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ABSTRACT 

Although Gillespie's algorithm is justified under a set of axioms based on the 

assumption of homogeneity of the system, many chemical systems deviate from this 

assumption, as is the case for reactions taking place in low-mobility media. Using 

instead the generalized q formalism, we propose a new stochastic simulation algorithm 

by redefining the probability with which a  reaction occurs between t +  and t +  +  

as P(q,) = aexpq(-a0 q), taking into account the separation of the natural exponential 

by the q parameter. Our algorithm has been implemented in the study of binary 

annihilation reactions, demonstrating a wider amplitude within the range of established 

physicochemical reactions, being the stochastic Gillespie scheme and the classical 

deterministic approach particular cases of this new proposal. The effect of the 

nonextensivity parameter, q, on the reaction rate is analyzed and its relationship with the 

reaction order, n, and the heterogeneity parameter, h, is determined for two different 

reactant concentrations in the annihilation reaction.  Different behaviors of these 

parameters are observed for the two types of samples, especially as q moves away from 

1, confirming that quasi-second order reactions occur when reactant concentrations are 

similar and quasi-first order reactions when they are different. Empirical expressions 

between the classical reaction order and the degree of heterogeneity are proposed. The 

results obtained allow us to associate the behavior of sub and supra Arrhenius kinetics 

reported in other different reactions with the degree of nonextensiveness of the reaction. 

Keywords: Gillespie algorithm, stochastic simulation, binary annihilation, q-analysis 

 

RESUMEN 

Aunque el algoritmo de Gillespie se justifica en virtud de un conjunto de axiomas 

basados en el supuesto de homogeneidad del sistema, muchos sistemas químicos se 

desvían de este supuesto, como ocurre en las reacciones que tienen lugar en medios de 

baja movilidad. Utilizando en su lugar el formalismo q generalizado, proponemos un 

nuevo algoritmo de simulación estocástica redefiniendo la probabilidad con la que se 

produce una reacción  entre t +  y t +  +  como P(q,) = aexpq(-a0 q), 

considerando la separación de la exponencial natural a través del parámetro q. Nuestro 

algoritmo se ha implementado en el estudio de reacciones de aniquilación binarias, 

demostrando una mayor amplitud dentro del rango de reacciones fisicoquímicas 

establecidas, siendo el esquema estocástico de Gillespie y la aproximación determinista 

clásica casos particulares de esta nueva propuesta. Se analiza el efecto del parámetro de 

no-extensividad, q, sobre la velocidad de reacción y se determina su relación con el 
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orden de reacción, n, y el parámetro de heterogeneidad, h, para dos concentraciones 

diferentes de reactantes en la reacción de aniquilación.  Se observan comportamientos 

diferentes de estos parámetros para los dos tipos de muestras, especialmente a medida 

que q se aleja de 1, lo que confirma que se producen reacciones de cuasi-segundo orden 

cuando las concentraciones de reactivos son similares y de cuasi-primer orden cuando 

son diferentes. Se proponen expresiones empíricas entre el orden clásico de reacción y 

el grado de heterogeneidad. Los resultados obtenidos permiten asociar el 

comportamiento de las cinéticas sub y supra Arrhenius reportadas en otras reacciones 

diferentes con el grado de no-extensividad de la reacción. 

 

 INTRODUCTION 

The study of kinetic processes is a captivating and extremely extensive topic since it 

covers all fields of science [1-5]. The knowledge of the innumerable ways in which 

reactants combine to generate products has allowed for the understanding of quotidian 

phenomena involving simple reactions of atoms and molecules as well as more complex 

structures in cells, viruses, bacteria, and higher living organisms. The theoretical 

treatment of the problem comprises two large schemes: The deterministic scheme, 

where the variables involved in the reaction both set its beginning and, in a classical 

way, predict its outcome; and the stochastic one, whereby the search of an outcome 

includes the fluctuations of variables associated with the reaction where the reactant 

population fluctuates probabilistically, its final state depending on this consideration.  

Bimolecular annihilation reactions (A + B → Product), where the reactants do not react 

or the product fades, have been widely documented as being simple reactions [6] whose 

solution in both schemes makes it possible to illustrate their limits of coincidence. 

Considering Tsallis' nonextensive statistics, solutions for this type of reaction change 

with the degree of nonextensivity, departing from the typical behavior predicted by 

Boltzmann statistics. This fact was already corroborated for multiple reactions in the 

works of Aquilanti et al. [7] and Luiggi [8]. This paper purports to stochastically study 

the behavior of binary annihilation reactions within the q-analysis framework. 

2. BINARY ANNIHILATION REACTIONS  

A chemical reaction of type A + B → is based on the collision of two reactants, A and 

B, to yield a product that disappears. It is a bimolecular reaction, and the reaction rate 

equation of species A is given by  

𝑑[𝐴]

𝑑𝑡
= −𝑘[𝐴][𝐵]                       (1) 

where [A] and [B] are the reactant concentrations, and k is the reaction rate constant. 

For equal initial concentrations of reagents ([A0] = [B0]), the solution is achieved: 

[𝐴] =
[𝐴0]

1+[𝐴0]𝑘𝑡
                          (2) 

whereas for [B0] > [A0], the solution is [4], 

[𝐴] =
[𝐴0]

[𝐵0]𝑒−∆𝑘𝑡−[𝐴0]
                         (3) 

where  𝛥 = [𝐵0] − [𝐴0].  

The time required for the concentration of one of the reactants to be reduced by half is 

called characteristic time , given, in the first case, by  (𝑘[𝐴0])−1; and in the second, by 



3 
 

𝑙𝑛|1+𝛥 [𝐵0]⁄ |

𝑘
, such that when [B0] >> [A0] ≈ 𝑙𝑛|2|(𝑘[𝐵0])−1, or the so called pseudo-

first-order reaction is achieved. For sufficiently short reaction times (t <<) both 

solutions tend to [A] = [A0] (1- [B0] kt); although for long times, the first reaction tends 

to decay with t-1, and the second tends to decline as e- kt. This decay, in general, is 

characteristic of reactions where there is a large enough number of collisions between A 

and B per reaction event such that the reaction probability is controlled by the reaction 

rate constant k [9]. Generally, the behavior of densities at the asymptotic long-time 

boundary is anomalous, this limit only to be found when the role of fluctuations in the 

distributions of A and B is considered [10]. 

The study of the reaction-diffusion systems at low dimensions is abundant, and recently 

there has been an emphasis on breaking the velocity equations corresponding to the 

midfield approximation [11]. In fact, these processes follow a power-law format for 

decay in particle density, as reported by Kopelman [12,13]. This power law poses a 

tendency to simplify reaction-diffusion equation modeling, as opposed to trends that 

involve linking the probabilities of multiple particle co-location, where the assumptions 

imposed [14-16] complicate the accomplishment of a manageable stochastic model. In 

this work, we will focus our attention on the simulation of a binary annihilation reaction 

within q-algebra formalism. 

The ideas of q-analysis independently developed by Euler, Jackson, Ramanujan, and 

Watson acquired importance in different fields of science [17], having important 

applicability in nonextensive statistical physics [18]. Tsallis was the first to introduce it 

in his generalized entropy function [18]. Recently, Mendes et al. [19] considered a q-

algebra in the solution of the nonlinear differential equation of n-order kinetics,  

𝑑𝐴𝑛(𝑡)

𝑑𝑡
= −𝑘𝑛𝐴𝑛(𝑡)𝑛            (4) 

where parameter n, known as the reaction order, is related to parameter q, indicative of 

nonextensibility. Equation (4) presents the same functional form as the generic 

relationship on which Tsallis' nonextensive entropy is based [19], 

𝑑𝑝

𝑑𝑡
= −𝜆𝑞𝑝𝑞                        (5) 

When  𝜆𝑞 = 𝜆𝑝𝑞−1, a characteristic first-order reaction is reproduced, p assumes the 

meaning of an extensive variable in the thermodynamic sense, in accordance with 

deterministic theory. A detailed analysis of the n or q order kinetic is proposed by 

Brouers et al. [20], who using extended powers and exponential functions defined 

within a q-algebra, managed to obtain a generalized expression of the so-called 2-

parameter fractal kinetics. The proposed solution for equations (4) and (5) is 

𝐴𝑞(𝑡) = 𝐴(0)𝑒𝑥𝑝𝑞 (
−𝑡

𝜏𝑞
) = 𝐴(0)[1 + (1 − 𝑞)𝑘𝑞𝑡]

1

(1−𝑞)

     (6) 

with a characteristic time value q obtained by asymptotic expansion defined by power-

law, given by 

𝜏𝑞 = [𝐴(0)(1−𝑞)𝑘𝑞]
−1

                  (7) 

q has a characteristic reaction constant kq associated with it. These expressions 

encompass the first-order reaction (q = 1), as well as complex reactions with anomalous 

kinetics showing behavior in powers of t [21, 22]. 
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McQuarrie [23] presents a stochastic approach to the study of chemical kinetics, 

translated by Gillespie as a computational algorithm [24-26], in which homogenous 

chemical kinetics are described as stochastic processes without having to solve the 

master equation. The procedure bases its effectiveness on the fact that the type of 

reaction that occurs, as well as the time between consecutive reactions, are stochastic 

magnitudes. The central hypothesis of this method is that each of the reactions R (= 1; 

2; 3;..) would be characterized by a quantity c, where ct is the average probability for 

a particular combination of two reactive R molecules to react in the next interval t. If 

h represents the total number of combinations of molecules that might react, according 

to reaction R, the number of reactions per unit of time would be a = ht. Given a state 

X at time t, the probability P (,)d for the next reaction R to occur in an interval [t + 

 and t +  + ]  is given by: 

𝑃(𝜏, 𝜇)𝑑𝜏 = 𝑃0(𝜏)𝑎𝜇𝑑𝜏            (8) 

where ad is the probability that a reaction will occur in the time interval [t +  and t + 

 + ]; and P0 (), the probability that no reaction will occur in this same interval. If the 

nonreactive collisions between the molecules are to be much more frequent than the 

reactants, and allow for a uniform distribution of the molecules throughout the volume, 

then the particle velocities will be randomly distributed according to the Maxwell-

Boltzmann distribution, such that it is possible to use: 

𝑃0(𝜏) = 𝑒𝑥𝑝(−𝑎0𝜏)            (9) 

which permits to write Equation (8) as 

𝑃(𝜏, 𝜇) = 𝑎𝜇𝑒𝑥𝑝(−𝑎0𝜏)       (10) 

Expression (10) defines the probability that reaction R will occur in the system within 

time interval , the objective behind this computational method being to obtain  by 

means of the Monte Carlo simulation. For that, the cumulative integral of Equation (10) 

must first be calculated, the time remaining to be set by 

𝜏 =
−𝑙𝑛(𝑟1)

𝑎0
                       (11) 

where a0 does not explicitly depend on time, and r1 is a random number evenly 

distributed in interval (0, 1]. Equation (11) is used to obtain the time it takes for the next 

reaction to occur in a homogeneous system [25,27]. The advantage of the Gillespie 

computational method is its easy and practical implementation. Besides, it permits to 

reproduce the behavior of the stochastic system with just a few particles, although it 

cannot handle a heterogeneous environment. We propose to extend this formalism to 

anomalous systems, supported by q-algebra. 

 

3. APPLICATION OF q-ALGEBRA TO THE STOCHASTIC FORMULATION 

It is proposed that in an anomalous system, the probability that the following reaction 

may occur in (t + τ, t + τ + δτ) is given by: 

𝑃(𝜏𝑞 , 𝜇) = 𝑎𝜇𝑒𝑥𝑝𝑞(−𝑎0𝜏𝑞)                                  (12) 

As before, a new time τ is sought using the Monte Carlo method, where the cumulative 

integral must first be calculated using the probability proposed in Relation (12), such 

that  
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𝑟1 = ∫ 𝑃(𝜏, 𝜇)
𝜏𝑞

0
𝑑𝑡 = ∫ 𝑎𝜇𝑒𝑥𝑝𝑞(−𝑎0𝜏)

𝜏𝑞

0
𝑑𝑡              (13) 

and using the properties of q-algebra [15], we get  

𝑟1 =
𝑎𝜇

(2−𝑞)𝑎0
[1 − 𝑒𝑥𝑝𝑞(−𝑎0𝜏𝑞)

2−𝑞
]                          (14) 

Considering P(τ,μ) = P(μ)P(τ), Equation (14) is written  as 

𝑟1 =
1

(2−𝑞)
[1 − 𝑒𝑥𝑝𝑞(−𝑎0𝜏𝑞)

2−𝑞
]                               (15) 

Different generalizations of the classical exponential can be found in the literature [28]. In 

particular, a significant amount of work has been developed [28-31] about the q-

exponential function and its distribution, whose application has led to a novel 

interpretation of statistical physics, specifically in the theory of reactions that depart from 

traditional Arrhenius behavior. 

 In this work, we use the following expressions: In the neighborhood of q = 1, 

𝑒𝑥𝑝𝑞(𝑥) = {(1 + (1 − 𝑞)𝑥)
1

1−𝑞 𝑝𝑎𝑟𝑎  1 + (1 − 𝑞)𝑥 > 0

0                             𝑝𝑎𝑟𝑎      1 + (1 − 𝑞)𝑥 ≤ 0
              (16) 

Or 

𝑒𝑥𝑝𝑞(𝑥) = [1 + (1 − 𝑞)𝑥]
+.

1

(1−𝑞)
                                                             (17) 

 

where [a]+ means max {0, a} and the parameter q is a number in the range 0 < q < 2.  

 

A new expression for  is obtained  

𝜏𝑞 =
1−𝑟2

(1−𝑞)𝑎0
       where 𝑟2 = {

(1 − 𝑞𝑟1)
1−𝑞

𝑞                 𝑓𝑜𝑟     0 < 𝑞 < 1

1 − (2 − 𝑞)𝑟1

1−𝑞

2−𝑞       𝑓𝑜𝑟   1 < 𝑞 < 2
               (18) 

Using heuristic reasoning, we define the propensity, demanding the classical propensity 

outcome when q = 1. 

It is known that the propensity for a bimolecular reaction is 𝑎0 = 𝑘[𝐴][𝐵] for the 

Gillespie case, while for the case of anomalous diffusion (super-diffusion) the following 

propensity is proposed: 

𝑎0 = 𝑘𝑞[𝐴]2−𝑞[𝐵]2−𝑞                                                           (19) 

where 𝑘𝑞 = 𝑘[𝐴0]𝑞−1[𝐵0]𝑞−1 for 0 < 𝑞 < 1; however, for the other case (sub-

diffusion), it must be fulfilled that 

𝑎0 = 𝑘𝑞[𝐴]𝑞[𝐵]𝑞                                                          (20) 

where 𝑘𝑞 = 𝑘[𝐴0]1−𝑞[𝐵0]1−𝑞, such that when q → 1, the classical propensity is 

recovered for both cases. The rest of the rules of the evolution of the Gillespie algorithm 

remain without any change. 
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4. RESULTS AND DISCUSSION 

Binary annihilation kinetics will be evaluated for each of the schemes developed only 

for two concentrations of particular reactants (A0 = B0 and A0 < B0), highlighting in each 

case the effect on the characteristic time and the parameter of nonextensivity q.  

Prior to choosing the number of particles with which the present study would be carried 

out, we checked our algorithm with 500, 1,000, 5,000 and 10,000 particles, obtaining 

similar results on average, with a greater fluctuation as the sample was smaller; and 

obviously, increasing the calculation time with the growth of the sample, thus 

confirming that the Gillespie algorithm performs well for small samples. It is for these 

reasons that a sample size of 1,000 particles has been selected for this study. The 

behavior of our formulation around q = 1 and the convergence of the different models to 

the classic model by far justify the applicability of our approach.  

 

4.1 For [𝐴0] =  [𝐵0]   
 

Our first study relates to samples with equal numbers of reactant particles, where the 

classical model is represented by Eq. (2). Figure 1 shows the decay of the number of 

particles A as a function of time on both a linear scale (Fig. 1.a) and a log-log scale (Fig. 

1.b) for a random run at different q values.  

This figure shows an Arrhenius-type behavior associated with classical or mean-field 

kinetics, which agrees with Gillespe's kinetics throughout the calculation for values of q 

equal to or very close to 1, although very small deviations are detected at the beginning 

of the reaction.  In addition, the simulation provides details on the effect of 

nonextensivity on the kinetics of the reactants, with these kinetics falling below the 

classical kinetics as we move away from q=1, for times well below the time required for 

the reaction to consume half of the reactants (t<<t1/2). This means that at the beginning 

of the simulated reaction, its behavior is of the sub-Arrhenius type. After this time (t > 

t1/2), a transition to values above classical kinetics is observed, with a larger deviation 

for values of q further away, above unity. These results suggest an anomalous 

asymmetric (sub-super Arrhenius) kinetic behavior of the q-dependent reaction with 

respect to classical kinetics. 

 

 

 

 

 

 

 

 

 

 

 

(a) 



7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Concentration of particles [A] vs (time), with k = 1.10−4 for A0 = B0 = 500. 

The dotted black curve is obtained from Equation (2) in the midfield approximation, 

under the same conditions. (a) On a linear scale. (b) On a log-log scale. 

 

The characteristic behavior of the anomalous systems for long times follows the relation

, verifying that when q → 1, a behavior close to the mean field is 

reproduced; that is, h → 0.  h increases when q moves away from 1 (see Table 1). 

 

4.1.1. Reaction rate 

Considering that the reaction rate for a random run presents large fluctuations inherent 

to the method, but always fluctuating around the mean values, then, a good 

approximation to the global behavior of this parameter is achieved by using the 

definition given by Gillespie: 

 

                                                                  (21)                                                    

However, the fractal-like equation for the condition  remains as 

                                                                  (22)                                                            

 

which is equivalent to Equation (4) and tends to the mean field equation 

                                                                                   (23)                                             
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where  is a constant and the n value is evaluated from the slope of the graph ln (dA / 

dt) vs ln (A). The heterogeneity degree of the reaction will be characterized by the n 

order.  

By plotting the variation of the logarithm of the reaction rate, ln (dA / dt) versus ln (A), 

for different values of q, as shown in Figure 2, these values are determined.  A straight 

line is obtained for each q, indicating that the reaction rate follows a power law of A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: ln (dA / dt) vs ln (A) with k = 1.10−4 for A0 = B0 = 500. The black curve  

represents the reaction speed for q = 1, with n = 1.97.  

 

Figure 3 plots the behavior of n and of the constant  with q, n showing a linear 

decrease with q for q < 1 and a linear growth for q > 1, while the logarithm of the 

reaction constant shows a linear but inverse behavior of n. In both cases, proportionality 

between n and ln  with q is established. These graphs clearly show that the order of 

kinetics and the logarithm of the reaction constant depend linearly on the degree of 

nonextensiveness when the spontaneous annihilation reaction occurs between reactants 

in equal proportions. 

nk

nk

nk



9 
 

Figure 3: Variation of kn and n parameters with q 

 

4.1.2 Fractal Kinetics in Q-Formalism. 

The chemical kinetics of heterogeneous disordered systems is extremely complicated 

due to the energetic and geometrical complexity that underlies it, but heterogeneous 

reactions are present in most reactions not only at the atomic and molecular level, but 

also at the level of photophysical annihilation of excitations, where the usual volumetric 

diffusion length of homogeneous reactions must be replaced by the half-random paths 

of these excitations, which opens a suitable referential framework for the study of low-

dimensional kinetics.  Many events of this type are mentioned in the literature: catalysis 

in porous materials, biochemical reactions in membranes, electron-hole recombination 

on the surfaces of amorphous materials, trapping and annihilation of excitations, 

biomedical reactions in inhomogeneous media, etc., where the dominant mechanisms in 

the kinetics of these events show a fractal behavior, controlled by annihilation reactions 

(A+A → Product), and whose reaction rate in a system of similar reactants is 

represented by Eq. 22.  

Kopelman [12] in his study "Rate Processes on Fractals: Theory, Simulations, and 

Experiments" shows that for diffusion-limited reactions the effective reaction coefficient 

k(t) follows a power law for long times, 

 

                                               (24) 

 

Where h, the heterogeneity exponent, measures the degree of heterogeneity of the 

reaction and is related to the effective spectral or fractal dimensionality by h=1- ds/2. 

htktk −

0~)(



10 
 

The simulation of the reaction gives us access to the reaction rate through Eq. 22, while 

using Eq. 24 we graphically determine the relationship between the parameters q and h, 

as shown in Figure 4(a), where the evolution of k(t) is plotted as a function of time.  The 

heterogeneity parameter (h) for different values of the nonextensivity parameter q is 

obtained from the slope of this plot. It is observed that as q changes, so do the slopes at 

long times, although the linearity suggested in reference [12] for short times is broken, 

indicating a possible instability at the beginning of the reaction. Similar behavior has 

been observed in the early stages of homogeneous solid nucleation reactions..  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. (a): ln k(t) vs ln time with. (b) ln k(t) vs ln (time+ξq). With A0 = B0 = 500, k0 

= 1.10−4. ξq = {4.0, 4.7, 9.0, 19.0, 17.0, 15.4, 10.0} and q = {0.25, 0.50, 0.75,  1.0, 1.25, 

1.50, 1.75}, respectively. 

 

(a) 

(b) 
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Schnell and Turner [21] suggest the use of a more general equation for k(t), which does 

not diverge for very short times, 

                                                                                (25)     

where k0 and ξ, in principle, are considered adjustment parameters. The scale parameter 

ξ corresponds to the time where the anomalous effects begin to be seen. This parameter 

has no meaning for the classical case. To facilitate mathematical manipulation, the time 

scale ξq in Equation (25) is powered by the exponent −h, which is evaluated from the 

log-log graph of k(t) vs (t + ξq); the values of ξq are selected in such a way that the 

graph in question is linearized. Figure 4.b shows the linearization of the curves with the 

respective ξ parameters. The value of h is obtained from the slope of each line (see 

Table 1). The behavior of the parameters h as a function of the nonextensivity parameter 

q is shown in Figure 5, where a departure from linearity is observed as we move away 

from the mean field condition. 

 

 

Figure 5. h vs q obtained from the linearization of Figure 4.b 

 

Our results also suggest an empirical relationship between the reaction order (n) and the 

heterogeneity exponent (h), given by 

n =
2−h

1−h
                    (26) 

 

At the end of this section, the parameters derived from the simulation of the annihilation 

reaction for [A0] = [B0] are summarized in Table 1. 
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Table 1. Parameters obtained for [A0] = [B0].  Exponent n, h, time scales ξq, t1/2 and t1/4 

for different q’s 

 

                             q                 n                h               ξq               t1/2      t3/4 

  

                             0.25 3.44      0.60           4.0     15.67 54.8 

                             0.50 2.9      0.47 4.5    17.77 42.7 

                             0.75 2.46      0.30  9.0    17.05 37.2 

                             1.0   1.97      0.02  -    21.45 41.3 

                            1.25             2.46      0.33         17.0    22.80 50.9 

                            1.50             2.95      0.53        15.4    26.45 73.4 

                            1.75   3.44      0.60        10.0    30.29 98.0 

 

 

Table 1 shows the characteristic parameters of the simulation for [A0] = [B0].  The 

parameters n and h show a symmetric behavior with respect to the values derived from 

the mean-field theory, corresponding to q=1, n=1.97 and h=0.02. The time scale tends to 

increase asymptotically as we approach q=1, this increase being greater for values of 

nonextensivity greater than 1. The characteristic time as a function of the parameter q is 

also shown when 1/2 and 3/4 of the reaction has elapsed. These times reflect different 

characteristics of the kinetics as the reaction progresses, with the values of t1/2 and t3/4 

showing slower and monotonically decreasing kinetics for q > 1 with respect to the 

kinetics predicted by the mean-field approximation. However, for q < 1 some 

randomness is observed, suggesting the presence of the short-time superdiffusion 

phenomenon characteristic of some anomalous systems, which causes some half-lives to 

be shorter than the classical half-life. At later stages of the reaction and q < 1, the 

kinetics become faster around q = 0.75, which assumes a definite functional form due to 

the tendency of the system to stability, then the reaction tends to slow down as the value 

of nonextensivity increases. This table also confirms that a quasi-second-order reaction, 

typical of chemical adsorption reactions, takes place as we move away from the mean-

field approximation (away from q=1).

 
The results shown above, for this condition, represent an important advance in 

projecting, both above and below the classical deterministic results, a way of explaining 

the sub-Arrhenius and supra-Arrhenius reaction kinetics reported extensively in the 

literature. 

 

4.2 For  

In this section, the modified Gillespe model is used to simulate the evolution of the 

annihilation reaction, for a system of 1000 particles, 200 of A0 and 800 of B0, 

considering different values of the nonextensivity parameter q. 

Figure 6 shows the progress of the reaction through the evolution of the concentration 

of minority reactant A as a function of time at different q’s. In 6.a the entire reaction is 

   00 B<A



13 
 

shown on a log-log scale, while in 6.b, only the beginning of the reaction is shown on a 

linear scale.  A tendency to reproduce the behavior of the classical kinetics for very 

short reaction times (t < 2 a.u.) is observed, independently of the value of q. In any case, 

the Gillespe simulation tends to reproduce a sub-Arrhenius behavior in the first instants 

of the reaction, remaining so except for q=1, whose simulated kinetics is very slightly 

above the classical kinetics and then moves below it for longer times. In the final stages 

of the reaction, a super-Arrhenius behavior is observed for all values of q other than 

one.   This changing behavior around the classical kinetics, determined by the mean-

field approximation, predicts an anomalous behavior characteristic of systems with low 

mobility at long reaction times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Variation of concentration [A] versus time, for A0 = 200 and B0 = 800. k0 = 

1.10-4. The dashed black curve is obtained from equation (4) in the mean-field 

approach. 6.a. Whole reaction in log-log scale. 6.b. Start of reaction in linear scale. 

 

 

(a) 

(b) 
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The deviation of the simulated kinetics from the behavior determined by the mean-field 

approach affects the characteristic times, whose variation depends on the nonextensivity 

parameter q.  

Table 2 shows the characteristic time when ½ and ¾ of the reaction has occurred for 

different values of the nonextensivity parameter. Contrary to the case of A0=B0, the 

characteristic half-life t1/2 and t3/4 show a random variation around q=1, making it 

difficult to detect a pattern. 

4.2.1. Reaction rate 

Figure 7 shows the reaction rate versus the number of particles of the minority species 

(A) for different q’s. Using Equation (23), we can find the order of the kinetics 

represented by exponent n by evaluating the slope of the lines shown for that figure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: ln (dA / dt) vs ln (A) with k = 1.10−4 for A0 = 200 and B0 = 800. The black 

curve represents the reaction speed for q = 1, with n = 1.06. 

 

The variation of the reaction order n is shown in Figure 8; its behavior is qualitatively 

similar to that of the previous case, although the magnitudes are different. This result 

allows us to conclude that, independent of the concentration of the reactants, there is a 

linear decreasing dependence of the reaction order n on the nonextensivity parameter q 

when q<1 and an increasing dependence for q>1.                              
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Figure 8. Behavior of the reaction order n vs q using k = 1.10−4, A0 = 200, and B0 

= 800. 

As for Kolpman's heterogeneity exponent h [12] and Schnell and Turner's scaling 

parameter ξq [21], their evaluation is performed in the same way as in the previous case. 

Figure 9.a shows the evolution of the velocity coefficient k (t) vs. time. The figure 

shows the effect of nonextensivity on the reaction heterogeneity exponent, confirming 

that the slope h changes significantly with q for long reaction times. 
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Figure 9: (a) ln k(t) vs ln time  (b) ln k(t) vs ln (time+ξq). With  k0 = 1.10−4, A0 = 200, 

and B0 = 800 Figure 10. Ln k (t) vs ln (time + ξq) where ξq = {7.0, 7.3, 11.6, 15.5, 11.7, 

10.5, 13.7}, for the respective q values.. 

 

As we did in the A0 = B0 case, exponent h will be found using the evolution of k (t) vs (t 

+ ξq) on a log-log scale. In it, as in the previous case, an anomalous decay of the 

number of particles is observed, where the reaction coefficient falls as (t + ξ) – h. The 

results of the linearization are shown in Figure 9.b. 

On the other hand, Figure 10 shows the dependence of h on q, showing some 

randomness for q values far from q = 1. 

 

 

Figure 10: h vs q with k = 1.10−4 for A0 = 200 and B0 = 800.  

 

(b) 
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The values of the parameters deduced from the simulation under this condition are 

shown in Table 2. 

 

Table 2. Parameters obtained for [A0] =200 and [B0] = 800.  

Exponents n, h, time scales ξq, t1/2   and t3/4 for different q’s 

 

                          q                  n                h            ξq             t1/2         t3/4 

  

    0.25          1.87         0.89       7.0           5.33            16.52 

 0.50          1.60         0.65          7.3          5.83            15.34 

 0.75          1.33         0.45         11.6          5.85       15.27 

 1.00          1.06         0.04            -           10.51       21.72 

 1.25          1.33   0.39        11.7 7.66       19.23 

      1.50      1.60       0.66 10.5      8.12 21.02 

      1.75    1.87       0.90 13.7      8.76 28.50 

 

 

Table 2 shows that for this ratio between reactant concentrations (B0 >> A0) the 

reaction behaves as a pseudo first order reaction of B with respect to A, where the 

evolution of the concentration gradient is clearly not constant. This behavior has been 

observed in processes involving physical adsorption reactions.  Despite the difficulty of 

establishing a relationship between the reaction order n and the heterogeneity exponent 

h for pseudo first order reactions, we propose the following empirical relationship from 

the data obtained from the simulated kinetics:  

𝑛 =
2−ℎ

2(1−ℎ)
                                        (26) 

which is well-behaved around values of q = 1, i.e., the classical case. 

 

5. CONCLUSIONS 

We have studied the behavior of the characteristic parameters associated with a binary 

annihilation reaction within the framework of the Gillespie theory and Tsallis's 

nonextensive statistical theory, concluding the following: 

- The greater breadth of the new algorithm is evidenced, with the Gillespie stochastic 

scheme and the classical deterministic approach being particular cases of this new 

proposal. 

-The supra and sub Arrhenius reaction kinetics are completely covered by this scheme. 

- The same Gillespie structure to find the next reaction that will occur is maintained, 

which allows us to infer that it is easily applicable to heterogeneous systems with 

multiple stages. 
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- The effect of the nonextensivity parameter, q, on the reaction rate is analyzed and its 

relationship with the reaction order, n, and the heterogeneity parameter, h, is determined 

for two different reactant concentrations in the annihilation reaction.  Different 

behaviors of these parameters are observed for the two types of samples, especially as q 

moves away from 1, confirming that quasi-second order reactions occur when reactant 

concentrations are similar and quasi-first order reactions when they are different. 

- The transition time ξq, where the effects of heterogeneity begin to be seen, is 

dependent on parameter q. This scale generally decreases as q decreases, a more 

detailed study of this parameter being necessary to know its true nature. 

- Empirical relationships are established between the order of the reaction and the 

coefficient of heterogeneity. 

 

ACKNOWLEDGMENTS 

The authors thank Carlos Mota for his support and translation of the manuscript. 

 

 

REFERENCES 

[1] Smith S, Grima R. Spatial Stochastic Intracellular Kinetics: A Review of Modelling 

Approaches. Bull Math Biol. 2019; 81:2960–3009. 

[2] Cao1 Y, Linda P, Seitaridou E. Stochastic Simulation of Biochemical Systems: In 

Memory of Dan T. Gillespie’s contributions. Bull Math Biol. 2019; 81:2819–2821 

[3] Lecca P.  Stochastic chemical kinetics. A review of the modelling and simulation 

approaches. Biophysical Reviews. 2013; 5: 323–345.  

[4] Suderman R, Mitra ED,  Ting Lin Y,  Erickson KE, Feng S,  Hlavacek WS. 

Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations. Bull Math 

Biol. 2019; 81: 2822–2848.  

[5]  Carrero JI,  Loaiza JS,  Serna A.  Stochastic reaction, stochastic diffusion. 

ChemTexts. 2020; 6: 14.  https://doi.org/10.1007/s40828-020-0108-1. 

[6] Schnorer H, Kuzovkov V, Blumen A. Bimolecular annihilation reactions with 

immobile reactants. The Journal of Chemical Physics. 1990; 92: 2310. doi:10.1063 

/1.457972. 

[7] Aquilanti V, Mundim KC, Elango M, Kleijn S, Kasai T. Temperature dependence of 

chemical and biophysical rate processes: phenomenological approach to deviations from 

Arrhenius law. Chem Phys Lett. 2010; 498:209-13. 

 

https://link.springer.com/article/10.1007/s12551-013-0122-2#auth-Paola-Lecca
https://link.springer.com/journal/12551
https://link.springer.com/article/10.1007/s11538-018-0418-2#auth-Eshan_D_-Mitra
https://link.springer.com/article/10.1007/s11538-018-0418-2#auth-Yen_Ting-Lin
https://link.springer.com/article/10.1007/s11538-018-0418-2#auth-Keesha_E_-Erickson
https://link.springer.com/article/10.1007/s11538-018-0418-2#auth-William_S_-Hlavacek
https://link.springer.com/article/10.1007/s40828-020-0108-1#auth-J__I_-Carrero
https://link.springer.com/article/10.1007/s40828-020-0108-1#auth-J__S_-Loaiza
https://link.springer.com/article/10.1007/s40828-020-0108-1#auth-A_-Serna
https://doi.org/10.1007/s40828-020-0108-1


19 
 

[8] Luiggi Agreda NJ. Aquilanti-Mundim deformed Arrhenius model in solid-state 

reactions. Theoretical evaluation using DSC experimental data. J. Therm Anal Calorim. 

2016; 126:1175–1184 DOI. 10.1007/s10973-016-5566-8.  

 

 [9] Kang K, Redner S. Fluctuation-dominated kinetics in diffusion-controlled reactions. 

Phys. Rev. A .1985; 32: 435  

[10] Abramson G. Cinética anómala en sistemas bimoleculares de reacción-difusión. 

Tesis Doctoral. Instituto Balseiro. 1995. 

[11] Diez-Minguito M.  Instabilities, nucleation, and critical behavior in nonequilibrium 

driven fluids: theory and simulation. 2011; arXiv.org . cond-mat. arXiv:1106.1289  

 [12] Kopelman R. Rate processes on fractals: Theory, simulations, and experiment. 

Journal of Statistical Physics. 1986; 42: 185-200. DOI: 10.1007/Bf01010846   

[13] Kopelman R. Fractal Reaction Kinetics Science. 1998; 241: 1620-1626. 

DOI: 10.1126/Science.241.4873.1620 . 

[14] Benson D, Meerschaert M. Simulation of chemical reaction via particle tracking: 

diffusion-limited versus thermodynamic rate-limited regimes. Water Resources 

Research.  2008; 44:  W12201, DOI:10.1029/2008WR007111. 

 [15] Benson D, Bolster D, Paster. A.  Communication: A full solution of the 

annihilation reaction A + B based on time-subordination. The Journal of Chemical 

Physics. 2012;138: 1311.  

[16] Gómez M, Luiggi N. Adapting the condensation and evaporation model to the 

study of kinetics of phase transformations in binary metal systems. Journal of 

Computational Methods in Sciences and Engineering.  2014; 14:179-194 DOI 

10.3233/JCM-140495. 

• [17] Ernst T.  A comprehensive treatment of q-calculus. Springer Science & Business 

Media. 2012. DOI 10.1007/978-3-0348-0431-8.

[18] Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. Journal of 

Statistical Physics. 1988; 52: 479-487.  

[19].Mendes RS, Pedron IT. Nonlinear differential equations based on nonextensive 

Tsallis entropy and physical applications. 1999; arXiv:Cond.mat/9904023v1.  

[20] Brouers F, Sotolongo-Costa O. Generalized Fractal Kinetics in Systems 

(Application to Biophysics and Biotechnology). Physica A. 2006;  368: 165-175. 

DOI.org/10.1016/j.physa.2005.12.062 

https://arxiv.org/search/cond-mat?searchtype=author&query=Diez-Minguito%2C+M
https://arxiv.org/
https://arxiv.org/list/cond-mat/recent
http://doi.org/10.1007/Bf01010846
http://doi.org/10.1126/Science.241.4873.1620
https://www.stt.msu.edu/users/mcubed/RWchem.pdf
https://www.stt.msu.edu/users/mcubed/RWchem.pdf
https://doi.org/10.1016/j.physa.2005.12.062


20 
 

[21] Schnell S, Turner TE. Reaction kinetics in intracellular environments with 

macromolecular crowding: simulations and rate laws.  Prog. Biophys. Mol. Biol. 2004; 

85: 235-260 

[22] Savageau MA. Michaelis-Menten mechanism reconsidered: implications of fractal 

kinetics, J.Theor.Biol. 1995; 176: 115-124. DOI: 10.1006/jtbi.1995.0181. 

[23] McQuarrie DA. Stochastic Approach to Chemical Kinetics. Journal of Applied 

Probability. 1967; 4(3): 413-478. 

[24] Gillespie D. T. A General Method for Numerically Simulating the Stochastic Time 

Evolution of Coupled Chemical Reactions. Journal of computational physics. 1976; 2: 

403-434.  

[25] Gillespie DT. Exact Stochastic Simulation of Coupled Chemical Reactions.The 

Journal of Physical Chemistry. 1977; 25( 8 1):  2340-2361. 

[26] Gillespie DT, Hellander A, Petzold LR. Perspective: Stochastic algorithms for 

chemical kinetics. J. Chem. Phys. 2013; 138: 170901 DOI 10.1063/1.4801941 

 [27] Burrage K, Tian T, Burrage P. A multi-scaled approach for simulating chemical 

reaction systems. Progr. in Biophysics & Mol. Biol. 2004; 85: 217-234. DOI 

10.1016/j.pbiomolbio.2004.01.014. 

[28] Umarov S, Tsallis C,  Steinberg S. On a q-Central Limit Theorem Consistent with 

Nonextensive Statistical Mechanics. Milan Journal of Mathematics. 2008; 76(1): 307–

328. DOI:10.1007/s00032-008-0087-y. 

 [29]   Quapp W, Zech A. Reaction pathways and projection operators: Application to 

string methods. Journal of Computational Chemistry,  2004; 31: 573-585. DOI 

10.1002/jcc.20053. 
[30] Borges EP. A possible deformed algebra and calculus inspired in nonextensive 

thermostatistics. Physica A: Statistical Mechanics and its Applications. 2004; 340 (1-3): 

95-101 DOI 10.1016/j.physa.2004.03.082. 

 

[31] Picoli Jr. S, Mendes RS, Malacarne LC and. Santos RPB. q-distributions in 

complex systems: a brief review. Brazilian Journal of Physics 2A. 2009; 39: 468-474. 

DOI 10.1016/j.physa.2004.03.082. 

 

 

 

 

 

 

https://doi.org/10.1016/j.pbiomolbio.2004.01.012
https://doi.org/10.1016/j.pbiomolbio.2004.01.012
https://doi.org/10.1016/j.pbiomolbio.2004.01.014
https://doi.org/10.1002/jcc.20053
https://doi.org/10.1016/j.physa.2004.03.082
https://doi.org/10.1016/j.physa.2004.03.082

