
CleanGraph: Human-in-the-loop Knowledge Graph Refinement and
Completion

Tyler Bikaun, Michael Stewart and Wei Liu
The University of Western Australia

tyler.bikaun@research.uwa.edu.au

Abstract

This paper presents CleanGraph, an inter-
active web-based tool designed to facilitate
the refinement and completion of knowledge
graphs. Maintaining the reliability of knowl-
edge graphs, which are grounded in high-
quality and error-free facts, is crucial for real-
world applications such as question-answering
and information retrieval systems. These
graphs are often automatically assembled from
textual sources by extracting semantic triples
via information extraction. However, assuring
the quality of these extracted triples, especially
when dealing with large or low-quality datasets,
can pose a significant challenge and adversely
affect the performance of downstream applica-
tions. CleanGraph allows users to perform Cre-
ate, Read, Update, and Delete (CRUD) opera-
tions on their graphs, as well as apply models
in the form of plugins for graph refinement and
completion tasks. These functionalities enable
users to enhance the integrity and reliability of
their graph data. A demonstration of Clean-
Graph and its source code can be accessed
at https://github.com/nlp-tlp/CleanGraph under
the MIT License.

1 Introduction

In the current data-centric era, where data is fre-
quently referred to as the ‘new oil’, knowledge
graphs (KGs)1—structured representations of facts,
encompassing semantically defined entities and re-
lations—stand at the forefront of harnessing its
value across various tasks, including question-
answering (Huang et al., 2019), information re-
trieval (Wise et al., 2020), recommendation (Guo
et al., 2020), and reasoning (Chen et al., 2020a).

Text-based knowledge graphs, a product of infor-
mation extraction methods such as entity recogni-
tion, relation extraction, and entity linking (Ji et al.,
2022), have seen immense growth through automa-
tion, leading to expansive, encyclopedic graphs

1Alongside knowledge bases.

predominantly from high-quality web data (Bol-
lacker et al., 2008; Mitchell et al., 2018) using
techniques like distance supervision (Mintz et al.,
2009). Despite these advances, creating domain-
specific knowledge graphs from diverse sources, in-
cluding user-generated content or specialised fields
like medicine, law enforcement, and engineering,
has received less focus (Abu-Salih, 2021). These
domains present unique challenges due to resource
scarcity, potential data quality issues, and the need
for expert verification of factual accuracy. These
difficulties have hindered the production of reliable,
cost-effective knowledge graphs in these domains,
leaving potential downstream applications underex-
plored compared to general-domain counterparts.

Figure 1: Schematic overview of the CleanGraph tool
illustrating (A) graph data input, along with the use of
optional model plugins for knowledge graph refinement
(KGR) and completion (KGC), (B) the inclusion of
human-in-the-loop (HITL) operations in the process,
and (C) graph data output.

ar
X

iv
:2

40
5.

03
93

2v
2

 [
cs

.A
I]

 8
 M

ay
 2

02
4

While the need for high-quality and complete
knowledge graphs predates the advent of large
language models (LLMs) (Paulheim, 2017), the
widespread availability and capabilities of LLMs
for zero or few-shot learning (Brown et al., 2020)
have further underscored this necessity. LLMs
have democratised knowledge graph construction
from various text corpora (Ye et al., 2022), thus
lowering the barriers to creating domain-specific
graphs; however, they are not guaranteed to be
factually correct. Consequently, maintaining the
quality and completeness of these graphs remains
paramount, especially for downstream applica-
tions like question-answering and recommendation,
where factuality is crucial. As a result, there has
been a concerted effort among researchers to im-
prove knowledge graph quality and coverage via
knowledge graph refinement (KGR) and comple-
tion (KGC) (Paulheim, 2017; Rossi et al., 2021; Ji
et al., 2022).

However, there remains a deficiency in task-
specific software capable of interactive, human-in-
the-loop operations for these tasks. Presently, the
available software predominantly supports visuali-
sation and querying but lacks open accessibility or
the capacity to incorporate KGR and KGC models
easily. As a solution, such software could employ
domain experts—or oracles—for quality assurance
and validation, enhancing data accuracy before in-
tegration into downstream applications.

To address this gap, we introduce CleanGraph,
a powerful yet intuitive web-based tool developed
for introspection of, and interaction with, knowl-
edge graphs2 and results of KGR and KGC models
(Figures 1 and 2). CleanGraph simplifies knowl-
edge graph verification and refinement, making it
user-friendly for technical and non-technical users.
With built-in features that support visualisation
and interaction, along with customisable KGR and
KGC model plugins, CleanGraph assures an effort-
less quality control experience (Figure 1). This
paper details the design, functionality, and architec-
ture of CleanGraph, demonstrating its potential to
enhance the integrity and reliability of knowledge
graphs.

2 Preliminaries - Knowledge graph
refinement and completion

Knowledge graph refinement (KGR) and comple-
tion (KGC) are distinct, essential techniques used

2Represented as untyped and typed property graphs.

to enhance the quality and comprehensiveness of
knowledge graphs (Paulheim, 2017; Chen et al.,
2020b). Despite extensive research in this domain,
there remains a scarcity of accessible software al-
lowing the direct involvement of an oracle in these
processes. This section outlines both techniques,
their subtasks, and their latest advancements.

2.1 Knowledge graph refinement (KGR)
KGR enhances the accuracy and relevance of the
existing facts within a knowledge graph (Paulheim,
2017). This includes modifying or deleting in-
correct or outdated entities (nodes), relationships
(edges), or properties. The goal of KGR is to main-
tain the graph’s accuracy, reliability, and overall
quality. KGR tasks encompass:

• Entity correction: Checking and rectifying
incorrect entity representations (e.g., resolv-
ing ambiguities, synonyms, etc.) and types.

• Relationship correction: Examining and fix-
ing erroneous relationships between entities,
as well as types and directions.

• Property correction: Validating and correct-
ing the property values associated with entities
or relationships.

• Noise reduction: Removing irrelevant or re-
dundant entities and relationships.

KGR challenges stem from the dynamic nature
of knowledge leading to outdated information, mis-
interpretations, data input errors, and lack of con-
text. Extensive research effort has been devoted to
KGR, resulting in the development of statistical,
machine learning, and deep learning techniques
(Paulheim, 2017). Current advancements in KGR
focus on utilising knowledge representations like
knowledge graph embeddings (Ji et al., 2022).

2.2 Knowledge graph completion (KGC)
In contrast, KGC aims to fill in the missing gaps
within the knowledge graph (Chen et al., 2020b).
This involves predicting and adding missing en-
tities, relationships, or properties, enhancing the
graph’s comprehensiveness. KGC tasks include:

• Entity prediction: Inferring and adding new
missing entities from the graph.

• Relationship prediction: Discovering and
adding missing relationships between existing
entities.

• Property prediction: Predicting and adding
missing entity or relationship properties.

KGC challenges arise from incomplete source
data, the complexity of inferring unknown relations
or properties, and the inherent uncertainty of pre-
dictions. Ensuring the accuracy of new information
to prevent polluting the graph with incorrect data
is also a major concern. Similar to KGR, KGC has
received significant research attention, with recent
advancements made in applying graph embeddings
(Rossi et al., 2021; Choudhary et al., 2021; Ji et al.,
2022).

3 Key features

The key features of CleanGraph, designed to sim-
plify the introspection of knowledge graphs, are
elaborated upon as follows.

3.1 Graph creation and data structure

Building a graph in CleanGraph is a user-friendly
process. Users simply upload or input a JSON ar-
ray of semantic triples, minimally in the {head,
relation, tail} format3. Models for error
detection (KGR) and completion (KGC) can op-
tionally be selected at this stage. To create more
intricate property graphs, additional optional fields
such as types and properties can be supplied
(Figure 1A). Once the initial graph is constructed,
any selected error detection and completion models
are applied. This process populates the errors
and properties fields of the relevant nodes and
edges in the graph which are subsequently rendered
in the user interface for human interaction (Figure
2).

3.2 Graph visualisation and interaction

Visualisation While viewing graph data in a tabu-
lar structure like (head, relation, tail)
is sufficient for simple, untyped graphs, this ap-
proach is inefficient for larger, complex graphs. To
address this, CleanGraph adopts a visually intuitive
approach by representing graph data in its native
format: as frequency-weighted nodes and edges
(Figure 2).

Graphs are displayed as directed acyclic graphs
using a simulated force-directed layout, facilitated
by the d3 visualisation library4. This layout, com-
pared to tabular formats, allows users to visually

3For an untyped graph.
4Implemented via react-force-graph.

parse the graph, identify patterns, and interact with
nodes and edges easily through mouse actions and
shortcuts. Users can quickly grasp the frequen-
cies and types of nodes and edges, aided by colour
coding.

To manage information overload, CleanGraph
partitions the entire graph into focused subgraphs;
each centred on a single node. Users can then ‘pag-
inate’ through these subgraphs, effectively manag-
ing large graph data (Figure 3). In addition, errors
and suggestions identified by the EDM and CM
plugins are displayed adjacent to the relevant nodes
and edges, offering instant feedback to users (Fig-
ure 2).

Interaction CleanGraph enables intuitive inter-
action with the graph. Users can manipulate the
entire graph view through panning and zooming.
Direct engagement with nodes and edges is possi-
ble via mouse clicks and shortcuts. Clicking on a
node or edge reveals its details, properties, and any
errors and suggestions (Figure 2). Users can toggle
the reviewed state of these elements or remove
them from the graph entirely.

3.3 Comprehensive graph CRUD operations

CleanGraph is designed to provide comprehensive
Create, Read, Update, and Delete (CRUD) oper-
ations across graphs, specifically accommodating
the property graph format5. It effectively handles
nodes and edges, permitting them to support ar-
bitrary key-value pair properties of any data type
except objects and arrays.

The core CRUD operations that are supported
to make the manipulation of graph data6 seamless
include (1) the Addition of new nodes or edges to
the graph, (2) Item review for error detection and
graph refinement (Figure 2), (3) Subgraph merg-
ing (section 3.3.2), (4) Acknowledgement and ac-
tion on detected errors and suggested modifications
(Figure 2), (5) Reversal of edge direction to cor-
rect relational flow, and (6) Item deletion (section
3.3.1). These operations facilitate the integration
of detected errors by KGR models and predictions
made by KGC models into the graph. The sub-
graph merging and item deletion functionalities are
in further detail below.

5This allows any arbitrary graph structure to be supported,
even RDF-graphs, where the minimum amount of information
is a head, relation and tail.

6item(s) refer to nodes and edges.

https://github.com/vasturiano/react-force-graph

Figure 2: User interface of CleanGraph: Starting clockwise from the top right, (1) the action tray and subgraph
pagination, (2) a secondary sidebar showing details, properties, errors, and suggestions for the chosen node or
edge, (3) an interactive graph visualisation, and finally, (4) a primary sidebar displaying a progress overview and
subgraphs.

Figure 3: Illustration of CleanGraph’s subgraph pagina-
tion process: A subgraph centred on the node (A) with
12 connected edges is split into 3 ‘pages’ of 5 triples
(size) for manageable viewing.

3.3.1 Item deletion

CleanGraph facilitates KGR by enabling users to
perform item deletions. To maintain the directed
acyclic graph structure, it automatically propagates
1-hop edge removal and orphan node elimination
when nodes or edges are deleted (Figure 4).

3.3.2 Subgraph merging

CleanGraph’s subgraph merging feature resolves
entity errors. When a node’s name or type changes,
the system checks for potential conflicts with ex-
isting nodes. On detecting a conflict, it prompts

Figure 4: CleanGraph’s 1-hop Item Deletion Illustrated:
The removal of node (A) consequently eliminates all its
corresponding edges and any nodes (C, D) that would
become orphaned due to this operation.

the user to approve a proposed node merge. If
approved, the respective subgraphs of the conflict-
ing nodes merge, incorporating not only nodes and
edges, but also associated properties, errors, sug-
gestions, and frequencies for a comprehensive and
accurate unification of the node data (Figure 5).

3.4 Plugin architecture

CleanGraph’s plugin architecture enables flexible
support for KGR and KGC tasks. By accommodat-
ing a broad spectrum of Error Detection Models
(EDMs for KGR) and Completion Models (CMs
for KGC), users can integrate any model that com-
plies with the plugin interface, enabling seamless

Figure 5: CleanGraph’s Node Merge Illustrated: The
merging of node (E) into (G) increments the node fre-
quency and redistributes corresponding edges, resulting
in a new node (I).

integration with the CleanGraph user interface (Fig-
ure 2). Note: plugins are optional and only expedite
the graph quality assurance process.

3.4.1 Authoring plugins
CleanGraph’s plugin authoring process is designed
to promote collaboration and encourage the ex-
change of plugins via its open-source repository.
These plugins may span heuristic, statistical, and
deep-learning models, which we hope to evolve
over time, leading to a shared resource commu-
nity. To create a plugin, authors simply add a
Python script that complies with the predefined
plugin interface and adheres to the specified Py-
dantic input/output data models, into the server’s
/plugins directory. The input model is fed the
graph as a set of semantic triples, and the output
model returns a list of errors or suggestions, each
containing relevant information and potential ac-
tions (defined and validated as Pydantic data mod-
els). These results are then rendered interactively
on the user interface. Plugins are easily accessible
from the user interface due to CleanGraph’s plu-
gin manager, ensuring reproducible usage across
different graph construction processes.

3.4.2 Error detection models
Error detection model outputs, ‘errors’, are dis-
played in the UI as easily identifiable ‘notifications’
(Figures 2 and 6A) attached to graph nodes and
edges. Each notification can optionally include
a corrective action, such as recommendations to
merge nodes, update node types or labels, reverse
edge directions, modify edge types, and update or
delete node/edge properties. These actions assist
the user in undertaking pertinent actions during the
quality assurance process. CleanGraph defines a
finite set of actions — Update and Delete —
embodied in Pydantic data models, which can be

Figure 6: Display of CleanGraph’s Error and Suggestion
Features: (A) shows errors associated with a particu-
lar item (node), offering an optional corrective action
(yellow triangle), while (B) presents informational sug-
gestions (purple triangle). Both errors and suggestions
can be acknowledged by the user.

freely used by EDM plugins. Nevertheless, actions
are not mandatory; reviewers can simply ‘acknowl-
edge’ them within the UI.

3.4.3 Completion models

Analogous to EDMs, completion model outputs,
‘suggestions’, are also displayed in the UI simi-
larly as ‘notifications’ on nodes and edges (Fig-
ures 2 and 6B). Suggestions notifications can have
Create and Update actions, corresponding to
the addition of new nodes/edges (Create) or up-
dated node/edge properties (Update).

4 System architecture

CleanGraph is built using the FARM7 web appli-
cation stack and comprises a server and a client.
The server, implemented using FastAPI in Python,
collaborates seamlessly with the client developed
using a blend of HTML, Javascript (React), and
CSS. The choice of a Python-based server is so
that there is native support for KGR and KGC mod-
els typically implemented in Python libraries such
as PyTorch and TensorFlow.

A NoSQL database, MongoDB, is used for data
management, and stores graph data in four collec-
tions (Graphs, Triples, Nodes, and Edges).
The choice of NoSQL over graph databases such as
Neo4J owes to its support for graph-structured data
and its ability to store arbitrarily structured data on
nodes and edges. This flexibility circumvents the
need for intricate representations often required by
graph databases when dealing with complex data,

7FARM - FastAPI, React, MongoDB.

https://docs.pydantic.dev
https://docs.pydantic.dev
https://fastapi.tiangolo.com
https://react.dev
https://www.mongodb.com

Table 1: Comparative analysis of CleanGraph with existing tools for knowledge graph management and manipulation.
Abbreviations: HITL, KGR, and KGC refer to Human-in-the-Loop, Knowledge Graph Refinement, and Knowledge
Graph Completion, respectively.

Tool Visualisation Querying HITL
CRUD

HITL
KGR

HITL
KGC

Open-
Source

RDF-
based

Property
Graph-based

AllegroGraph ✓ ✓ - - - - ✓ -
Blazegraph - ✓ - - - - ✓ -
Neo4J ✓ ✓ - - - ✓ - ✓
JanusGraph ✓ ✓ - - - ✓ - ✓
TigerGraph ✓ ✓ - - - - - ✓

CleanGraph ✓ - ✓ ✓ ✓ ✓ - ✓

such as nested arrays of complex objects for errors,
suggestions, and properties.

5 Comparison with existing tools

Table 1 compares CleanGraph with existing tools
for knowledge graph management. While most
tools, such as AllegroGraph and Neo4J, are de-
signed to handle large-scale knowledge graphs and
lack Human-in-the-Loop (HITL) support, Clean-
Graph focuses on managing smaller text-based
knowledge graphs with robust HITL functional-
ities.

Existing tools excel in visualising, storing, and
querying extensive graph structures, but their sup-
port for HITL refinement and completion is often
limited. Integration with external environments
like Python is possible (e.g. Py2Neo for Neo4J),
but these solutions generally fall short of a seam-
less iterative workflow involving human interaction.
CleanGraph, however, offers visualisation, prop-
erty graph-based support, and comprehensive HITL
CRUD, KGR, and KGC functionalities. Its unique
design emphasises flexibility and adaptability, en-
abling continuous human-involved refinement and
completion.

It’s important to recognize that this comparison
may not be entirely fair, as the tools serve differ-
ent purposes. Large graph databases aim to effi-
ciently handle substantial data, while CleanGraph
prioritises interactive, iterative development. This
distinction, along with variations in open-source
availability and feature sets, reflects the diverse
goals and target audiences of these tools.

6 Conclusion and future work

This paper presented CleanGraph, a versatile and
interactive tool designed for the refinement and
completion of knowledge graphs. CleanGraph’s
unique contributions include providing comprehen-

sive capabilities for graph CRUD operations and
review that does not require any programming ex-
perience, alongside arbitrary knowledge graph re-
finement and completion models through its plugin
infrastructure.

While CleanGraph is a robust, ready-to-use tool,
it continues to evolve. Future enhancements in-
clude: i) expanding the range of available Error
Detection and Completion plugins to incorporate
graph embedding models, ii) supporting graph
queries, iii) optimising performance for large-scale
knowledge graphs, and iv) accommodating RDF-
based semantic knowledge graphs.

Acknowledgements

This research is supported by the Australian Re-
search Council through the Centre for Transform-
ing Maintenance through Data Science (grant num-
ber IC180100030), funded by the Australian Gov-
ernment. Additionally, Bikaun acknowledges fund-
ing from the Mineral Research Institute of Western
Australia. Bikaun and Liu acknowledge the support
from ARC Discovery Grant DP150102405.

References
Bilal Abu-Salih. 2021. Domain-specific knowledge

graphs: A survey. Journal of Network and Computer
Applications, 185:103076.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247–1250.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

https://allegrograph.com/products/allegrograph/
https://blazegraph.com/
https://neo4j.com
https://janusgraph.org/
https://www.tigergraph.com/
https://py2neo.org/2021.1/

Xiaojun Chen, Shengbin Jia, and Yang Xiang. 2020a. A
review: Knowledge reasoning over knowledge graph.
Expert Systems with Applications, 141:112948.

Zhe Chen, Yuehan Wang, Bin Zhao, Jing Cheng, Xin
Zhao, and Zongtao Duan. 2020b. Knowledge graph
completion: A review. Ieee Access, 8:192435–
192456.

Shivani Choudhary, Tarun Luthra, Ashima Mittal, and
Rajat Singh. 2021. A survey of knowledge graph
embedding and their applications. arXiv preprint
arXiv:2107.07842.

Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu
Zhu, Xing Xie, Hui Xiong, and Qing He. 2020. A
survey on knowledge graph-based recommender sys-
tems. IEEE Transactions on Knowledge and Data
Engineering, 34(8):3549–3568.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping
Li. 2019. Knowledge graph embedding based ques-
tion answering. In Proceedings of the twelfth ACM
international conference on web search and data min-
ing, pages 105–113.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and Philip S Yu. 2022. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE Trans Neural Netw Learn Syst, 33(2):494–514.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extraction
without labeled data. In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 1003–
1011.

T Mitchell, W Cohen, E Hruschka, P Talukdar, B Yang,
J Betteridge, A Carlson, B Dalvi, M Gardner,
B Kisiel, J Krishnamurthy, N Lao, K Mazaitis,
T Mohamed, N Nakashole, E Platanios, A Ritter,
M Samadi, B Settles, R Wang, D Wijaya, A Gupta,
X Chen, A Saparov, M Greaves, and J Welling. 2018.
Never-ending learning. Commun. ACM, 61(5):103–
115.

Heiko Paulheim. 2017. Knowledge graph refinement:
A survey of approaches and evaluation methods. Se-
mantic web, 8(3):489–508.

Andrea Rossi, Denilson Barbosa, Donatella Firmani,
Antonio Matinata, and Paolo Merialdo. 2021. Knowl-
edge graph embedding for link prediction: A com-
parative analysis. ACM Transactions on Knowledge
Discovery from Data (TKDD), 15(2):1–49.

Colby Wise, Vassilis N Ioannidis, Miguel Romero
Calvo, Xiang Song, George Price, Ninad Kulkarni,
Ryan Brand, Parminder Bhatia, and George Karypis.
2020. Covid-19 knowledge graph: Accelerating in-
formation retrieval and discovery for scientific litera-
ture. arXiv preprint arXiv:2007.12731.

Hongbin Ye, Ningyu Zhang, Hui Chen, and Huajun
Chen. 2022. Generative knowledge graph construc-
tion: A review. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1–17.

