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Abstract—Wearable sensors such as smartwatches have be-
come ubiquitous in recent years, allowing the easy and continual
measurement of physiological parameters such as heart rate,
physical activity, body temperature, and blood glucose in an
every-day setting. This multi-modal data offers the potential to
identify latent states occurring across physiological measures,
which may represent important bio-behavioural states that could
not be observed in any single measure. Here we present an
approach, utilising a hidden semi-Markov model, to identify such
states in data collected using a smartwatch, electrocardiogram,
and blood glucose monitor, over two weeks from a sample of
9 participants. We found 26 latent ultradian states across the
sample, with many occurring at particular times of day. Here we
describe some of these, as well as their association with subjective
mood and time use diaries. These methods provide a novel avenue
for developing insights into the physiology of everyday life.

Index Terms—wearable sensors, unsupervised machine learn-
ing, hidden Markov model, biosignals, physiology, mood detec-
tion, physical activity

I. INTRODUCTION

Wearable sensors such as smartwatches, glucose monitors,
and portable electrocardiograms, offer the potential to measure
physiological processes throughout the body in an everyday
setting. These measures can reflect a combination of intrinsic
biological rhythms [1], [2], the behaviours of the wearer [3]–
[6], and responses to external events that may stress or arouse
the wearer [7], [8]. Teasing out these contributions is an
ongoing challenge for those wishing to use wearable sensor
derived physiological measures to indicate emotional state [9]–
[11], external events [12], or intrinsic biological rhythms [13].

An additional challenge is that many physiological states
may not be apparent when observing a single measure, but
only become apparent when considering multiple measures
at once. For example increased blood glucose in response
to eating a meal is distinct from increased blood glucose
in response to exercise [14]. This distinction can only be
made by combining information from multiple measures (e.g.

This work is supported by a UKRI Future Leaders Fellowship held by Y.W.
(MR/V026569/1) and a UKRI EPSRC CLOSE-NIT Network Plus grant held
by Y.W and C.T.

blood glucose concentration and movement). Similarly, the
additional context provided by multiple modalities is important
for the interpretation of measures of the autonomic nervous
system such as electrodermal activity and heart rate variability
[15].

Many physiological changes occur on timescales ranging
from 30 minutes to 12 hours - often referred to as episodic
ultradian events or fluctuations [16]. These can be driven by
behaviour or environment such as when engaging in exercise,
eating, sleeping, or being stressed, but also can be driven by
endogenous rhythms or events such as the pulsatile secretion
of cortisol [17] or ultradian sleep cycles [18]. Quantifying the
time spent in these ultradian states, including in latent states, is
an important step towards understanding individual differences
in physiology and health behaviours.

Hidden Markov models (HMM) are often used when one
has an observable series of measurements Yt = (Y1...YN )
and from this wishes to estimate a process Ct = (C1...CN )
which has not been observed. When the HMM is used in
an unsupervised manner, the hidden states of process Ct

may be latent states that can be interpreted only through the
distributions of observed measurements associated with them
[19]. This is ideal when we do not have a set of specific
states we wish to detect, but rather wish to determine the
physiological states which emerge naturally from the data.

One limitation of the HMM is that the time spent in each
state must follow a geometric distribution [20]. The hidden
semi-Markov model (HSMM) is an extension of the hidden
Markov model (HMM) where the duration of each hidden state
in the unobserved process C is captured explicitly by mod-
elling a duration distribution allowing each state to have an
expected duration [21] - as would be expected for behavioural
and physiological states [19]. The HSMM has been used in an
unsupervised manner previously to segment and cluster single
channel wearable sensor data such as accelerometry [22], [23],
and to identify latent states in financial markets [24].

Here we aim to extend this data-driven approach to multiple
channels of data, and to use it to identify states that exist
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within the ultradian timescale of multi-modal wearable sensor
data. We hope to provide insight into the common latent states
which occur, patterns in the time of day they occur at, and their
relationship with self-reported exercise and mood.

II. METHODS

A. Data Collection

We recruited 9 participants from within the staff and
students of Newcastle University. Participants ranged in age
from to 29 to 38 years old, 5 were female and 4 were
male, and all were either students or professional office-based
workers. We used three devices: a smartwatch - the Empatica
EmbracePlus [25] (measuring peripheral body temperature,
electrodermal activity, and accelerometry), a continuous blood
glucose monitor (CGM) - the Freestyle Libre 2 [26], and an
ambulatory electrocardiogram (ECG) - the Bittium Faros 180
[27] (measuring heart rate and heart rate variability). Partici-
pants were given the option of wearing the ECG either with
a single patch electrode, or in a two electrode configuration.
Participants were invited to the laboratory at the university
to get set up with and initially put on the devices. First
the researcher took written consent, then assisted them with
applying the CGM and ECG, setting up the smartwatch, and
then provided written instructions for the use and maintenance
of all devices. All participants were asked to wear the sensors
for two weeks and good compliance was observed.

B. Calculating Metrics

From the wearable sensors we calculated six measures -
acceleration (Acc), temperature (Temp), electrodermal activity
(EDA), continuous blood glucose (Glucose), heart rate (HR),
and heart rate variability (HRV). Acceleration was quantified
using the standard deviation of the acceleration, measured
from the wrist. Temperature and electrodermal activity were
also measured from the wrist using the smartwatch. For the
electrodermal activity (the conductance of the skin) we used
the skin conductance level - the slowly varying component
of the raw measurement. Continuous blood glucose was mea-
sured using the CGM which provided an estimate of blood
glucose every 15 minutes. Heart rate was calculated using R-
R intervals derived from the ECG. Intervals outside of the
physiological range (between 300 and 1200 milliseconds) were
discarded. Heart rate variability was calculated as the standard
deviation of the R-R intervals (SDRRI) over 5 minute epochs
[28].

C. Isolating Ultradian Fluctuations

All signals were first resampled to the mean of each five
minute epoch - producing signals with a common sampling
interval of five minutes. Missing data were replaced by linear
interpolation for gaps shorter than 24 hours. If there were
longer periods of missing data for any measure we removed
chunks of the missing data across all measures in 24 hour
blocks until any gap was less than 24 hours, and then used
linear interpolation to replace any remaining missing data. This
brought forward future data to narrow the gap while ensuring

that all measures retained their original time stamp (if not their
date stamp). Only one participant had missing data lasting
more than 24 hours.

As wearable sensor measures typically show fluctuations
on a range of timescales (with a particularly strong circadian
component) we wished to decompose each signal to isolate
only those fluctuations occurring on an ultradian timescale
(fluctuations with a period between 30 minutes and 12 hours).
Univariate singular spectrum analysis (SSA), a non-parametric
signal decomposition method [29], was applied to decompose
each signal into its periodic or quasi-periodic components. A
window length of 288 samples (24 hours) was selected because
all components of interest had a period of between 0.5 and 24
hours. We first confirmed that each signal showed a strong
circadian component - figure 1 (A) illustrates an example
of the circadian component of heart rate, extracted by SSA.
To isolate only the ultradian components, we used Fourier
analysis to identify the peak frequency (presented as period for
sake of interpretation) of each component, and then discarded
any component with a peak period greater than 12 hours or
less than 0.5 hours before taking the sum of the remaining
components. This removed high frequency noise, the circadian
component, and the baseline, so that the final signal represents
ultradian fluctuations away from baseline. An example of this
ultradian signal for heart rate is shown in figure 1 (B).

D. Applying the HSMM

The HSMM can be defined by the sequence of observations
(Yi,t, the observation in measure i at time t), a state sequence
(Ct, C ∈ {S0..SM} the state at time t, where M is the number
of possible states), the distribution of observations associated
with each state (f0(x)..fM (x), where each f(x) is a multivari-
ate distribution across all measurements), the state duration
distributions (d0(x)..dM (x)), and the transition probability
matrix Γ. The observation distributions (f0(x)..fM (x)) are
modelled as a multivariate Gaussian distribution (capturing the
value of each signal while in the state) and the state duration
distributions (d0(x)..dM (x)) as a Poisson distribution. The
transition matrix Γ, is an M × M matrix indicating the
probability of transitioning to a state when in every other
state. We used the pyhsmm Python package [30] to train the
HSMM, which implements a Hierarchical Dirichlet Process
Hidden semi-Markov Model [31]. We set the maximum state
duration to 50 minutes (10 samples). Bayesian Information
Criteria (BIC) was used to assess goodness-of-fit. Equation 1
shows how we calculated the BIC, where M is the number of
states, LL is the log likelihood of the data given the model,
k is the number of parameters in the model, and N is the
number of samples the model has been trained on.

BIC = −2 ∗ LL+ k ∗ log(N) (1)

We set the maximum number of states to be 26 - this decision
was based on an exploration of the BIC during training,
after 26 states had been assigned the BIC had stabilised.
We interpret each state by looking at the parameters of their
observation distributions - the mean (µ) of each dimension
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Fig. 1. A) Shows an example of one sensor measurement, the circadian component of it (black line). Shaded areas indicate night time. To remove the circadian
component and other lower or higher frequency noise we apply singular spectrum analysis (SSA) to decompose the signal. B) We then use Fourier analysis
to identify the peak frequency of each component, then recombine components with peak frequencies between 48 and 18 cycles per day, giving us the signal
on the right.

of the multivariate Gaussian distribution. We also characterise
the time distribution of each state by plotting a histogram of
the number of samples spent in that state at each time of day.
This indicates whether time spent in a given state is distributed
throughout the day and night or concentrated to a specific time.

E. Measuring Physical Activity and Mood

Self-reported physical activity and mood were recorded with
ecological momentary assessment (EMA), using the Avicenna
app [32]. This prompted users 5 times a day, asking them if
they had done exercise since last reporting, if they answered
yes, they were then asked to specify the exact time span
they were exercising. During the same prompt participants
were also asked about their mood. This was in the form
of two sliding scale ratings: one from “Tired or Exhausted”
to “Energised or Excited” (Energy), another from “Angry or
Tense” to “Calm or Relaxed” (Calmness). Scales ranged from
-2 (negative) to 2 (positive), responses were normalised to the
baseline of each participant by subtracting the mean response.
Prompts were scheduled randomly between 10:00 and 21:00
(typical waking hours) using a uniform distribution.

III. RESULTS

A. Common latent states

The HSMM identified 26 latent states within the data.
To illustrate the model we describe the 6 most used states,
corresponding to those that participants spent the most time in.
Figure 2 shows the examples from the 6 most common states,
showing the parameters (mean) of the multivariate Gaussian
distribution associated with the observations of each state,
the time distribution of each state indicating the time of day
when they occur across all participants, and an example of the
signals during each state. State 16 shows above baseline blood
glucose but baseline levels of all other measures. It also occurs
most frequently between 12:00 and 14:00 and between 19:00
and 21:00, corresponding to the time when the two largest

meals are eaten. We can therefore interpret this as the glucose
spike associated with eating.

Other states have less obvious interpretations but often show
strong phase-locking to particular times of day and distinct
combinations of observation parameters, indicating they may
represent meaningful bio-behavioural states with potential rel-
evance to health. For example state 9 occurs mostly in the mid-
afternoon, and is characterised by below baseline movement,
high skin temperature, low glucose, and low heart rate. This
shows a pattern of measures similar to states which occur
during sleep, such as state 2, and may indicate a period of mid-
afternoon inactivity approaching sleep, commonly experienced
by office workers. All states were also well represented across
participants, in no case was a single participant responsible
for the majority of time in a state.

B. Latent states associated with physical activity

Physical activity is an important health behaviour, typically
measured using time-use diaries or accelerometry. Here we
show the potential of the HSMM approach to capture this
important bio-behavioural state in an unsupervised manner.
As participants noted the timing of their physical activity, we
were able to describe which latent states they resided in during
this time. Figure 3 shows the number of 5 minute physical
activity epochs belonging to each state. Two states capture
the majority of time spent in doing physical activity. State
12 is the most occupied state during self-reported physical
activity, characterised by high acceleration, below baseline
skin temperature, high EDA, baseline glucose, high heart rate,
and baseline HRV. High heart rate and acceleration are key
markers of physical activity, high EDA is also to be expected
as a result of sweating, and low skin temperature could also be
expected as exercise may take place outdoors. State 22 shows
a similar pattern, the only clear difference is that here EDA
is at a baseline level. This may indicate that this was exercise
below the threshold for sweating, or that the EDA contacts
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Fig. 2. An illustration of the six most common states. For each state we show the mean of each metric as estimated by the HSMM (µ parameter of the
distribution), the time distribution of each state, and an example trace of the 5 metrics with the time spent in the state highlighted.
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Fig. 3. The HSMM states identified during physical activity. A) Shows the
time (in 5 minute epochs) in each of the 26 states in the model. States 12
and 22, involve the most time spent doing physical activity. B) The HSMM
estimates for the mean of states 12 and 22. C) An example of the signals
recorded during states 12 and 22. D) The time distribution of states 12 and
22.

were not optimal. Both states show similar time distributions,
with peaks in the morning and the evening - plausible exercise
times for professionals and students who spend the middle of
the day working at home or in the office.

C. Mood across latent states
Two dimensions of mood were captured in 5 snapshots

per day. Figure 4 (A) shows the distribution of energy di-
mension ratings for each state and figure 4 (B) shows the

distribution of calmness dimension values for each state. The
small sample size limits the conclusions we can draw from
these - comparing each state and mood dimension would
require 62 individual comparisons. However, states 11 and
16 have consistent ratings of tiredness, and states 9 and 21
have consistent ratings of calmness. We hope to expand this
dataset so that we can confirm whether some states identified
are associated with particular mood states.

IV. DISCUSSION

A. Main findings

We found that the HSMM could identify latent states
from ultradian fluctuations in the 6 measures. Many of
these states showed a time-of-day preference consistent across
participants, indicating that they may reflect bio-behavioural
states that have strong time-of-day preferences as a result of
chronobiology (e.g. sleep states) or sociological constraints
(e.g. meal times, exercise times). We found that two states
emerged that coincided with time spent exercising according
to participants self-reports. The observation distributions of
these states provided an indication of what exercise looked
like physiologically - above baseline acceleration and heart
rate, baseline glucose and HRV, and above baseline EDA
(state 12) or baseline EDA (state 22). Classification of exercise
from wearable sensors is well demonstrated using supervised
methods [33], and so it is not surprising that we were able to
find states which strongly associated with exercise. However,
demonstrating that this method identifies these clear bio-
behavioural states gives us confidence that the less obvious
states may also have relevance.
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Fig. 4. Relative mood ((A) energy, (B) calmness) assessed by ecological momentary assessment, during each of the states. Positive values indicate more
energy or more calmness. Mood scores are normalised to the overall mood rating in that dimension for each participant. Some states, have no recorded mood
for any participant.

B. Comparison with previous work

Much work has gone into applying machine learning - both
supervised and unsupervised - to human activity recognition
using wearable sensors, including HSMMs [34]. At the same
time, identifying the various chronobiological components of
wearable sensor signals has also developed. SSA is an estab-
lished method used to analyse chronobiological rhythms, and
previous work has used it to isolate the circadian components
of accelerometry data [13], [35]. We have not been able to find
any studies that have combined these approaches, recognising
that identifying latent states in wearable sensor measurements
should begin by isolating the chronobiological components of
most interest.

C. Limitations

Our sample size of 9 participants with a narrow age range,
and similar sociodemographics is a major limitation of this
study. Future work that incorporates a larger sample, and
purposefully samples from a wider range of ages, occupa-
tions, and lifestyles will be important to further develop
these methods. Age is known to influence our chronobiology,
behaviour, and physiology [36], while shift work and lifestyle
or life events that shift our sleep-wake cycle may disrupt our

chronobiological rhythms [37]. Accounting for this variety will
entail further development of the methodology to recognise
that some latent states will be present only for a subset of
the population. However, this also raises the possibility of
clustering the population using according to how often, and
at what time, they enter particular bio-behavioural states.

D. Potential for further insights

The HSMM also models the probability of transitioning
from one state to another. This probability matrix could
provide further insight into the relationships between states -
for example we could ask the question does state x regularly
follow state y? This may provide an additional layer of under-
standing and potential for novel interventions - for example if
we know that there is a high probability to transition to state
x when in state y, and we wished to avoid state x, we may
then design an intervention that reduces time spent in state y.

V. CONCLUSION

Here we have presented a novel approach towards devel-
oping a data-driven understanding of multi-modal wearable
sensor measurements. We have shown that by extracting
only the ultradian rhythm components of each signal, we
can identify latent states using a HSMM which can provide



insight into the bio-behavioural state of the wearer. We hope
this will lead to new methodologies for measuring health
behaviours, allowing researchers to utilise multi-modal data
to quantify how participants spend their time - physiologically
and behaviourally. We also envision that this approach could
be used within healthcare to identify bio-behavioural states
associated with specific diseases. Future work will explore
how time spent in particular latent states relates to health
outcomes such as well-being and stress management and
further data collection should provide confirmation of any
association with mood and explore whether latent states can
map to more complex self-reported behaviours.
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