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GENERALIZED NASH EQUILIBRIUM PROBLEMS WITH

QUASI-LINEAR CONSTRAINTS

JIYOUNG CHOI, JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

Abstract. We study generalized Nash equilibrium problems (GNEPs) such
that objectives are polynomial functions, and each player’s constraints are lin-

ear in their own strategy. For such GNEPs, the KKT sets can be represented
as unions of simpler sets by Carathéodory’s theorem. We give a convenient
representation for KKT sets using partial Lagrange multiplier expressions.
This produces a set of branch polynomial optimization problems, which can
be efficiently solved by Moment-SOS relaxations. By doing this, we can com-
pute all generalized Nash equilibria or detect their nonexistence. Numerical
experiments are also provided to demonstrate the computational efficiency.

1. Introduction

The generalized Nash equilibrium problem (GNEP) is a class of games that
determines strategies for a group of players so that each player’s benefit cannot
be improved for the given strategy by other players. Suppose there are N players,
and the ith player’s strategy is represented by the ni-dimensional real vector xi :=
(xi,1, . . . , xi,ni

) ∈ Rni . The tuple

x := (x1, . . . , xN )

denotes the set of all player’s strategies, with the total dimension

n := n1 + · · ·+ nN .

When the ith player’s strategy xi is focused, for convenience, we also write

x = (xi, x−i), with x−i := (x1, . . . , xi−1, xi+1, . . . , xN ).

Assume the ith player’s decision optimization problem is

(1.1) Fi(x−i) :

{
min

xi∈Rni
fi(xi, x−i)

s .t . gi(xi, x−i) ≥ 0,

where gi : Rn → Rmi is anmi-dimensional vector-valued function. For convenience,
we only consider inequality constrained GNEPs. The discussion for GNEPs with
equality constraints is quite similar. A tuple of strategies u = (u1, . . . , uN) is said
to be a generalized Nash equilibrium (GNE) if each ui is a minimizer of Fi(u−i).
Throughout the paper, an optimizer means a global optimizer, unless its meaning
is specified. For each i = 1, . . . , N and for a given x−i, we let Si(x−i) denote the
set of minimizers for Fi(x−i). Therefore, the set S of all GNEs can be written as

(1.2) S =
{
(u1, . . . , uN) : ui ∈ Si(u−i) for i = 1, . . . , N

}
.
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In this paper, we consider a broad class of GNEPs such that all objectives fi
are polynomials in x, while the optimization problem Fi(x−i) has constraints that
are linear in xi (they may be polynomial in x−i, so we called them as quasi-
linear constraints). We assume that gi = (gi,1, . . . , gi,mi

) is such that for each
j ∈ [mi] := {1, . . . ,mi},

(1.3) gi,j(x) = (ai,j)
Txi − bi,j(x−i),

where each ai,j is a constant ni-dimensional real vector and bi,j(x−i) is a scalar
polynomial in x−i. For convenience, denote the coefficient matrix (the superscript
T means the transpose of a matrix or vector)

(1.4) Ai :=
[
ai,1 · · · ai,mi

]T
.

We also denote the tuple of polynomials in x−i:

bi(x−i) :=
[
bi,1(x−i) · · · bi,mi

(x−i)
]T

.

Then gi(x) = Aixi − bi(x−i) and the ith player’s feasible set can be written as

(1.5) Xi(x−i) := {xi ∈ Rni : Aixi − bi(x−i) ≥ 0} .

The entire feasible set of the GNEP is

(1.6) X :=
{
(x1, . . . , xN ) : Aixi − bi(x−i) ≥ 0 for all i = 1, . . . , N

}
.

The GNEP (1.1) is called a Nash equilibrium problem (NEP) if each feasible
set Xi(x−i) is independent of x−i. A solution to the NEP is then called a Nash
equilibrium (NE). The GNEP is said to be convex if each Fi(x−i) is a convex
optimization problem in xi for every given x−i such that Xi(x−i) 6= ∅. GNEPs
were originally introduced to model economic problems. They are now widely used
in various applications, such as transportation, telecommunications, and machine
learning. We refer to [5, 11, 12, 13, 35, 36] for applications and surveys of GNEPs.

Solving GNEPs is typically a challenging task, primarily due to the interactions
among different players’ strategies concerning the objectives and feasible sets. The
set of GNEs may be nonconvex, even for strictly convex NEPs [31]. Much earlier
work exists to solve GNEPs. Some of them apply classical nonlinear optimization
methods, such as the penalty method [2, 12] and Augmented-Lagrangian method
[19]. Variational inequality and quasi-variational inequality reformulations are also
frequently used to solve GNEPs; see the work [9, 35, 39]. The Nikaido-Isoda func-
tion type methods are proposed in [7, 41]. The ADMM-type methods for GNEPs
in Hilbert spaces are introduced in [3]. The Gauss-Seidel type methods are pro-
posed in [14]. Methods based on Karush-Kuhn-Tucker (KKT) conditions are given
in [6, 10]. Certain convexity assumptions are often needed for these methods to be
guaranteed to compute a GNE. It is generally quite challenging to solve nonconvex
GNEPs. As an alternative, for nonconvex GNEPs, some work aims to find quasi-
NEs introduced in [5, 36]. For more detailed introductions to GNEPs, we refer to
[11, 13].

Contributions. GNEPs given by polynomial or rational functions are studied in
[30, 32, 33]. Particularly, in [30, 33], Moment-SOS relaxation methods are proposed
to find GNEs or to detect their nonexistence. These methods require to use La-
grange multiplier expressions (LMEs) for some common constraints like simplex,
balls, or cubes. However, for more general constraints, LMEs are quite expensive
to obtain. In particular, for GNEPs with many linear constraints, the usage of
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LMEs is quite inconvenient. In this paper, we study these kinds of GNEPs, which
have many quasi-linear constraints. The linear property of constraints can be used
to get computationally convenient expressions for Lagrange multipliers. This novel
approach greatly improves the efficiency of solving GNEPs.

Note that x = (x1, . . . , xN ) is a GNE if and only if every xi ∈ Si(x−i). In
computation, one can relax xi ∈ Si(x−i) by KKT conditions. For the ith player’s
decision problem Fi(x−i), these conditions are

(1.7)
∇xi

fi(x) −AT
i λi = 0,

0 ≤ λi ⊥
(
Aixi − bi(x−i)

)
≥ 0.

In the above, ∇xi
denotes the gradient in the subvector xi and

λi =
[
λi,1 · · · λi,mi

]T

is the vector of Lagrange multipliers. The notation λi ⊥ gi means that λi and gi(x)
are perpendicular to each other. The strategy vector x is called a KKT point if for
each i ∈ [N ], there exists λi ∈ Rmi such that (x, λi) satisfies (1.7).

It is usually not easy to solve (1.7) directly to get a KKT point, since there
are Lagrange multiplier variables like λi. Moreover, a KKT point may not be a
GNE for nonconvex GNEPs. To solve (1.7) more efficiently, LMEs are introduced
in [30, 33]. Generally, there exists a vector function τi(x) such that

(1.8) λi = τi(x) satisfies (1.7) for every KKT point x.

Such τi(x) is called a Lagrange multiplier expression. For Ai ∈ Rmi×ni , the trans-
pose AT

i is ni-by-mi. For the special case that rankAi = mi,

λi = (AiA
T
i )

−1Ai∇xi
fi(x).

However, for more general cases where rankAi < mi, the above LMEs are not
applicable.

When GNEPs have quasi-linear constraints, we propose a computationally effi-
cient way to get LMEs. For each fixed GNE x, the KKT system (1.7) must have a
Lagrange multiplier vector λi which has at most ri := rankAi nonzero entries. This
can be implied by Carathéodory’s theorem. Suppose Ji ⊆ [mi] is the label set of
nonzero entries of λi, with the cardinality |Ji| = ri. Let Ai,Ji

be the submatrix of
Ai whose rows are labelled by Ji, and we define λi,Ji

, bi,Ji
respectively in a similar

way. Then (1.7) implies the equation

∇xi
fi(x)−AT

i,Ji
λi,Ji

= 0.

Assume Ai,Ji
is invertible, then

λi,Ji
= (AT

i,Ji
)−1∇xi

fi(x).

The right-hand side is a polynomial function in x. We call it a partial Lagrange
multiplier expressions (pLME). Then, (1.7) simplifies to

(1.9) 0 ≤ (AT
i,Ji

)−1∇xi
fi(x) ⊥

(
Ai,Ji

xi − bi,Ji
(x−i)

)
≥ 0.

In computational practice, the label set Ji is usually unknown. However, we can
enumerate all such Ji ⊆ [mi] with |Ji| = ri. Therefore, the KKT set K can be
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represented as

(1.10) K =
⋃

i∈[N ],
Ji⊆[mi],|Ji|=ri

{
x ∈ X : x satisfies (1.9)

}
.

Using pLMEs for the KKT set, we propose a method for finding all GNEs, for both
convex and nonconvex GNEPs. Our major contributions are:

• We give a pLME representation for the KKT set as in (1.10). The pLMEs
can be explicitly given in closed formulae. They are computationally con-
venient and efficient. Their usage can help solve large GNEPs.

• Based on partial Lagrange multiplier expressions, we give a method for
computing GNEs for both convex and nonconvex GNEPs. When the KKT
set K is finite (this is the generic case), we can find all GNEs or detect their
nonexistence.

• We remark that our method is not enumerating active constraining sets
since we only consider label sets Ji ⊆ [mi] with |Ji| = ri. The number of
our enumerations depends on the gapmi−ri. To the best of our knowledge,
this is the first work for applying this approach to solve GNEPs.

The paper is organized as follows. Section 2 introduces notation and some basics
for polynomial optimization. In Section 3, we introduce partial Lagrange multiplier
expressions. In Section 4, we give algorithms for solving GNEPs. Section 5 intro-
duces the Moment-SOS relaxations for solving polynomial optimization problems.
Numerical experiments are presented in Section 6. The conclusions and some dis-
cussions are given in Section 7.

2. Preliminaries

Notation. The symbol N (resp., R) represents the set of nonnegative integers
(resp., real numbers). The Rn denotes the n-dimensional Euclidean space. Let
R[x] denote the ring of polynomials with real coefficients in x, and R[x]d denote its
subset of polynomials whose degrees are not greater than d. For the ith player’s
strategy vector xi ∈ Rni , the xi,j denotes the jth entry of xi, for j = 1, . . . , ni. For
ith player’s objective fi(x), ∇xi

fi denotes its gradient with respect to xi. For an
integer n > 0, [n] := {1, 2, . . . , n}. For a vector u ∈ Rn, ‖u‖ denotes the standard
Euclidean norm. The ei represents the vector of all zeros except that ith entry is 1,
while 1 denotes the vector of all ones. The symbol 0n1×n2

stands for the zero matrix
of dimension n1×n2, and the subscript may be omitted if the dimension is clear in
the context. For α = (α1, . . . , αn) ∈ Nn, denote |α| := α1 + · · ·+ αn. We write the
monomial power xα := xα1

1 · · ·xαn
n and denote power set Nn

d := {α ∈ Rn : |α| ≤ d}.
The column vector of all monomials in x and of degrees up to d is denoted as

(2.1) [x]d :=
[
1 x1 · · · xn x2

1 x1x2 · · · xn−1x
d−1
n xd

n

]
.

For a set T , its cardinality is denoted as |T |. For a symmetric matrix A, the
inequality A � 0 (resp., A ≻ 0) means that A is positive semidefinite (resp., positive
definite).

2.1. Polynomial optimization. For a polynomial p ∈ R[x] and subsets I, J ⊆
R[x], define the product and Minkowski sum

p · I := {pq : q ∈ I}, I + J := {a+ b : a ∈ I, b ∈ J}.
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A subset I ⊆ R[x] is an ideal of R[x] if I + I ⊆ I and p · I ⊆ I for all p ∈ R[x]. For
a tuple h = (h1, . . . , hm) of polynomials in R[x], the ideal generated by h is

Ideal[h] := h1 · R[x] + · · ·+ hm · R[x].

The real zero set of h is

Z(h) := {x ∈ Rn : h1(x) = · · · = hm(x) = 0}.

A polynomial σ ∈ R[x] is said to be a sum of squares (SOS) if there are polynomi-
als p1, . . . , pk ∈ R[x] such that σ = p21 + · · ·+ p2k. The set of all SOS polynomials in
x is denoted as Σ[x]. In computation, we often work with the degree-d truncation:

Σ[x]d := Σ[x] ∩R[x]d.

For a polynomial tuple g := (g1, . . . , gt), denote

S(g) := {x ∈ Rn : g1(x) ≥ 0, . . . , gt(x) ≥ 0}.

Clearly, if there are SOS polynomials σ0, . . . , σt such that

(2.2) f = σ0 + σ1g1 + · · ·+ σtgt,

then f ≥ 0 on S(g). So, we consider the set

QM[g] := Σ[x] + g1 · Σ[x] + · · ·+ gt · Σ[x].

The above set QM[g] is called the quadratic module generated by g. The degree-d
truncation of QM[g] is similarly defined as

QM[g]d := Σ[x]d + g1 · Σ[x]d−deg(g1) + · · ·+ gt · Σ[x]d−deg(gt).

We are interested in conditions for a polynomial f ≥ 0 on Z(h) ∩ S(g). If
f ∈ Ideal[h] +QM[g], then it is easy to see that f ≥ 0 on Z(h)∩ S(g). The reverse
is not necessarily true. The set Ideal[h] + QM[g] is said to be archimedean if there
exists q ∈ Ideal[h]+QM[g] such that S(q) is a compact set. When Ideal[h]+QM[g] is
archimedean, if f > 0 on Z(h)∩S(g), then f ∈ Ideal[h]+QM[g]. This conclusion is
referenced as Putinar’s Positivstellensatz [37]. Interestingly, if f ≥ 0 on Z(h)∩S(g),
we also have f ∈ Ideal[h]+QM[g], under some standard optimality conditions [27].

2.2. Localizing and moment matrices. A real vector y is called a truncated
multi-sequence (tms) of degree 2k if it is labeled as

y = (yα)α∈Nn
2k
.

For a tms y ∈ RN
n
2k and a polynomial f =

∑
α∈Nn

2k
fαx

α, define the operation

(2.3) 〈f, y〉 :=
∑

α∈Nn
2k

fαyα.

For q ∈ R[x]2k and t = k−⌈deg(q)/2⌉, the product q · [x]t[x]Tt is a symmetric matrix
polynomial of length

(
n+t
t

)
, which can be expressed as

q · [x]t[x]
T
t =

∑

α∈Nn
2k

xαQα

for some symmetric matrices Qα. For y ∈ RN
n
2k , denote the matrix

L(k)
q [y] :=

∑

α∈Nn
2k

yαQα.



6 JIYOUNG CHOI, JIAWANG NIE, XINDONG TANG, AND SUHAN ZHONG

It is called the kth order localizing matrix of q and generated by y. In particular,

if q = 1 (the constant 1 polynomial), the L
(k)
q [y] is reduced to the moment matrix

Mk[y] := L
(k)
1 [y].

Quadratic modules, moment, and localizing matrices are useful for solving poly-
nomial optimization. We refer to [16, 20, 21, 25] for a more detailed introduction
to them.

3. Partial Lagrange Multiplier Expressions

This section discusses how to find a convenient representation for the KKT set
with partial Lagrange multiplier expressions. We consider GNEPs with quasi-linear
constraints. The ith player’s decision optimization problem Fi(x−i) reads

(3.1)

{
min

xi∈Rni
fi(xi, x−i)

s .t . Aixi − bi(x−i) ≥ 0,

where Ai ∈ Rmi×ni and bi(x−i) is a polynomial vector in x−i. Recall the notation

Ai =
[
ai,1 · · · ai,mi

]T
.

The jth row vector of Ai is aTi,j . Since the constraints of (3.1) are linear, for
every optimizer xi ∈ Si(x−i), there exists the Lagrange multiplier vector λi =
(λi,1, . . . , λi,mi

) such that

(3.2)
∇xi

fi(x) −AT
i λi = 0,

0 ≤ λi ⊥ (Aixi − bi(x−i)) ≥ 0.

The set of all KKT points is

(3.3) K =



x ∈ X

∣∣∣∣∣∣

∃ (λ1, . . . , λN ) such that for each i ∈ [N ],
∇xi

fi(xi, x−i)−AT
i λi = 0 ,

0 ≤ λi ⊥ (Aixi − bi(x−i)) ≥ 0



 .

When rankAi = mi ≤ ni, we can get the following expression for λi:

λi = (AiA
T
i )

−1Ai∇xi
fi(x).

When mi > ni, the above expression is not available since the matrix product AiA
T
i

is singular. Indeed, for the case mi > ni, a polynomial expression for λi typically
does not exist, since bi(x−i) depends on x−i, but a rational expression for λi always
exists. This is shown in [30, 33]. However, such an expression for λi may be too
complicated to be practical. The expression becomes more complicated if the gap
mi − ni is large (see [28, Proposition 4.1]).

We look for more convenient expressions for λi. Let

(3.4) ri := rankAi.

By Carathéodory’s Theorem, for each x ∈ K, the KKT system (3.2) has a solution
λi that has at most ri nonzero entries. This means that mi− ri entries of such a λi

must be zeros. If we know the label set Ji of nonzero entries of λi, the expression
for λi can be simplified. This gives a partial Lagrange multiplier expression (pLME)
for λi.
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3.1. The pLMEs. To find pLMEs, consider the linear system

(3.5) ∇xi
fi(x) = AT

i λi, λi ≥ 0.

For a subset Ji ⊆ [mi], let Ai,Ji
denote the submatrix of Ai whose row labels are

in Ji, and so is λi,Ji
. That is

Ai,Ji
:=

[
aTi,j

]
j∈Ji

, λi,Ji
:=

[
λi,j

]
j∈Ji

.

Let ri be the rank as in (3.4). Denote the set of label sets

(3.6) Pi :=
{
Ji ⊆ [mi] : |Ji| = ri, rank(Ai,Ji

) = ri

}
.

Since Ai is mi-by-ni, we know ri ≤ min{mi, ni} and each Pi is nonempty. For each
Ji ∈ Pi, the vector λi = (λi,1, . . . , λi,mi

) ≥ 0 is said to be a basic feasible solution
of (3.5) with respect to Ji if λi,j = 0 for all j 6∈ Ji and

(3.7) ∇xi
fi(x) =

∑

j∈Ji

λi,jai,j = (Ai,Ji
)Tλi,Ji

.

Basic feasible solutions can be conveniently expressed by pLMEs. Multiplying Ai,Ji

on both sides of (3.7), we get

(Ai,Ji
AT

i,Ji
)λi,Ji

= Ai,Ji
∇xi

fi(x).

Since rankAi,Ji
= ri, this gives the pLME:

(3.8) λi,Ji
= λi,Ji

(x) := (Ai,Ji
AT

i,Ji
)−1Ai,Ji

∇xi
fi(x).

In particular, for the case ri = ni, the above simplifies to

(3.9) λi,Ji
(x) = (Ai,Ji

)−T∇xi
fi(x).

Here, the superscript denotes the transpose of the inverse.

Example 3.1. Consider the 2-player GNEP with

F1(x−1) :





min
x1∈R2

‖x1‖2

s .t .




−1 −1
1 0
0 1
6 1


x1 ≥




−2
0
0

1 + 1Tx2


 ,

F2(x−2) :





min
x2∈R2

‖x2‖2

s .t .




−1 1
1 0
0 1

−1 0


x2 ≥




−2x1,1 + 2
0
0

x1,1 − x1,2 − 2


 .

One can see that m1 = m2 = 4, r1 = r2 = 2 and

P1 =
{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, P2 =

{
{1, 2}, {1, 3}, {1, 4}, {2, 3},

{2, 4}, {3, 4}
}
, {3, 4}

}
.

The pLMEs are given as in (3.9). For instance,

λ1,{1,4} =

[
−1 −1
6 1

]−T [
2x1,1

2x1,2

]
=

2

5

[
x1,1 − 6x1,2

x1,1 − x1,2

]
,
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λ2,{1,2} =

[
−1 1
1 0

]−T [
2x2,1

2x2,2

]
= 2

[
x2,2

x2,1 + x2,2

]
.

In contrast, if we do not use pLMEs, the full Lagrange multiplier expressions as in
[30, 33] are much more complicated for this GNEP.

For x = (xi, x−i) ∈ X and Ji ∈ Pi, if λi,Ji
(x) ≥ 0, then x must be a KKT

point of Fi(x−i), since (3.7) is satisfied for λi,Ji
(x). Therefore, xi is a KKT point

of Fi(x−i) if

(3.10)
∃Ji ∈ Pi, ∇xi

fi(x) = AT
i,Ji

λi,Ji
(x),

0 ≤ λi,Ji
(x) ⊥

(
Ai,Ji

xi − bi,Ji
(x−i)

)
≥ 0.

Interestingly, the above is also necessary for xi to be a KKT point of Fi(x−i), as
shown in the following theorem.

Theorem 3.2. For x = (xi, x−i) ∈ X, the xi is a KKT point of Fi(x−i) if and
only if it satisfies (3.10).

Proof. Suppose (3.10) is satisfied. Let λi be the extension of λi,Ji
(x) by adding

zero entries. Then (x, λi) satisfies the KKT system (3.2), so xi is a KKT point of
Fi(x−i). Conversely, suppose xi is a KKT point of Fi(x−i). Then there exists λi

satisfying (3.2). So, the solution set for the linear system (3.5) is nonempty. By
Carathéodory’s Theorem, ∇xi

fi(x) can be represented as a conic combination of
linearly independent vectors from AT

i . Thus, a basic feasible solution must exist
for (3.5). This means that (3.10) holds. �

3.2. Expression of the KKT set. For the label sets P1, . . . ,PN as in (3.6), define
the Cartesian product

(3.11) P := P1 × · · · × PN .

Table 1 shows some typical instances of |P| when rankAi = ni for all i. In the
table, |A| represents the number of all possibilities of active constraints. One can
see that |P| ≪ |A|.

(n1, . . . , nN )
(m1, . . . ,mN )

|P| |A|
(n1, . . . , nN )
(m1, . . . ,mN )

|P| |A|

(2, 2)
(5, 5)

100 225
(2, 2, 2)
(5, 5, 5)

1000 3375

(2, 4)
(5, 7)

350 1470
(1, 2, 3)
(2, 3, 4)

24 168

(2, 4)
(4, 8)

420 1620
(3, 3, 3)
(6, 6, 6)

8000 68921

(3, 3)
(5, 5)

100 625
(2, 2, 2, 2)
(4, 4, 4, 4)

1296 10000

(4, 4)
(7, 7)

1225 9604
(3, 3, 3, 3)
(5, 5, 5, 5)

10000 390625

Table 1. Some examples of |P| when rankAi = ni for all i.
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For a tuple J = (J1, . . . , JN ) ∈ P with each Ji ∈ Pi, let λi,Ji
(x) be the pLME

given by (3.8) and define the set

(3.12) KJ :=



x ∈ X

∣∣∣∣∣∣

∇xi
fi(x)−AT

i,Ji
λi,Ji

(x) = 0,

0 ≤ λi,Ji
(x) ⊥

(
Ai,Ji

xi − bi,Ji
(x−i)

)
≥ 0,

for all i = 1, . . . , N



 .

Clearly, each x ∈ KJ is a KKT point for the GNEP (1.1), so KJ ⊆ K. Indeed, every
KKT point belongs to KJ for some J . This is shown in the following theorem.

Theorem 3.3. For the GNEP of (3.1), the KKT set K can be expressed as

(3.13) K =
⋃

J∈P

KJ .

Proof. By Theorem 3.2, the KKT set for the optimization Fi(x−i) is

K̂i(x−i) :=
⋃

Ji∈Pi

{
xi

∣∣∣∣
xi ∈ Xi(x−i), ∇xi

fi(x) −AT
i,Ji

λi,Ji
(x) = 0,

0 ≤ λi,Ji
(x) ⊥

(
Ai,Ji

xi − bi,Ji
(x−i)

)
≥ 0

}
.

In view of (3.12), we have

K =

N⋂

i=1

{
x ∈ X : xi ∈ K̂i(x−i)

}
=

⋃

J∈P

KJ .

So, the equation (3.13) holds. �

When each rankAi = ni, the pLME can be given as in (3.9) and Theorem 3.3
implies the following simplified expression.

Corollary 3.4. If rankAi = ni for each i, then

KJ =

{
x ∈ X

∣∣∣∣
0 ≤ A−T

i,Ji
∇xi

fi(x) ⊥
(
Ai,Ji

xi − bi,Ji
(x−i)

)
≥ 0,

for all i = 1, . . . , N

}

for every J = (J1, . . . , JN ) ∈ P and

(3.14) K =
⋃

J∈P

{
x ∈ X

∣∣∣∣
0 ≤ A−T

i,Ji
∇xi

fi(x) ⊥
(
Ai,Ji

xi − bi,Ji
(x−i)

)
≥ 0,

for all i = 1, . . . , N

}
.

Example 3.5. For the GNEP in Example 3.1, it is clear that ri = ni = 2 for
i = 1, 2. For J = (J1, J2) with J1 = {1, 4} and J2 = {1, 2}, the KJ is given by

2− 1Tx1 ≥ 0, x1 ≥ 0, 2x1,1 − x2,1 + x2,2 − 2 ≥ 0,
6x1,1 + x1,2 − 1Tx2 − 1 ≥ 0, x2 ≥ 0, 2− x1,1 + x1,2 − x2,1 ≥ 0,
x1,1 − 6x1,2 ≥ 0, x1,1 − x1,2 ≥ 0, x2,1 + x2,2 ≥ 0,
(x1,1 − 6x1,2)(2 − 1Tx1) = 0, x2,2(2x1,1 − x2,1 + x2,2 − 2) = 0,
(x1,1 − x1,2)(6x1,1 + x1,2 − 1Tx2 − 1) = 0, (x2,1 + x2,2)x2,1 = 0.

Indeed, one can further verify that KJ is a singleton, i.e.,

KJ =
{
(18, 3, 0, 62)/49

}
.

Furthermore, this point is the unique GNE as well. By Algorithm 4.5, we know that
it is contained in KJ not only for J = ({1, 4}, {1, 2}) but also for J = ({2, 4}, {1, 2})

or J = ({3, 4}, {1, 2}). For the GNE, the active label set is Ĵ = (Ĵ1, Ĵ2), with

Ĵ1 = {4}, Ĵ2 = {1, 2}, and Ĵ1 $ J1. That is, the label set J for finding this KKT

point is not the active constraining set Ĵ . We remark that the expressions in (3.13)
and (3.14) are not just enumerations of active constraining sets.
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4. Solving GNEPs with quasi-linear constraints

We discuss how to solve the GNEP with quasi-linear constraints as in (3.1).
Since every GNE x is a KKT point, there exists J ∈ P such that x ∈ KJ . Since
P is a finite set, there are only finitely many choices of J . Moreover, under some
genericity assumptions, the KKT set K is finite. For these cases, the subset KJ is
also finite for every J ∈ P . This inspires how to find all GNEs.

4.1. Finding all GNEs in KJ . We introduce how to find GNEs in KJ for a
fixed J ∈ P . For the given J , pLMEs are given by (3.8), so the set KJ can
be represented by equalities and inequalities of polynomials in the variable x, as
shown in (3.12). Let Θ ∈ R(n+1)×(n+1) be a symmetric positive definite matrix.
Consider the following polynomial optimization problem

(4.1)

{
min θ(x) := [x]T1 Θ[x]1
s .t . x ∈ KJ .

If KJ 6= ∅, then (4.1) has a unique minimizer u when Θ is generic (see [30, Theo-
rem 5.4]), and u is a KKT point. Otherwise, if (4.1) is infeasible, then KJ is empty,
and there is no GNE in KJ . We will show how to solve (4.1) in Section 5. The
following conclusion is obvious.

Theorem 4.1. For the GNEP as in (3.1), if the optimization problem (4.1) is
infeasible, then there is no KKT point in KJ . Otherwise, each minimizer u of (4.1)
is a KKT point. Moreover, if the GNEP is convex, u is a GNE.

For convex GNEPs, once we find a minimizer u for (4.1), then u must be a
GNE. However, when the GNEP is nonconvex, u may or may not be a GNE.
For nonconvex GNEPs, we can check if u is a GNE or not by solving polynomial
optimization problems. By definition, u is a GNE if and only if ǫi ≥ 0 for every
i ∈ [m], where ǫi is the optimal value

(4.2)

{
ǫi := min fi(xi, u−i)− fi(ui, u−i)

s .t . xi ∈ Xi(u−i).

Therefore, once we get a KKT point u, we solve (4.2) for every i ∈ [N ]. If ǫi ≥ 0
for all i ∈ [m], then we certify that u is a GNE; otherwise, it is not.

If u is not a GNE, one needs to find other KKT points to solve this GNEP.
Also, when KJ 6= ∅ but KJ ∩ S = ∅, we may need to find all points in KJ to
certify nonexistence of GNEs in KJ . Besides that, people are usually interested in
finding all GNEs. In the following, we discuss how to find all GNEs or detect their
nonexistence in KJ .

Suppose u = (u1, . . . , uN) ∈ KJ is the minimizer of (4.1). Then we have

θ(u) ≤ θ(x) for all x ∈ KJ .

When the matrix Θ is generic, the inequality above holds strictly for all x ∈ KJ\{u}.
Suppose that u is an isolated point of KJ . This is the case when the GNEP is
generic, as shown in [29, Theorem 3.1]. Then, there exists δ > 0 such that

(4.3) θ(u) + δ ≤ θ(x), for all u 6= x ∈ KJ .

For the δ > 0 above, consider the optimization problem

(4.4)

{
min θ(x)
s .t . x ∈ KJ , θ(x) ≥ θ(u) + δ.
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If (4.4) is infeasible, then the set KJ does not have any KKT points other than
u. Otherwise, it must have a minimizer û (since Θ is positive definite), which is a
KKT point different from u. For the new KKT point û, we may solve polynomial
optimization problems like (4.2) to check if it is a GNE or not.

Indeed, more GNEs can be computed by repeating this process. Suppose we
have obtained the KKT points u(1), u(2), . . . , u(j) ∈ KJ for some j ≥ 1, in the order
that

(4.5) θ(u(1)) < θ(u(2)) < · · · < θ(u(j)).

Suppose u(j+1) is a new KKT point such that

θ(u(j+1)) = min
x∈Sj

θ(x) where Sj = KJ \ {u(1), u(2), . . . , u(j)}.

If there exists a scalar δ satisfying

(4.6) 0 < δ < θ(u(j+1))− θ(u(j)),

then u(j+1) can be obtained by computing the minimizer of

(4.7)





min θ(x)

s .t . θ(x) ≥ θ(u(j)) + δ,
x ∈ KJ .

The inequality (4.6) can be checked as follows. We can first assign a priori value
for δ (say, 0.5), then solve the maximization problem

(4.8)

{
θmax := max θ(x)

s .t . x ∈ KJ , θ(x) ≤ θ(u(j)) + δ.

Since u(j) is a feasible point, it always holds θmax ≥ θ(u(j)). There are two possi-
bilities:

• If θmax = θ(u(j)), then u(j) is a maximizer of (4.8). This implies that u(j+1)

is infeasible for (4.8), so (4.6) is satisfied.
• If θmax > θ(u(j)), then there exists v ∈ KJ such that

θ(u(j)) < θ(v) ≤ θ(u(j)) + δ.

This means δ is too large and violates (4.6). We need to decrease the value
of δ (e.g., by replacing δ with δ/2) and solve (4.8) again.

In light of the above, we get the following algorithm for finding all GNEs in KJ .

Algorithm 4.2. For the GNEP as in (3.1) and for a given J ∈ P , select a generic
symmetric positive definite matrix Θ and a small positive value (say, 0.5) for δ. Let
SJ := ∅ and j := 1. Then, do the following:

Step 1 Solve the optimization problem (4.1). If it is infeasible, output the nonexis-
tence of GNEs in KJ and stop. Otherwise, solve (4.1) for a minimizer u(1)

and go to Step 2.
Step 2 For each i ∈ [N ], compute the minimum value ǫi of (4.2) for u := u(j). If

ǫi ≥ 0 for every i, then update SJ := SJ ∪ {u(j)}.
Step 3 Compute the maximum value θmax of (4.8).
Step 4 If θmax = θ(u), then go to Step 5; otherwise, let δ := δ/2 and go to Step 3.
Step 5 Solve the optimization problem (4.7). If it is infeasible, output that SJ is

the set of all GNEs in KJ and stop. Otherwise, update j := j+1 and solve
(4.7) for a minimizer u(j), then go to Step 2.
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If the GNEP is convex, every KKT point is a GNE, so Step 2 can be skipped.
The properties of Algorithm 4.2 are summarized as follows.

Proposition 4.3. For the GNEP as in (3.1), the following properties hold for
Algorithm 4.2:

(i) If θmax = θ(u(j)) and the optimization (4.7) is infeasible, then SJ =
{u(1), . . . , u(j)} is the set of all GNEs in KJ .

(ii) If θmax = θ(u(j)) and u(j+1) is the minimizer of (4.7), then δ satisfies (4.6).
(iii) Assume u(1), . . . , u(j) are isolated points of KJ . Suppose Θ is a generic

symmetric positive definite matrix, then there exists δ > 0 such that θmax =
θ(u(j)), i.e., u(j) is the maximizer of (4.8).

Proof. (i) When θmax = θ(u(j)), the KKT point u(j) is the maximizer of (4.8). If
there is v ∈ KJ other than u(1), . . . , u(j), then

θ(v) > θ(u(j)) + δ.

On the other hand, when (4.7) is infeasible, every x ∈ KJ must satisfy

θ(x) < θ(u(j)) + δ.

Therefore, if θmax = θ(u(j)) and (4.7) is infeasible, then there are no KKT points
in KJ except u(1), . . . , u(j). This implies that all GNEs in KJ are contained in SJ .

(ii) If θmax = θ(u(j)) and u(j+1) exists, then as in (i), we can get

θ(u(j+1)) > θ(u(j)) + δ,

which means that (4.6) holds.

(iii) For ǫ > 0, let Sǫ denote the set of all (n+ 1)-by-(n+ 1) symmetric positive
definite matrices whose largest eigenvalue equals one and whose smallest eigenvalue
is at least ǫ. The set of all (n+ 1)-by-(n+ 1) symmetric positive definite matrices
of unit 2-norm is the union

⋃∞
l=1 S1/l. For each l ∈ N, we show the conclusion holds

for all Θ ∈ S1/l except a set of Lebesgue measure zero.

Let Θ ∈ S1/l be an arbitrary matrix. By the selection of u(1), . . . , u(j), it holds
that

ν1 := θ(u(1)) < ν2 := θ(u(2)) < · · · < νj := θ(u(j)).

We consider the case j > 1 for convenience because the proof is almost the same for
j = 1. When KJ has no other points except u(1), . . . , u(j), we have θmax = θ(u(j))
for all δ > 0. So, we consider the opposite case and suppose ū is a point in KJ that
is different from u(1), . . . , u(j), and that νj ≤ θ(ū). If x is a minimizer of (4.7) in
previous loops, then

eT1 Θe1 + ‖ū‖2 ≥ [ū]T1 Θ[ū]1 ≥ [x]T1 Θ[x]1 ≥ eT1 Θe1 + ‖x‖2/l,

with e1 = (1, 0, . . . , 0)T . So all minimizers of (4.7) in previous loops are contained
in the ball

B :=
{
x ∈ Rn : ‖x‖2 ≤ l · ‖ū‖2

}
,

which implies u(k) ∈ B for each k. Recall the notation [x]d as in (2.1). Since each
u(k) is an isolated point of KJ , the set

T1 :=
{
[x]2 : x ∈ KJ ∩B, x 6= u(k), 1 ≤ k ≤ j − 1

}
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is compact. Since θ(x) = 〈θ, [x]2〉, we have

〈θ, [u(1)]2〉 < · · · < 〈θ, [u(j−1)]2〉 < min
y∈T1

〈θ, y〉.

The right most minimization in the above is equivalent to

(4.9)

{
min 〈θ, y〉
s .t . y ∈ conv(T1).

The convex hull conv(T1) is a compact convex set. Observe that if (4.9) has more
than one minimizer, then θ is a singular normal vector of the convex body conv(T1).
The set of singular normal vectors of a convex body has Lebesgue measure zero.
This is shown in [40, Theorem 2.2.11]. So, when Θ is generic in S1/l, the linear

optimization (4.9) has the unique minimizer u(j). Let

T2 := T1 \ {[u
(j)]2}.

Since u(j) is an isolated point of KJ , the set T2 is also compact, so

〈θ, [u(j)]2〉 < min
y∈T2

〈θ, y〉.

Then there must exist δ > 0 such that

〈θ, [u(j)]2〉+ δ < min
y∈T2

〈θ, y〉.

For the above δ, we must have θmax = θ(u(j)). This means that the conclusion
holds for all Θ ∈ S1/l except for a set of Lebesgue measure zero, for each l ∈ N.
This completes the proof. �

When the cardinality |KJ | < ∞, all points in KJ are isolated, so the following
follows from Proposition 4.3.

Theorem 4.4. Consider the GNEP as in (3.1). For the given J , if |KJ | < ∞,
then Algorithm 4.2 returns all GNEs contained in KJ or detects their nonexistence.

We remark that when the GNEP is given by generic polynomials, the critical set
K (hence its subset KJ for each J ∈ P) is finite. This is shown in [29, Theorem 3.1].
So, for generic GNEPs as in (3.1), Algorithm 4.2 can find all GNEs in KJ or detect
their nonexistence.

4.2. Finding all GNEs. For a given J , Algorithm 4.2 can compute all GNEs in
KJ or detect their nonexistence. For the GNEP as in (3.1), the set P is finite. By
enumerating J ∈ P , we can get all GNEs or detect their nonexistence. This gives
the following algorithm.

Algorithm 4.5. For the GNEP as in (3.1), formulate the label set P . Let S := ∅
For each J ∈ P , do the following:

Step 1 Formulate the pLME λi,Ji
as in (3.8) for each player i.

Step 2 Apply Algorithm 4.2 to find the set SJ of all GNEs in KJ .
Step 3 Update S := S ∪ SJ .

The following result follows from Theorem 4.4.

Theorem 4.6. For the GNEP as in (3.1), assume that the critical set K is finite
and Θ is a generic symmetric positive definite matrix. Then, after enumerating all
J ∈ P, Algorithm 4.5 finds all GNEs if S 6= ∅, or detects nonexistence of GNEs if
S = ∅.
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5. Solving Polynomial Optimization

We now show how to solve polynomial optimization problems that appear in
Algorithms 4.2 and 4.5. They can be generally expressed in the form:

(5.1)





fmin := min
z

f(z)

s .t . p(z) = 0 (∀p ∈ Φ),
q(z) ≥ 0 (∀q ∈ Ψ),

where the variable z represents either x ∈ Rn or xi ∈ Rni for the ith player, and Φ,
Ψ are finite sets of equality and inequality constraining polynomials, respectively.
The Moment-SOS relaxations are efficient for solving (5.1) globally. We refer to
the books [16, 20, 21, 25] for a more detailed introduction.

Denote the degrees

d0 := max
{
⌈deg(p)/2⌉ : p ∈ Φ ∪Ψ

}
,

d1 := max
{
⌈deg(f)/2⌉ , d0

}
.

Let ℓ be the length of z. For a degree k ≥ d1, the kth order moment relaxation for
solving (5.1) is

(5.2)





fmom,k := min 〈f, y〉

s .t . y0 = 1, L
(k)
p [y] = 0 (p ∈ Φ),

Mk[y] � 0, L
(k)
q [y] � 0 (q ∈ Ψ),

y ∈ RN
ℓ
2k .

The dual optimization of (5.2) is the kth order SOS relaxation

(5.3)

{
fsos,k := max γ

s .t . f − γ ∈ Ideal[Φ]2k +QM[Ψ]2k.

We refer to Section 2 for the notation 〈f, y〉, L
(k)
p [y], Mk[y], Ideal[Φ]2k, QM[Ψ]2k in

the above. It is worthy to remark that (5.2)-(5.3) is a primal-dual pair of semidefi-
nite programs. For k = d1, d1 + 1, . . ., the primal-dual pair (5.2)-(5.3) is called the
Moment-SOS hierarchy. Its convergence property can be summarized as follows.
When Ideal[Φ] + Qmod[Ψ] is archimedean, we have fmom,k → fmin as k → ∞.
Moreover, if the linear independence constraint qualification, strict complemen-
tarity condition, and second order sufficient optimality conditions hold at every
minimizer, then fsos,k = fmin for all k that is big enough (see [27, 25]).

In the following, we show how to extract minimizers for (5.1) from the moment
relaxation. Suppose y(k) is a minimizer of (5.2). If y(k) satisfies the flat truncation:
there exists a degree t ∈ [d1, k] such that

(5.4) rankMt[y
(k)] = rankMt−d0

[y(k)],

then fmin = fmom,k and we can extract r := rankMt[y
(k)] minimizers for (5.1) (see

[17, 24, 25]). Indeed, flat truncation is a sufficient and almost necessary condition
for extracting minimizers. This is shown in [24].

The Moment-SOS algorithm for solving (5.1) is as follows.

Algorithm 5.1. For the polynomial optimization (5.1), initialize k := d0.

Step 1 Solve the moment relaxation (5.2). If it is infeasible, then (5.1) is infeasible
and stop. Otherwise, solve it for a minimizer y(k).
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Step 2 Check whether or not y(k) satisfies the rank condition (5.4). If (5.4) holds,
then extract r := rankMt[y

(k)] minimizers of (5.1) and stop. Otherwise, let
k := k + 1 and go to Step 1.

Algorithm 5.1 can be implemented in the software GloptiPoly3 [18], which
calls SDP package like MOSEK [1]. For Algorithms 4.2 and 4.5, the optimization
problem (5.1) is one of (4.1), (4.2), (4.7), or (4.8). We have the following remarks:

• For the minimization problem (4.1) and (4.7), we have z := x and f(x) :=
θ(x), where θ(x) is defined by the generically selected positive definite ma-
trix Θ. So, if they are feasible, then they have a unique optimizer. More-
over, equality constraints of both (4.1) and (4.7) define finite real varieties
when the polynomials for the GNEP have generic coefficients (see [29]).
In these cases, flat truncation (5.4) holds with r = 1 for all k that is big
enough [26].

• For the polynomial optimization problem (4.2) of verifying GNEs, we have
z := xi and f(xi) := fi(xi, u−i)−fi(ui, u−i). This problem must be feasible,
as ui is a feasible point. If fmom,k ≥ 0, we can terminate Algorithm 5.1
directly since we don’t need to extract minimizers for this case.

• For the maximization problem (4.8), we have z := x and f(x) := −θ(x).
It is always feasible since u(j) is a feasible point. Furthermore, when the
GNEP is given by generic polynomials, equality constraints of (4.8) give a
finite real variety, so flat truncation (5.4) holds for all k that is big enough.

Recall that ei represents the vector of all zeros except that ith entry is 1. The

notation y
(k)
ei denotes the entry of y(k) labeled by ei. Denote the vector

(5.5) u(k) := (y(k)e1 , y(k)e2 , . . . , y(k)en ).

The following is the convergence property of Algorithm 5.1 when it is applied to
solve polynomial optimization problems (4.1), (4.7), or (4.8). They are shown in
[30, 31].

Theorem 5.2. Suppose the optimization problem (5.1) is (4.1), (4.7), or (4.8).
Assume Θ is a generic symmetric positive definite matrix and the real variety of Φ
is a finite set. Then, we have:

(i) If (5.1) is infeasible, then the moment relaxation (5.2) must be infeasible
when the order k is large enough.

(ii) Suppose (5.1) is feasible. Then fmom,k = fmin and the flat truncation holds
for all k that is big enough. Furthermore, if the optimization problem (5.1)
is (4.1) or (4.7), then u(k) is the unique minimizer of (5.1), when the order
k is large enough.

6. Numerical experiments

This section presents the numerical experiments of GNEPs with quasi-linear
constraints. Algorithms 4.5 is applied to solve GNEPs. In computations, involved
polynomial optimization problems are solved globally with Algorithm 5.1, using the
Matlab software GloptiPoly3 [18]. Additionally, semidefinite programs are solved
using the MOSEK solver [1] with Yalmip [23]. The computations were implemented
using Matlab R2023b on a laptop equipped with a 12th Gen Intel(R) Core(TM)
i7-1270P 2.20GHz CPU and 32GB RAM. To enhance readability, the computational
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results are reported with four decimal places. For convenience of expression, the
constraints are ordered from left to right and from top to bottom in each problem.

Example 6.1. We use Algorithm 4.5 to solve some GNEPs from existing references.
These problems are given explicitly in the Appendix, each with a given citation
name. We report our numerical results in Table 2. The notation #x∗ stands for
the number of computed GNEs.

Problem #x
∗ All GNEs x∗ = (x∗

1, x
∗
2, . . . , x

∗
N )

FKA3 3
(−0.3805,−0.1227,−0.9932), (0.3903, 1.1638), (0.0504, 0.0176);
(−0.8039,−0.3062,−2.3541), (0.9701, 3.1228), (0.0751,−0.1281);
(1.9630,−1.3944, 5.1888), (−3.1329,−10.0000), (−0.0398, 1.6392)

FKA4 1 (1.0000, 1.0000, 1.0000), (1.0000, 1.0000), (1.0000, 1.0000)
FKA5 1 (0.0000, 0.2029, 0.0000), 0.0000, 0.0725), (0.0254, 0.0000)
FKA8 2 (0.3333), (0.5000), (0.6667) and (5.3333), (5.3333), (0.6667)
FKA12 1 (5.3333), (5.3333)
NT59 1 (0.7000, 0.1600), (0.8000, 0.1600), (0.8000, 0.4700)
NT510 1 (1.7184), (1.8413, 0.6700), (1.2000, 0.0823, 0.0823)

NTGS53 2
(0.0000, 0.5000), (0.5000, 0.0000);
(0.0000, 0.5000), (0.0000, 0.5000)

NTGS54 1 (0.1000, 0.4000), (0.1000, 0.4000)

FR33 4

(0.0000, 2.0000), (0.0000, 6.0000);
(0.0000, 0.0000), (0.0000, 0.0000);
(1.1876, 1.9062), (1.2481, 0.0000);
(1.0000, 2.0000), (1.0000, 2.0000)

SAG41 1 (0.5588, 0.5588), (0.2647, 0.2647)
DSM31 1 (0.0000, 0.0000), (0.0000, 0.0000)

Table 2. Numerical results for GNEPs in Appendix.

Example 6.2. Consider the 2-player convex GNEP:

F1(x−1) :





min
x1∈R4

(x1,1 − 1)2 + x2,4(x1,2 − 1)2 + (x1,3 − 1)2

+(x1,4 − 2)2 + (1Tx2 − 1)1Tx1

s .t . 0 ≤ x1 ≤ x2, x2,3(x2,3 − 1)(x2,3 − 3) ≥ x1,4,

F2(x−2) :





min
x2∈R4

x1,1x
2
2,1 − x2,2 + x1,3(x2,3 − 1)2 + x1,4(x2,4 + 1)2

s .t . x2,1 − x2,2 − x1,2 ≥ 0, 2x1,1 − x2,1 + x2,2 ≥ 0,
x2,1 + x2,2 + x1,1 + x1,2 ≥ 0,
4x1,1 − 2x1,2 − x2,1 − x2,2 ≥ 0, x2,3 ≥ 0,
x1,3(3x1,3 − 1)(x1,3 − 1) ≥ 3x2,4, 3 ≥ x2,3 + x2,4.

There are a total of 288 J ∈ P . It took around 383.28 seconds to find all GNEs
by Algorithm 4.5 and the computational time for each KJ is between 0.01-59.81
seconds. The first GNE was detected within 15.71 seconds. We found 6 GNEs from
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16 KJ ’s in total, which are

x∗
1 = (0.3333, 0.0000, 0.3333, 0.0000), x∗

2 = (0.6667, 0.6667, 1.0000, 0.0000);
x∗
1 = (0.0000, 0.0000, 0.0000, 0.0000), x∗

2 = (0.0000, 0.0000, 3.0000, 0.0000);
x∗
1 = (0.5000, 0.0000, 0.0000, 0.0000), x∗

2 = (1.0000, 1.0000, 0.0000, 0.0000);
x∗
1 = (0.0000, 0.0000, 1.0000, 0.0000), x∗

2 = (0.0000, 0.0000, 1.0000, 0.0000);
x∗
1 = (0.7071, 0.0000, 0.0000, 0.0000), x∗

2 = (0.7071, 0.7071, 0.0000, 0.0000);
x∗
1 = (0.0000, 0.0000, 0.0000, 0.0000), x∗

2 = (0.0000, 0.0000, 0.0000, 0.0000).

In particular, we found 5 GNEs in KJ for

J =
(
{2, 5, 7, 8}, {1, 4, 5, 7}

)
or

(
{2, 5, 7, 9}, {1, 4, 5, 7}

)
.

Example 6.3. Consider the 2-player nonconvex NEP

Fi(x−i) :

{
min

xi∈Rni
fi(xi, x−i)

s .t . Aixi ≥ bi,

where n1 = 7, n2 = 5, and

f1(x) = 3x2
1,1 + 4x2

1,2 + 4x1,2x2,1 + 3x1,4x2,4 + 4x1,6x2,4,

f2(x) = x1,2x2,2 + 3x1,5x2,4 + x1,6x2,2 + x2
2,1 + 2x2,1x2,2 + x2

2,3,

A1 =




0 −3 0 2 3 1 3
2 −1 2 −2 1 1 −2

−1 −1 0 2 2 1 −3
1 1 0 1 0 −1 2
1 2 0 2 −3 −2 −2

−1 0 −2 3 1 −1 −3
0 −1 −3 −2 −2 −3 2

−3 2 0 1 −3 −2 −3
1 1 1 2 3 0 1




, b1 =




1
5
4
2
2
2
2
1

−1




,

A2 =




2 −3 −1 −1 −1
−3 4 3 2 −3
1 2 1 0 2
2 −3 2 3 −1

−3 1 2 2 2
2 1 −2 −3 4
0 2 3 1 2




, b2 =




1
3
1
1
3
0

−1




.

There are a total of 756 J ∈ P . It took around 1774.40 seconds to find all NEs
by Algorithm 4.5 and the computational time for each KJ is between 1.29-12.51
seconds. The first NE was detected within 151.88 seconds, which is

x∗
1 = (1.7344,−1.2108, 0.8670, 0.9041, 0.9669,−3.2800,−1.3538),

x∗
2 = (−0.4706,−1.0941, 4.4392,−3.3294, 0.2314).

This is the unique NE. It is contained in KJ for

J =
(
{1, 2, 3, 4, 5, 7, 8}, {1, 2, 4, 5, 6}

)
,

(
{1, 2, 3, 4, 6, 7, 8}, {1, 2, 4, 5, 6}

)
,

or
(
{1, 2, 3, 4, 7, 8, 9}, {1, 2, 4, 5, 6}

)
.

In addition, x∗ is the unique KKT point for this problem.
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Example 6.4. Consider the 2-player nonconvex GNEP

Fi(x−i) :





min
xi∈Rni

(−1)i‖x1 + 1‖2 + (−1)i+1‖x2 + 1‖2

s .t . αT
i,1x1 + βT

i,1x2 + γi,1 ≥ 0,
αT
i,2x1 + βT

i,2x2 + γi,2 ≥ 0,
1 ≥ 1Txi, xi ≥ 0,

where n1 = 4, n2 = 2, and

α1,1 =




−1
−3
4
2


 , α1,2 =




−5
0

−1
0


 , α2,1 =




−1
0
0
0


 , α2,2 =




0
−1
−1
0


 ,

β1,1 =

[
1

−1

]
, β1,2 =

[
1
0

]
, β2,1 =

[
1
0

]
, β2,2 =

[
−5
5

]
,

γ1,1 = −2, γ1,2 = 1, γ2,1 = 1, γ2,2 = −1.

There are a total of 279 J ∈ P . It took around 37.60 seconds to find all GNEs
by Algorithm 4.5 and the computational time for each KJ is between 0.08-2.18
seconds. The first GNE was detected within 2.84 seconds, which is

x∗
1 = (0.0000, 0.0000, 1.0000, 0.0000), x∗

2 = (0.0000, 1.0000).

This is the unique GNE. It is contained in KJ for

J =
(
{1, 2, 3, 4}, {3, 4}

)
,

(
{2, 3, 4, 5}, {3, 4}

)
,

(
{2, 3, 4, 7}, {3, 4}

)
, or

(
{3, 4, 5, 7}, {3, 4}

)
.

We remark that this problem only has two KKT points.

Example 6.5. Consider the 2-player nonconvex GNEP

F1(x−1) :





min
x1∈R2

x1,1x
3
2,1 + x1,2x

3
2,2 − x2

1,1x
2
1,2

s .t . A1x1 ≥ B1

[
1
x2

]
+ C1




x2
2,1

x2,1x2,2

x2
2,2


 ,

F2(x−2) :





min
x2∈R2

x2,2‖x2‖2 − 2x1,2x2,1 − x1,1x1,2x2,2

s .t . A2x2 ≥ B2

[
1
x1

]
+ C2




x2
1,1

x1,1x1,2

x2
1,2


 ,

where

A1 =




1 0
0 −2
3 −1

−4 3
−6 −5
0 −5



, B1 =




0 0 0
−1 −1 0
−2 −1 −1
−3 −2 −3
−1 −1 −2
0 1 −1



, C1 =




0 0 0
0 1 0
0 −1 1
0 0 0
0 0 0
1 0 0



,
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A2 =




−2 0
−4 4
−2 7
−1 4
−3 4
2 1



, B2 =




0 −1 −1
−6 0 −1
4 −3 −3

−4 1 −3
3 0 −1

−1 0 0



, C2 =




1 −1 0
0 1 −1

−1 0 0
0 1 0

−1 0 0
0 0 1



.

There are a total of 210 J ∈ P . It took around 9.45 seconds to find all GNEs by
Algorithm 4.5 and the computational time for each KJ is between 0.01–0.82 second.
The first GNE was detected within 3.69 seconds, which is

x∗
1 = (0.4447,−0.3256), x∗

2 = (−0.6094, 0.3249).

It is contained in KJ for J = ({1, 4}, {3, 6}) or ({4, 5}, {3, 6}). We found 2 GNEs
in total. The other GNE is

x∗
1 = (0.3612,−0.8078), x∗

2 = (−0.4776, 0.6078).

It is contained in KJ for J = ({4, 5}, {5, 6}). We remark these GNEs are also the
only KKT points for this problem.

Example 6.6. Consider the 2-player nonconvex GNEP

Fi(x−i) :

{
min
xi∈R3

fi(x)

s .t . Aixi ≥ Bi[x−i]1 + di(x−i),

where

f1(x) = x1,1(x1,1 − 2x2,1) + x1,2 · 1
Tx2,

f2(x) = x2,1(2 + 2x2,2) + x2,3 · 1
Tx1,

A1 =




−4 −1 −2
0 3 4

−1 5 −3
5 −1 −3
5 −4 0
0 4 −5

−3 4 −5




, B1 =




0 −5 −4 −2
−1 3 6 −1
−6 0 2 0
−5 2 3 0
−5 3 0 5
0 0 −1 3
3 −1 0 0




, d1 =




x2
2,3

x2
2,2

0
−x2

2,2

0
0
0




,

A2 =




−5 2 −1
2 3 2
1 −1 3
5 0 −2

−3 −4 1
5 4 −1

−3 4 0




, B2 =




−5 6 4 0
−4 −2 4 5
−4 3 6 −1
0 6 −1 4

−4 −1 −3 3
−1 3 −4 −2
−1 2 0 0




, d2 =




0
0
0

x2
1,3

0
−x2

1,2

0




.

There are a total of 1225 J ∈ P . Five of them contain GNEs. It took around
192.54 seconds to find all GNEs by Algorithm 4.5 and the computational time for
each KJ is between 0.10–2.40 seconds. The first GNE was detected within 116.59
seconds. We found 2 GNEs from 5 KJ ’s in total, which are

x∗
1 = (0.2075, 0.7518,−0.0779), x∗

2 = (0.2258, 0.4260, 0.4706);
x∗
1 = (−0.3079, 0.7901, 0.1566), x∗

2 = (−0.3011, 0.7604, 0.2406).

We remark that these GNEs are also the only KKT points for this problem.
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Example 6.7. Consider the convex GNEP with the ith player’s optimization

(6.1) Fi(x−i) :

{
min

xi∈Rni
fi(xi, x−i)

s .t . Aixi ≥ bi(x−i) := bi − Bix−i,

where the vector bi(x−i) has length mi and the objective fi is in the form

fi(xi, x−i) = cTi x+ xTGix+ (x[2])THix
[2].

In the above, ci ∈ Rn, Gi ∈ Rn×n is symmetric positive semidefinite andHi ∈ Rn×n

is symmetric positive semidefinite with nonnegative entries. For the above choice, fi
is a convex polynomial function in x (see [25, Example 7.1.4]). We use the Matlab

function unifrnd to generate randommatrices Ai, di, and Bi for GNEPs of different
sizes. We generate the convex polynomial fi randomly as ci = randn(n, 1), Gi =
RT

1 R1 with R1 = randn(n) and Hi = RT
2 R2 with R2 = rand(n). We randomly

generate 10 instances for each case and apply Algorithm 4.5. The computational
results are reported in Table 3. For each instance, #(KJ 6= ∅) counts the number
of KJ that contains at least one KKT point and #GNEs counts the number of all
GNEs. The “Avg. Time of Alg. 4.2 for a single KJ” gives the average time (in
seconds) taken by Algorithm 4.2.

N
(n1, . . . , nN )
(m1, . . . , mN )

|P| #(KJ 6= ∅) #GNEs
Avg. Time of Alg. 4.2

for a single KJ

2

(2, 2)
(4, 4)

36
36, 36, 36, 36, 36,
36, 36, 36, 36, 36

1, 1, 1, 1, 3,
1, 1, 1, 3, 1

0.9, 0.8, 0.7, 0.8, 1.2,
0.8, 0.9, 1.5, 0.9, 0.9

(3, 3)
(5, 5)

100
100, 100, 100, 100, 100,
100, 100, 100, 100, 100

1, 1, 1, 2, 3,
1, 1, 1, 2, 2

3.2, 3.2, 3.6, 4.3, 23.7,
5.4, 6.0, 6.3, 6.6, 7.4

(3, 4)
(6, 6)

300
300, 300, 300, 300, 300,
300, 300, 300, 300, 283

1, 1, 1, 1, 1,
1, 1, 1, 1, 1

11.8, 14.8, 14.7, 16.9, 20.0,
21.7, 12.6, 14.5, 12.6, 8.0

(3, 3)
(6, 6)

400
400, 400, 400, 400, 400,
400, 400, 380, 400, 396

3, 1, 2, 1, 1,
1, 2, 1, 1, 1

7.5, 8.7, 12.0, 8.7, 9.2
10.1, 13.6, 11.6, 12.9, 13.4

3

(2, 3, 3)
(4, 4, 4)

96
73, 96, 72, 96, 96,
72, 96, 96, 96, 96

3, 3, 2, 1, 1,
2, 1, 1, 1, 1

25.9, 31.2, 22.9, 23.0, 22.8,
22.9, 30.6, 25.7, 15.7, 26.4

(2, 2, 3)
(4, 4, 4)

144
141, 144, 144, 144, 144,
144, 144, 144, 144, 144

1, 2, 2, 1, 1,
2, 2, 1, 1, 1

18.2, 21.8, 21.0, 20.8, 23.3,
38.8, 38.9, 43.0, 31.5, 7.5

(2, 2, 2)
(4, 4, 4)

216
216, 216, 216, 216, 216,
216, 109, 113, 216, 216

2, 2, 1, 1, 2,
2, 2, 2, 1, 1

4.5, 11.7, 17.2, 16.2, 10.7,
7.7, 5.7, 5.0, 9.0, 9.3

(2, 2, 3)
(4, 4, 5)

360
360, 334, 360, 360, 360
360, 360, 360, 360, 326

2, 3, 2, 2, 1
1, 1, 2, 1, 1

16.6, 14.9, 19.6, 19.6, 20.7
26.8, 24.1, 24.4, 17.8, 25.5

4

(1, 1, 1, 1)
(3, 3, 3, 3)

81
81, 81, 81, 81, 81,
81, 81, 81, 81, 81

1, 5, 1, 3, 1
3, 1, 1, 1, 1

2.5, 5.8, 1.9, 9.8, 2.4,
2.7, 3.8, 2.7, 2.5, 3.3

(1, 2, 2, 2)
(4, 4, 4, 4)

864
863, 864, 841, 864, 864,
864, 432, 864, 864, 864

2, 1, 1, 1, 1,
3, 1, 1, 1, 1

9.3, 12.4, 20.0, 25.5, 11.1,
13.0, 18.6, 22.8, 23.2, 17.6

5

(1, 1, 1, 1, 1)
(3, 3, 3, 3, 3)

243
81, 243, 243, 243, 243,
243, 243, 243, 243, 243

1, 3, 1, 3, 3,
3, 3, 1, 3, 1

1.2, 2.6, 2.9, 2.9, 3.3,
3.7, 4.3, 5.5, 7.2, 2.5

(1, 1, 1, 1, 1)
(3, 4, 4, 4, 4)

768
195, 768, 768, 768, 768,
768, 768, 768, 768, 192

2, 3, 3, 1, 1,
3, 1, 1, 4, 1

1.3, 4.1, 15.4, 7.6, 8.9,
10.2, 12.1, 16.6, 94.4, 10.1

Table 3. Computational results for randomly generated convex
GNEPs as in (6.1).

Example 6.8. Consider the 2-player nonconvex GNEP

min
x1∈R4

3‖x1‖2 + x1,2 · 1Tx1 min
x2∈R4

−‖x2‖2 − x2,3 · 1Tx2

s .t . A1x1 ≥ b1(x2), s .t . A2x2 ≥ b2(x1),
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where

A1 =




0 1 1 3
−1 −2 3 0
1 −1 1 0
0 −1 2 2

−1 −1 1 2



, A2 =




0 1 1 3
−2 2 −1 1
0 −2 1 −2
0 −1 0 2
2 1 0 −2



,

b1(x2) =




5− ‖x2‖2

‖x2‖2

3x2,1x2,2 + 2x2,3x2,4 − x2,2

3 + x2,1x2,3

2 + x2,2x2,4



,

b2(x1) =




5− ‖x1‖2

‖x1‖
2

2− 2x1,3 + x1,1x1,2 + x1,3x1,4

−1 + x1,1x1,3

−2 + x1,2x1,4



.

There are a total of 25 J ∈ P . It took around 16.05 seconds to find all GNEs
by Algorithm 4.5 and the computational time for each KJ is between 0.13 − 2.80
seconds. The first GNE was detected within 4.91 seconds, which is

x∗
1 = (−0.4085,−1.1070, 1.9636, 0.1845), x∗

2 = (−2.0032, 1.4764, 1.5146,−0.1629).

This is the unique GNE. It is contained in KJ for

J =
(
{1, 2, 3, 4}, {2, 3, 4, 5}

)
,

(
{1, 2, 3, 5}, {2, 3, 4, 5}

)
,

(
{1, 2, 4, 5}, {2, 3, 4, 5}

)
, or

(
{2, 3, 4, 5}, {2, 3, 4, 5}

)
.

Interestingly, the (x∗
1, x

∗
2) is also the unique KKT point.

We also implemented the homotopy method in [22] for finding GNEs of this
GNEP. The mixed-volume for the complex KKT system

(6.2)

{
∇xi

fi(x)−AT
i λi = 0 (i = 1, 2),

λi ⊥ (Aixi − bi(x−i)) (i = 1, 2)

is 24611. The polyhedral homotopy continuation is implemented in the Julia soft-
ware homotopycontinuation.jl [4], which found 17100 complex roots to (6.2),
and 1860 of them are real. After checking the feasibility and the nonnegativity of
Lagrange multipliers for each real root, we got the same KKT point (x∗

1, x
∗
2), which

is verified to be a GNE by solving (4.2). It took around 210.88 seconds for the
polyhedral homotopy to solve the complex KKT system and 1.50 seconds to verify
the GNE. We also remark that the number of computed complex roots is smaller
than the mixed-volume of (6.2), so the homotopy method cannot guarantee the
computed ones are the all complex solutions to (6.2). For this reason, it cannot
certify uniqueness of the GNE.

Moreover, we tested the Augmented Lagrangian method in [19] and the interior
point method in [6] for finding GNEs. The Augmented Lagrangian method cannot
find a GNE after 1000 outer iterations because the augmented Lagrangian subprob-
lem cannot be solved accurately. Also, the interior point method failed to find a
GNE within 1000 iterations since the Newton directions are usually not descent
directions.
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7. Conclusion and Discussion

This paper studies GNEPs with quasi-linear constraints and defined by poly-
nomials. We propose a new partial Lagrange multiplier expression approach with
KKT conditions. By using partial Lagrange multiplier expressions, we represent
KKT sets of such GNEPs by a union of simpler sets with convenient expressions.
This helps to relax GNEPs into finite groups of branch polynomial optimization
problems. The latter can be solved efficiently by Moment-SOS relaxations. Under
some genericity assumptions, we develop algorithms that either find all GNEs or
detect their nonexistence. Numerical experiments are given to show the efficiency
of our method. There is great potential for our method. It can be interesting future
work to apply our method for solving GNEPs arising from machine learning and
data science applications.

We remark that GNEPs with quasi-linear constraints are typically more diffi-
cult than GNEPs with linear constraints. To see this, we compare their algebraic
degrees, which count numbers of complex solutions to KKT systems [29]. For the
convenience of our discussion, we suppose that for each i ∈ [N ], fi(x) is a quadratic
polynomial in x, Ai is a mi-by-ni matrix, and every bi,j (j ∈ [mi]) is a polynomial
in x−i whose degree equals di,j . Without loss of generality, we also assume that
mi ≤ ni for each i ∈ [N ], and all constraints are active at every KKT point (other-
wise, one may compute the algebraic degree by enumerating all active sets, see [29,
Theorem 5.2]). When all fi(x), Ai and bi(x−i) are generic, the algebraic degree is

N∏

i=1

mi∏

j=1

max(1, di,j).

In particular, when the GNEP has only linear constraints (i.e., di,j ≤ 1 for all i, j),
the algebraic degree is equal to 1, which is much less than that for general cases of
quasi-linear constraints (i.e., di,j are greater than 1). For instance, when N = 2,
m1 = m2 = 4, and di,j = 2 for all i, j, the algebraic degree for the GNEP with
quasi-linear constraints is 28 = 256, under some genericity assumptions. We refer
to [29] for more details about algebraic degrees.
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Appendix A.

Example A.1. (FKA3 [12]). Consider the 3-player GNEP

(A.1) Fi(x−i) :

{
min

xi∈Rni

1
2x

T
i Cixi + xT

i (Dix−i + ti)

s .t . Aixi ≥ bi(x−i),

where n1 = 3, n2 = n3 = 2 and

C1 =




20 5 3
5 5 −5
3 −5 15


 , C2 =

[
11 −1
−1 9

]
, C3 =

[
48 39
39 53

]
,
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D1 =




−6 10 11 20
10 −4 −17 9
15 8 −22 21


 , D2 =

[
20 1 −3 12 1
10 −4 8 16 21

]
,

D3 =

[
10 −2 22 12 16
9 19 21 −4 20

]
, t1 =




1
−1
1


 , t2 =

[
1
0

]
, t3 =

[
−1
2

]
,

The following are constraints for each player.

1st player :

{
−10 · 1 ≤ x1 ≤ 10 · 1, x1,1 + x1,2 + x1,3 ≤ 20,
x1,1 + x1,2 − x1,3 ≤ x2,1 − x3,2 + 5,

2nd player : − 10 · 1 ≤ x2 ≤ 10 · 1, x2,1 − x2,2 ≤ x1,2 + x1,3 − x3,1 + 7,

3rd player : − 10 · 1 ≤ x3 ≤ 10 · 1, x3,2 ≤ x1,1 + x1,3 − x2,1 + 4.

Example A.2. (FKA4 [12]). Consider (A.1) with N = 3, n1 = 3, n2 = n3 = 2,

C1 =




20 + x2
2,1 5 3

5 5 + x2
2,2 −5

3 −5 15


 , C2 =

[
11 + x2

3,1 −1
−1 9

]
,

C3 =

[
48 39
39 53 + x2

1,1

]
,

and Di and ti are the same as Example A.1. The following are constraints for each
player.

1st player :

{
1 ≤ x1 ≤ 10 · 1, x1,1 + x1,2 + x1,3 ≤ 20,
x1,1 + x1,2 − x1,3 ≤ x2,1 − x3,2 + 5,

2nd player :1 ≤ x2 ≤ 10 · 1, x2,1 − x2,2 ≤ x1,2 + x1,3 − x3,1 + 7,

3rd player :1 ≤ x3 ≤ 10 · 1, x3,2 ≤ x1,1 + x1,3 − x2,1 + 4.

Example A.3. (FKA5 [12]). Consider (A.1) with N = 3, n1 = 3, n2 = n3 = 2,

C1 =




20 6 0
6 6 −1
0 −1 8


 , C2 =

[
11 1
1 7

]
, C3 =

[
28 14
14 29

]
,

D1 =




−1 −2 −4 −3
0 −3 0 −4
0 1 9 6


 , D2 =

[
−1 0 0 −7 4
−2 −3 1 4 11

]
,

D3 =

[
−4 0 9 −7 4
−3 −4 6 4 11

]
, t1 =




1
−1
1


 , t2 =

[
1
0

]
, t3 =

[
−1
2

]
,

The following are constraints for each player.

1st player :

{
0 ≤ x1 ≤ 10 · 1, x1,1 + x1,2 + x1,3 ≤ 20,
x1,1 + x1,2 − x1,3 ≤ x2,1 − x3,2 + 5,

2nd player : 0 ≤ x2 ≤ 10 · 1, x2,1 − x2,2 ≤ x1,2 + x1,3 − x3,1 + 7,

3rd player : 0 ≤ x3 ≤ 10 · 1, x3,2 ≤ x1,1 + x1,3 − x2,1 + 4.

Example A.4. (FKA8 [10, 12]). Consider the 3-player GNEP

min
x1∈R1

−x1 min
x2∈R1

(x2 − 0.5)2 min
x3∈R1

(x3 − 1.5x1)
2

s.t . x3 ≤ x1 + x2 ≤ 1, s.t . x3 ≤ x1 + x2 ≤ 1, s.t . 0 ≤ x3 ≤ 2,
0 ≤ 2x1 ≤ x3, x2 ≥ 0, −x1 − 2x2 + 2x3 ≥ 0.
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The original problem has infinitely many KKT points, so we added extra constraints
to the first and third players’ optimization so that the KKT set is finite.

Example A.5. (FKA12 [12]). Consider the duopoly model with 2-players:

Fi(x−i) :

{
min
xi∈R1

xi(x1 + x2 − 16)

s .t . −10 ≤ xi ≤ 10.

Example A.6. (NT59 [31]). Consider the environmental pollution control problem
for N = 3 countries:

Fi(x−i) :





min
xi∈R2

−xi,1

(
bi −

1
2xi,1

)
+

x2

i,2

2 + di(xi,1 − γixi,2) +
∑
j 6=i

ci,jxi,2xj,1

s .t . xi,2 ≥ 0, xi,1 ≤ bi, 0 ≤ xi,1 − γixi,2 ≤ Ei,

where parameters are set as

b1 = 1.5, b2 = 2, b3 = 1.8, c1,2 = 0.2, c1,3 = 0.3, c2,1 = 0.4,
c2,3 = 0.2, c3,1 = 0.5, c3,2 = 0.1, d1 = 0.8, d2 = 1.2, d3 = 1.0,
E1 = 3, E2 = 4, E3 = 2, γ1 = 0.7, γ2 = 0.5, γ3 = 0.9.

Example A.7. (NT510 [31]). Consider the electricity market problem in [12] with
N = 3 generating companies.

Fi(x−i) :





min
xi∈Ri

i∑
j=1

(
1
2ci,jx

2
i,j − di,jxi,j

)
− (10− 1Tx)1Txi

s .t . 0 ≤ xi,j ≤ Ei,j (∀j ∈ [i]),

where parameters are set as

c1,1 = 0.4, c2,1 = 0.35, c2,2 = 0.35, c3,1 = 0.46, c3,2 = 0.5, c3,3 = 0.5,
d1,1 = 2, d2,1 = 1.25, d2,2 = 1, d3,1 = 2.25, d3,2 = 3, d3,3 = 3,
E1,1 = 2, E2,1 = 2.5, E2,2 = 0.67, E3,1 = 1.2, E3,2 = 1.8, E3,3 = 1.6.

Example A.8. (NTGS53 [32]). Consider the 2-player GNEP

min
x1∈R2

x1,1(x1,2 + 2x2,1 + 2x2,2) min
x2∈R2

‖x1‖2 − ‖x2‖2

+x1,2(x2,1 + x2,2) + 2x2,1x2,2

s .t . 1Tx = 1, x1 ≥ 0, 2 · 1Tx1 ≥ 1, s .t . 1Tx = 1, x2 ≥ 0, 1Tx2 ≥ 1Tx1.

The original problem has infinitely many KKT points, so we added extra constraints
to each players’ optimization so that the KKT set is finite.

Example A.9. (NTGS54 [32]). Consider the 2-player GNEP

min
x1∈R2

−2x2
1,2 + x2,1x1,2 + x1,1x2,1 min

x2∈R2

‖x2‖2 − 2x2,2 · 1Tx1

s .t . 1Tx = 1, x1,1 ≥ 0.1, x1,2 ≥ 0.1, s .t . 1Tx = 1, x2,1 ≥ 0.1, x2,2 ≥ 0.1,
x1 ≥ x2, x2 ≥ x1, 0.1 ≥ x2,1.

The original problem has infinitely many KKT points, so we added extra constraints
to each players’ optimization so that the KKT set is finite.

Example A.10. (FR33 [15]). Consider the 2-player GNEP

Fi(x−i) :

{
min
xi∈R2

−2xi,1 − (2i− 1)xi,2

s .t . xi ∈ Xi(x−i),
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where constraining sets

X1(x2) =

{
x1 ∈ R2

∣∣∣∣
0 ≤ x1,1 ≤ 5, 0 ≤ x1,2 ≤ 2.5, x1,1 + 2x1,2 ≤ 5,
4x1,1 + x1,2 −

16
3 x2,1 −

1
3x2,2 ≤ 0.

}
,

X2(x1) =

{
x2 ∈ R2

∣∣∣∣
0 ≤ x2,1 ≤ 1.5, 0 ≤ x2,2 ≤ 6, 4x2,1 + x2,2 ≤ 6,
15x1,1 − 10x1,2 + x2,1 + 2x2,2 ≤ 0.

}
.

Example A.11. (SAG41 [38]). Consider the 2-player NEP

Fi(x−i) :

{
min
xi∈R2

4x2
i,1 + (−1)i+12x1,1x2,1 − αixi,1 + βixi,2

s .t . xi,1 − xi,2 ≤ 0, 0 ≤ xi,1 ≤ 1, 0 ≤ xi,2 ≤ 1,

where α1 = 10, α2 = 8, β1 = 5, and β2 = 7.

Example A.12. (DSM31 [8]). Consider the 2-player GNEP

Fi(x−i) :





min
xi∈R2

xi,2

s.t. x1,1 + x2,1 ≤ 1, xi,1 ≥ 0,

αi,1x1,1 + αi,2x1,2 + αi,3x2,1 + αi,4x2,2 ≥ 0,

βi,1x1,1 + βi,2x1,2 + βi,3x2,1 + βi,4x2,2 ≥ 0,

where parameters are set as

α1,1 = −1, α1,2 = 1, α1,3 = 2, α1,4 = 0, β1,1 = 1, β1,2 = 1,
β1,3 = 1, β1,4 = 0, α2,1 = 1, α2,2 = 0, α2,3 = −1, α2,4 = 1,
β2,1 = −1, β2,2 = 0, β2,3 = 1, β2,4 = 1.
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