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CLASSIFICATION OF TWO AND THREE
DIMENSIONAL COMPLETE GRADIENT YAMABE

SOLITONS

SHUN MAETA

Abstract. In this paper, we completely classify nontrivial nonflat
three dimensional complete shrinking and steady gradient Yamabe
solitons without any assumptions. We also give examples of com-
plete expanding gradient Yamabe solitons. Furthermore, we give
a proof of the classification of nontrivial two dimensional complete
gradient Yamabe solitons without any assumptions.

1. Introduction

As is well known, the geometric flow is one of the most powerful tools
for understanding the structure of Riemannian manifolds. In partic-
ular, the Yamabe flow is one of the central fields of the theory and
has developed rapidly (cf. [2], [3]). Gradient Yamabe solitons are self
similar solutions of the Yamabe flow and expected to be a singularity
model. Therefore, the classification problem is one of the most im-
portant ones. To classify gradient Yamabe solitons, there are many
studies with curvature assumptions and locally conformally flat condi-
tions (cf. [10], [8], [6] and [12]). These studies give affirmative partial
answers to the Yamabe soliton version of the Perelman conjecture, that
is, any nontrivial complete steady gradient Yamabe soliton is rotation-
ally symmetric. Recently, the author solved the problem (cf. [13]).
In order to gain a deeper understanding of gradient Yamabe solitons,

we consider complete gradient Yamabe solitons without assuming any
curvature assumptions. In this paper, we completely classify nontriv-
ial nonflat three dimensional complete steady and shrinking gradient
Yamabe solitons without any assumptions. In particular, we show
that positive scalar curvature is necessary for the Yamabe soliton ver-
sion of the Perelman conjecture. We also give some examples of the
complete expanding gradient Yamabe solitons. Furthermore, we also
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give a proof of the classification of nontrivial two dimensional complete
gradient Yamabe solitons. For two dimensional solitons, similar results
were given by Bernstein and Mettler (cf. [1]) using different arguments.

Remark 1.1. As is well known, the original Perelman conjecture [14]
is that any three dimensional complete noncompact κ-noncollapsed steady
gradient Ricci soliton with positive curvature is rotationally symmetric,
which was proven by S. Brendle [4] (see also [5]).

2. Preliminary

An n dimensional Riemannian manifold (Mn, g) is called a gradient
Yamabe soliton if there exists a smooth function F onM and a constant
λ ∈ R, such that ∇∇F = (R − λ)g, where ∇∇F is the Hessian of F ,
and R is the scalar curvature of M . If F is constant, then M is called
trivial. If λ > 0, λ = 0, or λ < 0, then the Yamabe soliton is called
shrinking, steady, or expanding, respectively.
To classify complete gradient Yamabe solitons, we use Tashiro’s the-

orem ([16], see also [12]).

Theorem 2.1 ([16]). A complete Riemannian manifold (Mn, g) which
satisfies that for any smooth functions F and ϕ on M , ∇∇F = ϕg

is either (1) compact and rotationally symmetric, or (2) rotationally
symmetric and equal to the warped product ([0,∞), dr2)×|∇F |(S

n−1, ḡS),
where ḡS is the round metric on S

n−1, and F has one critical point at
0, or (3) the warped product (R, dr2)×|∇F | (N

n−1, ḡ) , where F has no
critical point.

Remark 2.2. The potential function F depends only on r, and F ′(r) >
0, except at the critical point. It is well known that the manifold
(M, g, F, ϕ) that satisfies the condition ∇∇F = ϕg was studied by
Cheeger and Colding [9].

The Riemannian curvature tensor is definded by

R(X, Y )Z = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z,

for X, Y, Z ∈ X(M), where ∇ is the Levi-Civita connection of M . The
Ricci tensorRij is defined by Rij = Ripjp,where, Rijkℓ = g(R(∂i, ∂j)∂k, ∂ℓ).

3. Classification of three dimensional complete steady

gradient Yamabe solitons

In this section, we classify three dimensional complete steady gra-
dient Yamabe solitons without any assumptions. In particular, the
assumption that the scalar curvature is positive is essential for the
Yamabe soliton version of the Perelman conjecture.
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Theorem 3.1. Let (M, g, F ) be a nontrivial nonflat three dimensional
complete steady gradient Yamabe soliton. Then, (M, g, F ) is either

(1) ([0,∞), dr2)×|∇F | (S
2, ḡS) with nonnegative scalar curvature, or

(2) (R, dr2)×|∇F | (R
2, ḡcan) with negative scalar curvature, or

(3) (R, dr2) ×|∇F | (S
2, ḡS). In this case, there exists at least one

point, such that, R = 0.
Proof.

Case (1) of Theorem 2.1. Since M is compact, it is trivial (cf. [11]).

Case (3) of Theorem 2.1.
In this case, by a direct calculation, we can get formulas of the

warped product manifold of the warping function (0 <)|∇F | = F ′(r).
For a, b, c, d = 2, 3,

R1a1b = −F ′F ′′′ḡab, R1abc = 0,(3.1)

Rabcd = (F ′)2R̄abcd + (F ′F ′′)2(ḡadḡbc − ḡacḡbd),

R11 =− 2
F ′′′

F ′
, R1a = 0,(3.2)

Rab =R̄ab − ((F ′′)2 + F ′F ′′′)ḡab,

R = (F ′)−2R̄− 2
(F ′′

F ′

)2

− 4
F ′′′

F ′
,(3.3)

where the curvature tensors with bar are the curvature tensors of (N, ḡ).
By (3.3), it is obvious that R̄ is constant. Since (N2, g) is a 2 dimen-
sional manifold,

Rabcd = −
R̄

2
(ḡadḡbc − ḡacḡbd).(3.4)

By (3.3), one has

(3.5) ρ2ρ′ + 2ρ′2 + 4ρρ′′ = R̄,

where ρ(r) = F ′(r). By differentiating both sides of (3.5), we have

(3.6) 2ρρ′2 + ρ2ρ′′ + 8ρ′ρ′′ + 4ρρ′′′ = 0.

Assume that R(= ρ′) ≥ 0. If ρ′′ ≤ 0, then the positive function ρ is
concave. Hence ρ is constant. By (3.5), R̄ = 0. By (3.4) and (3.1), M
is flat. Therefore, ρ′′ > 0 on some interval (r1, r2).
If r2 = +∞, since ρ′ ≥ 0, ρ goes to infinity as r ր +∞. Hence,

the left hand side of (3.5) goes to infinity as r ր +∞, which cannot
happen.
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Assume that r2 < +∞, that is, ρ′′ > 0 on (r1, r2) and ρ′′ = 0 at
r2. By (3.6), we have ρ′′′ ≤ 0 at r2. Hence, one has ρ′′ ≤ 0 on (r2, r3)
for some r3. By the same argument, ρ′ is monotone decreasing on
(r2,+∞). Without loss of generality, we can assume that the point r2
is the first critical one of ρ′. Since ρ′ ≥ 0 and ρ′′ > 0 on (−∞, r2),
there exists r0 such that, ρ′′′ = 0. However, this is contradicted by the
equation (3.6).
Therefore, we have ρ′ < 0 on some open interval (r1, r2).
Assume that r2 = +∞. Since ρ > 0, one has ρ′ ր 0 and ρ′′ ց 0 as

r ր +∞. By (3.5), R̄ must be 0. If ρ′ = 0 at r1, by (3.5), ρ′′ = 0 at
r1. We also have ρ′′′ = 0 at r1 by (3.6). Iterating the same argument
shows that ρ(k) = 0 at r1 for any k ≥ 1. Taylor expansion shows that
ρ is constant, hence M is flat. Therefore, we have R = ρ′ < 0 on R.
Assume that r2 < +∞, that is, ρ′ = 0 at r2.

Case 1 R̄ > 0. In this case,

ρ′′ =
R̄

4ρ
> 0,

at r2, hence ρ′ > 0 on (r2, r3), for some r3. If ρ
′ = 0 at r3, then ρ′′ > 0

at r3. Hence, ρ is monotone increasing on (r2,+∞). If ρ′ = 0 at r1,
then ρ′′ > 0 at r1, which cannot happen. Therefore, ρ′ < 0 on (−∞, r2).
Case 2 R̄ = 0. In this case, ρ′′ = 0 at r2. By (3.6), one has ρ′′′ = 0 at
r2. Iterating the same argument shows that ρ(k)(r2) = 0 for k ≥ 1. By
Taylor expansion, we have ρ(r) = ρ(r2), that is, ρ is constant and it is
flat.
Case 3 R̄ < 0. In this case, ρ′′ < 0 at r2. Hence, ρ′ < 0 on (r1, r3)
for some r3. If r3 = +∞, by the same argument as above, one has
R̄ = 0, which is a contradiction. Hence r3 < +∞. Iterating the same
argument shows that the positive function ρ is monotone decreasing on
(r1,+∞), which cannot happen.

Case (2) of Theorem 2.1. If ρ′ ≤ 0 on [0,+∞), since ρ > 0, ρ′ ր 0 and
ρ′′ ց 0 as r ր +∞. By (3.5), we have a contradiction. Since ρ > 0
on (0,+∞), we only have to consider that ρ′ > 0 on an interval (0, r1)
for some r1. If ρ

′ = 0 at r1, then we have ρ′′ > 0 at r1. Hence one has
ρ′ > 0 on (r1, r2) for some r2. Iterating the same argument shows that
ρ is monotone increasing on (0,+∞).

�
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4. Classification of three dimensional complete shrinking

gradient Yamabe solitons

The author showed that any nontrivial nonflat complete shrinking
gradient Yamabe solitons with R > λ is rotationally symmetric and
gave some examples with R = λ for higher dimensional manifolds (cf.
[13]). In this section, we completely classify nontrivial nonflat three
dimensional complete shrinking gradient Yamabe solitons without any
assumptions. In particular, we show that nontrivial nonflat three di-
mensional complete shrinking gradient Yamabe solitons are rotationally
symmetric.

Theorem 4.1. Let (M, g, F, λ) be a nontrivial nonflat three dimen-
sional complete shrinking gradient Yamabe soliton. Then, (M, g, F, λ)
is either

(1) ([0,∞), dr2)×|∇F | (S
2, ḡS), or

(2) (R, dr2)×|∇F | (S
2, ḡS).

Proof. Case (1) of Theorem 2.1. Since M is compact, it is trivial (cf.
[11]).
Case (3) of Theorem 2.1.
By (3.3), one has

(4.1) ρ2ρ′ + λρ2 + 2ρ′2 + 4ρρ′′ − R̄ = 0.

Assume that R ≥ 0, that is, ρ′ ≥ −λ. By (4.1), we have

ρ′′ ≤
R̄− 2ρ′2

4ρ
.

If R̄ ≤ 0, then the positive function ρ is concave. Hence, ρ is constant.
By (4.1), we have R̄ = λρ2 > 0, which is a contradiction. Therefore, R̄
is positive.
We consider that ρ′ < −λ on some interval (r1, r2). If r2 = +∞,

then ρ = 0 at some point, which cannot happen because ρ > 0. Hence,
r2 < +∞, that is, ρ′ = −λ at r2. By (4.1), we have ρ′′ = R̄−2λ2

4ρ
at r2.

If R̄ ≤ 0, then ρ′′ ≤ 0. Hence, ρ′ ≤ −λ on (r1, r3) for some r3.
Iterating the same argument shows that ρ′ ≤ −λ on (r1,+∞), which
cannot happen. Therefore, R̄ is positive.

�

5. Classification of two dimensional complete gradient

Yamabe solitons

In this section, we completely classify nontrivial two dimensional
complete gradient Yamabe solitons.
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Theorem 5.1. Let (M2, g, F, λ) be a nontrivial two dimensional com-
plete gradient Yamabe soliton. Then (M2, g, F, λ) is one of the follow-
ing.
Steady case:
Hamilton’s cigar soliton.

Shrinking case:
There exists no complete shrinking gradient Yamabe solitons.

Expanding case:

(1) (R×N1, g = dr2+F ′(r)2dθ2, F, λ). The Gaussian curvature K

of R×N1 satisfies λ
2
< K < 0, and is flat near infinity.

(2) (R×N1, g = dr2+F ′(r)2dθ2, F, λ). The Gaussian curvature K

of R × N1 satisfies K < λ
2
, and is hyperbolic such that K = λ

2
near infinity.

(3) ([0,+∞)× S
1, g = dr2 + F ′(r)2dθ2, F, λ). The Gaussian curva-

ture K of [0,+∞) × S
1 satisfies λ

2
< K < 0, and is flat near

infinity.
(4) ([0,+∞)× S

1, g = dr2 + F ′(r)2dθ2, F, λ). The Gaussian curva-
ture is positive, and flat near infinity.

(5) ([0,+∞)×S
1, g = dr2+F ′(r)2dθ2, F ). The Gaussian curvature

K of [0,+∞)× S
1 satisfies K < λ

2
, and is hyperbolic such that

K = λ
2
near infinity.

(6) ([0,+∞)× S
1, g = dr2 + (λr)2dθ2,−λ

2
r2 + C) for some C ∈ R

with flat Gaussian curvature.

Proof. It is well known that if M is compact, then it is trivial (cf. [11]).
Therefore, we only have to consider (2) and (3) of Theorem 2.1. By
the soliton equation, one has

F ′′(r) = R− λ.

By an elementary fact of the curvature of warped product, one has

R = −2
F ′′′

F ′
.

Combining these equations, we have

(5.1) 2ρ′′ + ρρ′ + λρ = 0,

where, we denote that ρ(r) := F ′(r). By differentiating both sides of
(5.1), we have

(5.2) 2ρ′′′ + ρ′2 + ρρ′′ + λρ′ = 0.

By differentiating again one has

(5.3) 2ρ(4) + 3ρ′ρ′′ + ρρ′′′ + λρ′′ = 0.
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The equation (5.1) is an autonomous second order equation and can
be made into a first order equation by using ρ as a new independent
variable. If ρ′ = G(ρ), then ρ′′ = ĠG, and one has

(5.4) 2ĠG +Gρ+ λρ = 0.

Case (3) of Theorem 2.1.

Case 1 λ = 0.
In this case, it is easy to see that the solution of (5.1) is

ρ(r) = 2c21 tanh

{

1

2
(c21r + c21c2)

}

,

where c1 and c2 are constants. However, it contradicts ρ(r) > 0 on R.

Case 2 λ > 0.
Assume that ρ′ = 0 at some point, that is G = 0 at some point

ρ0(> 0), by (5.4), we have

λρ0 = 0,

which is a contradiction. Therefore, we have ρ′ > 0 or ρ′ < 0 on R.

(I) If ρ′ > 0, by (5.1), one has ρ′′ < 0. Therefore, ρ is a positive concave
function, which cannot happen.

(II) Assume that ρ′ < 0. If ρ′′ = 0 at some point r0, then by (5.1),
one has ρ′(r0) = −λ. By (5.2), we have ρ′′′(r0) = 0. By (5.3), one has
ρ(4)(r0) = 0. Iterating the same argument shows that ρ(k)(r0) = 0 for
k ≥ 2. By Taylor expansion, we have

ρ(r) = −λr + λr0 + ρ(r0),

on R. This contradicts ρ(r) > 0. Hence we have ρ′′ > 0 or ρ′′ < 0 on
R.

(II)-(a) Assume that ρ′′ > 0. By (5.1), we have ρ′ < −λ, which cannot
happen, because ρ > 0.

(II)-(b) If ρ′′ < 0, then ρ is a positive concave function, which cannot
happen.

Case 3 λ < 0.



8 SHUN MAETA

Assume that ρ′ = 0 at some point. By (5.4), we have a contradiction.
Therefore, we have ρ′ > 0 or ρ′ < 0 on R.

(I) Assume that ρ′ > 0. If ρ′′ = 0 at some point r1, the same argument
as in (II) of Case 2 deduces a contradiction. Hence we have ρ′′ > 0 or
ρ′′ < 0 on R.

(I)-(a) Assume that ρ′′ > 0. By (5.1), we have ρ′ < −λ. Therefore, we
have λ < R < 0. If ρ′ ր c2(< −λ) as r ր +∞, then one has ρ′′ ց 0
as r ր +∞. Since ρ is positive and monotone increasing, by (5.1), we
have a contradiction. Hence, we obtain that ρ′ ր −λ as r ր +∞.
Therefore, the curvature is flat near infinity.

(I)-(b) Assume that ρ′′ < 0. Since ρ is a positive concave function, it
cannot happen.

(II) Assume that ρ′ < 0. By (5.1), ρ′′ > 0. Since ρ is positive, ρ′ ց 0
as r ր +∞. Therefore, R < λ and it is hyperbolic such that R = λ

near infinity.

Case (2) of Theorem 2.1.

Note that ρ(0) = 0 and ρ > 0 on (0,+∞).

Case 1 λ = 0.
In this case, it is easy to see that the solution of (5.1) is

ρ(r) = 2c21 tanh

{

1

2
(c21r + c21c2)

}

,

where c1 and c2 are constants. Since ρ(0) = 0, one has

c1 = 0 or c2 = 0.

If c1 = 0, then one has ρ(r) ≡ 0, which is a contradiction.
If c2 = 0, then one has

F (r) = 4 log

(

cosh

(

c21
2
r

))

.

It is Hamilton’s cigar soliton.

Case 2 λ > 0.
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Assume that ρ′ = 0 at some point, that is G = 0 at some point, then
by (5.4), we have ρ = 0, which is a contradiction. Therefore, we have
ρ′ > 0 or ρ′ < 0 on (0,+∞).

(I) Assume that ρ′ > 0 on (0,+∞). By (5.1), one has ρ′′ < 0 on
(0,+∞). If ρ is bounded from above, then one has ρ′ ց 0 and ρ′′ ր 0
as r ր +∞, which contradicts (5.1). Therefore, ρ ր +∞ as r ր +∞.

Since ρ′ is positive and monotone decreasing, ρ′′ ց 0 as r ր +∞. By
(5.1), we have a contradiction.

(II) Assume that ρ′ < 0. If ρ′′ = 0 at some point r0, then by (5.1),
one has ρ′(r0) = −λ. By (5.2), we have ρ′′′(r0) = 0. By (5.3), one has
ρ(4)(r0) = 0. Iterating the same argument shows that ρ(k)(r0) = 0 for
k ≥ 2. By Taylor expansion, we have

ρ(r) = −λr + λr0 + ρ(r0),

on (0,+∞). This contradicts ρ(r) > 0. Hence we have ρ′′ > 0 or ρ′′ < 0
on (0,+∞).

(II)-(a) Assume that ρ′′ > 0. By (5.1), we have ρ′ < −λ, which cannot
happen, because ρ > 0.

(II)-(b) If ρ′′ < 0, then ρ is a positive monotone decreasing concave
function, which cannot happen.

Case 3 λ < 0.
Assume that ρ′ = 0 at some point, that is G = 0 at some point, then

by (5.4), we have ρ = 0, which is a contradiction. Therefore, we have
ρ′ > 0 or ρ′ < 0 on (0,+∞).

(I) Assume that ρ′ > 0. If ρ′′ = 0 at some point. By the same argument
as in (II) of Case 2, we have ρ(r) = −λr. Hence, one has R = 0 and
F (r) = −λ

2
r2 + C, for some C. Therefore, we only have to consider

ρ′′ > 0 or ρ′′ < 0 on (0,+∞).

(I)-(a) Assume that ρ′′ > 0. By (5.1), we have ρ′ < −λ. Therefore, we
have λ < R < 0. If ρ′ ր c2(< −λ) as r ր +∞, then one has ρ′′ ց 0
as r ր +∞. Since ρ is positive and monotone increasing, by (5.1),
we get a contradiction. Hence, we obtain that ρ′ ր −λ as r ր +∞.
Therefore, the curvature is flat near infinity.
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(I)-(b) Assume that ρ′′ < 0. By (5.1), we have ρ′ > −λ, that is,
R > 0. Note that ρ(0) = 0. By integrating both sides of ρ′ > −λ,

one has −λr < ρ(r). Therefore, ρ ր +∞ as r ր +∞. Assume that
ρ′ ց c2(> −λ) as r ր +∞. Since ρ′′ ց 0 as r ր +∞. By (5.1), we
have a contradiction. Therefore, we have ρ′ ց −λ as r ր +∞, and
the curvature is flat near infinity.

(II) Assume that ρ′ < 0. By (5.1), ρ′′ > 0 on (0,+∞). Since ρ is
positive, ρ′ ց 0 as r ր +∞. Therefore, R < λ and it is hyperbolic
such that R = λ near infinity.

�

Remark 5.2. For two dimensional solitons, Theorem 5.1 solves many
problems in [7].

6. Appendix

For n dimensional complete expanding gradient Yamabe solitons, an
elementary argument provides interesting examples that don’t appear
in the steady and shrinking cases.

Example. Let (Nn−1, ḡ) be an (n − 1) dimensional complete Rie-
mannian manifold with constant negative scalar curvature R̄. Then,

for any α ∈ R, (M, g, F, λ) = (R×Nn−1, dr2+ R̄
λ
ḡ,

√

R̄
λ
r+α, λ) is an n

dimensional complete expanding gradient Yamabe soliton with R = λ.

In particular, (M3, g, F, λ) = (R×H
2, dr2+ R̄

λ
gH,

√

R̄
λ
r+α, λ) is a 3

dimensional complete expanding gradient Yamabe soliton with R = λ,
where (H2, gH) be a hyperbolic surface.

References

1. J. Bernstein and T. Mettler, Two-Dimensional Gradient Ricci Solitons Revis-

ited, Int. Math. Res Not., 2015, 2015, 78-98.
2. S. Brendle, Convergence of the Yamabe flow for arbitrary initial energy, J.

Differential Geom. (2005) 69, 217–278.
3. S. Brendle, Convergence of the Yamabe flow in dimension 6 and higher, Invent.

Math. (2007) 170, 541–576.
4. S. Brendle, Rotational symmetry of self-similar solutions to the Ricci flow, In-

vent. Math. (2013) 194, 731–764.
5. S. Brendle, Rotational symmetry of Ricci solitons in higher dimensions, J. Dif-

ferential Geom. (2014) 97, 191–214.
6. H.-D. Cao, X. Sun and Y. Zhang, On the structure of gradient Yamabe solitons,

Math. Res. Lett. (2012) 19, 767–774.
7. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D.

Knopf, P. Lu, F. Luo and L. Ni, The Ricci Flow: Techniques and Applications:



LOW DIMENSIONAL COMPLETE GRADIENT YAMABE SOLITONS 11

Part I: Geometric Aspects, Math. Surv. and Mono., Amer. Math. Soc., (2007),
135.

8. G. Catino, C. Mantegazza and L. Mazzieri, On the global structure of confor-

mal gradient solitons with nonnegative Ricci tensor, Commun. Contemp. Math.
(2012) 14, 12pp.

9. J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost

rigidity of warped products, Ann. of Math. (1996) 144, 189–237.
10. P. Daskalopoulos and N. Sesum, The classification of locally conformally flat

Yamabe solitons, Adv. Math. (2013) 240, 346–369.
11. R. Hamilton, Lectures on geometric flows, (1989), unpublished.
12. S. Maeta, Classification of gradient conformal solitons, arXiv:2107.05487[math

DG].
13. S. Maeta, Complete steady gradient Yamabe solitons with positive scalar cur-

vature are rotationally symmetric, arXiv:2309.09166[math DG].
14. G. Perelman, The entropy formula for the Ricci flow and its geometric appli-

cations, arXiv math.DG/0211159, (2002).
15. P. Petersen, Riemannian Geometry. Third edition, Graduate Texts in Mathe-

matics, 171. Springer (2016).
16. Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans.

Amer. math. Soc., 117 (1965), 251–275.

Department of Mathematics, Faculty of Education, and Department

of Mathematics and Informatics, Graduate School of Science and En-

gineering, Chiba University, 1-33, Yayoicho, Inage, Chiba, 263-8522,

Japan.

Email address : shun.maeta@gmail.com or shun.maeta@chiba-u.jp

http://arxiv.org/abs/2107.05487
http://arxiv.org/abs/2309.09166
http://arxiv.org/abs/math/0211159

	1. Introduction
	2. Preliminary
	3. Classification of three dimensional complete steady gradient Yamabe solitons
	4. Classification of three dimensional complete shrinking gradient Yamabe solitons
	5. Classification of two dimensional complete gradient Yamabe solitons
	6. Appendix
	References

