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Abstract. This paper extends a low-rank tensor decomposition (LRTD) reduced order model (ROM)
methodology to simulate viscous flows and in particular to predict a smooth branch of solutions for the in-
compressible Navier-Stokes equations. Additionally, it enhances the LRTD-ROM methodology by introducing
a non-interpolatory variant, which demonstrates improved accuracy compared to the interpolatory method uti-
lized in previous LRTD-ROM studies. After presenting the interpolatory and non-interpolatory LRTD-ROM, we
demonstrate that with snapshots from a few different viscosities, the proposed method is able to accurately predict
flow statistics in the Reynolds number range [25, 400]. This is a significantly wider and higher range than state
of the art (and similar size) ROMs built for use on varying Reynolds number have been successful on. The paper
also discusses how LRTD may offer new insights into the properties of parametric solutions.

Key words. Model order reduction, variable Reynolds number, flow around cylinder, low-rank tensor de-
composition, proper orthogonal decomposition

1. Introduction. We are interested in reduced order modeling of the incompressible Navier-
Stokes equations (NSE), which are given by

(1.1)


∂u

∂t
+ (u · ∇)u− ν∆u+∇p = 0,

divu = 0,

in a bounded Lipschitz domain Ω and for t ∈ (0, T ) with a final time T > 0, and suitable initial
and boundary conditions. Here u and p are the unknown fluid velocity and pressure, and ν > 0
is the kinematic viscosity. We treat ν as a positive constant parameter that can take values from
the range [νmin, νmax]. The problem addressed in the paper consists of an effective prediction of
flow statistics for the entire range [νmin, νmax], based on the information learned from a set of flow
states u(tn, νk), p(tn, νk) (further called snapshots) computed for a finite sample of parameters
(training set) A = {νk}Kk=1 ⊂ [νmin, νmax] at given time instances {tn}Nn=1 ⊂ (0, T ].

Assuming u, p depends smoothly on ν, the problem outlined above can be, of course, ad-
dressed by numerically solving (1.1) for a sufficiently dense sample A and proceeding with inter-
polation. This strategy, however, may entail prohibitive computational costs of solving the full
order model multiple times for a large set of parameters and impractical data storage. Further-
more, for long-time simulations, such an interpolation strategy may fail to be sustainable given
that solution trajectories may (locally) diverge exponentially fast (although in 2D the system has
a finite dimensional attractor [5] which could be captured by a ROM).

For a fast and accurate computations of flow statistics for any ν ∈ [νmin, νmax], the present pa-
per considers a reduced order model (ROM) which uses a low-rank tensor decomposition (LRTD)
in the space–time–parameter space as the core dimension reduction technique. As such, LRTD
replaces SVD/POD, the standard reduction method in more traditional POD–ROMs. This al-
lows for the recovery of information about the parameter-dependence of reduced spaces from a
smaller set of pre-computed snapshots and to exploit this information for building parameter-
specific ROMs. The LRTD–ROM was recently introduced in [18] and further developed and
analyzed in [19, 20].

This is the first time LRTD–ROM is applied to the system (1.1) and, more generally, to
predict the dynamics of a viscous fluid flow. The paper extends the approach to the parameterized
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incompressible Navier–Stokes equations. We introduce a non-interpolatory variant of LRTD–
ROM. The method is applied to predict drag and lift coefficients for a 2D flow passing a cylinder
at Reynolds numbers Re ∈ [25, 400]. This branch of solutions contains the first bifurcation point
at around Re = 50 [4, 27], when the steady state flow yields to an unsteady periodic flow.

Predicting flow dynamics along a parameterized branch of solutions is a challenging task for
traditional ROMs, since building a universal low-dimensional space for a range of parameter(s)
may be computationally expensive if possible at all. Recent studies that develop or apply reduced
order modeling to parameterized fluid problems include [16, 22, 13, 13, 23]. In particular, several
papers addressed the very problem of applying ROMs to predict a flow passing a 2D cylinder
for varying Re number. The authors of [8] applied dynamic mode decomposition (DMD) with
interpolation between pre-computed solutions for 16 values of viscosity to predict flow for Re ∈
[85, 100]. In [1] the DMD with 14 viscosity values in the training set was applied to forecast
the flow around the first bifurcation point R = 50 (the actual Re numbers are not specified
in the paper). A stabilized POD–ROM was tested in [25] to predict the same flow for Re ∈
[100, 200]. In [10] the same problem of the 2D flow around a circular cylinder for varying Re
numbers was approached with a POD–ROM based on greedy sampling of the parameter domain.
Such POD–ROM required then offline computations of FOM solutions for 51 values of Re to
predict flow statistics for Re ∈ [75, 100]. Compared to these studies, the LRTD–ROM is able
to handle significantly larger parameter variations with nearly the same or smaller training sets.
For example, we found 13 values of Re log-uniformly sampled to be sufficient for LRTD–ROM
with reduced dimension of 20 to reasonably predict the same flow statistics for Re ∈ [25, 400].
This exemplifies the prediction capability of LRTD based projection ROM for fluid problems.

The remainder of the paper is organized as follows. Section 2 describes the FOM, which is
a second-order in time Scott-Vogelius finite element method on a sequence of barycenter refined
triangulations. Section 3 introduces the reduced order model. In section 4 the model is applied
to predict the 2D flow along a smooth branch of solutions.

2. Full order model. To define a full order model for our problem of interest, we consider
a conforming finite element Galerkin method: Denote by Vh ⊂ H1(Ω)d and Qh ⊂ L2

0(Ω) velocity
and pressure finite element spaces with respect to a regular triangulation Th of Ω. For Vh and
Qh we choose the lowest order Scott-Vogelius finite element pair:

Vh = {v ∈ C(Ω)2 : v ∈ [P2(T )]
2 ∀T ∈ Th},

Qh = {q ∈ L2(Ω) : q ∈ P1(T ) ∀T ∈ Th}.
(2.1)

The lowest order Scott-Vogelius (SV) element is known [2] to be LBB stable in 2D on barycenter
refined meshes (also sometimes referred to as Alfeld split meshes). Hence we consider Th such
that it is obtained by one step of barycenter refinement applied to a coarser triangulation. Since
div(Vh) ⊆ Qh, it is an example of a stable element which enforces the divergence free constraint
for the finite element velocity pointwise.

Denote by Ih(·) any suitable interpolation operator of velocity boundary values. We use
(f, g) :=

∫
Ω
f ·g dx notation for both scalar and vector functions f, g. We also adopt the notation

un
h and pnh for the finite element approximations of velocity and pressure at time tn = n∆t, with

∆t = T/N and n = 0, 1, 2, . . . , N .
The second order in time FE Galerkin formulation of (1.1) with u = g on ∂Ω reads: Find

un
h ∈ Vh, u

n
h = Ih(g(tn)) on ∂Ω and pnh ∈ Qh ∩ L2

0(Ω), for n = 1, 2, . . . , N , such that satisfying

(2.2)
(3un

h − 4un−1
h + un−2

h

2∆t
,vh

)
+ ((2un−1

h − un−2
h ) · ∇un

h,vh)

+ ν(∇un
h,∇vh)− (pnh,divvh) + (divun

h, qh) = 0,
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for all vh ∈ Vh, s.t. vh = 0 on ∂Ω, qh ∈ Qh, and u0
h = u(0). The first step for n = 1 is done by

the first order implicit Euler method.
The stability and convergence of the method can be analyzed following textbook arguments

(e.g. [9, 7]), implying the estimate

(2.3) max
n=1,...,N

∥un
h − u(tn)∥2L2(Ω) +∆tν

N∑
n=1

∥∇(un
h − u(tn))∥2L2(Ω) ≤ C(u, p, ν)(|∆t|4 + h4),

where h = maxT∈Th
diam(T ), and C(u, p, ν) is independent on the mesh parameters but depends

on the regularity (smoothness) of u and p. Under extra regularity assumptions, the optimal order
velocity and pressure estimates follow in the L∞(L2)-norms [14]:

(2.4) max
n=1,...,N

(∥un
h − u(tn)∥L2(Ω) + h∥pnh − p(tn)∥L2(Ω)) ≤ C(u, p, ν)(|∆t|2 + h3).

3. Reduced order model. The LRTD–ROM is a projection based ROM, where the so-
lution is sought in a parameter dependent low dimensional space. Since the divergence-free
finite elements are used for the FOM model, the low dimensional ROM space is a velocity space
Vℓ(ν) ⊂ Vh, dim(Vℓ(ν)) = ℓ ≪ M , such that

(3.1) divvℓ = 0 for all vℓ ∈ Vℓ(ν).

Thanks to (3.1), the pressure does not enter the projected equations and the reduced order model
reads: Find un

ℓ ∈ Vℓ(ν), for n = 1, 2, . . . , N , such that satisfy

(3.2)
(3un

ℓ − 4un−1
ℓ + un−2

ℓ

2∆t
,vℓ

)
+ ((2un−1

ℓ − un−2
ℓ ) · ∇un

ℓ ,vℓ) + ν(∇un
ℓ ,∇vℓ) = 0,

for all vℓ ∈ Vℓ(ν), and u0
ℓ = Pℓu(0), where Pℓ is a projector into Vℓ(ν). Similar to the FOM,

the implicit Euler method is used for n = 1. Once the velocities un
ℓ are known, the corresponding

pressure functions pnℓ ∈ Qh can be recovered by a straightforward post-processing step, see, e.g.
[3].

The critical part of the ROM is the design of a parameter-specific low-dimensional space
Vℓ(ν). This is done within a framework of a LRTD–ROM (sometimes referred to as Tensor
ROM or TROM), which replaces the matrix SVD – a traditional dimension reduction technique
– by a low-rank tensor decomposition. The application of tensor technique is motivated by
a natural space–time–parameters structure of the system. This opens up possibilities for the
fast (online) finding of an efficient low-dimensional ν-specific ROM space for arbitrary incoming
viscosity parameter ν. The resulting LRTD–ROM consists of (3.2), offline part of applying
LRTD, and online part with some fast linear algebra to determine Vℓ(ν). Further details of
LRTD–ROM are provided next.

3.1. LRTD–ROM. Similar to the conventional POD, on an offline stage a representative
collection of flow velocity states, referred to as snapshots, is computed at times tj and for pre-
selected values of the viscosity parameter:

uh(tj , νk) ∈ Vh, j = 1, . . . , N, k = 1, . . . ,K.

Here uh are solutions of the full order model (2.2) for a set of K viscosity parameters νk ∈
[νmin, νmax].

A standard POD dimension reduction consists then in finding a subspace Vpod
ℓ ⊂ Vh that

approximates the space spanned by all observed snapshots in the best possible way (subject to

3



the choice of the norm). This way, the POD reduced order space captures cumulative information
regarding the snapshots’ dependence on the viscosity parameter. Lacking parameter specificity,
Vpod

ℓ and so POD–ROM may lack robustness for parameter values outside the sampling set and
may necessitate ℓ and K to be large to accurately represent the whole branch of solutions. This
limitation motivates the application of a tensor technique based on low-rank tensor decomposition
to preserve information about parameter dependence in reduced-order spaces.

Denote by the upright symbol uj(ν) ∈ RM the vector of representation for uh(tj , ν) in the
nodal basis. Recalling that the POD basis can be defined from the low-rank approximation
(given by a truncated SVD) of the snapshot matrix, one can interpret LRTD as a multi-linear
extension of POD: Instead of arranging snapshots in a matrix Φpod, one seeks to exploit the
tensor structure of the snapshots domain and to utilize the LRTD instead of the matrix SVD for
solving a tensor analogue of the low-rank approximation problem.

For LRTD–ROM, the coefficient vectors of velocity snapshots are organized in the multi-
dimensional array

(3.3) (Φ):,k,j = uj(νk),

which is a 3D tensor of size M ×K ×N . The first and the last indices of Φ correspond to the
spatial and temporal dimensions, respectively.

Unfolding of Φ along its first mode into a M×NK matrix and proceeding with its truncated
SVD constitutes the traditional POD approach. In the tensor ROM the truncated SVD of the
unfolded matrix is replaced with a truncated LRTD of Φ.

Although the concept of tensor rank is somewhat ambiguous, there is an extensive literature
addressing the issue of defining tensor rank(s) and LRTD; see e.g. [11]. In [18, 20], the tensor
ROM has been introduced for three common rank-revealing tensor formats: canonical polyadic,
Tucker, and tensor train. The LRTD in any of these formats can be seen as an extension of the
SVD to multi-dimensional arrays. While each format has its distinct numerical and compression
properties and would be suitable, we use Tucker for the purpose of this paper.

We note that the LRTD approach is effectively applicable for multi-parameter problems. In
case of a higher parameter space dimension one may prefer a hierarchical Tucker format [12] such
as tensor train to avoid exponential growth of LRTD complexity with respect to the parameter
space dimension.

In the Tucker format [26, 17] one represents Φ by the following sum of direct products of
three vectors:

(3.4) Φ ≈ Φ̃ =

M̃∑
m=1

K̃∑
k=1

Ñ∑
n=1

(C)m,k,nw
m ⊗ σk ⊗ vn,

with wm ∈ RM , σk ∈ RK , and vn ∈ RN . Here ⊗ denotes the outer vector product. The
numbers M̃ , K̃, and Ñ are referred to as Tucker ranks of Φ̃. The Tucker format delivers an
efficient compression of the snapshot tensor, provided the size of the core tensor C is (much)

smaller than the size of Φ, i.e., M̃ ≪ M , K̃ ≪ K, and Ñ ≪ N .
Denote by ∥Φ∥F the tensor Frobenius norm, which is the square root of the sum of the

squares of all entries of Φ. Finding the best approximation of a tensor in the Frobenius norm
by a fixed-ranks Tucker tensor is a well-posed problem with a constructive algorithm known to
deliver quasi-optimal solutions [17]. Furthermore, using this algorithm, which is based on the

truncated SVD for a sequence of unfolding matrices, one finds Φ̃ in the Tucker format that
satisfies

(3.5)
∥∥Φ̃−Φ

∥∥
F
≤ ε̃

∥∥Φ∥∥
F

4



for a given ε̃ > 0 and the sets {wm}, {σk}, {vn} are orthogonal. Corresponding Tucker ranks
are then recovered in the course of factorization. The resulting decomposition for ε̃ = 0 is also
known as Higher Order SVD (HOSVD) of Φ [6].

For arbitrary but fixed ν ∈ [νmin, νmax], one can ‘extract’ from Φ̃ specific (local) information
for building Vℓ(ν). We consider two approaches herein: The first one adopts interpolation
between available snapshots but is done directly in the low-rank format, while another avoids
the interpolation step.

3.1.1. Interpolatory LRTD–ROM. To formulate interpolatory LRTD–ROM, we need
several further notations. We assume an interpolation procedure

(3.6) χ : [νmin, νmax] → RK

such that for any smooth function g : [νmin, νmax] → R, I(g) :=
∑K

k=1 χ(ν)kg(νk) defines an
interpolant for g. Our choice is the Lagrange interpolation of order p:

(3.7) χ(ν)k =


p∏

m=1,
m ̸=k

(νim − ν)
/ p∏

m=1,
m̸=k

(νim − νk), if k = ik ∈ {i1, . . . , ip},

0, otherwise,

where νi1 , . . . , νip ∈ [νmin, νmax] are the p closest to ν viscosity values from the training set.
The ν-specific local reduced space V ℓ(ν) is the space spanned by the first ℓ left singular

vectors of the matrix Φ̃(ν), defined through the in-tensor interpolation procedure for Φ̃:

(3.8) Φ̃(ν) = Φ̃×2 χ(ν) ∈ RM×N ,

where ×2 denotes the tensor-vector multiplication along the second mode.
Consider a nodal basis denoted as ξjh in the finite element velocity spaceVh = span{ξ1h, . . . , ξMh }.

The corresponding finite element LRTD–ROM space is then

Vℓ(ν) = {vh ∈ Vh : vh =

M∑
i=1

ξih(x)vi, for (v1, . . . , vM )T ∈ V ℓ(ν)},

where V ℓ(ν) = range(S(ν)(1 : ℓ)), for {S(ν),Σ(ν),V(ν)} = SVD(Φ̃(ν)).

(3.9)

In section 3.1.3 we will discuss implementation details omitted here.

3.1.2. Non-interpolatory LRTD–ROM. In non-interpolatory LRTD–ROM, the basis of
the local ROM space is built as an optimal ℓ-dimensional space approximating the space spanned
by snapshots corresponding to several nearest in-sample viscosity values. For this we need the
extraction procedure

(3.10) Φ̃k = Φ̃×2 ek ∈ RM×N ,

so that Φ̃k is the k-th space-time slice of Φ̃.
As in the interpolatory LRTD–ROM, let νi1 , . . . , νip ∈ [νmin, νmax] be the p closest to ν

sampled viscosity values. Then the ν-specific local reduced space V ℓ(ν) is the space spanned by

the first ℓ left singular vectors the following low-rank matrix Φ̃(ν):

(3.11) Φ̃(ν) = [Φ̃i1 , . . . , Φ̃ip ] ∈ RM×pN .

The corresponding finite element LRTD–ROM space is defined in the same way as in (3.9).

A remarkable feature of the LRTD–ROM is that finding the basis of V ℓ(ν), i.e. finding the

left singular vectors of Φ̃(ν), does not require building or working with the ’large’ matrix Φ̃(ν).
For any given ν ∈ [νmax, νmin] it involves calculations with lower dimension objects only and so
it can be effectively done online. This implementation aspect of LRTD–ROM is recalled below.
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3.1.3. Implementation. The implementation of the Galerkin LRTD-ROM follows a two-
stage procedure.

Offline stage. For a set of sampled viscosity parameters, the snapshot tensor Φ is com-
puted and for chosen ε > 0 the truncated HOSVD is used to find Φ̃ satisfying (3.5). This first

stage defines the universal reduced space Ṽ , which is the span of all w-vectors from the Tucker
decomposition (3.4):

(3.12) Ṽ = span
{
w1, . . . ,wM̃

}
⊂ RM .

Hence the dimension of Ṽ is equal to the first Tucker rank M̃ and w1, . . . ,wM̃
is an orthonormal

basis. At this point the system (2.2) is ‘projected’ into Ṽ , i.e. the projected velocity mass,
stiffness matrices, initial velocity, and the projected inertia term are passed to the online stage.

Remark 1 (Nonlinear terms). To handle the inertia term, we benefit from its quadratic
non-linearity. More precisely, we compute a sparse 3D array

N ∈ RM×M×M , with entries Nijk = (ξi · ∇ξj , ξk),

and project it into Ṽ by computing

Ñ = N×1 W ×2 W ×3 W,

where W = [w1, · · · ,wM̃
] ∈ RM×M̃ and ×i is now the tensor-matrix product along i-th mode.

The M̃ × M̃ × M̃ array Ñ is passed to the online stage.
An alternative, which we do not pursue here, would be the application of a LRTD–DEIM

technique [20] to handle the nonlinear terms.

Online stage. The online stage receives the projected matrices, and the 3D array Ñ. From

the LRTD (3.4) it receives the core tensor C and the matrix S = [σ1, . . . ,σK̃ ]T .
To find V ℓ(ν) for any ν ∈ [νmin, νmax], one first computes a local core matrix

(3.13) C(ν) =

C×2 (Sχ(ν)) ∈ RM̃×Ñ
interpolatory case,[

C×2 (Sei1) , . . . ,C×2

(
Seip

)]
∈ RM̃×pÑ

non-interpolatory case.

and its thin SVD, C(ν) = UcΣcV
T
c . It can be easily seen that

(3.14) Φ̃(ν) = (WUc) ΣcY
T ,

with an orthogonal matrix Y. Since the local ROM space V ℓ(ν) is spanned by the first ℓ singular

vectors of Φ̃(ν) and (3.14) is the SVD of Φ̃(ν), the coordinates of the local reduced basis in the

universal basis {wi}M̃i=1 are the first ℓ left singular vectors of C(ν), i.e. the first ℓ columns of Uc.

The pre-projected initial velocity, mass and stiffness matrices and Ñ are projected further into
V ℓ(ν). The projection is done through multiplication with matrix Uc. This allows the execution
of the proposed ROM (3.2).

If the ROM needs to be rerun for a different value of ν, only calculations starting with (3.13)
need to be redone, without any reference to the offline stage data.

We summarize the structure of LRTD-ROM in Table 1. The intermediate finite element
space Ṽh is the finite element counterpart of the universal space Ṽ from (3.12). The basis

{wi
h}M̃i=1 of Ṽh is given in terms of its coordinates in the nodal basis {ξih}Mi=1. In turn, the basis

{ui
h(ν)}ℓi=1 of the ν-specific local space Vℓ(ν) is given by its coordinates in {wi

h}M̃i=1. Hence, FE

6



Offline part Online part︷ ︸︸ ︷ ︷ ︸︸ ︷
−LRTD→ −LRLA→

Spaces Vh ⊃ Ṽh ⊃ Vℓ(ν)
q q q

span{ξih}Mi=1 span{wi
h}M̃i=1 span{ui

h(ν)}ℓi=1

Matrices FOM Projected Double-projected

matrices matrices matrices

Table 1
Data structure of the LRTD–ROM. LRLA stands for “low-rank linear algebra”, which means that all calcu-

lations are done with low-dimension objects.

matrices are first projected on Ṽh during the offline phase. They are stored online and double-
projected for any incoming ν before executing the ROM (3.2). In general, it holds dim(Vh) ≫
dim(Ṽh) ≫ dim(Vℓ(ν)), e.g. in the example from the next section we have dim(Vh) = 121, 064,

dim(Ṽh) = 404, and dim(Vℓ(ν)) = 20.

4. Numerical tests. We now test the proposed LRTD–ROM on a benchmark test for
incompressible Navier-Stokes flow. After describing the test problem setup, FOM and ROM
construction details, we test the proposed ROM’s accuracy in predicting a branch of solutions
for the Navier-Stokes equations for Re in [25,400] using snapshots from solutions using 13 and
25 different viscosities.

4.1. Test problem description. The test problem we consider is 2D channel flow past a
cylinder [24]. The domain is [0, 2.2]×[0, 0.41], which represents a rectangular channel, and with
a cylinder centered at (0.2, 0.2) having radius 0.05, see Figure 1.

0.2

0.2
0.1 0.41

2.2

Fig. 1. Shown above is the domain for the flow past a cylinder test problem.

There is no external forcing for this test, no-slip boundary conditions are enforced on the
walls and cylinder, and an inflow/outflow profile

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
y(0.41− y),

u2(0, y, t) = u2(2.2, y, t) = 0

is enforced as a Dirichlet boundary condition. Of interest for comparisons and accuracy testing

7



are the predicted lift and drag, and for these quantities we use the definitions

cd(t) = 20

∫
S

(
ν
∂utS (t)

∂n
ny − p(t)nx

)
dS,

cl(t) = 20

∫
S

(
ν
∂utS (t)

∂n
nx − p(t)ny

)
dS,

where utS is the tangential velocity, S the cylinder, and n = ⟨nx, ny⟩ is the outward unit normal
vector. For the calculations, we used the global integral formulation from [15].

4.2. Full order model simulations. To study the performance of the LRTD–ROM with
respect to the spatial mesh refinement, we consider three regular triangulations Th of Ω. The finest
triangulation consists of 62,805 triangles, while the inter-medium and the coarsest meshes have
30,078 and 8,658 triangles; the coarsest mesh is illustrated in Figure 2. We note the triangulations
are constructed by first creating a Delaunay triangulation followed by a barycenter refinement
(Alfeld split). All FOM simulations used the scheme (2.2) with time step ∆t = 0.002, and lowest
order Scott-Vogelius elements as described in section 2. With this choice of elements, the three
meshes provided 252,306, 121,064 and 35,020 total spatial degrees of freedom(dof). For a given
viscosity ν, the corresponding Stokes solution was found with this element choice and mesh to
generate the initial condition.

Fig. 2. Shown above is the coarsest mesh used for the flow past a cylinder test simulations.

The viscosity parameter sampling set consists of K viscosity values log-uniformly distributed
over the interval [2.5 · 10−4, 4 · 10−3], which corresponds to 25 ≤ Re ≤ 400. K = 25 was the
maximum value we used for training the ROM, and results are shown below for varying K.

All FOM simulations were run for t ∈ [0, 6], and by t = 5 the von Karman vortex street was
fully develop behind the cylinder for Re ⪆ 50. For Re < 50, the flows had reached a steady state
by t = 5. For each ν from the sampling set, 251 velocity snapshots were collected for t ∈ [5, 6]
in uniformly distributed time instances. This resulted in a M ×K ×N snapshot tensor Φ, with
M=dof for each mesh, K different viscosities, and N = 251. We note that the Stokes extension
of the boundary conditions (which is very close to the snapshot average but preserves an energy
balance [21]) was subtracted from each snapshot used to build Φ.

4.3. ROM basis and construction. Table 2 shows the dependence of the tensor Φ̃ ranks
on the targeted compression accuracy ε and the FOM spatial resolution. The first rank determines
the universal space dimension. As expected, higher ranks are needed for better accuracy. At the
same time the dependence on spatial resolution is marginal.

Figure 3 illustrates on why finding ν-dependent local ROM spaces through LRTD is benefi-
cial compared to employing a POD space, which is universal for all parameter values. The faster
decay of singular values σ(Φ̃(ν)) allows for attainment of the desired accuracy using lower ROM
dimensions compared to the POD–ROM. At the same time, the decay rate of σ(Φ̃(ν)) depends
on ν with faster decay observed for larger viscosity values, i.e. smaller Reynolds numbers. Un-
surprisingly, the snapshots collected for Re < 50 show very little variability, indicated by the
abrupt decrease of σn for n > 1, since the flow approaches an equilibrium state in these cases.

8



Mesh 1 Mesh 2 Mesh 3
target accuracy / M 35020 121064 252306

ε = 10−1 [15,12 ,7] [15,11,7] [18,13,8]
ε = 10−2 [74,21,40] [78,21,40] [89,21,45]
ε = 10−3 [190 ,22 ,80] [213,22,85] [239,22,93]
ε = 10−4 [365,23,113] [404,23,124] [444,23,135]

Table 2
HOSVD ranks of the ε-truncated LRTD for the snapshot tensor.

Fig. 3. Singular values decay for POD matrix and local LRTD matrix for 10 parameter values. Left and
right panels show result for interpolatory and non-interpolatory LRTD–ROMs, respectively.

A plot of the first 7 modes for non-interpolatory LRTD–ROM using ϵ = 10−4 with Re =110
and 380, and for the full POD constructed with data from tests using all the parameter values,
are shown in figure 4. We observe that for the LRTD–ROM cases, the modes quickly go from
larger scales in the first few modes to much finer scales by mode 7, whereas for the full POD, the
first 7 mode are all still at larger scales. This is consistent with figure 3, which shows the decay
of singular values is much slower, meaning more modes are needed to characterize the space.

Table 3
Relative L2 norms of the errors between FOM and ROM solutions for 3 values of Re numbers that are not

in the training set. The results are for ℓ = 20.

Re=30 Re=110 Re=380
K 13 25 13 25 13 25

interp. LRTD–ROM 4.1e-7 2.1e-8 1.7e-3 1.7e-3 1.9e-2 1.6e-2
non-interp. LRTD–ROM 1.6e-6 2.2e-7 2.8e-3 2.2e-3 1.8e-2 1.5e-2

POD–ROM 7.6e-5 5.5e-5 5.6e-2 5.2e-2 1.6e-1 9.0e-2

4.4. ROM accuracy. We next study the dependence of the LRTD–ROMs’ solution ac-
curacy on the parameter sampling and the ROM design. We consider two training sets with
K = 13 and K = 25 viscosity parameters log-uniformly sampled in the parameter domain, i.e.

νi = νmin

(
νmax

νmin

)(i−1)/K
for i = 1, . . . ,K. Other parameters of the ROMs were ε = 10−4 and ℓ = 20

(dimension of the ROM space). We run ROM simulations for Re = 100, which corresponds to
ν = 10−3 from the training sets, and for Re ∈ {30, 110, 380}, which are viscosity parameters
not in the training sets. For the initial flow velocity we use linear interpolation between known
velocity values at the two closest points from the training set at t = 5.

Table 3 shows the relative L2((5, 6)×Ω) error in three different norms for both interpolatory
and non-interpolatory versions of the LRTD–ROM (for both K = 13 and K = 25) and compares
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Fig. 4. Modes 2,3,4,5,6,7 (from top to bottom) for (left) Re=110 POD-ROM, (center) Re=380 POD-ROM,
and (right) universal basis

both to the POD–ROM. We observe that the POD–ROM is worse in all cases, often by an
order of magnitude or more. The interpolatory LRTD–ROM is somewhat more accurate in this
measure than the non-interpolatory one for Re = 110 and Re = 30 but has similar accuracy at
Re = 380.

In addition to accuracy in norms, we are interested in the ability of the tensor ROMs to
predict critical statistics such as drag and lift coefficients for the cylinder. We are interested
in the prediction accuracy of the method both outside the training set and beyond the time
interval used to collect the snapshots. The results for Re = 100 and K = 13 are shown in
Figure 5. We note that Re = 100 is in the training set, and observe that the interpolatory
and non-interpolatory LRTD-ROM results were quite good, and match the FOM flow lift and
drag quite well. The POD-ROM results, however, were very inaccurate. As discussed above,
the POD-ROM may need many more modes to be able to capture finer scale detail that the
LRTD-ROMs are able to capture.

The results for Re = 110 and Re = 380 are presented in Figure 6 for 13 parameters in the
training set and in Figure 7 for 25 parameters in the training set. The plots are for 6 ≤ t ≤ 8,
since we are not starting with the “correct” flow state and the system may take some time to
reach the quasi-equilibrium (periodic) state. We observe that for both K = 13 and K = 25,
POD-ROM results are inaccurate. For K = 25, both interpolatory and non-interpolatory results

10



Fig. 5. Prediction of lift and drag coefficients for Re=100 (which is in the training set). Number of
parameters in the training set is K = 13, and ℓ = 20.

Fig. 6. Prediction of lift and drag coefficients for Re=110 and Re=380 not from the training set. Number
of parameters in the training set is K = 13, and ℓ = 20.

are reasonably accurate, although for Re = 380 the drag predictions show some slight error. For
K = 13, results are less accurate; in the latter case, we observe non-interpolatory LRTD-ROM
results to be slightly better compared to interpolatory LRTD-ROM (similar accuracy is found
for total kinetic energy plots, which are omitted).

Increasing the dimension of the LRTD–ROM improves the accuracy, as should be expected.
The effect is illustrated in figure 8, which shows the results for the non-interpolatory LRTD–ROM
with ℓ = 20 and ℓ = 30. While the results for the lift prediction are almost indistinguishable, for
the drag coefficient ℓ = 30 has the ROM and FOM values match, while ℓ = 20 is seen to slightly
overshoot minimal and maximal values for Re = 380. Thus for further simulations we chose the
non-interpolatory LRTD–ROM with ℓ = 30, and trained on the set of 25 parameters.
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Fig. 7. Prediction of lift and drag coefficients for Re=110 and Re=380 not from the training set. Number
of parameters in the training set is K = 25, and ℓ = 20.

Fig. 8. Prediction of drag and lift coefficients for Re = 380 with non-interpolatory LRTD–ROM dimensions
ℓ = 20 and ℓ = 30. Number of parameters in the training set is K = 25.

4.5. Predicting an entire branch of solutions. We are interested in applying the ROM
to approximate the flow statistics along the whole branch of solutions, and for these tests we use
non-interpolatory LRTD–ROM with ℓ = 30 and K = 25. To this end, we run the LRTD-ROM
for 99 viscosity values log-uniformly sampled in our parameter domain and calculate the solution
up to final T = 50 starting from an initial condition which is interpolated from snapshots at
t0 = 5. Figure 9 shows the predicted lift and drag coefficient’s variation for varying Re, after
quasi-periodic state is reached in each flow. We find the transition point from steady-state to
periodic flow to be near Re = 48, which agrees closely with the literature [4, 27].

We next consider the spectrum of the flow statistics by computing the Fourier transform of
the lift coefficient for time interval t ∈ [10, 50]. In Figure 10, this is shown for Re=50, 100, 200
and 400. For Re = 50, only one spike is observed, indicating a single dominant frequency. For
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Fig. 9. Minimal and the maximal values of drag and lift coefficients along the smooth branch of solutions.

Fig. 10. Shown below are spectrums of the lift coefficients for varying Re.

Re = 100, some smaller spikes are shown in the plot, but they are nearly 3 orders of magnitude
smaller than the largest spike and have minimal effect on the solution’s periodicity. By Re = 200,
the second biggest spike is a little over two orders of magnitude smaller than the biggest one,
and by Re = 400 there is less than two orders of magnitude difference suggesting that this flow
is moving away from a purely periodic flow to one with more complex behavior in time.

Besides building more effective ROM, the LRTD may offer new insights into the properties
of parametric solutions. To give an example, let us consider the HOSVD singular vectors of Φ.
Figure 11 shows several dominant vectors in time and parameter directions, which are the first
several HOSVD singular vectors of the snapshot tensor in the time and parameter modes. Larger
amplitudes of parameter singular vectors with Re number increase suggest higher sensitivity of
flow patterns to the variation of the viscosity parameter, for flows with larger Reynolds numbers.

The first singular vectors in time and space direction are approximately constant, cf. Fig. 11.
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Fig. 11. First four HOSVD singular vectors in time and parameter modes.

Fig. 12. Frobenius norms of space-time stuc-
tures Φk from decomposition (4.1).

This indicates that the parametric solution pos-
sesses dominant space–parameter and space–time
states which are persistent in time and Reynolds
number, respectively. Let us focus on persistence
in Reynolds number. For HOSVD, the σ vectors
from (3.4) are the first K̃ singular vectors of the
second mode unfolding of Φ, and so Φ can be writ-
ten as the sum of K direct products:

(4.1) Φ =

K∑
k=1

Φk ⊗ σk,

where Φk ∈ RM×N are space–time states (note that
these are not actual physical states) whose evolu-
tion in Reynolds number is determined by σk. Ma-
trices Φk are mutually orthogonal in the sense of
the element-wise product, tr(ΦkΦ

T
j ) = 0 for k ̸= j, and since ∥Φk∥F equals the k-th singular

value of the second mode unfolding of Φ, it also holds that

∥Φ1∥F ≥ ∥Φ2∥F ≥ · · · ≥ ∥ΦK∥F .

Figure 12 shows the norms of the persistent space–time states. We see that Φ1 is not overly
dominating and about 20 persistent space–time states contribute to the parametric solution.
Using orthogonality of σk one finds from (4.1) that

(4.2) Φk = Φ×2 σ
k.

Therefore, Φk are easily recovered for k = 1, . . . , K̃ once σk are provided by HOSVD LRTD.
From (4.2) and the observation that σ1 is nearly constant in Re, we conclude that the dominant
space–time state Φ1 is close to a scaled average of the parametric solution in Reynolds number
(similar conclusion holds for the dominant space–parameter state — it is close to a scaled time
averaged solution).

To gain further insight into the structure of Φ1, we display in Figure 13 the dominant spatial
modes of Φ1. These are obtained by computing the SVD of Φ1. Singular values of Φ1 drop
rapidly so that the first spatial mode, shown in Figure 13, captures nearly 99.9% of the energy.

5. Conclusions. The LRTD-ROM, an extension of a POD-ROM for parametric problems,
retains essential information about model variation in the parameter domain in a reduced order
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Fig. 13. Shown above are the first four spatial modes, taken from Φ1, the first space-time persistent state.

format. When applied to the incompressible Navier-Stokes equations parameterized with the
viscosity coefficient, the LRTD-ROM facilitates accurate prediction of flow statistics along a
smooth branch of solutions. Moreover, it enables the identification of parameter structures that
may not be apparent through standard POD analysis.

Previously, LRTD-ROMs have demonstrated success in addressing multi-parameter linear
and scalar non-linear problems. A natural next step is to extend it to multi-parameter problems
of fluid dynamics. Additionally, current research efforts are directed towards developing LRTD-
ROMs based on sparse sampling of the parametric domain.
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