

(
e
− J2t2

N

∑
n1>n2

(γ†
kn1

−γkn1
)(γ†

kn2
−γkn2

)
)

≈ 1− J4t4

N2
N(N − 1).

(A3)

As we can see in the main text this already happens in
the J2 order. Therefore in the weakly interacting region,
our calculation can be a good approximation to the exact
result.

2. Adiabatic Decoupling

The goal is to solve the asymptotic solution to the
following equation

a(t) = ∓
√
N

J(t) ḃ(t) (A4)

¨b(t)− (iEn + J̇(t)
J(t) )ḃ(t) +

J2(t)
N b(t) = 0. (A5)

We first study the evolution of the state (0, 1). Actu-
ally, the state (1, 0) can be treated in the same way just
with an opposite sign of J(t) and En. Then we have the
initial condition

b(t0) = 1 (A6)

ḃ(t0) = 0. (A7)

Define the following quantity for simplification, keeping

in mind that
J2
0

N is very small

ϵ =
J2
0

N
. (A8)

The general solution of the equation (31) is
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b(t) = C1e
−iEnt/2−iEn

√
1+4ϵ/E2

n/2(1 + ekt)i
√
ϵ/kf1(−ekt) + C2e

−iEnt/2+iEn

√
1+4ϵ/E2

n/2(1 + ekt)i
√
ϵ/kf2(−ekt) (A9)

Here we have

f1(x) = 2F1

(
1 +

iEn

2k
+

i
√
ϵ

k
− iEn

2k

√
1 +

4ϵ

E2
n

; − iEn

2k
+

i
√
ϵ

k
− iEn

2k

√
1 +

4ϵ

E2
n

; 1− iEn

2k

√
1 +

4ϵ

E2
n

; x

)
(A10)

f2(x) = 2F1

(
1 +

iEn

2k
+

i
√
ϵ

k
+

iEn

2k

√
1 +

4ϵ

E2
n

; − iEn

2k
+

i
√
ϵ

k
+

iEn

2k

√
1 +

4ϵ

E2
n

; 1 +
iEn

2k

√
1 +

4ϵ

E2
n

; x

)
(A11)

We set our initial time t0 → −∞, then ekt → 0 and

f1,2(−ekt) → 1. (A12)

Therefore

b(t0) = 1

= C1e
−iEnt0/2−iEnt0

√
1+4ϵ/E2

n/2 + C2e
−iEnt0/2+iEnt0

√
1+4ϵ/E2

n/2;
(A13)

ḃ(t0) = 1

= C1(−iEn/2− iEn

√
1 + 4ϵ/E2/2)e−iEnt0/2−iEnt0

√
1+4ϵ/E2

n/2

+ C2(−iEn/2 + iEn

√
1 + 4ϵ/E2

n/2)e
−iEnt0/2+iEnt0

√
1+4ϵ/E2

n/2

(A14)

Then we can get the constant C1, C2 as

C1 =
1

2
eiEnt0/2+iEnt0

√
1+4ϵ/E2

n/2(−1 + (1 +
4ϵ

E2
n

)−
1
2 ) (A15)

C2 =
1

2
eiEnt0/2−iEnt0

√
1+4ϵ/E2

n/2(1 + (1 +
4ϵ

E2
n

)−
1
2 ). (A16)

After we get the solution , we can study its behavior when t → ∞. We use the fact that when t → ∞

f1(−ekt) → AeiEnt/2−i
√
ϵt+ itEn

2

√
1+4ϵ/E2

n/2 (A17)

f2(−ekt) → BeiEnt/2−i
√
ϵt− itEn

2

√
1+4ϵ/E2

n/2 (A18)

with

A =
Γ(1− iEn

k

√
1 + 4ϵ/E2

n)Γ(1 +
iEn

k )

Γ(1 + iEn

2k − i
√
ϵ

k − iEn

k

√
1 + 4ϵ/E2

n)
× 1

Γ(1 + iEn

2k + i
√
ϵ

k − iEn

k

√
1 + 4ϵ/E2

n)
(A19)

B =
Γ(1 + iEn

k

√
1 + 4ϵ/E2

n)Γ(1 +
iEn

k )

Γ(1 + iEn

2k − i
√
ϵ

k + iEn

k

√
1 + 4ϵ/E2

n)
× 1

Γ(1 + iEn

2k + i
√
ϵ

k + iEn

k

√
1 + 4ϵ/E2

n)
. (A20)

Recalling that ϵ =
J2
0

N is a very small number, we
can expand the solution according in powers of ϵ. The
results are as follows:

Zeroth order : if ϵ = 0, then C1 → 0, C2 → 1, and

B →
γ(1 + iEn

k )γ(1 + iEn

k )

γ(1 + iEn

k )γ(1 + iEn

k )
→ 1. (A21)

Thus we find that b(t) → 1, which is exactly what we
expected.

First order Since
√

1 + 4ϵ
E2

n
≈ 1 + 2ϵ

E2 , we have

C1 → eiEnt0(1 +
iϵt

En
)(− ϵ

E2
) = − ϵ

E2
n

eiEnt0 (A22)

C2 → e−iϵt0/E
2
n(1− ϵ

En
) = 1− ϵ

E2
n

− iϵt

E2
n

. (A23)
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As a result

A → Γ(1− iEn

k
)Γ(1 +

iEn

k
)×

[
1− iϵ

kEn

(
Γ′(1− iEn/k)

Γ(1− iEn/k)
+ iΓ′(1)

)
+

ϵ

E2
n

(Γ′(1)− Γ′′2(1))
]

B → 1−
Γ′2(1 + iEn

k )

Γ(1 + iEn

k )2
ϵ

k2
+

Γ′′(1 + iE
k )

Γ(1 + iEn

k )

ϵ

k2
; (A24)

so that for b(t) we get the behaviour

b(t) → 1− ϵ

k2
eiEnt0Γ(1− iEn

k
)Γ(1 +

iEn

k
)− ϵ

E2
n

− iϵt

E2
n

− ϵ

k2
Γ′2(1 + iEn

k )

Γ(1 + iEn

k )2
+

ϵ

k2
Γ′′(1 + iE

k )

Γ(1 + iEn

k )
+O(ϵ

3
2 ) (A25)

Then the trace of tr(eiH+teiH−t) is |b(t)|2 − |a(t)|2.
Since |b(t)|2 − |a(t)|2 = 1, tr(eiH+teiH−t) = 2|b(t)|2 − 1.
For the adiabatic decoupling we mentioned in the main
text, we take k → 0, then d

dtJ(t) → 0. The system is
slowly decoupled from the bath. We use the fact that
when |z| → ∞

(ln Γ(z))′ = ln z +
z − 1/2

z
+O(z−2) (A26)

(ln Γ(z))′′ =
Γ′′(z)

Γ(z)
−
(
Γ′(z)

Γ(z)

)2

(A27)

(ln Γ(z))′′ =
1

z
+

1

2z2
+O(z−3) (A28)

(A29)

We can get the factor b(t) as well as the decoherence
factor κn for this subspace; one gets

|b(t)|2 → 2(1− ϵ

E2
n

) (A30)

and also that

κn(t) = tr(eiH
+
n teiH

−
n t) → 1− 2J2

0

NE2
n

(A31)

This is the result used in the main text to get κ(t) for
models 1 and 2.
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