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Abstract

Since the surge of data in materials science research and the advancement in
machine learning methods, an increasing number of researchers are introduc-
ing machine learning techniques into the next generation of materials discovery,
ranging from neural-network learned potentials to automated characterization
techniques for experimental images. In this snapshot review, we first summa-
rize the landscape of techniques for soft materials assembly design that do
not employ machine learning or artificial intelligence and then discuss spe-
cific machine-learning and artificial-intelligence-based methods that enhance the
design pipeline, such as high-throughput crystal-structure characterization and
the inverse design of building blocks for materials assembly and properties.
Additionally, we survey the landscape of current developments of scientific soft-
ware, especially in the context of their compatibility with traditional molecular
dynamics engines such as LAMMPS and HOOMD-blue.
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1 Introduction

The design of soft materials assemblies with targeted structures and properties requires
the engineering of building blocks and interactions that can spontaneously assemble a
target material. Before the upsurge of computational capabilities, many studies of soft
materials assemblies followed a similar framework: identify a few parameters (building
block properties, densities, etc.), run forward simulations varying the parameters, out-
line phase diagrams based on these parameters, and iterate. This “forward approach”
has provided researchers with valuable insights and tools for exploring soft materi-
als systems: phase diagrams for systems of hard spheres, anisotropic particles with
polyhedral shapes, and block copolymers; rare-event sampling techniques; and local
bond-order parameters to identify crystal motifs and structures. In recent decades,
the exponential growth of computational power has widened the parameter space that
can feasibly be searched, and researchers are incorporating machine learning and arti-
ficial intelligence (ML/AI) techniques to enhance their materials assembly pipelines
(Fig. 1). Not only do these advanced tools enable us to more thoroughly probe broad
questions and challenges in the field—for example, the competing nature of enthalpy
and entropy in determining structure formation, dynamics, and materials properties
in physical systems—but they also allow for the pursuit of reverse- or inverse-design
approaches enabled by numerical optimization. Moreover, the study of soft materials
(i.e., composed of mesoscopic building blocks, e.g., nanoparticles, colloids, or block
copolymers) serves as a coarse-grained version of nano- or atomic-scale phenomena and
can aid in understanding how to manipulate and design significantly more complicated
building blocks (e.g., macromolecules, such as proteins).

Inverse-design, 
ML-enabled molecular dynamics engine

Forward approach,
standard molecular dynamics engine

soft materials
building blocks

assembled
structures

materials
properties

particle 
shapes

interaction potential

local descriptors

global descriptors

Fig. 1 Soft materials design pipeline. Input parameters for building blocks can be patchy par-
ticles, sphere unions, and polyhedral shapes with any arbitrary pair potential functions. To quantify
materials structures and properties, a variety of descriptors can be used. Here we depict bond-order
parameters and OVITO’s adaptive-CNA for local descriptors, radial distribution functions and bond-
orientational order diagrams (BOODs) as examples for global descriptors.
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Many prior review articles provide an overview of different ML/AI techniques that
have been applied in soft materials design, such as active and transfer learning [1]
or neural networks for structural representation [2] and property design [3]. These
reviews focus heavily on novel ML algorithms and their application to soft matter. By
contrast, this snapshot review will discuss the physical inspiration and insights that can
be gleaned from adding ML/AI approaches to the quest for designing self-assembled
soft materials. Given the modular nature of the soft-matter design pipeline, various
ML/AI strategies can be applied to different stages of the process, and a combination
of ML/AI and ML/AI-free strategies can be used to strike a balance between high
predictive power and limited computational resources.

Firstly, we discuss the current state of ML-free techniques developed over many
decades to study soft matter in both simulation and experiment. Secondly, we describe
ML/AI-aided methods for different facets of materials assembly (also shown in Fig. 2):
novel descriptors for quantifying local or global structure, an inverse-design framework
aided by automatic differentiation, and materials property design aided by ML/AI.
Lastly, we discuss the capabilities of various molecular-dynamics (MD) engines in
incorporating ML tools and summarize existing ML-based descriptors by their soft-
ware, methods, and their accessibility to researchers based on the computing resources
needed. We intend to elucidate the state of the available methods in the field, give con-
text for the development of the plethora of new tools created in the last few decades,
and chart out how we can use these in the study of soft materials design in the future.

Soft Materials Design

Inverse MethodsForward Methods

1. Predicting 
crystal structure

Sec. 2.1 

2. Exploring free 
energy landscape

Sec. 2.1   

3. Enhanced 
Sampling
Sec. 2.4

1. Coarse
graining 
Sec. 2.2 

2. Targeting 
structure with 

order parameters
Sec. 2.3, Sec. 3 

3. Optimizing 
for materials 
properties

Sec. 4

Fig. 2 Overview of different forward and inverse methods for soft-materials design.

2 ML/AI-free materials design

2.1 Crystal structure prediction

In computer simulations of soft materials assembly, an approximation of interparticle
interactions is created and employed to predict the structure and properties of the
materials system. In such forward approaches, building blocks and interactions may
also be tuned experimentally. While interactions among all components in a system
can be well-defined, a-priori knowledge of the stable or metastable crystal structures
that form is not straightforwardly obtained. Crystal structure prediction stands as
one of the central challenges in materials systems and is necessary for controlling
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polymorphism in, for example, pharmaceutical research [4]. Here we discuss general
structure-prediction methods used in modeling—not only of atomistic systems—but
in particular of soft matter systems.

Systems explore their free-energy landscape through dynamics, yet despite the
ergodic hypothesis, molecular simulations may not be able to access the entirety of
their phase space within a finite time frame. Several methods—simulated annealing,
genetic algorithms, and enhanced sampling—have been utilized to answer questions
about the global minimum (i.e., stable) structures that may be difficult to access via
computational methods.

Simulated annealing [5]—derived from the analogy to physical annealing—is a
computational technique that aims to locate the global minimum of a cost (or energy)
function and was developed as one of the earliest global optimization techniques. This
is achieved through a gradual cooling that leads the system from an initially random
configuration to an equilibrium crystal structure. An example of its application to soft
materials is the prediction of binary crystal structures of oppositely charged spherical
colloids [6].

The Monte-Carlo-based basin hopping method [7, 8] explores rugged energy land-
scapes by hopping among the local minima (i.e., basins) using a Metropolis criterion,
and it has been employed to determine the global energy minimum of size-selected
clusters in two distinct hierarchical self-assemblies of triblock patchy particles [9].

The genetic algorithm used for atomistic structure prediction [10, 11] mimics
concepts from Darwinian evolution and selects an optimal structure from a set of
candidates through a process akin to procreation: structural features from pairs of
candidate structures are combined through a crossover algorithm, and new features
are introduced to individual structures with a mutation algorithm. Eventually good
features are preserved during ‘procreation’ through a defined cost function. Genetic
algorithms have also been used to predict stable candidates structures of patchy par-
ticles [12] and DNA-grafted particles [13]. There are many other global optimization
algorithms, such as metadynamics, particle swarm optimization, and landscape paving
that we do not address here.

2.2 Coarse-grained models

Coarse-grained (CG) models are developed as reduced-resolution descriptions of a
system to perform simulations on a larger time- and length-scale at the cost of
fine-grained details. Upon treating groups of atoms as single CG particles, the subse-
quent challenge is to model interactions between these CG particles. Generally, CG
potentials can be derived by: (1) fitting parameters of given potential functions to
reproduce target structures or thermodynamic properties, derived from atomistic sim-
ulations or empirical measurements; (2) calculating them from the direct interactions
between the grouped atoms [14]. Coarse graining has wide applications in studying
soft matter systems (with relevant reviews included in the SI). Below we briefly review
three categories of coarse-graining techniques, serving as essential conceptual foun-
dations that underpin the development of ML-based approaches in optimization and
parameterization.
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Iterative Boltzmann inversion & inverse Monte Carlo. Both the iterative Boltzmann
inversion (IBI) [15] and inverse Monte Carlo (IMC) [16] methods use a figure of merit
computed directly from the structure to iteratively refine the free energy surface of
the system. The radial distribution function (RDF) of pairwise interparticle distances
is a common method in materials science for fingerprinting a crystal structure and can
serve as a figure of merit for both IBI and IMC. IBI iteratively refines the potential of
mean force (PMF) using Boltzmann inversion until the RDF measured in the system
converges to that of the target structure. IMC (or reverse Monte Carlo—RMC) is an
iterative procedure that is very similar to IBI, but derives pair potentials differently
during the iteration using an exact update scheme with the Jacobian matrix of the
RDF with respect to the potential, instead of the empirical update scheme used in IBI.
Since IMC takes into account correlations of observables in multicomponent systems,
it has a higher computational cost than IBI which can lead to convergence problems.
Detailed comparisons of these two methods can be explored further in [17]. Note that
the Henderson theorem states that only one pair potential is uniquely determined by
a given RDF under given conditions of temperature and density [18], yet the accuracy
required to distinguish RDFs produced by two different pair potentials is beyond what
is needed in practical use. Therefore, additional thermodynamic properties (such as
pressure [19]) can be integrated into the optimization process alongside the RDF.

Force matching & multi-scale coarse graining. In contrast to the aforementioned
structure-based methods (IBI, IMC), the force matching (FM) method does not aim
at reproducing target distributions of structural descriptors such as the RDF. Instead
it fits potentials by minimizing the difference between the CG forces and the forces
in the underlying fine-grained system [20]. The parameterization of the CG model is
realized in a non-iterative way: the force of each atom in a CG particle is taken into
account in calculating the force on that CG particle, and the minimization of force
difference can be described as a least-squares problem given a sufficiently large num-
ber of snapshots (i.e., configurations) from the atomistic trajectory. Force matching
was further extended to the multiscale coarse graining method, wherein the multibody
potential of mean force is approximated by deriving effective pair potentials directly
from the underlying atomistic potentials [21].

Relative entropy. The relative entropy Srel—also known as the Kullback–Leibler
(KL) divergence—is adopted from information theory and is a type of statistical
distance that measures the disparity—or relative entropy—between two probabil-
ity distributions. For coarse graining, Srel measures the information loss using the
probability density distributions of atomistic (PA) and CG models (PCG): Srel =∑

i PA ln PA(i)
PCG(i) , where P (i) is the probability of configuration i in a given ensemble.

The minimization of the relative entropy has been applied to the quantification of
phase-space overlap between two molecular ensembles [22], CG model development
[23, 24], calculation of free-energy differences [25], and inverse design of isotropic inter-
actions that promote self-assembly of structures including multi-component crystals
[26] and colloidal strings [27]. The relative entropy formalism is connected to other
coarse-graining approaches insofar as they can lead to the same results depending
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on how potentials are modeled [24]. While IBI and IMC are limited to optimiz-
ing pair potentials, relative entropy provides a more general framework for handling
many-body CG potentials [14].

2.3 Inverse Design

Coarse graining and inverse methods share the goal of identifying a set of parameters
of a model that best reproduces the target distribution. In fact, we can view the
development of CG models as solving an inverse design problem where the target
properties are the forces from the respective fine-grained systems. Furthermore, both
coarse graining and inverse methods are fundamentally rooted in the pursuit of a more
systematic framework for materials design and discovery.

A multitude of inverse methods for soft-matter self-assembly and design have
been discussed in a recent review [28]. In particular, here we highlight the methods
used in the inverse design of isotropic pair potentials that define short-ranged forces
only by interparticle distance. Counterintuitively, the simplicity of these interactions
does not compromise the structural diversity exhibited by systems that interact with
such forces [29], and they can provide insight into the underlying mechanisms of self-
assembly. Isotropic interactions are experimentally realizable by tuning, for example,
the interactions of the isotropic DNA shell of functionalized nanoparticles [30].

The concept of tailoring potentials to maximize the difference in the ground-state
energy between the target structure and its competitors has been successfully applied
to the inverse design of structures in multiple systems, including the square and hon-
eycomb lattices in 2D [31, 32], and simple cubic [33], diamond [34], and wurtzite
structures [35].

Relative entropy minimization [23, 24] has also been used as a design principle for
isotropic pair potentials to control the formation of pores for the assembly of porous
mesophases [36], and to promote self-assembly of 2D and 3D crystals [26, 37], colloidal
strings [27], as well as size-specific cluster fluids [38]. This “on-the-fly” approach uses
structures generated during each optimization step of the particle interactions, thereby
promoting the self-assembly of the target structure from a disordered state. This
optimization process was also employed in combination with Fourier-space filters to
design simple interactions that could be more experimentally feasible [39].

All these approaches to modifying interactions or building blocks can be
encompassed by “digital alchemy,” which was first introduced as a statistical-
thermodynamics method to inversely design anisotropic particle shapes that favor
the self-assembly of a target structure with Monte Carlo simulations [40]. The gen-
eral framework of describing particle attributes as thermodynamic variables—allowing
them to fluctuate, and as a result identifying attributes crucial for controlling self-
assembly—has also been extended to MD simulations with success for a handful of
structures [41, 42].

2.4 Enhanced sampling

Enhanced sampling encompasses a class of methods that enables the simulation of
hard-to-reach states. There are many different flavors of enhanced-sampling methods:
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umbrella sampling, replica exchange, metadynamics, and simulated annealing to name
a few. Most enhanced-sampling methods apply a bias force or potential to drive the
system to explore the region of phase space containing states of interest. These states
are often described by a set of collective variables (also referred to reaction coordinates,
order parameters, or structural descriptors in other contexts). We refer the reader to
the SI for many in-depth reviews on different aspects of enhanced sampling.

3 Descriptors for self-assembly studies

There is a rich history of using order parameters to define and study phase tran-
sitions in physical systems, allowing for the most important variables or degrees of
freedom to be captured. Reducing a physical system’s 3N spatial dimensions to a more
“natural” low-dimensional representation extracts the most relevant characteristics of
the system’s behavior. In the study of self-assembly and growth, order parameters—
i.e., structural descriptors—vary widely in their physical basis and in the behavior of
interest of the physical system for whose study they are being used.

Specific variable choices are often necessary to define an order metric, but they
can also prove limiting or insufficiently descriptive when confronted with an increasing
variety of behaviors or motifs in a single system. For example: how can a descriptor
be designed to study a growing crystal with multiple crystalline environments, each
with a different kind of crystalline symmetry?

Here, we highlight conventional approaches using physically-inspired descriptors
and how coupling these methods with machine learning techniques—well-suited for
leveraging and interpreting high-dimensional data—allows for a more complete pic-
ture of self-assembly to emerge across a variety of physical systems. In our discussion,
we place significant emphasis on the physical basis of descriptors rather than on the
specific ML tools utilized, in part because these physical descriptors should be tai-
lored to the given system or behavior being studied, and in part because of evidence
suggesting that the optimization schema used does not significantly change the out-
come of an ML-based analysis approach [43]. Later, in Section 5.2, we highlight the
technical ML specifics for many of the methods discussed in this section.

Local descriptors that accurately quantify structural motifs have been used to
develop atomistic machine-learned interatomic potentials (MLIAPs) and led to marked
improvements over potentials calculated from electronic structure alone [44]. The dif-
ference in applying descriptors to soft matter is the lack of atomic or energetic data
to train on, in order to predict resultant properties; this, in part, explains why solving
the inverse-design question represents such a “holy grail” for the field. Consequently,
good structural descriptors are critical for capturing and optimizing system behavior.

As is true for MLIAPs, a good descriptor should be immutable upon equivalent
configurations generated by translations, rotations, and permutations to a motif or
crystal structure. This mathematical property with respect to a symmetry operation is
referred to as invariance (equivariance or covariance also satisfy the required criteria).
While not required, differentiability is particularly useful for applications utilizing
automatic differentiation methods such as JAX-MD [45] (see Sec. 5.3 for a detailed
description).
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We discuss several structural descriptors, broadly grouped according to their phys-
ical basis (as shown in Fig. 3): (1) structure-only parameters including RDF-based,
position-based, as well as “descriptor-free” (featureless) parameters that are exclu-
sively machine-learned; (2) bond-orientational features utilizing spherical harmonics
in a variety of approaches; (3) graph-based or topological features. We aim to provide
a comprehensive overview of the featurizations in the field, although inevitably we will
be unable to cover all relevant work in the scope of this snapshot review.

Physically-Based 
Descriptors

Position/RDF-Based,
featureless descriptors

Graph-Based Features

Bond-Orientational 
Features

i

j

k

θijk
rij

rik

particles & bonds

node
edge

θ

bonds & angles

node

edge

bond-orientational 
order diagram

spherical harmonics

positions, bond 
lengths, bond angles

RDF, 
symmetry 
functions

 crystal graphcrystal  crystal edge 
graph

crystal

Fig. 3 The three broad classes of descriptors: position-/RDF-based and featureless descriptors,
bond-orientational features, and graph-based features.

We include in the SI an additional summary on thermodynamics-inspired features
and methods, although these are less commonly used and not as effective compared to
structure-based approaches. We will sidestep a common problem lurking among many
of the discussed methods, which is exactly how neighbors or radial cutoffs are chosen—
handled differently by each method. Finally, we largely ignore informatics approaches
(for example, the Polymer Genome platform [46]) as they use hundreds of descriptors
in a hierarchical manner to train models that target properties. This section will focus
on work that uses a specific choice of descriptor and its appropriate use cases.

RDF-based and position-based features. Using positional data with minimal manip-
ulation is a logical choice for a structural descriptor. The oldest criterion for melting
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is the Lindemann order parameter [47]—based on particle mean-squared displace-
ment from equilibrium position—utilized in soft matter studies of nucleation and
growth dynamics [48]. In hard-disk or sphere systems, phase transitions were com-
monly detected using only sorted neighbor distances (i.e., in the first shell of the RDF)
as features with unsupervised learning [49].

Behler and Parrinello [50] introduced radial and angular symmetry functions—
representing potential-energy surfaces in atomic systems—that also bear similarity to
the RDF but are localized to a particle’s environment. Such symmetry functions have
been utilized in the development of ML-based structural identification methods for
complex phases in polymorphic systems such as ice [51] or the ML-based order metric
“softness” for identifying particle susceptibility to rearrangements [52]. Softness has
been used to predict glass dynamics [53] as well as to identify grain boundaries [54]
and improve growth models [55] in atomistic MD simulations. Other position-based
features include using bond angle, bond length, and interparticle separation distance
as inputs for an unsupervised crystal-structure identification method [56], defining a
loss function based on a “stencil” used to target assembly of a specific polymorph
using JAX-MD [57], or utilizing particle positions and particle-level features to build
geometric algebra-based representations of structure with deep learning [58].

Featureless order parameters. “Descriptor-free” or featureless order parameters can
be conceptualized as a subcategory of position-based features, but they differ in that
they use entirely unmanipulated data that must be interpreted using statistical or
machine-learned methods. Because these descriptors do not use representations that
are invariant to translations, rotations, and permutations, they instead rely on data
augmentation—that is, the model must learn these symmetries from an abundance of
data in a variety of configurations, rather than invariance being built into the inputs
for training.

Featureless unsupervised learning methods have so far been used to identify magne-
tization phase transitions in the canonical two-dimensional Ising model [59, 60] using
entire Ising spin matrices as inputs. Unlike in the Ising model, a “descriptor-free”
approach is more difficult to apply to systems where particle positions are variable, but
this has been accomplished [61, 62] relying on sophisticated model architectures such
as PointNet [63] in order to perform feature extraction. Other frameworks that use
deep learning approaches with particle positions [64] (or, combined with atomic-level
features as inputs [65]) could be extended to target properties in soft-matter systems.

Bond-orientational features. Bond-orientational features differ from those described
above in that they enforce spherical symmetry in their representations of local struc-
ture. For two-dimensional structures, the Ψn order parameter is defined by the
expectation of n-fold symmetry in the crystalline phase, and it has been utilized in the
study of colloidal crystallization experiments [66]. The Steinhardt Ql order parameter
[67] and its neighbor-averaged version Ql [68]—which are rotationally-invariant repre-
sentations of a particle’s neighborhood using summations of spherical harmonics—have
been used to identify local motifs or differentiate phases of matter, distinguish between
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simple sphere packings (bcc, ccp, hcp) [69] and study quasicrystal growth [70] in simu-
lations of three-dimensional systems. Steinhardt’s Ŵl parameter has also been utilized
to identify motifs in computational studies of pre-crystallization fluids [71].

The addition of machine-learning methods to these bond-orientational approaches
has allowed for the extension of order parameters to more complex crystal structures,
polydisperse packings, and non-close-packed local environments in crystalline solids
(i.e., expanding beyond icosahedral, fcc, hcp, or bcc local environments). Spherical
harmonics-based descriptors have been used with unsupervised learning approaches to
distinguish highly similar, complex structures [72], as well as to distinguish between
local environments and phases during the self-assembly of structures with one or
more crystalline motifs [73, 74]. Supervised approaches using spherical harmonics
[72] or Steinhardt-based features have also successfully identified crystalline motifs
in binary systems [75], and unsupervised approaches have similarly been employed
with Steinhardt-based features to study local order in glasses and liquids [76] or at
crystalline grain boundaries and binary systems [77].

A handful of other approaches using spherical harmonics-based descriptors have
been formulated for the study of atomic materials and extended to the study of phase
transitions or soft and molecular systems. The Smooth Overlap of Atomic Positions
(SOAP) descriptor [78]—which utilizes spherical harmonics to represent Gaussian-
smeared particle densities—has also been adapted for ML-based studies of materials:
a Gaussian process with a SOAP kernel [79] or unsupervised methods with a SOAP
descriptor [80] have been used to study the formation of (supra)molecular materials.
Euclidean neural networks (e3nn) [81] use spherical harmonics to create irreducible
representations that leverage equivariance to learn symmetry-based translations and
rotations, and they can be used to define order parameters that identify the breaking
of these symmetries (e.g., during a phase transition) [82].

Graph-based features. Yet another intuitive way to featurize inter-particle bonding
structure are graph-based features—not to be conflated with graph neural networks,
although they can appear together. Graph-based features include particle connections,
bond lengths and angles, and local neighborhood geometry in their representation
of local structure. The most popular graph-based feature is referred to as Common
Neighbor Analysis (CNA) [83, 84], a tool which classifies simple 3D motifs by the
topology of particle neighborhoods and which is integrated (along with its variants)
into the “Open Visualization Tool” (OVITO)1. CNA has been applied to numerous
studies of crystallization, such as the simulation study of charge-stabilized colloidal
suspensions [85]. Another commonly used method for simple crystal-structure or motif
identification is polyhedral template matching (PTM) [86], which uses the convex
hull of neighbors around a particle to create a planar graph and performs template
matching to identify motifs. Given the success of these approaches, the addition of
machine-learning methods is highly sensible and allows a larger variety of local struc-
tures to be represented and identified as compared to CNA and PTM, particularly
for systems where atom- or particle-level features are important (such as having two
different particle sizes or components).

1https://www.ovito.org
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Graph neural networks (GNNs) are designed to take in graphs as inputs and per-
form convolutions to create embeddings of local structure. Crystals lend themselves
naturally to representations as planar graphs, where nodes and edges represent parti-
cles and bonds. For example, a GNN is used to build local descriptors from graph-based
features that can identify disorder such as in grain boundaries or interfaces [87]. GNNs
have also been used with ‘crystal edge graphs’ rather than crystal graphs, where nodes
represent bonds in the crystal and edges represent bond pairs (i.e., angles between
bonds). Recent work has identified phase transitions by building global descriptors
[88] with the Atomistic Line Graph Neural Network (ALIGNN) [89], which uses a
GNN to create latent representations using message-passing between the crystal graph
(interatomic bond graph) and the crystal edge graph (line graph corresponding to
bond angles). In a similar vein, crystal edge graphs have been used to perform crystal
identification tasks on individual particles [90].

However, GNNs are not the only types of ML approaches utilized with graph-based
features. Convolutional neural networks have been applied to graph-based features
for molecules [91], atomic structures [92], and glasses [93]. Other ML methods have
also been applied with graph-based features—for example, diffusion maps for local
environment identification including both amorphous and crystalline structures [94],
or for building representations of chemical ordering in multi-component alloys for use
in a relative entropy-based order metric [95].

4 Designing for properties

Frequently, the design of materials with specific properties has been handled separately
from the design of assembly pathways to target particular structures [28]. Inverse
design for the properties of a material requires the use of the property itself as the figure
of merit of the computation, enabling the use of any property that can be computed
from a material’s structure. Machine learning facilitates the accelerated evaluation
of complex structure–property relationships that would otherwise be prohibitive as a
computational figure of merit [28]. This can be done by reducing the dimensionality
of the order parameter or by applying supervised machine learning directly to the
structure–property relationship [3].

Many advances have been made in the field of atomistic (“hard”) materials such
as alloys, and electronic materials, in which atomic structure can directly be related
to bulk properties of a material [89, 92]. In this snapshot review, we concentrate on
mesoscopic (“soft”) matter. While bulk properties can often be computed directly
in hard-matter systems—because the relevant structural features occur on only one
length scale—soft-matter systems exhibit multiple salient length scales, making pre-
dictive modeling of a variety of properties more challenging. For length consideration,
we provide our discussion on soft materials properties in the SI, where we discuss five
different kinds of materials properties: (1) mechanical properties, (2) thermodynamic
and phase properties, (3) electronic and optical properties, (4) transport properties,
and (5) chemical properties.
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5 Software developments

Many well-known MD packages were developed before the popularity of ML-enhanced
materials research, so integrating ML methods with traditional MD simulations can
prove challenging. In this section, we briefly review the compatibility of current MD
engines with ML methods, how software for descriptors can be used, and we showcase
a new MD engine that is intrinsically compatible with the current ML/AI software
packages.

5.1 Integration with ML methods for traditional MD engines

Traditional MD packages such as LAMMPS2 and HOOMD-blue3 are extremely pow-
erful engines that can perform MD simulations very effectively. Although primarily
written in C++, there are now tools available to integrate ML methods with these MD
platforms.

LAMMPS hosts a well-documented webpage4 providing a list of software packages
that are either external—and built on top of LAMMPS—or standalone—either provid-
ing input parameters for LAMMPS or other MD engines, or incorporating LAMMPS
as one of their MD engines to produce simulation trajectories. Within the list, there
are packages linking PyTorch with LAMMPS and several packages for ML-based
interaction potentials.

Similarly, HOOMD-TF5 was developed to link TensorFlow with HOOMD-blue
(currently compatible with HOOMD-blue 2.6+ but not 3.x, etc., due to a major API
change6).

5.2 Software and methods overview for descriptors

There is a large variety of methods for quantifying structural order that are applied to
study crystal growth and assembly—which are equally as diverse as the open questions
in the field. With many ML-based methods being developed for different use cases and
specific physical systems, we highlight methods in Table. 1 with the most important
software and architecture details as well as computing resources needed for each.

5.3 JAX-MD

Computing derivatives or gradients is a crucial component of many machine-learning
techniques. Utilizing general-purpose automatic differentiation [96] implementations
is standard in many different machine-learning packages such as PyTorch, Julia, and
MatLab’s Deep Learning Toolbox. Similarly, various materials-science applications
also require the computation of gradients ranging from force computation in MD to
evaluating stress tenors for materials properties.

2https://www.lammps.org
3https://glotzerlab.engin.umich.edu/hoomd-blue
4https://www.lammps.org/external.html
5https://github.com/ur-whitelab/hoomd-tf
6A—to-date unmerged—branch exists on the HOOMD-TF GitHub page, allowing to make the code

compatible with HOOMD-blue 3.x.
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Following the release of JAX7 in 2018—a Python-based software package that
enables end-to-end differentiation—various packages were developed utilizing JAX’s
new ability to differentiate through complicated functions. JAX-based materials-
science software packages are not limited to JAX-MD, and include JAX-AM8, JAX-
FEM9, and GradDFT10. Given the scope of this snapshot review, which concentrates
on assembly design, we will only highlight work related to JAX-MD.

optimization 
parameters
inital guess: 

α(0)1...j

forward MD 
simulation

particle position/
orientations of the 

last frame

loss function 
(order parameter)

gradient of loss 
function respect to 

α1...j

update optimization 
parameter from

 α(t)1...j to α(t+1)1...j

Fig. 4 Inverse-design framework based on JAX-MD.

The molecular-dynamics engine JAX-MD currently features simulation environ-
ments to model isotropic pair potentials and anisotropic particles using rigid-body
constructions with standard integrators such as NVE, NVT, NVP, Brownian dynam-
ics, and Langevin dynamics. As JAX-MD is written fully in Python, the overhead for
any user to define a new pair potential, external field—or interface with other ML/AI
methods—is minimal. Moreover, when implementing a new pair potential, no addi-
tional force implementation is needed as gradients (i.e., derivatives) of the interaction
potential can be retrieved directly to update quantities such as particle velocity and
acceleration.

So far, JAX-MD has been used to design assembly and transition rates for colloidal
systems [57], anisotropic building blocks for bulk and finite assembly [97], controlled
disassembly of colloidal clusters [98], error-free polymer growth [99], and minimal-
work pathways in non-equilibrium systems [100]. These papers showcase the breadth
and versatility of the physical systems and properties that JAX-MD can model and
design. Generally, the optimization regime in JAX-MD is system-agnostic as long as
the user can provide a loss function / order parameter with meaningful gradients to
describe the simulated system.

Fig. 4 illustrates a schema for the use of JAX-MD for inverse design, but this is not
the only way to implement such a workflow. For example, one can update building-
block properties after a fixed number of simulation steps instead of at the end of one

7http://github.com/google/jax
8https://github.com/tianjuxue/jax-am
9https://github.com/deepmodeling/jax-fem
10https://github.com/XanaduAI/GradDFT
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round of forward simulation. Here, we want to provide a working example as a starting
point for interested researchers to explore. Apart from using JAX-MD to inversely
design assembly, yet another unexplored territory for JAX-MD is to combine it with
enhanced-sampling methods. Computing forces for a bias potential in MD can be
challenging to implement, but with the help of automatic differentiation, no explicit
force implementation would be needed.11

5.4 Accessibility

In this section, we highlight a few barriers to accessing some of the methods discussed
in this snapshot review. Computing resources are vital to those who may want to train
models or utilize inverse-design methods for their research. Methods that run on GPUs
can be run on CPUs as well, but the difference in wall time can amount to orders of
magnitude—especially for tasks that require backpropagation. Moreover, tasks that
require backpropagation or automatic differentiation can be GPU-memory intensive,
sometimes requiring the most advanced GPUs with 80 GB of memory. Therefore, we
encourage including computational resources either used (or utilizable) for training
models and describing the associated computational costs for new methods being
published. In a similar vein, sharing code on open-source platforms like GitHub is
increasingly common and can function as a “plug and play” tool for non-experts to
utilize.

Another possible barrier is the need to transmute training data (from simulation or
experiment) into the expected data format for a specific method. For example, many
of the approaches highlighted in Tab. 1 rely on specific file formats (typically only
used for data output by a particular MD engine). Tools such as the garnett software12

can help with reading/writing to/from different simulation file formats, although not
all common formats are included (e.g., the .xyz file format). A similar issue arises
with ML-specific backends: often methods are developed for only one of the three—
Keras/TensorFlow, JAX, or PyTorch. These are just a few of the “language barriers”
that arise from the diversity of computing tools that researchers use.

Finally, access to large volumes of data for training models is usually straightfor-
ward for simulators, and there are already databases hosting services for more various
materials datasets 13—but this is not necessarily the case for soft-matter experimental-
ists. While we do not necessarily endorse the publishing of trained models as a solution,
we urge consideration of how models can behave for low data-volume cases. These
considerations could be especially important in developing simulation–experiment
pipelines for training models or inverse-design approaches.

6 Conclusion

In this snapshot review, we discuss many approaches used in the optimization and
design of soft materials such as structure prediction, coarse-graining, enhanced sam-
pling, and how these approaches are not only compatible with but enhanced by ML

11See https://colab.research.google.com/drive/1eOBqUlRxhUvPsxfl9hGcVwHTleN2GNBJ for an example.
12https://garnett.readthedocs.io
13https://www.materialsdatafacility.org
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methods, as well as a variety of software that can be used to target specific structures
or materials properties. We discuss both forward approaches—critical for the study of
phase behavior and self-assembly—as well as more targeted inverse approaches that
are used specifically for design.

Through our survey of methods in the field, we emphasize the importance of the
physical basis of methods and features. We also include relevant methods that are
developed for atomic systems as these approaches can be extended to soft or mesoscale
materials. We hope that this snapshot review can serve as a guide for those looking
to apply (or create) ML-based methods for scientific questions.

We also offer a few reflections on how we believe the methods we review can be best
used going forward. Given the multitude of descriptors and inverse design tools devel-
oped in just the last decade, the fields of both atomistic and soft materials are ripe for
employing new methods to conduct scientific research. That is, the “low-hanging fruit”
of ML-based approaches are being or have been picked, and further development or
use of methods should be tailored to answering open questions in the field or address-
ing specific design principles. Bridging the gap between the tool-makers and tool-users
will be imperative in order to address open scientific questions and to connect theory,
simulation, and experiments: these range from the need for robust descriptors that can
handle particle-locating in experiments, to more fundamental questions such as the
effect of interaction and structure in particle-based systems. We are optimistic that
with the newly available avenues—provided by the power of machine learning and
the multitude of new computational approaches built upon decades of progress—we
can answer fundamental questions regarding structure formation and design of matter
across various length scales in the future.
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1 Other descriptor types for self-assembly studies

Thermodynamics-inspired features and methods. While thermodynamics-inspired
features are not as commonly used as those that focus primarily on structure, they
are yet another way to create order metrics for studying critical phenomena and
system behavior in assembling systems. Three general categories exist under this
umbrella: energy-based features, entropy-based features, and ML-based diffusion mod-
els (which differ in that it is the method, rather than the features, that is derived from
thermodynamics).

An example of an energy-based feature—shown to be a poor predictor of glassy
dynamics—is the potential energy summed over a particle’s nearest neighbors (or
“inherent structure”) [1]. The Bag of Bonds model [2] is an instance of using ML to
fit the energies of bonds—rather than for each atom type—that relies similarly on the
enthalpic interactions between particles for training. However, this paper points out
that this type of feature is insensitive to geometry and sensitive only to interparticle
distance (i.e., it could not distinguish two molecules with the same bonds but in
different orientations).
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Entropy-inspired features and methods. Entropy-based approaches are more com-
monly utilized than energy-based ones to study the behavior of an ensemble. The
free volume [3] that a particle has available to move is intrinsically tied to a par-
ticle’s entropy and has been employed to understand grain-coarsening mechanisms
in colloidal crystals [4]. Another approach using an entropy-based “local fingerprint”
[5] projects the excess entropy metric—which is based on the radial distribution
function—onto individual particles. Finally, a measure of information entropy based
on the change in length of a compressed string representing particle positions—called
computable information density (CID) [6]—has been shown to identify phase transi-
tions in both lattice and continuous systems. While most of these approaches have
not yet been utilized in conjunction with ML, entropy-based order metrics have been
machine-learned in multi-component alloys using the Kullback–Leibler divergence to
identify chemical “randomness” (or a lack thereof) [7]. This approach is based on the
idea of relative entropy and could be utilized in a modular fashion with other types
of chosen features.

2 Property design for soft materials

Mechanical properties. Due to their direct connection with materials structure,
mechanical properties are often the most readily modeled. ML-models have been
devised to predict strain-stiffening in granular “molecules” (composed of sphere-union
clusters) with an evolutionary algorithm [8], plasticity in amorphous materials with
support vector machines (SVMs) [9–11], effective stiffness of composites with convo-
lutional neural networks (CNNs) [12], stiffness matrix components in metamaterial
microstructures with a variational autoencoder (VAE) [13], viscoelastic properties
(glassy modulus, rubbery modulus, and tan δ peak) of polymer nanocomposites with
a combination of convolutional neural networks and multi-task learning [14], increased
resistance to shear cracking in nanocomposites with a deep learning model using
both CNN and genetic algorithm components [15], and anisotropic elastic stiffness in
biomimetic, bone-like spinodoid topologies using deep neural networks [16]. Predic-
tive models such as those have enabled, for example, the design of maximum- and
minimum-stress filler morphologies in filled rubbers with CNNs [17] and the yield
stress and viscosity in polymeric dispersants for facilitating the flow of particle sus-
pensions with LASSO regression (least absolute shrinkage and selection operator, i.e.,
L1 regularization) [18].

Thermodynamic or phase properties. Thermodynamic or phase properties have also
been modeled successfully with machine-learning approaches. In addition to, for exam-
ple, modeling of the antifreeze activity of proteins with a neural network [19] or glass
transition temperatures of polymers with random forest models or a combined kernel
ridge regression and evolutionary algorithm [20], many studies have successfully pre-
dicted transition temperatures of liquid-crystal systems with similar methods. Neural
networks or regression methods have been used to model clearing temperatures of
liquid crystals (at which point a liquid crystal becomes an isotropic liquid) [21, 22],
transition temperatures of bent-core liquid crystals (the upper stability limit of the
mesophase) [23], nematic transition temperatures in thermotropic liquid crystals [24],
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transition temperatures in binary liquid crystals [25], as well as the phase behavior
of liquid crystals with a variety of classification methods (nearest-neighbor, k-nearest
neighbor, C4.5 decision tree, random tree, random forest, reduced-error pruning tree
(REPTree), nested generalized exemplar (NGE), and non-nested generalized exemplar
with prototypes (NNGEP) classification) [26].

Electronic and optical properties. Rarer are studies of electronic and optical proper-
ties of soft materials modeled with machine learning, presumably due to the complexity
of the multi-scale processes involved in these systems. A successful example is target-
ing bandgaps and dielectric constants in polymers modeled with a genetic algorithm
[27]. Moreover, machine-learning-informed design was achieved, for example, in the
discovery of electrically conducting MOFs with small bandgaps using crystal-graph
convolutional neural networks [28] as well as for microstructures with maximal optical
absorption performance with a generative adversarial network (GAN) [29].

Transport Properties. Transport properties have been modeled successfully in a
variety of instances: diffusivity in porous materials with principal component anal-
ysis [30] as well as with a convolutional neural network [31]; cation diffusivity
in nanoparticle-based electrolytes [32] and ionic conductivity in ceramics (yttria-
stabilized zirconia), both with convolutional neural networks [33]; permeability in
porous rock (Fontainebleau sandstone and Berea sandstone) [34] and seismic wave
velocities in porous rock (Berea sandstone), [35], also both with convolutional neural
networks. Successful design has been enabled in the case of minimal and maximal water
diffusivity in hydration layers with a genetic algorithm [36] and topology optimization
for heat conduction with an augmented variational autoencoder (VAE) [37].

Chemical Properties. Chemical properties, in particular aiming at modeling catalytic
behavior, have been modeled successfully at the intersection between hard and soft
matter—for example, in metal–organic framework (MOF) systems. Specific properties
modeled include CO2 adsorption with support vector machines [38], CO2 separation–
with high CO2 capacity and high selectivity for CO2/N2 and CO2/CH4 separations—
with a variational autoencoder [39], gas adsorption with transfer learning with deep
neural networks [40], and even full adsorption isotherms of MOFs with a multilayer
perceptron (MLP) [41]. Also within the realm of framework materials, binary sorption
equilibria were modeled in zeolites with deep neural networks [42].

Molecular Properties. A variety of molecular properties have been successfully
modeled for small molecules—not “soft materials”, strictly speaking. Among these are:

• atomization energies for small molecules with linear ridge regression, kernel ridge
regression, support vector regression, mixed-effect models, multilayer neural net-
works, and the k-nearest-neighbor method (KNN) [43];

• formation energies of small organic molecules with Gaussian process regression
(GPR), combined with CUR matrix decomposition, farthest-point sampling (FPS),
and a Pearson correlation (PC) method [44];

• molecular atomization energies, polarizability, and highest and lowest molecular
orbital energies (HOMO and LUMO) with kernel-ridge regression (KRR) [2];
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• polymorph stability and charge mobility of molecular crystals for organic electronics
with Gaussian process regression [45];

• potential-energy surfaces and bond dynamics of molecules with deep tensor
neural networks (DTNNs) augmented with continuous-filter convolutions with
filter-generating networks [46, 47], and molecular energies, dipole moments, polar-
izabilities, vibrational energies, heat capacities and vibrational frequencies with
Bayesian ridge regression, linear regression with elastic net regularization, random
forests, kernel ridge regression, graph convolution, and gated graph networks [48];

• aqueous solubility, octanol solubility, melting point, and toxicity of small molecules
with a convolutional neural network (CNN) [49];

• bioactivity of small molecules for drug discovery with deep convolutional neural
networks (DCNNs) [50];

• chemical toxicity of small molecules for drug discovery with a bidirectional gated
recurrent unit-based neural network (BiGRU) and a fully connected neural network
(FCN) [51];

• solvation free energies, in-vitro HIV activity, and in-vivo toxicity with a deep
convolutional neural network [52].

3 Additional reviews

We would like to point the reader to several reviews relevant to our discussion on
topics that we did not expound upon in the main text. These include:

• Additional approaches for predicting polymorphic structures are discussed in a
review by Price [53].

• Coarse-graining used across various domains such as polymers by Dhamankar and
Webb [54], proteins by Tozzini [55], Kmiecik et al. [56], and other biomolecular
systems by Noid [57], Ingólfsson et al. [58], Singh and Li [59], Liwo et al. [60].

• Polymorphism, modeling, and crystal structure prediction in pharmaceutical
research by Abramov et al. [61].

• Maximizing free-energy differences between desired and undesired structures in
simulation for inverse design by Torquato [62].

• Complex structures in soft matter by Dshemuchadse [63].
• Hénin et al. [64] give an overview of the different enhanced sampling methods and
software implementing them.

• Sidky et al. [65] discuss ML-aided collective variable discovery for enhanced sampling
instead of using ML-free descriptors described in the “Descriptors for self-assembly
studies” section.

• Mehdi et al. [66] talk about the most recent developments of coupling ML-algorithms
with traditional enhanced-sampling techniques.

• Soft matter roadmap by Barrat et al. [67] that includes discussion of simulation
methods and inverse design.
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Table 1 ML-based descriptors for materials assembly and design. Acronyms used are: support
vector machine (SVM), principal component analysis (PCA), density-based spatial clustering of
applications with noise (DBSCAN), Gaussian mixture model (GMM), artificial neural network
(ANN), convolutional neural network (CNN), graph neural network (GNN). Compute resources
reflect those used or reported by the respective authors.

Reference Features Models Software Compute
Geiger and Dellago [51] symmetry functions ANN - GPU

Cubuk et al. [52] symmetry functions SVM LIBSVM1 -

Wang [59] Ising spin matrix PCA+k-means cluster-
ing

- -

Wetzel [60] Ising spin matrix kernel PCA/
DBSCAN/ variational
autoencoder

- -

Jadrich et al. [49] sorted neighbor dis-
tances

Incremental PCA Sklearn -

Reinhart [56] neighbor distances,
bond angles & lengths,
particle-level features

UMAP+Random Forest
Classifier

UMAP, Sklearn -

DeFever et al. [61] particle positions PointNet2 TensorFlow -

Wang et al. [62] particle positions autoencoder+GMM TensorFlow, Sklearn -

Schütt et al. [65] atomic nuclear charges
& positions

filter-generating net-
work

TensorFlow, SchNet3 CPU-intensive /
GPU

Swanson et al. [64] particle positions CNN / message-
passing neural network

TensorFlow/PyTorch,

“glassML”4
GPU

Spellings [58] multivectors (geomet-
ric products of particle
positions) & particle-
level features

attention mechanism Keras, TensorFlow,

GAlA5
GPU

Spellings and Glotzer
[72]

spherical harmonics

(pythia)6
PCA+GMM / ANN Sklearn/ Keras CPU

Adorf et al. [73] bispectrum spherical

harmonics (pythia)6
PCA+UMAP
+HDBSCAN∗

Sklearn, UMAP,
HDBSCAN∗

-

Boattini et al. [77] Steinhardt parameters autoencoder+GMM Sklearn -

Coli and Dijkstra [75] Steinhardt parameters ANN Keras, TensorFlow -

Grisafi et al. [79] SOAP7 Gaussian process SciPy, SA-GPR8 CPU-intensive

Gardin et al. [80] SOAP7 PCA+PAMM/ Hierar-
chical clustering

Sklearn, PAMM9 -

Geiger and Smidt [81] irreps (tensor products
of spherical harmonics)

CNN JAX/PyTorch, e3nn10 GPU

Duvenaud et al. [91] molecular graphs CNN SciPy, Autograd,

“Neural fingerprint”11
-

Bapst et al. [93] crystal graphs GNN TensorFlow/TF-
Replicator, JAX,

“Glassy dynamics”12

-

Chapman et al. [87] crystal graphs GNN PyTorch,

SODAS/graphite13
GPU

Choudhary and
DeCost [89]

crystal/line
graphs+radial basis
functions

message-passing GNN ALIGNN14 GPU

Aroboto et al. [88] ALIGNN14 UMAP+GNN UMAP, PyTorch,

SODAS++15
-

Reinhart et al. [94] CNA-based crystal
graph

Diffusion maps Neighborhood Graph
Analysis (NGA)

-

Xie and Grossman [92] atom-level features &
crystal graphs

CNN Sklearn, PyTorch,

CGCNN16
-

Banik et al. [90] crystal edge graphs attention mechanism PyTorch, Sklearn,

CEGANN17
GPU

Sheriff et al. [95] crystal graphs &
particle-level features

- e3nn10 -

1 https://github.com/cjlin1/libsvm 2 https://github.com/charlesq34/pointnet 3 https://github.com/atomistic-machine-learning/SchNet
4 https://github.com/ks8/glassML 5 https://github.com/klarh/geometric algebra attention 6 https://github.com/glotzerlab/pythia
7 https://singroup.github.io/dscribe/latest/ 8 https://github.com/lab-cosmo/SA-GPR 9 https://github.com/lab-cosmo/pamm
10 https://github.com/e3nn 11 https://github.com/HIPS/neural-fingerprint
12 https://github.com/google-deepmind/deepmind-research/tree/master/glassy dynamics 13 https://github.com/LLNL/graphite
14 https://github.com/usnistgov/alignn 15 https://github.com/Materials-Informatics-Laboratory/SODAS
16 https://github.com/txie-93/cgcnn 17 https://github.com/sbanik2/CEGANN
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