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4 NONLINEAR SCHRÖDINGER-POISSON SYSTEMS IN DIMENSION TWO:

THE ZERO MASS CASE

FEDERICO BERNINI, GIULIO ROMANI, CRISTINA TARSI

Abstract. We provide an existence result for a Schrödinger-Poisson system in gradient form, set in
the whole plane, in the case of zero mass. Since the setting is limiting for the Sobolev embedding, we
admit nonlinearities with subcritical or critical growth in the sense of Trudinger-Moser. In particular, the
absence of the mass term requires a nonstandard functional framework, based on homogeneous Sobolev
spaces. These features, combined with the logarithmic behaviour of the kernel of the Poisson equation,
make the analysis delicate, since standard variational tools cannot be applied. The system is solved by
considering the corresponding logarithmic Choquard equation. We prove the existence of a mountain
pass-type solution via a careful analysis on specific Cerami sequences, whose boundedness is achieved by
exploiting an appropriate functional, obtained by evaluating the energy functional on particular paths.

1. Introduction

We aim at investigating existence of positive solutions of the planar Schrödinger-Poisson system in
gradient form given by

(1.1)

{
−∆u = Φf(u) in R2,

−∆Φ = 2πF (u) in R2,

where f is a positive continuous nonlinearity with subcritical or critical growth in the sense of Trudinger-
Moser, and F (t) :=

∫ t
0 f(s) ds. The main goal is to face the combined difficulties of working in the limiting

setting of the Sobolev embeddings and the fact that in the first equation of (1.1) the mass term is missing.
This makes the problem challenging, not only for the variational approach, but also in the choice of a
nonstandard functional framework.

Schrödinger-Poisson systems of the form

(1.2)

{
−∆u + V (x)u = Φf(u) in RN ,

−∆Φ = F (u) in RN ,

with a potential V which is usually positive, are of great importance in several fields of physics, since they
serve as models for the interaction of two identically charged particles in electromagnetism, as well as
for the self-interaction of the wave function with its own gravitational field in quantum mechanics; they
appear also in the Hartree theory for crystals, and in astrophysics in the study of selfgravitating boson
stars; for the physics background we refer to [4, 34] and to the references therein. From a mathematical
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point of view, they are interesting since they can be analysed by variational techniques. Indeed, one may
(formally) solve the Poisson equation in (1.1) by means of the Riesz kernel

KN (x) :=





CN

|x|N−2 if N ≥ 3 ,
1

2π ln 1
|x| if N = 2 ,

where CN is an explicit positive constant, and consider

Φu(x) := (KN ∗ F (u)) (x) =

∫

RN
KN (x − y)F (u(y)) dy .

Substituting it in the first equation of (1.2), one may rewrite the system as a Choquard equation, that is
an integro-differential equation of Schrödinger type with a convolutive right-hand side:

(1.3) −∆u(x) + V (x)u = (KN ∗ F (u)) f(u) in RN .

Besides the evident advantage of the reduction to a single equation, since the system (1.2) is of gradient
type, if N ≥ 3 the equation (1.3) is variational in the Sobolev space H1(RN ) thanks to the Hardy-
Littlewood-Sobolev inequality (Proposition 2.5 below), provided suitable polynomial growth conditions on
f are fulfilled. In this respect, there are a huge number of works about Choquard-type equations, especially
from the last decades, and we refer to the seminal works [15, 16, 35, 36] and the references therein. The
planar case N = 2 is more delicate because of the interplay between the logarithmic behaviour of the Riesz
kernel, and the exponential maximal growth of the nonlinearities, due to the Pohožeav-Trudinger-Moser
inequality in the full space proved by Ruf [42], see also [8]. The first attempt of considering this case is to
be referred to Stubbe [45] and later on formalised by Cingolani and Weth [19, 20]: they set the problem
in a constraint space which takes into account in the seminorm a contribution of the logarithmic kernel.
This analysis, which is peculiar for the case of a linear coupling in the system, namely f(u) = u in (1.2),
was then extended for the general case of a nonlinearity with critical exponential growth in [14]. Taking
indeed into account the behaviour at 0 of the nonlinearity, and by means of a log-weighted version of the
Pohožaev-Trudinger inequality, a proper functional setting was found, in which the functional associated
to (1.3) turns out to be well-defined. We also point out that the sharp version of such inequality has
been recently obtained in [46]. The approach in [14] was then generalised for Choquard equations with
weights in [9] and for quasilinear Schrödinger-Poisson systems in [7]. A different approach was recently
proposed in [33]: here, instead, the underlying functional space remains H1(R2), while the logarithmic
kernel is uniformly approximated by polynomial kernels. For further developments of this method we
refer to [11–13], also in quasilinear fractional contexts.

All the above works deal with Choquard equations of the form (1.3), where V is a nontrivial potential.
The special case of an identically zero potential, the so-called “zero-mass case”, emerges in some physical
context, e.g. in the nonabelian gauge theory of particle physics, such as the study of the Yang-Mills
equation, see [27]. The main difference with the “mass-case” lies in the natural framework in which such

problems are studied, namely the homogeneous Sobolev spaces D1,2
0 (RN ) defined as the completion of

C∞
c (RN ) with respect of the L2-norm of the gradient. In the higher-dimensional case N ≥ 3, in light of the

critical Sobolev embedding into L2∗
(RN ) with 2∗ = 2N

N−2 , such setting is appropriate for both Schrödinger
and Choquard equations of the kind

(1.4) −∆u = (KN ∗ F (u)) f(u) in RN ,
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as shown e.g. in [1–3,5]. However, if N = 2, not only any embedding into Lebesgue spaces is out of reach,

but also one cannot distinguish in D1,2
0 (R2) between functions which just differ by constants. In this

framework only few results are available for Schrödinger equations and Choquard equations of the kind
(1.4) with K2 = 1

2π ln 1
|·| . On the one hand, one may try to tweak the operator, so that the corresponding

natural space recovers good embedding properties in Lebesgue and Orlicz spaces: this is the strategy used
in [10, 21] for the Schrödinger case, and in [22, 40, 41] for the Choquard case with both polynomial and
logarithmic kernels. On the other hand, for equations with zero mass driven by the pure Laplacian, the
results available in the literature [17,18,47] cover just the linear case f(u) = u in (1.4) (up to adding local
nonlinearities) since the approach of [19,45] is pursued. However, as remarked in [17],

“it is really interesting to observe how remarkable the impact of the logarithmic integral
kernel ln |x| is, because it allows us to establish much richer and better existence results
than those available for other elliptic equations, in spite of its sign-changing and unbounded
properties”.

Indeed, differently from the Schrödinger equations with zero mass, the presence of the logarithmic kernel
combined with f(u) = u allows to recover H1(R2) as suitable functional framework, thanks to a careful
splitting in positive and negative part of the logarithm (see (3.2) below).

Main goal of this paper is to extend the existence results in the zero-mass case of [17, 18, 47] in the
direction of [14], that is aiming at considering the general case of a nonlinear function f , and covering both
the cases of subcritical and critical growth in the sense of Ruf’s inequality. To this aim, several difficulties
need to be faced: first, the unusual functional setting, which does not appear in the above cited works
because of the linear behaviour of f ; then the analysis on Cerami sequences, which arise from the mountain
pass geometry of the functional associated to (1.5), is largely affected by the possibly exponential growth
of the nonlinear terms and, in particular in the critical case, it is very delicate; eventually also the final
proof “à la Lions” of the existence theorem is pretty non-standard and rather technical. Finally, we derive
from our results for the Choquard equation the corresponding for the Schrödinger-Poisson system (1.1)
in a suitable functional setting in the spirit of [7, 40]. We stress that this step is often neglected in the
literature by just considering it as “natural”: here it finds a rigorous justification.

Before stating our main results, let us specify the growth conditions we are assuming on the nonlinearity.
Throughout the paper we suppose that f ∈ C1(R), f(s) > 0 as s > 0, while f(s) = 0 for s ≤ 0; moreover
it satisfies:

(f1) f(s) ≍ sp−1 as s → 0 for some p > 2 ;

and either is subcritical or critical in the following sense:

(fsc) for any α > 0, lim
s→+∞

f(s)/eαs2
= 0 and for some C > 0, f(s) ≥ Csp−1 as s → +∞ ;

(fc) there exists α0 > 0 such that

lim
s→+∞

f(s)

eαs2 =

{
0 if α > α0 ,

+∞ in α < α0 .

Under such conditions, and in particular in light of the behaviour near 0 given by (f1), we are going
to see that the functional setting in which it is convenient to look for solutions of the Choquard equation
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associated to the system (1.1), namely

(1.5) −∆u + (ln | · | ∗ F (u)) f(u) = 0 in R2,

is

D1,2Lp
ω(R2) := D1,2

0 (R2) ∩ Lp(ω dx) ,

where the weight function ω(x) := ln(b + |x|) with b > 1. Note that this space, which corresponds
to the intersection space H1Lp

ω(R2) detected in [14] for the study of the same Choquard equation with
positive mass, gathers all important features of our problem: the absence of mass since we are dealing
with the homogeneous Sobolev space D1,2(R2), the nonlinear behaviour of f , and the logarithmic kernel
in the weight. We will see that this space enjoys good embedding properties, in particular exponential
nonlinearities are allowed. We are therefore lead to the following definition:

Definition 1.1 (Solution of (1.5)). We say that u ∈ D1,2Lp
ω(R2) is a weak solution of (1.5) if

∫

R2
∇u · ∇ϕ dx =

∫

R2

(∫

R2
ln

1

|x − y|F (u(y)) dy

)
f(u(x))ϕ(x) dx

for all ϕ ∈ D1,2Lp
ω(R2).

Of course, in order to prove existence for (1.5), we need some further assumptions on f , which are
gathered here:

(f2) there exist C > τ > 0 such that τ ≤ F (s)f ′(s)
f(s)2 ≤ C for all s > 0 ;

(f3) lim
s→+∞

F (s)f ′(s)

f(s)2
= 1, or equivalently lim

s→+∞

d

ds

F (s)

f(s)
= 0 ;

(f4) lim
s→+∞

s3f(s)F (s)

e2α0s2 ≥ β > V, where V will be explicitly given in (4.34);

(f5) f ′(s) ≍ sp−2 as s → 0 and there exists α′ > 0 and s′ > 0 such that f ′(s) . eα′s2
for s > s′.

We postpone to Section 2.3 a detailed list of consequences of our assumptions. Here we just emphasise
that (f2) implies an Ambrosetti-Rabinowitz condition and the monotonicity of f ; (f3)-(f4) will be used in
the analysis of the boundedness of Cerami sequences when dealing with critical nonlinearities, the latter
being related to the deFiguereido-Miyagaki-Ruf condition in [23] and used to prove a fine upper bound for
the mountain pass level in Section 4; (f5) is a mild condition about the growth at ∞ of the nonlinearity,
which well agrees with both (fsc)-(fc), and will be exploited in the conclusive compactness argument in
Section 5.

Our main result reads as follows.

Theorem 1.2 (Existence for (1.5)). Suppose (f1), (f2), (f5) hold, and either

i) f is subcritical as in (fsc),

or

ii) f is critical as in (fc) and (f3), (f4) are fulfilled.

Then there exists a positive solution to (1.5) in the sense of Definition 1.1.
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Once we have found a weak solution of the logarithmic Choquard equation (1.5), we can go back to
the original Schrödinger-Poisson system. First, we need a precise meaning of solution for (1.1).

The weighted Lebesgue space Ls(R
2), s > 0, is defined as

Ls(R2) :=
{

u ∈ L1
loc(R

2)
∣∣∣
∫

R2

|u(x)|
1 + |x|2+2s

dx < +∞
}

.

Definition 1.3. For f ∈ S ′(R2) we say that a function ϕ ∈ L1(R2) is a solution of the linear Poisson
equation −∆Φ = f in R2 if

∫

R2
Φ (−∆ϕ) = 〈f, ϕ〉 for all ϕ ∈ S(R2) .

Definition 1.4 (Solution of (1.1)). We say that (u, Φ) is a weak solution of the Schrödinger-Poisson
system (1.1) if ∫

R2
∇u · ∇ϕ dx =

∫

R2
Φf(u)ϕ dx

for all ϕ ∈ D1,2Lp
ω(R2), and Φ solves −∆Φ = 2πF (u) in R2 in the sense of Definition 1.3.

Theorem 1.5 (Existence for (1.1)). Under the conditions of Theorem 1.2, the Schrödinger-Poisson system
(1.1) possesses a solution (u, Φ) ∈ D1,2Lp

ω(R2) × Ls(R2) for all s > 0 such that u is positive and Φ =
Φu := ln 1

|·| ∗ F (u).

Remark 1.6. It is worth to point out that:

(1) this work can be seen as an extension to the zero mass-case of the results in [14], to the general
case of a nonlinearity with possibly exponential growth of the results in [17,18,47], and to the pure
Laplacian case to those in [40];

(2) it is sufficient to prove the existence of a nonnegative nontrivial solution of (1.5) in order to
retrieve its positivity by the strong maximum principle for semilinear equations, see e.g. [38,
Theorem 11.1].

Overview. In Section 2 we describe the functional framework in which it is convenient to set our problem,
discuss our assumptions, and collect some useful results. The variational framework is then described in
Section 3, where we show the mountain pass geometry for the energy functional, while the existence of
special Cerami sequences, and their boundedness is detailed in Section 4; we stress that these arguments
turn out to be a delicate matter. After some careful mountain pass estimates, the proof of the existence
for the log-Choquard equation (1.5) is given in Section 5. Finally, in Section 6 we derive from it the
existence result for the Schrödinger-Poisson system (1.1).

Notation. For R > 0 and x0 ∈ RN we denote by BR(x0) the ball of radius R and center x0. Given a
set Ω ⊂ RN , we denote Ωc := RN \ Ω, and its characteristic function by χΩ . The space of the infinitely
differentiable functions which are compactly supported is denoted by C∞

c (RN ), M(RN ) stands for the
space of measurable functions in RN , while S is the Schwartz space of rapidly decreasing functions and S ′

the dual space of tempered distributions. For p ∈ [1, +∞] the Lebesgue space of p-integrable functions is
denoted by Lp(RN ) with norm ‖ ·‖p. For q > 1 we define its conjugate Hölder exponent as q′ := q

q−1 . The

symbol . indicates that an inequality holds up to a multiplicative constant depending only on structural
constants, while f ≍ g means that c1f ≤ g ≤ c2f for some c1, c2 > 0. Finally, on(1) denotes a vanishing
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real sequence as n → +∞. Hereafter, the letter C will be used to denote positive constants which are
independent of relevant quantities and whose value may change from line to line.

2. Functional space and preliminary results

2.1. The space D1,2Lp
ω(R2). Let us define the linear space

D1,2(R2) :=
{

u ∈ L1
loc(R

2) | ∇u ∈ L2(R2)2
}

with seminorm ‖∇ · ‖2. Note that, by the unboundedness of the domain, this seminorm cannot control
the L2-norm of the elements of D1,2(R2), and therefore D1,2(R2) ) H1(R2). To retrieve a normed space,
one need to introduce the relation u ∼ v ⇔ v = u + c with c ∈ R, and define the quotient space
Ḋ1,2(R2) :=

{
[u] | u ∈ D1,2

}
, which turns out to be a Hilbert space with norm ‖∇ · ‖2 (see [26, Lemma

II.6.2]). On the other hand, one may also introduce the space

D1,2
0 (R2) := completion of C∞

c (R2) w.r.t. ‖∇ · ‖2 .

By [26, Theorem II.7.5] the two spaces are isomorphic: D1,2
0 (R2) = Ḋ1,2(R2).

In order to find a suitable variational framework for the system (1.1), for p > 2 and b > 1 we define

Lp
ω(R2) := Lp(R2, ω dx) := {u ∈ M(R2) | ‖u‖∗,p < +∞},

where the weight function ω is given by ω(x) := ln(b + |x|), and

‖u‖∗,p :=

(∫

R2
|u|p ln(b + |x|) dx

) 1
p

,

and we consider the space

D1,2Lp
ω(R2) := D1,2(R2) ∩ Lp(R2, ω dx) ,

with norm

‖u‖ :=

[∫

R2
|∇u|2 dx +

(∫

R2
|u|p ln(b + |x|) dx

) 2
p

] 1
2

.

Note that, by the choice of b > 1, in D1,2Lp
ω(R2) it is possible to control the p−norm by the seminorm

‖u‖∗,p. Indeed,

(2.1) ‖u‖p
p =

∫

R2
|u(x)|p dx ≤ (ln b)−1

∫

R2
ln(b + |x|)|u(x)|p dx = (ln b)−1‖u‖p

∗,p .

Therefore,

D1,2(R2) ∩ Lp(R2, ω dx) = D1,2(R2) ∩ Lp(R2) ∩ Lp(R2, ω dx),

and so, since C∞
c (R2) is dense both in D1,2

0 (R2) and Lp(R2), we have the characterisation

D1,2(R2) ∩ Lp(R2ω dx) = D1,2(R2) ∩ Lp(R2) ∩ Lp(R2, ω dx)

= D1,2
0 (R2) ∩ Lp(R2) ∩ Lp(R2, ω dx) = D1,2

0 (R2) ∩ Lp(R2, ω dx).

Furthermore, by [30, Theorem 1.11] D1,2Lp
ω(R2) is a reflexive Banach space, whose dual is given by

(2.2) D−1,2Lp
ω(R2) := (D1,2(R2) ∩ Lp

ω(R2))′ = D−1,2(R2)
∣∣
D−1,2Lp

ω
+ Lp′

(R2, ω dx)
∣∣
D−1,2Lp

ω
,
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since
(
Lp

ω(R2)
)′

= Lp′
(R2, ω dx), see [44, Theorem 14.9], and [26, Theorem II.8.1] for the representation

of the space D−1,2(R2). Let us state now important embedding properties of our space.

Lemma 2.1. The space X := D1,2Lp
ω(R2) is compactly embedded in Lq(R2) for all q ≥ p.

Proof. The embedding X →֒ Lp(R2) is a consequence of (2.1). Let now q > p, then by Proposition 2.6
below (applied with j = 0, m = 1, r = 2, N = 2, q = p) we have

‖u‖q ≤ C‖u‖
p
q
p ‖∇u‖

q−p
q

2 ,

which implies X →֒ Lq(R2), for every q > p.
Let us now prove the compactness of these embeddings by relying on the Riesz criterion, see [39, Theorem
XIII.66], which needs the continuity of the translation in the Lebesgue norm and a uniform decay at
infinity of the elements in X. To this aim, let S ⊂ X be a bounded subset, then it is also bounded in
Lq(R2), q ≥ p. Let R > 0, u ∈ S and q ≥ p. Then, by Hölder inequality,

∫

{|x|≥R}
|u|q dx ≤ ‖u‖q−1

(q−1)p′

∫

{|x|≥R}
|u|p dx ≤ C

∫

{|x|≥R}
|u|p dx,

since (q − 1)p′ ≥ p and the continuity of the embedding shown before. Moreover,
∫

{|x|≥R}
|u|p dx ≤ ‖u‖p

∗,p

ln(b + R)
≤ C

ln(b + R)
,

since u ∈ S bounded in X. Hence, for q ≥ p, for any ε > 0 one can choose R > 0 large enough such that

(2.3)

∫

BR(0)c
|u|q dx ≤ εq.

Let us now prove the continuity of the translation in Lq(R2). Since X ⊂ D1,2
0 (R2), by density we can work

within C∞
c (R2). Let u ∈ C∞

c (R2) and h ∈ R2. Following [6, Proposition 9.3] and defining τhu := u(· + h),
by Jensen inequality we have

|u(x + h) − u(x)|2 =

∣∣∣∣
∫ 1

0
h · ∇u(x + th) dt

∣∣∣∣
2

≤ |h|2
∫ 1

0
|∇u(x + th)|2 dt.

Integrating on R2 and using the Fubini-Tonelli theorem,

‖τhu − u‖2
2 =

∫

R2
|u(x + h) − u(x)|2 dx ≤ |h|2

∫ 1

0

∫

R2
|∇u(x + th)|2 dx dt = |h|2‖∇u‖2

2 .

Hence,

‖τhu − u‖q
q =

∫

R2
|u(x + h) − u(x)|q dx ≤

(∫

R2
|u(x + h) − u(x)|2(q−1) dx

)1
2 ‖τhu − u‖2

.
(
‖τhu‖q−1

2(q−1) + ‖u‖q−1
2(q−1)

)
|h|‖∇u‖2

. 2‖u‖q−1
2(q−1)‖u‖|h| . ‖u‖q|h|

by the continuous embedding showed above, since p > 2 implies that 2(q − 1) > p for all q ≥ p.
The above inequality, together with (2.3), completes the proof. �



8 Federico Bernini, Giulio Romani, Cristina Tarsi

2.2. Useful theorems and inequalities. Since our nonlinearities are of exponential growth, we recall
here some important functional inequalities that we will exploit to control them. The first result is a
generalised Cao’s inequality in D1,2(R2)∩ Lq(R2) taken from [28, Theorem 1.1], which is a particular case
of the very general result obtained therein. Then, we report a Pohožaev-Trudinger-Moser inequality with
logarithmic weight in D1,2Lp

ω(R2) from1 [14].

Theorem 2.2 ([28], Theorem 1.1). Let q ≥ p and λ < 4π. Then there exists a constant C := C(p, q, λ) > 0
such that for all u ∈ D1,2(R2) ∩ Lp(R2) with ‖∇u‖2 ≤ 1 there holds

(2.4)

∫

R2
eλu2 |u|q dx ≤ C‖u‖p

p .

If λ ≥ 4π, (2.4) remains true but the constant C is not uniform in u.

Theorem 2.3 ([14], Theorem 3.3). Let g satisfy assumptions (f1) and either (fsc) or (fc), and G(s) =∫ s
0 g(t) dt. Then, the space D1,2Lp

ω(R2) embeds into the weighted Orlicz space LG(R2, ω dx), namely
∫

R2
G(α|u|) ln(b + |x|) dx < +∞

for any u ∈ D1,2Lp
ω(R2) and any α > 0. Furthermore, for any α ≤ 1/

√
p one has

sup
‖u‖2≤1

∫

R2
G (α|u|) ln(b + |x|) dx < +∞ .

Corollary 2.4 ([14], Corollary 3.4). For any α > 0 the functional

u 7→
∫

R2
G(α|u|) ln(b + |x|) dx , u ∈ D1,2Lp

ω(R2) ,

is continuous, where G is as in Theorem 2.3.

Throughout the paper, we will make great use of the following well-known results: the Hardy-Littlewood-
Sobolev inequality (see [31, Theorem 4.3]), and the Gagliardo-Nirenberg inequality (see [37, Formula
(2.2)]).

Proposition 2.5 (HLS inequality). Let N ≥ 1, µ ∈ (0, N), and s, r > 1 with 1
s + µ

N + 1
r = 2. There

exists a constant C = C(N, µ, s, r) such that for all f ∈ Ls(RN ) and h ∈ Lr(RN ) one has
∫

RN

(
1

| · |µ ∗ f

)
h dx ≤ C‖f‖s‖h‖r .

Proposition 2.6 (GN inequality). Let N, m ∈ N and u ∈ Lp(RN ) such that Dmu ∈ Lr(RN ), where
q, r ∈ [1, +∞]. Then, there exists a constant C := C(N, m, j, p, r, θ) > 0 such that

(2.5) ‖Dju‖q ≤ C‖Dmu‖r‖u‖p,

where j satisfies

1

q
=

j

N
+ θ

(
1

r
− m

N

)
+

1 − θ

p
, for every j such that

j

m
≤ θ ≤ 1.

In particular:

1Note that the space H1
ω(R2) in [14] coincides with our D1,2Lp

ω(R2).
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• if j = 0, rm < N and p = +∞, then we need that either u vanishes at infinity or u ∈ Ls(RN ) for
some s ∈ (0, +∞);

• if r ∈ (1, +∞) and m − j − N/r is a nonnegative integer, then (2.5) holds only for θ satisfying
j
m ≤ θ < 1.

We end this section by recalling an abstract result from [25, Proposition 3.1] (see also [48, Theorem 2.8]
for the version with the Palais-Smale condition), which will be needed to prove the existence of bounded
Cerami sequences.

Proposition 2.7. Let X̃ be a Banach space, M0 be a closed subspace of a metric space M , and Γ0 ⊂
C(M0, X̃). Define

Γ̃ =
{

γ ∈ C(M, X̃) : γ|M0
∈ Γ0

}
.

If Ψ ∈ C1(X̃,R) satisfies

∞ > c := inf
γ∈Γ̃

sup
u∈M

Ψ(γ(u)) > a := sup
γ0∈Γ0

sup
u∈M0

Ψ(γ0(u)) ,

then, for every ε ∈ (0, c−a
a

)
, δ > 0, and γ ∈ Γ̃ , with supu∈M Ψ(γ(u)) ≤ c + ε, there exists u ∈ X̃ such that

• c − 2ε ≤ Ψ(u) ≤ c + 2ε,
• dist(u, γ(M)) ≤ 2δ,
• (1 + ‖u‖

X̃
)‖Ψ ′(u)‖

X̃′ ≤ 8ε
δ .

2.3. Consequences of the assumptions. To end this Section, let us point out some immediate conse-
quences of (f0)-(f5) which will be of use in our analysis, together with some comments in this regard:

i) by (f1) and (fsc), for any r, α > 0 and s0 > 1 there is C > 0 such that

(2.6) 0 ≤ F (s) ≤ C ·
{

sp for s ≤ s0 ,

sreαs2
for s > s0

while, if (fsc) is replaced by (fc), the upper bound changes as follows: for any r > 0, α > α0 and
s0 > 1 there is C > 0 such that such that

(2.7) 0 ≤ F (s) ≤ C ·
{

sp for s ≤ s0 ,

sreαs2
for s > s0 ,

and 0 ≤ f(s) ≤ C ·
{

sp−1 for s ≤ s0 ,

sreαs2
for s > s0 ;

ii) by (f1) and (fsc) or (fc), there is C > 0 such that for any s > 0

(2.8) F (s) ≥ Csp ;

iii) assumption (f2) implies that f is monotone increasing. Moreover,

d

dt

F (t)

f(t)
=

f2(t) − F (t)f ′(t)

f2(t)
≤ 1 − τ ,

from which one infers

(2.9) F (t) ≤ (1 − τ)tf(t) for any t ≥ 0 .
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iv) (f5) is related to the well-known de Figueiredo-Miyagaki-Ruf condition [23] and is crucial in order
to estimate the mountain pass level and gain compactness, see Lemma 4.5. We note here that
such an assumption, which goes back to [24], avoids the prescription of a global lower-bound on F
of the kind (2.8) but with C large enough: it is widely used in the literature but is not of practical
verification. A condition similar to (f5) appears also e.g. in [7, 14,17,40].

v) Examples of nonlinearities which satisfy the assumptions of Theorem 1.2 are F (s) = sp and

F (s) = spes with p > 2 (concerning (fsc)), and F (s) = spχ{s<1}(s) + sqes2
χ{s≥1}(s) with q > −2

(concerning (fc)).

3. The variational framework

Formally, we can associate to the logarithmic Choquard equation (1.5) the energy functional I :
D1,2Lp

ω(R2) → R given by

(3.1) I(u) :=
1

2

∫

R2
|∇u|2 dx +

1

2

∫

R2

∫

R2
ln |x − y|F (u(x))F (u(y)) dx dy .

The aim of this section is to show that I is indeed well-defined and regular in the space D1,2Lp
ω(R2)

described in Section 2. First, we state an identity which will play a crucial rôle throughout the paper:

(3.2) ln |x − y| = ln(b + |x − y|) − ln

(
1 +

b

|x − y|

)
.

This splitting was first used by [45] with b = 1, and subsequently developed by [19]. In [17, 47] it was
applied with b > 1, and this allows for the embedding Lp(R2, ω dx) →֒ Lp(R2) as shown in Section 2.

According to (3.2), and following the approach of [19], we define the bilinear forms

(u, v) 7→ A1(u, v) :=

∫

R2

∫

R2
ln(b + |x − y|) u(x)v(y) dx dy ,

(u, v) 7→ A2(u, v) :=

∫

R2

∫

R2
ln

(
1 +

b

|x − y|

)
u(x)v(y) dx dy ,

(u, v) 7→ A0(u, v) := A1(u, v) − A2(u, v) =

∫

R2

∫

R2
ln |x − y|u(x)v(y) dx dy

Since b > 1 one has

(3.3) ln(b+ |x−y|) ≤ ln(b+ |x|+ |y|) ≤ ln(b+ b|x|+ b|y|) ≤ ln((b+ |x|)(b+ |y)) = ln(b+ |x|)+ ln(b+ |y|) ,

and we can therefore estimate the bilinear form A1 by

(3.4)
|A1(u, v)| ≤

∫

R2
ln(b + |x|)|u(x)| dx

∫

R2
|v(y)| dy +

∫

R2
|u(x)| dx

∫

R2
ln(b + |y|)|v(y)| dy

≤ ‖u‖∗,1‖v‖1 + ‖u‖1‖v‖∗,1

for every u, v ∈ L1(R2, ω dx). Concerning A2, since ln(b+r) ≤ r for every r ≥ 0 (with the strict inequality
if r > 0), then, by Hardy-Littlewood-Sobolev inequality (Proposition 2.5), there exists a positive constant
C such that

(3.5) A2(u, v) ≤ b

∫

R2

∫

R2

1

|x − y|u(x)v(y) dx dy . ‖u‖ 4
3
‖v‖ 4

3
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for every u, v ∈ L
4
3 (R2). For F ∈ C(R), we also define the following functionals:

u 7→ I1(u) := A1(F (u), F (u)) =

∫

R2

∫

R2
ln(b + |x − y|)F (u(x))F (u(y)) dx dy ,

u 7→ I2(u) := A2(F (u), F (u)) =

∫

R2

∫

R2
ln

(
1 +

b

|x − y|

)
F (u(x))F (u(y)) dx dy ,

u 7→ I0(u) := A0(F (u), F (u)) =

∫

R2

∫

R2
ln |x − y|F (u(x))F (u(y)) dx dy .

Note that, if F (u) ≥ 0, then I1(u) ≥ 0 and I2(u) ≥ 0. With this notation, the energy functional (3.1) can
be rewritten as

I(u) =
1

2
‖∇u‖2

2 +
1

2
I0(u),

and we are going to prove that I is well-defined in X := D1,2Lp
ω(R2), see Lemma 3.2. For the rest of the

paper we always use this notation to indicate our space.

Before going into details of the proof, we prepose an extension of Lemma [19, Lemma 2.1] to our
framework. It will be crucial in order to transfer estimates from the bilinear form A1 to the norm ‖ · ‖∗,p,
since it will be mainly applied with ϕn = F (un) in combination with the lower bound (2.8).

Lemma 3.1. Let p > 1, u ∈ Lp(R2) \ {0} and nonnegative sequences {un}n ⊂ Lp(R2) such that un → u
a.e. in R2 as n → +∞, and {ϕn}n ⊂ L1(R2). Let moreover F ∈ C(R) with F (t) > 0 for t > 0.

(a) If A1(F (un), ϕn) ≤ C and ‖ϕn‖1 ≤ C for all n ∈ N, then there exist n0 ∈ N and C̄ > 0 such that
‖ϕn‖∗,1 ≤ C̄ for all n > n0.

(b) If A1(F (un), ϕn) → 0 and ‖ϕn‖1 → 0 as n → +∞, then ‖ϕn‖∗,1 → 0 as n → +∞.

Proof. Since un → u a.e. in R2 and F is continuous, by Egorov’s theorem there exist n0 ∈ N, R > 0, and
δ > 0, and a measurable set A ⊂ BR(0) with positive measure, such that F (un(x)) ≥ δ for all n ≥ n0.
For x ∈ A and y ∈ R2 \ B(1+b)R(0) we have

b + |x − y| ≥ b + |y| − |x| ≥ b +

(
1 − 1

b + 1

)
|y| = b

(
1 +

1

b + 1
|y|
)

≥ b(1 + |y|) 1
b+1

by Bernoulli’s inequality. Hence,

A1(F (un), ϕn) ≥
∫

R2\B(b+1)R(0)

∫

A
ln(b + |x − y|)F (un(x))ϕn(y) dx dy

≥ C

(∫

A
F (un(x)) dx

)(∫

R2\B(b+1)R(0)
ln
(
b(1 + |y|) 1

b+1

)
ϕn(y) dy

)

≥ C
δ|A|
b + 1

∫

R2\B(b+1)R(0)
ln
(
bb+1(1 + |y|)

)
ϕn(y) dy

≥ C
δ|A|
b + 1

∫

R2\B(b+1)R(0)
ln (b + |y|) ϕn(y) dy

≥ C
δ|A|
b + 1

(‖ϕn‖∗,1 − ln(b + (b + 1)R)‖ϕn‖1

)
,
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having used the fact that bb+1 > b > 1. This yields both (a) and (b), since then

‖ϕn‖∗,1 ≤ b + 1

δ|A|C A1(F (un), ϕn) + ln(b + (b + 1)R)‖ϕn‖1 .

�

3.1. Regularity of the functional I. Now, we move our attention to the well-posedness and regularity
of the functional in our space X = D1,2Lp

ω(R2).

Proposition 3.2. Under (f1) and (fsc) or (fc), the functionals I1, I2, I0 and I are well-defined and of
class C1 on X, and

I ′(u)[v] =

∫

R2
∇u · ∇v + 2A0(F (u), f(u)v) =

∫

R2
∇u · ∇v dx +

∫

R2
(ln | · | ∗ F (u)) f(u)v dx .

Proof. First, note that ln(b + |x|) ≥ ln b > 0, since b > 1, implies that

(3.6)

∫

R2
F (u(x)) dx ≤ (ln b)−1

∫

R2
ln(b + |x|)F (u(x)) dx < +∞

by Theorem 2.3. Hence, from (3.4) it follows that

I1(u) ≤ 2‖F (u)‖∗,1‖F (u)‖1 < +∞ .

On the other hand, combining (3.5) with (2.6) or (2.7) for r > 3
4p > 3

2 > 1 and α > α0, one has

I2(u) ≤ b‖F (u)‖2
4
3
. ‖u‖2p

4
3

p
+

(∫

R2
|u| 4

3
re

4
3

α|u|2 dx

) 3
2

. ‖u‖2p
4
3

p
+ ‖∇u‖2r

2



∫

R2

(
u

‖∇u‖2

) 4
3

r

e
4
3

α‖u‖2

(
u

‖∇u‖2

)2

dx




3
2

. ‖u‖
3
2

p
p ‖∇u‖

p
2
2 + C(u)‖∇u‖2r− 3

2
p

2 ‖u‖
3
2

p
p < +∞ ,

(3.7)

by Proposition 2.6 and Theorem 2.2. Consequently, I is well-defined in X.
Let now {un}n ⊂ X be a sequence such that un → u in X, that is

(3.8) ‖un − u‖2 = ‖∇un − ∇u‖2
2 + ‖un − u‖2

∗,p → 0 as n → +∞ .

We have

|I1(un) − I1(u)| =

∣∣∣∣
∫

R2

∫

R2
ln(b + |x − y|) (F (un(x))F (un(y)) − F (u(x))F (u(y))) dx dy

∣∣∣∣

≤
∫

R2
ln(b + |x|)F (un(x)) dx

∫

R2
|F (un(y)) − F (u(y))| dy

+

∫

R2
ln(b + |y|) |F (un(y)) − F (u(y))| dy

∫

R2
F (un(x)) dx

+

∫

R2
ln(b + |x|) |F (un(x)) − F (u(x))| dx

∫

R2
F (u(y)) dy

+

∫

R2
ln(b + |y|)F (u(y)) dy

∫

R2
|F (un(x)) − F (u(x))| dx ,
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and all four terms tend to 0 as n → ∞, since the functionals
∫
R2 F (u) dx,

∫
R2 F (u) ln(b + |x|) dx on X are

continuous thanks to Corollary 2.4.
For any u ∈ X, the first Gâteaux derivative of I1 at u along v ∈ X is given by

I ′
1(u)[v] = 2

∫

R2

∫

R2
ln(b + |x − y|)F (u(x))f(u(y))v(y) dx dy .

By (3.3), we have

1

2

∣∣I ′
1(u)[v]

∣∣ ≤
∫

R2
ln(b + |x|)F (u(x)) dx

∫

R2
f(u(y))|v(y)| dy

+

∫

R2
ln(b + |y|)f(u(y))|v(y)| dy

∫

R2
F (u(x)) dx

≤ ‖F (u)‖∗,1‖f(u)‖ p
p−1

‖v‖p + ‖F (u)‖1‖f(u)‖∗, p
p−1

‖v‖∗,p < +∞

by Theorems 2.2 and 2.3. Now, let again {un}n ⊂ X and u ∈ X be as in (3.8). We have

1

2

∣∣I ′
1(un)[v] − I ′

1(u)[v]
∣∣ ≤

∫

R2
ln(b + |x|)F (u(x)) dx

∫

R2
|f(un(y)) − f(u(y))| |v(y)| dy

+

∫

R2
F (u(x)) dx

∫

R2
ln(b + |y|) |f(un(y)) − f(u(y))| |v(y)| dy

+

∫

R2
ln(b + |x|) |F (un(x)) − F (u(x))| dx

∫

R2
f(un(y))|v(y)| dy

+

∫

R2
|F (un(x)) − F (u(x))| dx

∫

R2
ln(b + |y|)f(un(y))|v(y)| dy .

Recall now (3.6), and analogously

(3.9)

∫

R2
|F (un(x)) − F (u(x))| dx ≤ (ln b)−1

∫

R2
ln(b + |x|) |F (un(x)) − F (u(x))| dx = on(1)

by Corollary 2.4. Moreover, by Hölder’s inequality
∫

R2
f(un(y))|v(y)| dy ≤ C(b)

∫

R2
ln(b + |y|)f(un(y))|v(y)| dy . ‖f(un)‖∗, p

p−1
‖v‖∗,p ≤ C(u)‖v‖ ,

and
∫

R2
|f(un(y)) − f(u(y))| |v(y)| dy ≤ (ln b)−1

∫

R2
ln(b + |y|) |f(un(y)) − f(u(y))| |v(y)| dy

. ‖f(un) − f(u)‖∗, p
p−1

‖v‖∗,p = on(1)‖v‖ ,

since f is continuous. Combining the above inequalities, one infers

1

2

∣∣I ′
1(un)[v] − I ′

1(u)[v]
∣∣ ≤ C(u)‖v‖ on(1) ,

namely I ′
1 ∈ C(X). Let us now focus on I2. For {un}n ⊂ X and u ∈ X for which (3.8) hold, by (3.5) one

has

|I2(un) − I2(u)| ≤
∫

R2

∫

R2
ln

(
1 +

b

|x − y|

)
F (un(x))|F (un(y)) − F (u(y))| dx dy
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+

∫

R2

∫

R2
ln

(
1 +

b

|x − y|

)
F (u(y))|F (un(x)) − F (u(x))| dx dy

. ‖F (un) − F (u)‖ 4
3

(
‖F (un)‖ 4

3
+ ‖F (u)‖ 4

3

)
,

and tends to 0 as n → +∞, since ‖F (un) − F (u)‖ 4
3

= on(1) as in (3.9), ‖F (u)‖ 4
3

< +∞ as in (3.6), and

‖F (un)‖ 4
3

≤ C by continuity.

Computing the first variation of I2 at u ∈ X along v ∈ X we get

I ′
2(u)[v] = 2

∫

R2

∫

R2
ln

(
1 +

b

|x − y|

)
F (u(x))f(u(y))v(y) dx dy

and so
1

2

∣∣I ′
2(u)[v]

∣∣ ≤ b

∫

R2

∫

R2

1

|x − y|F (u(x))f(u(y))|v(y)| dx dy

. ‖F (u)‖ 4
3
‖f(u)‖ 4

3
p′‖v‖p ≤ ‖F (u)‖ 4

3
‖f(u)‖ 4

3
p′‖v‖ < +∞

by Theorem 2.2. Analogously, for {un}n ⊂ X and u ∈ X as in (3.8),

1

2

∣∣I ′
2(un)[v] − I ′

2(u)[v]
∣∣ .

(
‖F (un)‖ 4

3
‖f(un) − f(u)‖ 4

3
p′ + ‖F (un) − F (u)‖ 4

3
‖f(u)‖ 4

3
p′

)
‖v‖

which again tends to 0 by the above arguments. As a result, both I1 and I2 are of class C1 on X:
consequently, also I0 = I1 − I2 and I have the same regularity. �

4. Analysis of Cerami sequences

Usually, a mountain pass geometry of the functional (see Lemma 4.1 below) directly provides the
existence of a Cerami sequence, namely a sequence {un}n ⊂ X such that

(4.1) I(un) → cmp, (1 + ‖un‖)‖I ′(un)‖X′ → 0,

which, by some compactness argument which exploits first the boundedness of such sequence in X, yields
the existence of a weak solution. In our case, however, the proof of the boundedness of the Cerami
sequence is not standard, and we need to improve the properties that such a sequence has. The abstract
result contained in Proposition 2.7 allows us to find a Cerami sequence with the additional property that
J (un) → 0 as n → +∞ (see Lemma 4.2 below), where the functional J : X → R is given by

(4.2) u 7→ J (u) := 2‖∇u‖2
2 − 2I0(u) + 2A0(F (u), f(u)u) − 1

2
‖F (u)‖2

1 .

The boundedness of {un}n in X will follow then by combining (4.1) and J(un) → 0. This strategy, which
was first employed in [43] in the high-dimensional case, was implemented in the planar case by [17,25] in
the case f(u) = u. Here we need to extend it to the case of a general nonlinearity.

Let us first define

Γ := {γ ∈ C ([0, 1], X) : γ(0) = 0 and I(γ(1)) < 0} ,

and the mountain pass level

(4.3) cmp := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) .
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Lemma 4.1. Assume (f1) and (fsc) or (fc) hold. Then, the set Γ is nonempty and 0 < cmp < +∞.

Proof. We start with a control from below of I1: since ln(b + r) ≥ ln b, for r ≥ 0 and b > 1, it follows by
(2.8) that

(4.4) I1(u) =

∫

R2
ln(b + |x − y|)F (u(x))F (u(y)) dx dy ≥ ln b

(∫

R2
F (u(x)) dx

)2

≥ C ln b‖u‖2p
p .

Concerning I2 let us refine the upper bound proved in (3.7). If f satisfies assumption (fsc) or (fc), then
by (2.6) or (2.7), respectively, one has

I2(u) . ‖u‖2p
4
3

p
+ ‖∇u‖2r

2



∫

R2

(
u

‖∇u‖2

) 4
3

r

e
4
3

α‖u‖2

(
u

‖∇u‖2

)2

dx




3
2

. ‖u‖
3
2

p
p ‖∇u‖

p
2
2 + ‖∇u‖2r− 3

2
p

2 ‖u‖
3
2

p
p ,

having used Proposition 2.6 on the first term and Theorem 2.2 for the second, with the choice r > 3
4p >

3
2 > 1, α > α0 close to α0 (with a little abuse of notation, for α0 = 0 if (fsc) is assumed) and having

required that 4
3α‖u‖2 < 4π. As a result, for any u ∈ X with ‖u‖ <

√
3πα−1, and choosing now r = p, we

get

(4.5) I2(u) . ‖u‖
3
2

p
p ‖∇u‖

p
2
2 < +∞ .

Hence, combining (4.4) and (4.5), by Young’s inequality with ν and ν ′ to be chosen later, we get

(4.6) I(u) =
1

2
‖∇u‖2

2 + I1(u) − I2(u) ≥
(

1

2
‖∇u‖2

2 − C

ν ′
‖∇u‖

p
2

ν′

2

)
+

(
ln b‖u‖2p

p − C

ν
‖u‖

3
2

pν
p

)
.

Choosing ν ∈
(

4
3 , 4

(4−p)+

)
, which is nonempty since p > 1, namely





ν > 4

3 , if p ≥ 4,

ν ∈
(

4
3 , 4

4−p

)
, if p ∈ (2, 4),

we easily infer from (4.6) that 0 is a local minimum for I.
Let us now evaluate the functional I along the fiber set {t2u(t ·) : u ∈ X, t > 0}. For a fixed u ∈ X we

have

I(t2u(tx)) =
t4

2

∫

R2
|∇u(x)|2 dx +

t−4

2

∫

R2

∫

R2
ln |x − y|F (t2u(x))F (t2u(y)) dx dy

− t−4 ln t

2

(∫

R2
F (t2u(x)) dx

)2

.

For u ∈ C∞
c (B1/4(0)), one then gets

I(t2u(tx)) ≤ t4

2

∫

R2
|∇u(x)|2 dx − t−4

2
(ln 2 + ln t)

(∫

R2
F (t2u(x)) dx

)2

≤ t4

2

∫

R2
|∇u(x)|2 dx − ln 2 + ln t

2
t4(p−1)

(∫

R2
|u|p dx

)2

→ −∞
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as t → +∞. Hence supt>0 I(t2u(tx)) < +∞, and there exists t∗ = t∗(u) > 0 such that I(t2
∗u(t∗x)) =

maxt>0 I(t2u(tx)). Now, the function γ(t) = (t̃t)2u(t̃t·), with t̃ >> t∗ has the properties that γ ∈
C([0, 1], X), γ(0) = 0, and I(γ(1)) < 0. As a result, γ ∈ Γ , namely Γ 6= ∅ and cmp < +∞.
Since I has a local minimum in 0 by (4.6), there exist a constant a0 > 0 and ρ > 0 such that

I(u) ≥ a0 if u ∈ Sρ(0) :=
{

u ∈ X : ‖∇u‖2
2 + ‖u‖p

p = ρ
}

.

Let γ ∈ Γ , then ‖∇(γ(1))‖2
2 + ‖γ(1)‖2

2 > ρ, and by the mean value theorem there exists t̄ ∈ [0, 1] such
that ‖∇(γ(t̄))‖2

2 + ‖γ(t̄)‖2
2 = ρ. This means that γ(t̄) = 0, hence I(γ(t̄)) ≥ a0. Therefore,

sup
t∈[0,1]

I(γ(t)) ≥ I(γ(t̄)) ≥ a0 > 0 .

Taking the infimum on Γ , we can conclude that cmp > 0. �

With the help of the abstract result Proposition 2.7, we are in a position to prove the existence of a
specific Cerami sequence.

Lemma 4.2. Assume (f1) and (fsc) or (fc) hold. Then there exists a Cerami sequence {un}n ⊂ X at the
mountain pass level cmp defined in (4.3), such that

(4.7) J (un) → 0 .

Proof. Let X̃ := R×X be the Banach space endowed with the norm ‖(s, v)‖X̃ :=
(|s|2 + ‖v‖2

) 1
2 . Consider

the continuous map ρ : X̃ → X defined as

ρ(s, v)[x] := e2sv(esx) , s ∈ R, v ∈ X, x ∈ R2

and

Ψ := I ◦ ρ : X̃ → R .

We compute

Ψ(s, v) = I(ρ(s, v)) =
1

2

∫

R2
|∇ρ(s, v)|2 dx +

1

2

∫

R2

∫

R2
ln |x − y|F (ρ(s, v)[x])F (ρ(s, v)[y]) dx dy

=
e6s

2

∫

R2
|∇v(esx)|2 dx +

1

2

∫

R2

∫

R2
ln |x − y|F (e2sv(esx))F (e2sv(esy)) dx dy

=
e4s

2

∫

R2
|∇v|2 dx′ +

e−4s

2

∫

R2

∫

R2
ln |x′ − y′|F (e2sv(x′))F (e2sv(y′)) dx′ dy′

− s
e−4s

2

(∫

R2
F (e2sv(x′)) dx′

)2

.

By Lemma 3.2, Ψ is of class C1 on X̃, therefore we can compute the partial derivatives of Ψ . For s ∈ R

and v ∈ X one has

∂sΨ(s, v) = 2e4s
∫

R2
|∇v|2 dx − 2e−4s

∫

R2

∫

R2
ln |x − y|F (e2sv(x))F (e2sv(y)) dx dy

+ 2e−4s
∫

R2

∫

R2
ln |x − y|F (e2sv(x))f(e2sv(y))e2sv(y) dx dy
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+ 2se−4s
(∫

R2
F (e2sv)

)2

− e−4s

2

(∫

R2
F (e2sv)

)2

− 2se−4s
(∫

R2
F (e2sv)

)(∫

R2
f(e2sv)e2sv

)

= 2e4s
∫

R2
|∇v|2 dx − 2

∫

R2

∫

R2
ln |x − y|F (e2sv(esx))F (e2sv(esy)) dx dy

+ 2

∫

R2

∫

R2
ln |x − y|F (e2sv(esx))f(e2sv(esy))e2sv(esy) dx dy − 1

2

(∫

R2
F (e2sv(esx)) dx

)2

= J (ρ(s, v)) ,

where J is defined in (4.2). On the other hand, for w ∈ X, one has

∂vΨ(s, v)[w] = ∂vI(ρ(s, v))[w]

= e4s
∫

R2
∇v(x) · ∇w(x) dx − se−4s

(∫

R2
F (e2sv(x)) dx

)(∫

R2
f(e2sv(x))w(x) dx

)

+ e−4s
∫

R2

∫

R2
ln |x − y|F (e2sv(x))f(e2sv(y))e2sw(y) dx dy

=

∫

R2
∇(e2sv(esx′)) · ∇(e2sw(esx′)) dx′

− s

(∫

R2
F (e2sv(esx′)) dx′

)(∫

R2
f(e2sv(esx′))w(esx′) dx′

)

+

∫

R2

∫

R2
ln |x′ − y′|F (e2sv(esx′))f(e2sv(esy′))e2sw(esy′) dx′ dy′

+ s

(∫

R2
F (e2sv(esx′)) dx′

)(∫

R2
f(e2sv(esx′))w(esx′) dx′

)

=

∫

R2
∇ρ(s, v) · ∇ρ(s, w) dx′

+

∫

R2

∫

R2
ln |x′ − y′|F (ρ(s, v)[x′])f(ρ(s, v)[y′])ρ(s, w)[y′] dx′ dy′

= I ′(ρ(s, v))[ρ(s, w)] .

Hence, the first variation of Ψ at (s, v) ∈ X̃ along (h, w) ∈ X̃ is given by

(4.8) Ψ ′(s, v)(h, w) = I ′(ρ(s, v))[ρ(s, w)] + J (ρ(s, v))h .

We are now going to apply Proposition 2.7 to the functional Ψ . To this end, let Γ̃ := {γ̃ ∈ C([0, 1], X̃) :
γ̃(0) = (0, 0), Ψ(γ̃(1)) < 0} and

(4.9) c̃ := inf
γ̃∈Γ̃

max
t∈[0,1]

Ψ(γ̃(t)) .

With these choices, it follows that

(ρ ◦ γ̃)(0) = ρ(γ̃(0)) = ρ(0, 0) = 0

and

I((ρ ◦ γ̃)(1)) = (I ◦ ρ)(γ̃(1)) = Ψ(γ̃(1)) < 0 ,
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that is, Γ = {ρ ◦ γ̃ : γ̃ ∈ Γ̃} and the values (4.3) and (4.9) coincide. Let now {γn} ⊂ Γ be a sequence of
paths such that

sup
t∈[0,1]

I(γn(t)) ≤ cmp +
1

n2
.

Defining γ̃n(t) := (0, γn(t)), which belongs to Γ̃ , we have

sup
t∈[0,1]

Ψ(γ̃n(t)) = sup
t∈[0,1]

I(γn(t)) ≤ cmp +
1

n2
.

Hence, Proposition 2.7 applied with M = [0, 1] and M0 = {0, 1} yields the existence of a sequence
(sn, vn) ∈ X̃ such that

(a) Ψ(sn, vn) → c̃ ,
(b) dist((sn, vn), {0} × γn([0, 1])) → 0 ,
(c) (1 + ‖(sn, vn)‖X̃)‖Ψ ′(sn, vn)‖X̃′ → 0 ,

as n → +∞. We observe that (b) implies

(4.10) sn → 0 as n → +∞ .

Defining now un := ρ(sn, vn), by (a) we get

I(un) = I(ρ(sn, vn)) = Ψ(sn, vn) → cmp , as n → +∞
while, taking h = 1 and w = 0 in (4.8), from (c) we also infer

J (un) = J (ρ(sn, vn)) → 0

as n → +∞. To obtain the last required property, observe that for a given v ∈ X, defining

wn = e−2snv(e−sn ·),
(4.10) allows to show that

(4.11)

‖wn‖2 = ‖∇wn‖2
2 + ‖wn‖2

∗,p

= e−6sn

∫

R2
|∇v(e−snx)|2 dx + e−2sn

(∫

R2
ln(b + |x|)|v(e−snx)|p dx

) 1
p

= e−4sn

∫

R2
|∇v(x′)|2 dx′ + e

−2sn

(
p−1

p

) (∫

R2
ln(b + esn |x′|)|v(x′)|p dx′

) 1
p

= (1 + on(1))

∫

R2
|∇v(x′)|2 dx′ + (1 + on(1))

(∫

R2
ln(b + esn |x′|)|v(x′)|p dx′

) 1
p

= (1 + on(1))‖v‖2 + on(1)‖v‖p
p,

as n → +∞, where in the last step we used the fact that

ln(b + e−sn |x|) ≤ ln(b + |x|) + ln

(
1 +

(1 − e−sn)|x|
b + |x|

)
≤ ln(b + |x|) + ln(1 + (1 − e−sn)) .
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Analogously one can show that ‖vn‖ = (1 + on(1))‖un‖, therefore, on the one hand, by (4.8) with h = 0
and (4.10), one infers

(1 + ‖(sn, vn)‖X̃)|Ψ ′(sn, vn)(0, wn)| = (1 + (|sn|2 + ‖vn‖2)
1
2 )|I ′(ρ(sn, vn))ρ(sn, wn)|

= (1 + on(1) + ‖vn‖) |I ′(un)v|
= (1 + on(1) + (1 + on(1))‖un‖)) |I ′(un)v| ,

(4.12)

while, on the other hand, by (4.11),

(1 + ‖(sn, vn)‖X̃)|Ψ ′(sn, vn)(0, wn)| ≤ (1 + ‖(sn, vn)‖X̃)‖Ψ ′(sn, vn)‖X̃′‖wn‖
= on(1)(1 + on(1))‖v‖ .

(4.13)

Combining together (4.12)-(4.13) we deduce

(1 + on(1) + (1 + on(1))‖un‖)) ‖I ′(un)‖X′ → 0

as n → +∞, which readily implies

(1 + ‖un‖) ‖I ′(un)‖X′ → 0

as n → +∞. �

The extra property (4.7) obtained in Proposition 4.2 is crucial to prove the boundedness of a Cerami
sequence in X, as shown next.

Lemma 4.3. Assume (f1), (f2) and (fsc) or (fc) hold. Let {un}n ⊂ X be a sequence such that

(4.14) I(un) → cmp , (1 + ‖un‖)‖I ′(un)‖X′ → 0 , J (un) → 0 .

Then, {un}n is bounded in X. Moreover, there exist C1, C2 > 0 such that

|I1(un)| =

∣∣∣∣
∫

R2

∫

R2
ln(b + |x − y|)F (un(x))F (un(y)) dx dy

∣∣∣∣ ≤ C1 ,(4.15)

|A1(F (un), f(un)un)| =

∣∣∣∣
∫

R2

∫

R2
ln(b + |x − y|)F (un(x))f(un(y))un(y) dx dy

∣∣∣∣ ≤ C2 .(4.16)

Proof. We first show that {∇un}n is bounded in L2(R2) by combining the information on I and its
derivative, following the strategy of [14, Lemma 6.1]. To this aim we introduce the sequence

vn :=

{
F (un)
f(un) if un > 0 ,

(1 − τ)un if un < 0 ,

for which, by (2.9), |vn| ≤ (1 − τ)|un| hold, hence {vn}n ⊂ Lp
ω(R2). Moreover, a simple computation

shows that

∇
(

F (un)

f(un)

)
=

(
1 − F (un)f ′(un)

(f(un))2

)
∇un ,



20 Federico Bernini, Giulio Romani, Cristina Tarsi

therefore (f2) implies |∇vn| ≤ C|∇un|, from which {vn}n ⊂ D1,2(R2) and in turn {vn}n ⊂ X. Therefore,
they may be used as test functions for I ′(un) ∈ X ′, obtaining

∫

{un≥0}
|∇un|2

(
1 − F (un)f ′(un)

(f(un))2

)
+ (1 − τ)

∫

{un<0}
|∇un|2

+

∫

{un≥0}
(ln | · | ∗ F (un)) F (un) + (1 − τ)

∫

{un<0}
(ln | · | ∗ F (un)) f(un)un

= |I ′(un)[vn]| ≤ ‖I ′(un)‖X′‖vn‖ . ‖I ′(un)‖X′‖un‖ = on(1) .

(4.17)

Since f ≡ 0 on R−, the last term in the left-hand side is zero. Combining this with I(un) → cmp, one
infers

‖∇un‖2
2 − 2cmp + on(1) =

∫

R2

(
ln

1

| · | ∗ F (un)

)
F (un)

=

∫

{un≥0}
|∇un|2

(
1 − F (un)f ′(un)

(f(un))2

)
+ (1 − τ)

∫

{un<0}
|∇un|2 + on(1)

≤ (1 − τ)‖∇un‖2
2 + on(1) ,

from which it is easy to obtain

‖∇un‖2
2 ≤ 2cmp

τ
+ on(1) .(4.18)

This, together with the first two conditions in (4.14), yields

|I0(un)| =

∣∣∣∣
∫

R2

∫

R2
ln(|x − y|)F (un(x))F (un(y)) dx dy

∣∣∣∣ ≤ C1(4.19)

|A0(F (un), f(un)un)| =

∣∣∣∣
∫

R2

∫

R2
ln(|x − y|)F (un(x))f(un(y))un(y) dx dy

∣∣∣∣ ≤ C2 .(4.20)

Using (4.18), (4.19), and (4.20), the condition J (un) → 0 directly implies

‖un‖2p
p ≤ C

(∫

R2
F (un)

)2

≤ C ,(4.21)

where the first inequality is due to (2.8). In light of (4.21) and (4.18), {I2(un)}n is bounded thanks to
(4.5). Recalling the decomposition I0 = I1 − I2, this and (4.19) imply (4.15). The bound (4.16) follows
by similar arguments using A0, A1, A2. The uniform boundedness of ‖un‖∗,p is then a consequence of
Lemma 3.1(a), applied with ϕn = F (un), and (2.8). �

Remark 4.4. Thanks to Lemma 4.3, from now on we can always suppose that Cerami sequences at level
cmp verifying (4.14) are nonnegative. Indeed, u−

n := min{un, 0} ∈ X and u−
n ≤ 0 and thus, recalling that

f ≡ 0 on R− by assumption, one has

‖∇u−
n ‖2

2 = ‖∇u−
n ‖2

2 +

∫

R2
(ln | · | ∗ F (un)) f(un)u−

n

= I ′(un)[u−
n ] ≤ ‖I ′(un)‖X′‖u−

n ‖ = on(1)

since ‖u−
n ‖ ≤ ‖un‖ ≤ C by Lemma 4.3. This implies that u−

n → 0 in X as n → +∞ and therefore that
{u+

n }n is a Cerami sequence of I at level c, which henceforth we will simply denote by {un}n.
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4.1. Mountain pass level estimate in the critical case. Under assumption (fsc) the boundedness
of the Cerami sequences is enough to proceed with the main existence argument, see Section 5, since
uniform estimates of the nonlinear terms may be deduced by (2.6) by choosing a suitably small exponent
α. This of course is not the case when we are dealing with critical exponential nonlinearities, and we need
to prove that under (fc), and in particular taking into account (f4), the critical mountain pass level is
below a noncompactness threshold. To this aim, let us introduce the usual Moser sequence

w̃n(x) =
1√
2π





√
ln n for 0 ≤ |x| ≤ ρ

n ,

ln(ρ/|x|)√
ln n

for ρ
n < |x| < ρ ,

0 for |x| ≥ ρ .

It is easy to see that ‖∇w̃n‖2 = 1 for all n ∈ N, and that

‖w̃n‖p
∗,p =

∫

Bρ

ln(b + |x|)|w̃n|p dx

= (2π)1− p
2 (ln n)

p
2

∫ ρ/n

0
ln(b + r) r dr +

(2π)1− p
2

(ln n)
p
2

∫ ρ

ρ/n
lnp (ρ

r

)
ln(b + r)r dr

≤ (2π)1− p
2 (ln n)

p
2

ρ2 ln(b + ρ/n)

2n2
+ (2π)1− p

2
ln(b + ρ)

(ln n)
p
2

∫ ρ

ρ/n
lnp (ρ

r

)
r dr .

The last term in the previous expression can be estimated as follows. On the one hand, for k ∈ N,

∫
lnk(ρ

r

)
r dr =

r2

2

k∑

j=0

(
ln(ρ

r )
)k−j k(k − 1) · · · (k − j + 1)

2j
.

On the other hand, since p may be an integer or not, a rough estimate reads as follows
∫ ρ

ρ/n
lnp(ρ

r ) r dr ≤
∫ ρ

ρ/n

{
ln[p](ρ

r ) + ln[p]+1(ρ
r )
}

r dr =
ρ2[p]!

2[p]+1

(
1 +

[p] + 1

2

)
+ on(1) ,

so that eventually

1 ≤ ‖w̃n‖2 ≤ 1 + δn + on

(
1

ln n

)
,

where

δn = ρ
4
p

(2π)
2
p

−1

ln n
ln

2
p (b + ρ)

[
[p]!

2[p]+1

(
1 +

[p] + 1

2

)] 2
p

+ on

(
1

ln n

)
.(4.22)

Hence we normalise the Moser sequence {w̃n}n by defining

(4.23) wn :=
w̃n√

1 + δn
, n ∈ N .
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Lemma 4.5. Under (f1), (fc), (f2), (f4), one has

(4.24) cmp <
2π

α0
.

Proof. The proof follows the same arguments of [14, Lemma 5.2]. We claim that there exists n such that

(4.25) max
t≥0

I(twn) <
2π

α0
.

Let us argue by contradiction and suppose this is not the case, so that for all n let tn > 0 be such that

(4.26) max
t≥0

I(twn) = I(tnwn) ≥ 2π

α0
.

Then tn satisfies

d

dt

∣∣∣∣
t=tn

I(twn) = 0

and

(4.27) t2
n ≥

∫

R2

[
ln

1

| · | ∗ F (tnwn)

]
tnwnf(tnwn) dx ,

(4.28) t2
n ≥ 4π

α0
+

∫

R2

[
ln

1

| · | ∗ F (tnwn)

]
F (tnwn) dx .

Note that in (4.27) we have an inequality instead of the equality since in the energy functional it appears
only ‖∇wn‖2

2 ≤ ‖wn‖2 = 1. From now on let us suppose ρ ≤ 1/2. This will simplify a few estimates,
since for any (x, y) ∈ supp wn × supp wn we have |x − y| > 1, and in turn ln(1/|x − y|) > 0. Let us now
proceed in three steps.

Step 1. The following holds: lim supn→+∞ t2
n ≥ 4π/α0.

Let us assume by contradiction that lim supn t2
n < 4π/α0: this implies that, up to a subsequence, there

exists a positive constant δ0 such that t2
n ≤ 4π/α0 − δ0 for n large enough. Since ρ ≤ 1

2 , for any |x| < ρ,
the set {y : |x − y| > 1, |y| < ρ} is empty. Recalling that the functions wn are compactly supported in
Bρ, we have

∫

R2

[
ln

1

| · | ∗ F (tnwn)

]
F (tnwn) dx =

∫

Bρ

∫

|x−y|≤1
ln

1

|x − y|F (tnwn(x))F (tnwn(y)) dx dy ≥ 0

and thus a contradiction with (4.28).

Step 2. The following holds: lim infn→+∞ t2
n ≤ 4π/α0 .

Let us suppose by contradiction that lim infn→+∞ t2
n > 4π/α0. Hence, up to a subsequence, there exists

a constant δ0 > 0 such that

t2
n ≥ 4π

α0
+ δ0
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as n → +∞. Let us estimate from below the right hand side of (4.27) (taking into account the possible
negative sign of the logarithmic function):

∫

R2

[
ln

1

| · | ∗ F (tnwn)

]
tnwnf(tnwn) dx

=

∫

{|x|≤ ρ
n

, |y|≤ ρ
n

}
ln

1

|x − y|F (tnwn(x))tnwnf(tnwn(y)) dx dy

+

∫

R2×R2\{|x|≤ ρ
n

, |y|≤ ρ
n

}
ln

1

|x − y|F (tnwn(x))tnwnf(tnwn(y)) dx dy

=: T1 + T2 .

(4.29)

Thanks to (f4) we have for any ε > 0 (here we choose ε = β/2),

sf(s)F (s) ≥ β − ε

s2
e2α0s2

=
β

2s2
e2α0s2

, for all s ≥ sε = sβ .

By the very definition of wn (see (4.23)) and since |x − y| < 2ρ/n < 1, for n large enough we can estimate
I1 as follows

T1 =

∫

Bρ/n

tnwnf(tnwn) dy

∫

Bρ/n

ln
1

|x − y|F (tnwn) dx

=

∫

Bρ/n

tn

√
ln n√

2π(1 + δn)
f

(
tn

√
ln n√

2π(1 + δn)

)
dy

∫

Bρ/n

ln
1

|x − y| F

(
tn

√
ln n√

2π(1 + δn)

)
dx

≥ 2πβ
eα0t2

n[π(1+δn)]−1 ln n

2α0t2
n[π(1 + δn)]−1 ln n

∫

Bρ/n

dy

∫

Bρ/n

ln
1

|x − y| dx .

Since ∫

Bρ/n

dy

∫

Bρ/n

ln
1

|x − y| dx ≥ |Bρ/n|2 ln
n

2ρ
= π2

(
ρ

n

)4

ln
n

2ρ

we obtain

(4.30) T1 ≥ π3ρ4β
e(α0t2

n[π(1+δn)]−1−4) ln n

α0t2
n[π(1 + δn)]−1 ln n

ln
n

2ρ
≥ π3ρ4β

α0t2
n

e

(
α0
π

t2
n

1+δn
−4

)
ln n

for any n ≥ n(ρ, β). Note that since ρ ≤ 1/2 we have

T2 ≥ 0 .

Now, combining (4.27), (4.29) and (4.30) yields

(4.31) t4
n ≥ π3ρ4β

α0
e

(
α0
π

t2
n

1+δn
−4

)
ln n

which is a contradiction, either if tn → +∞ or tn stays bounded with t2
n ≥ 4π

α0
+ δ0. The proof of Step 2

is then completed. Observe that, as a consequence of Step 1 and Step 2

t2
n → 4π

α0
as n → +∞ .
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Moreover, as a byproduct of (4.31), we also have

e

(
α0
π

t2
n

1+δn
−4

)
ln n ≤ C ,

for some C > 0, that is

(4.32)
t2
n

1 + δn
≤ 4π

α0
+

C

ln n
=

4π

α0
+ O

(
1

ln n

)
.

Step 3. We are now in a position of getting a contradiction and determine the quantity V which appears
in condition (f4). We have proved that t2

n → 4π/α0. Moreover, we also know that t2
n ≥ 4π/α0 by (4.28).

By (4.31), recalling the definition (4.22) of δn, we have
(

4π

α0

)2

+ on(1) ≥ t4
n ≥ π3ρ4β

α0
e

4

(
α0
4π

t2
n

1+δn
−1

)
ln n ≥ π3ρ4β

α0
e−4 δn

1+δn
ln n

≥ π3ρ4β

α0
e

−ρ
4
p (2π)

2
p −1

ln
2
p (b+ρ)

[
[p]!

2[p]+1

(
1+

[p]+1
2

)] 2
p

+on(1)
.

Passing to the limit, we obtain

(4.33)
16π2

α2
0

≥ π3ρ4β

α0
e

−ρ
4
p (2π)

2
p −1

ln
2
p (b+ρ)

[
[p]!

2[p]+1

(
1+

[p]+1
2

)] 2
p

.

Now set in assumption (f4)

(4.34) V := inf
|x|≤1/2

16

α0π
|x|−4e

|x|
4
p (2π)

2
p −1

ln
2
p (b+|x|)

[
[p]!

2[p]+1

(
1+

[p]+1
2

)] 2
p

,

a quantity which is actually a minimum, since the right-hand function is continuous and unbounded as
|x| → 0 . Finally, since β > V, we can fix ρ ∈ (0, 1/2] such that

β >
16

α0π
ρ−4e

ρ
4
p (2π)

2
p −1

ln
2
p (b+ρ)

[
[p]!

2[p]+1

(
1+

[p]+1
2

)] 2
p

to get

π3ρ4β

α0
e

−ρ
4
p (2π)

2
p −1

ln
2
p (b+ρ)

[
[p]!

2[p]+1

(
1+

[p]+1
2

)] 2
p

>
4π

α0
,

which contradicts (4.33) and, therefore, (4.26). This shows that (4.25) holds, and in turn (4.24). �

To avoid trivial solutions, in showing existence we will need to prove a result à la Lions (see Section
5 below). To this end, in the spirit of [14, Lemma 6.3], we need to improve the integrability for F (un),
where {un}n is the Cerami sequence given by Lemma 4.2, since this will enable us to uniformly control
the terms appearing from an application of the Hardy-Littlewood-Sobolev inequality. Here the mountain
pass level estimate given by Lemma 4.5 plays a crucial rôle. Unlike [14, Lemma 6.3], we cannot apply
Ruf’s version of the Trudinger-Moser inequality in H1(R2) because of the lack of the mass term in (1.5);
however, since our space X ⊂ Lp(R2), we will make use of the refinement of Cao’s inequality in Theorem
2.2.
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Lemma 4.6. Assume (f1) − (f4) and (fc). Let {un}n ⊂ X be a nonnegative Cerami sequence for I at

level cmp < 2π
α0

, which is bounded in X. Then, for any γ ∈
[
1, 2π

α0cmp

)
the following uniform bound holds

sup
n∈N

∫

R2
(F (un))γ dx < +∞ .

Proof. Since {un}n is bounded in the reflexive space X, there exists u ∈ X such that un ⇀ u in X, which
implies and that, up to a subsequence, the convergence is strong in Lq(R2), for q ≥ p, and a.e. in R2

thanks to Lemma 2.1. Let us define the function

(4.35) G(t) :=

∫ t

0

√
F (s)f ′(s)

f(s)2
ds ,

which is well-defined and C1 thanks to (f2), and let vn := G(un). Then, by (f2) one has

‖∇vn‖2
2 =

∫

R2
|∇un|2

(
F (un)f ′(un)

f(un)2

)
≤ C‖∇un‖2

2 ≤ C

and, by (f1) and Hölder’s inequality,

|G(t)|p ≤ t
p
2

(∫ t

0

F (s)f ′(s)

f(s)2
ds

) p
2

≤ t
p
2

(
−F (t)

f(t)
+ lim

s→0+

F (s)

f(s)
+ t

) p
2

≤ tp
(

− F (t)

tf(t)
+ 1

) p
2

≤ tp,

which yields at once ‖vn‖p ≤ ‖un‖p and ‖vn‖∗,p ≤ ‖un‖∗,p. Note also that G(t) >
√

τt, hence vn >
√

τ un

a.e. in R2. Recalling now that un ≥ 0, and combining (4.17) with I(un) → cmp, we infer

2cmp + on(1) = ‖∇un‖2
2 +

∫

R2
(ln | · | ∗ F (un)) F (un)

= ‖∇un‖2
2 −

∫

R2
|∇un|2

(
1 − F (un)f ′(un)

f(un)2

)

=

∫

R2
|∇un|2

(
F (un)f ′(un)

f(un)2

)
= ‖∇vn‖2

2 .

Since cmp < 2π
α0

by assumption, we deduce

(4.36) ‖∇vn‖2
2 = 2cmp + on(1) <

4π

α0
.

Moreover, by (f3), as in [14, Lemma 6.3], for all ε > 0 there exists tε > 0 such that

un ≤ tε +
vn

1 − ε
for all x ∈ R2.

From all this, together with (2.7) with α > α0, we may estimate as follows:
∫

R2
|F (un)|γ ≤ Cε

∫

{un<tε}
|un|pγ + Cε

∫

{un≥tε}

(
tε +

vn

1 − ε

)γr

eγα(1+ε)(tε+ vn
1−ε )

2

dx

≤ Cε

∫

R2
|un|pγ + Cε

∫

{un≥tε}
e

γα( 1+ε
1−ε )

2
‖∇vn‖2

2

(
vn

‖∇vn‖2

)2

dx ,
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where in the last step we used the inequalities sr ≤ Cε eεs2
for any s ≥ tε and

(
tε +

vn

1 − ε

)2

≤ Cεt2
ε + (1 + ε)

(
vn

1 − ε

)2

,

see [14, eq. (6.9)]. Choosing now ε small enough such that tε ≥ τ−1/2, in the set {un ≥ tε} one has vn ≥ 1,
and therefore, defining wn := vn

‖∇vn‖2
, by means of the (strict) fine upper bound in (4.36), Theorem 2.2

with q = p, γ ∈ [1, 2π
α0cmp

), and choosing α close to α0, one has

∫

R2
|F (un)|γ ≤ Cε

∫

R2
|un|pγ + Cε

∫

R2
|vn|pe

γα( 1+ε
1−ε )

2
‖∇vn‖2

2

(
vn

‖∇vn‖2

)2

dx

≤ Cε

∫

R2
|un|pγ + Cε‖∇vn‖p

2

∫

R2
wp

neγα( 1+ε
1−ε)

2
‖∇vn‖2

2w2
n dx

≤ Cε‖un‖pγ
pγ + Cε‖vn‖p

p

≤ Cε‖un‖pγ
pγ + Cε‖un‖p

p ≤ C ,

(4.37)

since {un}n is bounded in X and by Lemma 2.1. �

From the proof of Lemma 4.6, and in particular combining (4.37) with the compact embedding provided
by Lemma 2.1, we can say actually more:

Corollary 4.7. Assume (f1) − (f4) and (fc) hold. Let {un}n ⊂ X be a nonnegative Cerami sequence

which is bounded in X, and such that un → 0 in Ls(R2) for all s > p. Then, for any γ ∈
(
1, 2π

α0cmp

)

‖F (un)‖γ → 0 and ‖f(un)un‖γ → 0 .

Proof. Reasoning in the same way as for (4.37) in Lemma 4.6, for some r > 0 and α > α0 we get

∫

R2
|F (un)|γ dx ≤ Cε

∫

R2
|un|pγ + Cε

∫

R2
|vn|re

γα( 1+ε
1−ε)

2
‖∇vn‖2

2

(
vn

‖∇vn‖2

)2

dx .

The first term on the right-hand side goes to 0 as n → +∞ since pγ > p, while for the second term we
proceed by using Hölder’s inequality and Theorem 2.2: indeed, choosing σ ∈ (1, σ0), with σ0 close to 1
such that the exponent is less than 4π, r big enough such that r

2σ > p, and α close to α0, we obtain

∫

R2
|F (un)|γ dx ≤ Cε‖un‖pγ

pγ + Cε

(∫

R2
|vn| r

2
σ′

dx

) 1
σ′



∫

R2
|vn| r

2
σe

σγα( 1+ε
1−ε )

2
‖∇vn‖2

2

(
vn

‖∇vn‖2

)2

dx




1
σ

≤ Cε‖un‖pγ
pγ + Cε‖un‖

r
2
r
2

σ′C‖vn‖
r
2

σ
r
2

σ ,

which tends to 0 as n → +∞ since pγ > s.
Concerning ‖f(un)un‖γ , we can repeat the same computations as above, using now (f1) and (fc), hence

∫

R2
|f(un)un|γ dx → 0

as n → +∞, concluding the proof. �
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5. Existence in the critical and subcritical case: Proof of Theorem 1.2

By Lemma 4.1 we know that I satisfies the mountain pass geometry, and this yields the existence of
a Cerami sequence {un}n ⊂ X for I at level cmp defined in (4.3), satisfying (4.14) by Lemma 4.2, which
can be assumed nonnegative by Remark 4.4. By Lemma 4.3 such a sequence is bounded in X. Suppose
by contradiction that {un}n is vanishing, namely

(5.1) lim inf
n→+∞

sup
y∈R2

∫

B2(y)
|un|p dx = 0 .

Since {un}n is bounded, then un → 0 in Ls(R2) as n → +∞ for every s ∈ (p, +∞) by [32, Lemma I.1].

By exploiting the inequality ln
(
1 + b

t

)
. tq for q ∈ (0, 1], and the Hardy-Littlewood-Sobolev inequality,

if (fc) is assumed one may estimate

I2(un) =

∫

R2

∫

R2
ln

(
1 +

b

|x − y|

)
F (un(x))F (un(y)) dx dy

.

∫

R2

∫

R2

F (un(x))F (un(y))

|x − y|
4(γ−1)

γ

dx dy . ‖F (un)‖2
γ → 0

(5.2)

as n → +∞, which holds by Corollary 4.7 for γ ∈
(
1, min

{
4
3 , 2π

α0cmp

}]
. On the other hand, when (fsc)

holds, by combining (2.6) with r = p/2 and Theorem 2.2 we get
∫

R2
|F (un)|γ .

∫

R2
|un|γp +

∫

R2
|un|γ p

2 eα|un|2

≤ ‖un‖γp + ‖un‖γ p
2

γp

(∫

R2
|un|γp e2αu2

n

) 1
2

≤ ‖un‖γp + ‖un‖γ p
2

γp ‖∇un‖(γ−1)p
2 ‖un‖p

p → 0 ,

since the last two terms are bounded in n, and therefore again I2(un) → 0. Analogously, in both cases
(fc)-(fsc), one may show that

(5.3) A2(F (un), f(un)un) =

∫

R2

∫

R2
ln

(
1 +

b

|x − y|

)
F (un(x))f(un(y))un(y) dx dy → 0

as n → +∞. Hence,

2cmp + on(1) = 2I(un) − I ′(un)[un] = I0(un) − A0(F (un), f(un)un)

= 2I1(un) − A1(F (un), f(un)un) − 2I2(un) + A2(F (un), f(un)un)

=

∫

R2
(ln(b + | · |) ∗ F (un)) (F (un) − f(un)un) dx + on(1) < 0

(5.4)

for large n by (2.9), a contradiction. This implies that the vanishing (5.1) does not occur. Consequently,
there exist δ > 0 and a sequence {yn}n ⊂ R2 such that (up to a subsequence)

∫

B1(yn)
|un|p dx > δ .
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Defining ũn := un(· + yn), it is easy to see that

(5.5)

∫

B1(0)
|ũn|p dx > δ ,

and ‖∇ũn‖2+‖ũn‖p = ‖∇un‖2+‖un‖p ≤ C. Therefore {ũn}n is a bounded sequence in D1,2(R2)∩Lp(R2).
Moreover,

‖ũn‖p
∗,p =

∫

R2
ln(b + |x − yn|)|un(x)|p dx ≤ ‖un‖p

∗,p + ln(b + |yn|)‖un‖p
p

by (3.3), thus ũn ∈ X for all n ∈ N. Since Ii(ũn) = Ii(un) for all i ∈ {0, 1, 2}, we also deduce that {ũn}n

satisfies

(5.6) I(ũn) → cmp, I ′(ũn)[ũn] → 0, J (ũn) → 0 .

Note that second condition in (5.6) is weaker than the corresponding in Lemma 4.3. Furthermore, since
|I0(ũn)| ≤ C as in (5.4) and I2(ũn) ≤ C as in (5.2), we conclude that I1(ũn) ≤ C. Applying Lemma
3.1(a) with ϕn = F (ũn) we get

(5.7) ‖F (ũn)‖∗,1 ≤ C and thus ‖ũn‖∗,p ≤ C

by (2.8). Since {ũn}n is hence bounded in X, there exists ũ ∈ X such that ũn ⇀ ũ in X and ũn → ũ in
Lq(R2) for all q ≥ p, as well as a.e. in R2 by Lemma 2.1. By (5.5) it is easy to see that

(5.8) δ < ‖ũn‖p
Lp(BR(0)) → ‖ũ‖p

Lp(BR(0)) ,

hence ũ 6≡ 0. We next show that I ′(ũn) → 0 in X ′ which, together with (5.6), makes ũn verify the same
properties as un in Lemma 4.3. Indeed, I(ũn)[ϕ] = I(un)[ϕ(· − yn)] for all ϕ ∈ X and

(5.9) ‖ϕ(· − yn)‖2 = ‖∇ϕ‖2
2 +

∫

R2
ln(b + |x + yn|)|ϕ(x)|p dx ≤ ‖ϕ‖2 + ln(b + |yn|)‖ϕ‖p

p .

Moreover, if |yn| ≤ b, then ln(b + |yn|) ≤ ln(2b), while if |yn| > b one can use (5.5) to show that

‖un‖p
∗,p =

∫

R2
ln(b + |x + yn|)|ũn(x)|p dx

≥
∫

B1(0)
ln(b + |x + yn|)|ũn(x)|p dx ≥ ln |yn|

∫

B1(0)
|ũn|p

≥ δ ln |yn| ≥ δ ln(b + |yn|) ln b

ln(2b)
.

(5.10)

In the third step we used the simple inequality |x + yn| ≥ |yn| − |xn| ≥ |yn| − 1 ≥ |yn| − b, while the last

step follows from ln |yn|
ln(b+|yn|) > ln b

ln(2b) , which holds by monotonicity. Eventually from (5.9)-(5.10) we get

‖ϕ(· − yn)‖ ≤
[
‖ϕ‖2 +

(
1

δ

ln(2b)

ln b
‖un‖p

∗,p + ln(2b)

)
‖ϕ‖p

p

] 1
2

,

which implies that

|I ′(ũn)[ϕ]| ≤ ‖I ′(un)‖X′

[
‖ϕ‖2 + ln(2b)

(
1

δ ln b
‖un‖p

∗,p + 1

)
‖ϕ‖p

p

] 1
2

≤ C‖I ′(un))‖X′

[
‖ϕ‖2 + ‖ϕ‖p

p

]
→ 0 ,
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as n → +∞, by recalling that ‖un‖∗,p is uniformly bounded and that ‖I ′(un)‖X′ → 0 by Lemma 4.3.
Since I ′(ũn) → 0 in X ′ and I ′(ũn)[ũn] → 0, we have then

(5.11) on(1) = I ′(ũn)[ũn − ũ] =

∫

R2
∇ũn∇(ũn − ũ) + A0(F (ũn), f(ũn)(ũn − ũ)) .

First,

(5.12)

∫

R2
∇ũn∇(ũn − ũ) =

∫

R2
|∇(ũn − ũ)|2 +

∫

R2
∇ũ ∇(ũn − ũ) = ‖ũn − ũ‖2

D1,2(R2) + on(1)

since ũn ⇀ ũ in D1,2(R2). Moreover, as in (5.2), one infers

(5.13) A2(F (ũn), f(ũn)(ũn − ũ)) . ‖F (ũn)‖γ‖f(ũn)(ũn − ũ)‖γ → 0 .

Therefore, combining (5.11), (5.12), and (5.13) we infer

on(1) = ‖ũn − ũ‖2
D1,2 + A1(F (ũn), f(ũn)(ũn − ũ))

= ‖ũn − ũ‖2
D1,2 + A1(F (ũn), f̃(ũn − ũ)(ũn − ũ))

+ A1

(
F (ũn),

(
f̃(ũn) − f̃(ũn − ũ)

)
(ũn − ũ)

)
(5.14)

as n → +∞, where we have defined

(5.15) f̃(t) =

{
f(t) for t ≥ 0 ,
−f(−t) for t < 0 ,

since un ≥ 0. Note that if we prove that

(5.16) A1(F (ũn), f̃(ũn − ũ)(ũn − ũ)) → 0 ,

one could apply Lemma 3.1(b) and obtain ‖f̃(ũn − ũ)(ũn − ũ)‖∗,1 → 0, which in turn implies that
‖ũn − ũ‖∗,p → 0 as n → +∞ by (fsc) or (fc). Together with ũn → ũ in D1,2(R2), this would conclude
the proof. Since the first two terms in the right-hand side of (5.14) are positive, we are then lead to show
that

(5.17) A1

(
F (ũn),

(
f̃(ũn) − f̃(ũn − ũ)

)
(ũn − ũ)

)
→ 0

as n → +∞. Using (3.3), we obtain

∣∣∣∣
∫

BR(0)

(
ln(b + | · |) ∗ F (ũn)

) [(
f̃(ũn) − f̃(ũn − ũ)

)
(ũn − ũ)

]
dx

∣∣∣∣

≤ ‖F (ũn)‖∗,1

∫

R2

∣∣∣f̃(ũn) − f̃(ũn − ũ)
∣∣∣ |ũn − ũ|

+ ‖F (ũn)‖1

∫

R2
ln(b + |x|)

∣∣∣f̃(ũn) − f̃(ũn − ũ)
∣∣∣ |ũn − ũ| dx .

(5.18)
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First, note that ‖F (ũn)‖1 . ‖F (ũn)‖∗,1 ≤ C by (5.7). If (fsc) holds, then by (2.6) with r = p, one infers
∫

R2
f(ũn)|ũn − ũ| .

∫

R2
|ũn|p−1|ũn − ũ| +

∫

R2
|ũn|p−1|ũn − ũ| eαũn

2

≤ ‖ũn‖p−1
p ‖ũn − ũ‖p +

(∫

R2
|ũn|p e

α p
p−1

ũn
2
) p−1

p ‖ũn − ũ‖p

. ‖ũn‖p−1
p ‖ũn − ũ‖p = on(1) ,

(5.19)

by Theorem 2.2 with α < 4π p−1
p (supn ‖∇ũn‖2)−2. By similar estimate, one may also show that

∫
R2 f(ũn)|ũn−

ũ| = on(1). On the other hand, if f is critical, namely (fc) holds, defining now ṽn = G(ũn) with G as in
(4.35) and arguing as in Lemma 4.6, one finds

∫

R2
f(ũn)|ũn − ũ| .

∫

R2
|ũn|p−1|ũn − ũ| +

∫

R2

(
tε +

ṽn

1 − ε

)r−1

|ũn − ũ|eα

(
tε+ ṽn

1−ε

)2

. ‖ũn‖p−1
p ‖ũn − ũ‖p +



∫

R2

(
tε +

ṽn

1 − ε

)(r−1)σ′

e
ασ′

(
tε+ ṽn

1−ε

)2



1
σ′

‖ũn − ũ‖σ

= on(1) ,

(5.20)

where σ′ > 1 is close to 1 and α > α0 close to α0, so that the last term is bounded, and by using that
ũn → ũ in Lq(R2) for q ≥ p. Moreover, by (2.7) and the ε-Young inequality,

∫

R2

∣∣f̃(ũn − ũ)
∣∣|ũn − ũ| .

∫

R2
|ũn − ũ|p +

∫

R2
|ũn − ũ|reα|ũn−ũ|2

≤ on(1) +

(∫

R2
|ũn − ũ|reεαs ũn

2
) 1

s
(∫

R2
|ũn − ũ|reCεαs′ ũ2

) 1
s′

≤ on(1) +

(
C

∫

{ũn≤1}
|ũn − ũ|r +

∫

{ũn>1}
|ũn − ũ|r|ũn|κeεαs ũn

2

) 1
s

×
(

C

∫

{ũ≤1}
|ũn − ũ|r +

∫

{ũ>1}
|ũn − ũ|r|ũ|κeCεαs′ ũ2

) 1
s′

≤ on(1) +

(
on(1) + ‖ũn − ũ‖r/s

rq′

(∫

R2
|ũn|κqeεαsq ũn

2
) 1

sq

)

×
(

on(1) + ‖ũn − ũ‖r/s′

rq′

(∫

R2
|ũ|κqeCεαs′ ũ2

) 1
s′q

)
.

(5.21)

Choosing now the parameters α > α0 close to α0 and κ, r, q, s > 1 so that rq′ > p, κq > p and ε > 0
such that εα0qs‖∇ũ2

n‖ < 4π, which is possible since {ũn}n is bounded in D1,2(R2), then one may apply
Theorem 2.2 and, combining (5.21) with (5.19) or (5.20), get
(5.22)∫

R2

∣∣f̃(ũn) − f̃(ũn − ũ)
∣∣|ũn − ũ| . on(1) +

(
on(1) + on(1)C‖ũn‖p/sq

p

) (
on(1) + on(1)C‖ũ‖p/sq

p

)
= on(1) ,
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since {ũn}n is also bounded in Lp(R2). It remains to prove that also the last term in (5.18) vanishes. To

this aim, since f ∈ C1(R) and so is f̃ (cf. (5.15)), by Lagrange’s theorem,

(5.23) f̃(ũn) − f̃(ũn − ũ) = f̃ ′(wn)ũ = f(|wn|)ũ, where wn := θnũn + (1 − θn)ũ

with θn : R2 → [0, 1]. Therefore, splitting R2 = BR(0) ∪ BR(0)c for a fixed R > 0, we obtain
∫

R2
ln(b + |x|)

∣∣∣f̃(ũn) − f̃(ũn − ũ)
∣∣∣ |ũn − ũ| dx

≤ ln(b + R)

∫

BR(0)

∣∣f̃(ũn) − f̃(ũn − ũ)
∣∣|ũn − ũ| +

∫

BR(0)c
ln(b + |x|)|f ′(|wn|)| ũ |ũn − ũ| dx

≤ on(1) +

(∫

R2
ln(b + |x|)|f ′(|wn|)|

p
p−2 dx

)p−2
p

(∫

BR(0)c
ln(b + |x|)|ũ|p dx

) 1
p

(‖ũn‖∗,p + ‖ũ‖∗,p)

(5.24)

by (5.22). Since ‖ũ‖∗,p < +∞, for any chosen δ > 0 one may find R > 0 large enough such that (by
Lebesgue’s dominated convergence)

(5.25)

∫

BR(0)c
ln(b + |x|)|ũ|p dx < δ .

Recalling (5.7), we are then left to show that

(5.26)

∫

R2
ln(b + |x|)|f ′(|wn|)|

p
p−2 dx ≤ C

for all n. By exploiting (5.23), (f5), again the ε-Young inequality, (5.7), and u ∈ X, one may estimate it
as ∫

R2
ln(b + |x|)|f ′(|wn|)|

p
p−2 dx

.

∫

R2
ln(b + |x|)(|ũn|p + |ũ|p) dx +

∫

R2
ln(b + |x|)(ũn + ũ)

pr
p−2 eα′ p

p−2
(ũn+ũ)2

dx

. C +

(∫

R2
ln(b + |x|)ũp

n eεα′ pq
p−2

ũn
2

dx

) 1
q
(∫

R2
ln(b + |x|)ũp

n eCεα′ pq′

p−2
ũ2

dx

) 1
q′

+

(∫

R2
ln(b + |x|)ũp e

εα′ pq
p−2

ũn
2

dx

) 1
q
(∫

R2
ln(b + |x|)ũp e

Cεα′ pq′

p−2
ũ2

dx

) 1
q′

(5.27)

by choosing r = p − 2 > 0, and we estimate the four terms separately. The first term is easily bounded
independently of n if one chooses ε small enough: in fact, since sup

n∈N

‖ũn‖ ≤ C, one has

(5.28)

∫

R2
ln(b + |x|)ũp

n eεα′ pq
p−2

ũn
2

dx =

∫

R2
ln(b + |x|)ũp

n e
εα′ pq

p−2
C
(

ũn
‖ũn‖

)2

dx ≤ C ,

by choosing ε so small that εα′ pq
p−2C ≤ (4πp)−1/2 by Theorem 2.3. In a similar way we may prove that

the last term in (5.27), which is independent of n, is finite. Indeed,

(5.29)

∫

R2
ln(b + |x|)ũp e

Cεα′ pq′

p−2
ũ2

dx =

∫

R2
ln(b + |x|)ũp e

Cεα′ pq′

p−2
‖ũ‖2

(
ũ

‖ũ‖

)2

dx < +∞
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for all ε > 0, again by Theorem 2.3. Concerning now the second term, which mixes ũn and ũ, one may
estimate as follows:

∫

R2
ln(b + |x|)ũp

n e
Cεα′ pq′

p−2
ũ2

dx ≤
∫

{ũ≤ũn}
ln(b + |x|)ũp

n e
Cεα′ pq′

p−2
ũn

2

dx

+

∫

{ũ>ũn}
ln(b + |x|)ũp e

Cεα′ pq′

p−2
ũ2

dx ≤ C

by (5.28)-(5.29). One may argue similarly for the third term in (5.27). As a result, we obtained (5.26)
which, together with (5.24)-(5.25), (5.22), (5.18), show that (5.17) holds, yielding (5.16). Hence, by (5.14),
one finally infers that ũn → ũ in X. Since I is a C1-functional, then ũ is a weak solution of (1.1), which
is nontrivial thanks to (5.8). Since ũn ≥ 0, by Remark 1.6 the solution ũ is positive in R2.

6. Back to the system: Proof of Theorem 1.5

Let u ∈ X be the weak solution of the Choquard equation (1.5) given by Theorem 1.2 and define

Φu(x) :=

∫

R2
ln

(
1

|x − y|

)
F (u(y)) dy .

Following the approach of [7], we aim at proving that Φu is a solution of the system (1.1) in the sense of
Definition 1.4. First, we show that Φu ∈ Ls(R2), for all s > 0:

∫

R2

|Φu(x)|
1 + |x|2+2s

dx ≤
∫

R2
F (u(y))

(∫

R2

∣∣∣∣ln
1

|x − y|

∣∣∣∣
1

1 + |x|2+2s
dx

)
dy

≤
∫

R2
F (u(y))

(∫

{|x−y|>1}

ln |x − y|
1 + |x|2+2s

dx +

∫

{|x−y|≤1}
ln

1

|x − y| dx

)
dy

≤ ‖F (u(y))‖1

∫

R2

ln(1 + |x|)
1 + |x|2+2s

dx + ‖F (u(y))‖∗,1

∫

R2

dx

1 + |x|2+2s

+ ‖ ln(·)‖L1(B1(0))

∫

R2
F (u(y)) dy < +∞

for all s > 0, using (3.3) with b = 1, and Theorem 2.3 since u ∈ X. Define now the function

w̃u(x) :=

∫

R2
ln

(
1 + |y|
|x − y|

)
F (u(y)) dy ,

which we know by [29, Lemma 2.3] to be a solution in the sense of Definition 1.3 of −∆w̃u = f in R2,
where f := F (u) ∈ L1(R2), and compute the difference

w̃u(x) − Φu(x) =

∫

R2

(
ln

(
1 + |y|
|x − y|

)
− ln

(
1

|x − y|

))
F (u(y)) dy

=

∫

R2
ln(1 + |y|)F (u(y)) dy < ‖F (u)‖∗,1 < +∞ ,

that is constant. This implies that Φu is a solution of (1.1) in the sense of Definition 1.4, by applying
[29, Lemma 2.4], for which all such solutions of −∆Φ = f in R2 are of the form Φ = w̃u + p with p
polynomial of degree at most 1.
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