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Recent discoveries of magnetic long-range orders in the icosahedral quasicrystal and topological
magnetic structures on the icosahedron (IC) as the hedgehog state and the antihedgehog state have
attracted great interest. Here, we report our theoretical analysis of the dynamical as well as static
structure of the hedgehog-antihedgehog order in the 1/1 approximant crystal (AC). By constructing
the effective magnetic model for the rare-earth based AC, on the basis of the linear spin-wave theory,
the excitation energy is shown to exhibit the reciprocal dispersion, as a consequence of preservation
of the spatial inversion symmetry by the hedgehog-antihedgehog ordering. The static structure
factor is shown to be expressed generally in the convolution form of the lattice structure factor and
the magnetic structure factor on the IC(s) and the numerical calculation reveals the extinction rule.
The dynamical structure factor shows that the high intensities appear in the low-energy branch
along the Γ-X line and the R-Γ-M line in the reciprocal space.

I. INTRODUCTION

Quasicrystal (QC) has no periodicity of the lattice but
possesses unique rotation symmetry forbidden in peri-
odic crystals. Since the discovery of the QC1, the under-
standing of the lattice structure has proceeded2,3. How-
ever, the electronic state in the QC is far from complete
understanding because the Bloch theorem based on the
translational invariance can no longer be applied to the
QC. Hence, the clarification of the electronic states and
the physical property in the QC is the frontier of the
condensed matter physics.
One of the interesting questions about the QC has

been whether the magnetic long-range order is realized in
the three-dimensional QC. Experimentally, the magnetic
long-range order has been explored in the QC and also
in the approximant crystal (AC) whose lattice is com-
posed of the common local atomic structure to that in
the QC with periodicity. In the rare-earth based 1/1 AC
where the 4f electrons are responsible for the magnetism,
the magnetic long-range order has been observed by the
bulk measurements such as the magnetic susceptibility
and the specific heat 4. The antiferromagnetic (AFM)
order has been observed in the 1/1 AC Cd6R (R=Tb,
Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu)
5,6 and in the 1/1 AC Au-Al-R (R=Gd and Tb)7. The
ferromagnetic (FM) order has been observed in the 1/1
AC Au-SM-R (SM=Si, Ge, and Al; R=Gd, Tb, Dy, and
Ho)8–10 (Note that Au-SM-R is the composition tunable
compound which exhibits the FM order and AFM or-
der depending on the composition ratio of Au and SM,
e.g., AuxAl86−xGd [10].). As for the QC, the spin-glass
behavior has been observed in the QC Cd-R (R=Gd,
Tb, Dy, Ho, Er, and Tm)12. Recently, the FM orders
have been discovered in the QC Au65Ga20R15 (R=Gd
and Tb)13 and in AuxGa85−xDy15 (x = 62-68)14, which
have brought about the breakthrough.
Among these ACs and QCs, the neutron measurements

have been performed recently in some Tb-based ACs and
Ho-based AC, which have revealed the non-collinear and

non-coplanar alignments of the 4f magnetic moments of
the ferrimagnet in the 1/1 ACs Au70Si17Tb13

15 and Au-
Si-R (R=Tb, Ho)16 as well as the antiferromagnet in the
1/1 AC Au72Al14Tb14

17.
These ACs and the QCs are composed of the concentric

shell structures of atomic polyhedrons, which is referred
to as the Tsai-type cluster2,3. Inside the Tsai-type clus-
ter, the rare-earth atoms are located at the 12 vertices
of the icosahedron (IC) [see Fig. 1(a)]. To understand
the magnetic property of the rare-earth based icosahderal
QCs and ACs, the clarification of the crystalline electric
field (CEF) at the rare-earth site is necessary.
Recently, theoretical formulation of the CEF at the

rare-earth site in the QC and AC has been developed
on the basis of the point charge model18. By apply-
ing this formulation to the QC Au-Al-Yb18 and Au-SM-
Tb19,22, the CEF was analyzed theoretically. Then, it
was shown that the CEF ground state possesses the uni-
axial anisotropy at each rare-earth site, giving rise to
the unique magnetic structures on the IC19,22. Interest-
ingly, the magnetic structures which have finite topolog-
ical charge n defined on the IC such as the hedgehog
state displayed in Fig. 1(a) have been shown to appear.
The topological charge has the physical meaning of the
number of covering the whole sphere by the magnetic mo-
ments on the IC. The hedgehog state, where all 12 mag-
netic moments are directed outward from the IC shown in
Fig. 1(a), has n = +119. The antihedgehog state, where
all 12 magnetic moments are directed inward from the
IC as displayed in Fig. 1(b), has n = −1. The hedge-
hog state is regarded as the source of the emergent field
while the antihedgehog state is regarded as the sink of
the emergent field20,21.
Then, the effective model for the magnetism in the

1/1 AC and QC, where the magnetic easy axis at each
Tb site arising from the CEF is taken into account, was
constructed19,22. By numerical calculations in the effec-
tive model applied to the Cd5.7Yb-type QC3, it has been
shown that the uniform hedgehog state is stabilized in
the ground-state phase diagram19. This is the theoret-
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FIG. 1. (a) The hedgehog state on the IC. The number labels
the Tb sites at the 12 vertices of the IC. (b) The antihedgehog
state on the IC. (c) The hedgehog-antihedgehog order in the
1/1 AC. The frame box is the bcc unit cell. (d) The nearest-
neighbor (N.N.) interactions J1 (blue line) and next-nearest-
neighbor (N.N.N.) interactions J2 (green dashed line) for the
intra IC and the inter IC are illustrated.

ical discovery of the topological magnetic state in the
QC, which has attracted great interest. Moreover, the
recent analysis of the dynamical structure factor in the
QC has revealed that the non-reciprocal excitation in the
uniform hedgehog order emerges in the vast extent of the
wave vector q-energy ω plane, i.e., S(q, ω) 6= S(−q, ω)23.

To get insight into the emergence mechanism of the
nonreciprocal excitation, the dynamical structure factor
in the 1/1 AC has been analyzed recently by assuming
the uniform hedgehog order31. Then, the non-reciprocal
energy dispersion of magnon has been shown to appear
as a consequence of the inversion symmetry breaking by
the uniform hedgehog ordering31.

In the ground-state phase diagram of the effective
model applied to the 1/1 AC, it was shown that the

hedgehog state forms the AFM order19,22. Namely, the
hedgehog state is formed on the IC located at the center
of the unit cell of the body-centered cubic (bcc) lattice
while the antihedgehog state is formed on the IC located
at the corner of the bcc unit cell as shown in Fig. 1(c)19,22.
In this study, we theoretically analyze the dynamical as
well as static structure factor in the AFM hedgehog order
in the 1/1 AC as the true ground state. It is shown that
the reciprocal excitation emerges, which is in sharp con-
trast to the case of the uniform hedgehog order in the 1/1
AC. This is understood as the alternative distribution of
the hedgehog state and antihedgehog state preserves the
inversion symmetry in the 1/1 AC.
Recently, the dynamical structure factors for the topo-

logical magnetic textures such as the Skyrmion and the
hedgehog in periodic crystals have been studied24,25,
which have attracted interest. As for the QC, the lat-
tice dynamics was studied in the Zn-Mg-Sc icosahedral
QC and the 1/1 AC by inelastic X-ray- and neutron-
scattering experiments26. Theoretically, the dynamical
spin structure factors were studied in the low-dimensional
systems such as the Fibonacci chain27 and the two di-
mensional QCs28,29. Hence, the present study in the
three dimensional icosahedral AC considering the mag-
netic anisotropy arising from the CEF is expected not
only to contribute to the understanding the dynamics of
the topological magnetic texture but also to get insight
into the unique magnetic structure in the icosahedral QC.
The organization of this paper is as follows: In sec-

tion II, we introduce the effective model for magnetism
in the rare-earth based 1/1 AC. In section III, we analyze
the static structure factor of magnetism in the hedgehog-
antihedgehog order in the 1/1 AC. In section IV, we ex-
plain the linear spin-wave theory applied to the 1/1 AC
and show the results of the excitation energy and the dy-
namical structure factor in the hedgehog-antihedgehog
order in the 1/1 AC. In section V, we summarize the
paper and discuss the future issues.

II. EFFECTIVE MODEL FOR MAGNETISM

By taking into account the effect of the magnetic
anisotropy arising from the CEF, the effective minimal
model for magnetism in the rare-earth based QC and AC
has been constructed19,22. In this study, we consider the
effective minimal model

H =
∑

〈i,j〉
JijSi · Sj −D

∑

i

(Si · êi3)2 (1)

in the 1/1 AC. As the atomic coordinates, we employ the
lattice structure of the 1/1 AC identified by the X-ray
measurement in Au70Si17Tb13

15. The frame box shown
in Fig. 1(c) represents the unit cell of the bcc lattice with
the lattice constant a = 14.726 Å where the two ICs are
located at the center and the corner.
In Eq. (1), Si represents the magnetic moment of the

total angular momentum J = 6 at the ith Tb site with
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Si = 6, which is referred to as “spin” hereafter. The
second term in Eq. (1) expresses the effect of the uniaxial
anisotropy due to the CEF, where êi3 is the unit vector
directed to the magnetic easy axis at each Tb site (see
section IV and also Fig. 3 below).

In Eq. (1), Jij is set to be the nearest neighbor (N.N.)
interaction J1 and the next N.N. (N.N.N.) interaction
J2 for the intra IC and also for the inter IC. In ref.22,
the ground-state phase diagram of the model (1) for the
large-D limit was discussed, where the stability of the
ground state in the 1/1 AC was analyzed by comparing
the energy of the uniform distribution of the magnetic
ground state on the IC and the staggered distribution.
Recently, the numerical calculation for the ground state
of the model for the large-D limit in the 1/1 AC has
been performed without assuming the ground state on
the IC30. Namely, in the large-D limit of the model
(1), the ground state phase diagram was determined by
numerical calculations, where the AFM hedgehog order,
i.e., the hedgehog-antihedgehog order shown in Fig. 1(c)
is realized for J2/J1 < 0.284 with the FM interaction
J1 < 022,30. The strong N.N. interaction J1 stabilizes
the hedgehog state and antihedgehog state at the center
IC and corner IC in the bcc unit cell in Fig. 1(c) not only
for the intra IC but also for the inter IC. In this paper, we
take J1 as the energy unit, i.e., set J1 = −1.0 and mainly
show the results for J2 = −0.1 as the typical parameter.

We note that the effective model which corresponds to
the large-D limit of the model (1) succeeded in explaining
the magnetic structures of the FM order of the ferrimag-
netism on the IC observed in the 1/1 AC Au70Si17Tb13

15

and the AFM order of the whirling-antiwhirling states
on the ICs observed in the 1/1 AC Au72Al14Tb14

17,22.
The model (1) is expected to be relevant to not only the
Tb-based AC but also the broad range of the rare-earth
based-ACs.

The interaction Jij in the first term of Eq. (1) set in
this study is explicitly noted as follows: J1 is set for 5
bonds for each Tb site with the bond length 0.374a (1
bond) and 0.378a (4 bonds) and J2 is set for 5 bonds for
each Tb site with the bond length 0.610a (4 bonds) and
0.612a (1 bond) for the intra IC [see Fig. 1(d)]. For the
inter IC, J1 is set for 5 bonds for each Tb site with the
bond length 0.368a (4 bonds) and 0.388a (1 bond) and J2
is set for 7 bonds with the bond length 0.528a (2 bonds),
0.530a (4 bonds), and 0.539a (1 bond) [see Fig. 1(d)].

In this paper, we analyze the property of the dynam-
ics of the hedgehog-antihedgehog ordered state shown in
Fig. 1(c) by applying the liner spin-wave theory to the
model (1) for large D. Namely, the excitation from the
ground state of the classical limit of the model (1) is
analyzed. Hence, êi3 in the second term of Eq. (1)
is set as (± 1√

τ+2
,± τ√

τ+2
, 0) for the i = 1, 3, 11, and

12th site on the IC in Fig. 1(a), (± τ√
τ+2

, 0,± 1√
τ+2

) for

the i = 5, 6, 8, and 9th site, and (0,± 1√
τ+2

,± τ√
τ+2

) for

i = 2, 4, 7, and 10th site, respectively, where τ is the
golden mean τ = (1 +

√
5)/2.

III. STATIC STRUCTURE FACTOR OF
MAGNETISM

First, let us analyze the static structure factor

Fs(q) =

〈∣

∣

∣

∣

∣

1

N

∑

i

Sie
iq·ri

∣

∣

∣

∣

∣

2〉

, (2)

for the ground state of the hedgehog-antihedgehog order
in the 1/1 AC. Here, N is the total number of the Tb
sites and q is the wave vector. Since the position vector
of the ith Tb site ri is expressed as ri = Rj +r0m where
Rj is the position vector of the center of the jth unit cell
[see Fig. 1(c)] and r0m is the position vector of the mth
Tb site inside the unit cell (m = 1, 2, · · · , 24), Eq. (2) is
expressed as the convolution form

Fs(q) = FL(q)S2IC(q). (3)

Here, FL(q) is the structure factor of the lattice and
S2IC(q) is the magnetic structure factor of the 2 ICs in-
side the unit cell, which are defined as

FL(q) =
1

N2
L

NL
∑

j=1

NL
∑

j′=1

eiq·(Rj−Rj′ ), (4)

S2IC(q) =
1

242

24
∑

m=1

24
∑

m′=1

〈Sm · Sm′〉eiq·(r0m−r
0m′ ), (5)

respectively. Here, NL = N3
1 is the number of the unit

cell and N = 24NL holds.
The position vector Rj is expressed as

Rj = n1a1 + n2a2 + n3a3, (6)

where ai is the basic translation vector of the lattice
defined by a1 = a(1, 0, 0), a2 = a(0, 1, 0), and a3 =
a(0, 0, 1) with integer ni (i = 1, 2, 3). The wave vector q
is expressed as

q = hb1 + kb2 + lb3, (7)

where bi is the basic translation vector of the reciprocal
lattice defined by b1 = 2π

a
(1, 0, 0), b2 = 2π

a
(0, 1, 0), and

b3 = 2π
a
(0, 0, 1). Under the periodic boundary condition

along the N1ai (i = 1, 2, 3) directions, h, k, and l are
given by h = m1

N1

, k = m2

N1

, and l = m3

N1

, respectively with

integer mi (i = 1, 2, 3).
By substituting Eqs. (6) and (7) into Eq. (4), FL(q) is

calculated as

FL(q) =
1

N2
L

sin2(πhN1)

sin2(πh)

sin2(πkN1)

sin2(πk)

sin2(πlN1)

sin2(πl)
. (8)

For integer h, k, and l, Eq. (7) becomes the reciprocal
lattice vector q = Qhkl ≡ hb1 + kb2 + lb3. Then, Eq. (8)
leads to FL(Qhkl) = 1. As h, k, and l deviate from
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the integer values, FL(q) decays rapidly in the finite-size
system. In the bulk limit, namely for N1 → ∞, we obtain

FL(q) = δq,Qhkl
. (9)

This implies that from the convolution form of Eq. (3),
the static structure factor Fs(q) can have the non-zero
value for integer h, k, and l where FL(q) becomes non
zero.
Next, let us analyze the magnetic structure factor of

the 2 ICs inside the unit cell [see Fig. 1(c)] S2IC(q) defined
in Eq. (5). We have calculated S2IC(q) in Eq. (5) in
the system for NL = N3

1 with N1 = 256 numerically.
By searching the maximum of S2IC(q) for q = hb1 +
kb2 + lb3 with integers h, k, l ∈ [−10, 10] numerically,
we find that the maximum value 0.2158 appears at the
12 q points with (h, k, l) = (±10, 0,±9), (0,±9,±10),
and (±9,±10, 0). We plot S2IC(q) for q = 2π

a
(h, k, 0)

in the h-k plane in Fig. 2(a). We have confirmed that
S2IC(q) = 0 for q = 2π

a
(h, k, l) in case that all h, k, and

l are even integers or one of h, k, and l is even integer.
We have also calculated S2IC(q) for q = 2π

a
(0, k, l) and

for q = 2π
a
(h, 0, l). The results are the same as Fig. 2(a)

with h and k being replaced with k and l respectively and
with h and k being replaced with l and h respectively.
The systematic absence of reflection S2IC(q) occurs for
q = 2π

a
(h, k, l) for all or one of even integer among h, k,

and l.
From Eq. (3) and Eq. (9), it turns out that Fs(q) in

the bulk limit is equivalent to S2IC(q) for q = hb1 +
kb2+ lb3 with integers h, k, and l. Hence, the maximum
of Fs(q) appears at (h, k, l) = (±10, 0,±9), (0,±9,±10),
and (±9,±10, 0) for h, k, l ∈ [−10, 10]. We plot the
static magnetic structure factor Fs(q) for q = 2π

a
(h, k, 0)

in the h-k plane in Fig. 2(b). As noted above, Fs(q)
for q = 2π

a
(0, k, l) and q = 2π

a
(h, 0, l) are obtained by

replacing h and k in Fig. 2(b) with k and l respectively
and with l and h respectively. The systematic absence
of reflection Fs(q) = 0 occurs for q = 2π

a
(h, k, l) for the

even integers h, k, and l and also for the case that the
two of h, k, and l are odd integers.

IV. LINEAR SPIN-WAVE THEORY

To analyze the dynamical structure factor as well as
the excitation energy in the hedgehog-antihedgehog order
in the 1/1 AC, we employ the linear spin-wave theory.
Since the hedgehog state and antihedgehog state are the
non-collinear as well as non-coplanar magnetic state, it
is convenient to introduce the orthogonal coordinate at
each Tb site. As shown in Fig. 3, the local coordinate at
the ith Tb site is spanned by the unit vectors êiβ (β =

1, 2, and 3), where êi3 points to the magnetic-moment
direction. The unit vector êiβ and the unit vector r̂α in

the global coordinate (r̂1 ≡ x̂, r̂2 ≡ ŷ, and r̂3 ≡ ẑ) are
related as

r̂α = Ri
αβ ê

i
β , (10)

(a)

0.000
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k

0 10-10
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h

k

(b)

FIG. 2. (a) The intensity plot of the magnetic structure
factor for the 2 ICs S2IC(q) for q = 2π

a
(h, k, 0) in the h-k

plane. (b) The intensity plot of the magnetic structure factor
Fs(q) for q = 2π

a
(h, k, 0) in the h-k plane. The color scale is

common to that in (a).

where the direction of êi3 is denoted by the polar angles
(θi, φi) and Ri is the rotation matrix defined by32,

Ri =





cos θi cosφi − sinφi sin θi cosφi

cos θi sinφi cosφi sin θi sinφi

− sin θi 0 cos θi



 . (11)

x y

z

e1

e2

e3

FIG. 3. Local orthogonal coordinate at the ith site spanned
by unit vectors êi (i = 1, 2, 3). The unit vector êi

3 is set along
the magnetic-moment direction at each site.
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Then, the “spin” interaction between the ith and jth
sites in the first term of Eq. (1) is written as

∑

〈i,j〉
Ji,j(Si · eiα)(Sj · ejβ)

∑

γ

Ri
α,γR

j
γ,β. (12)

After substituting the relations Si · êi1 = (S+
i + S−

i )/2
and Si · êi2 = (S+

i − S−
i )/(2i) into Eq. (12), where

S+
i is the raising “spin” operator and S−

i is the lower-
ing “spin” operator, the Holstein-Primakoff transforma-
tion33 is applied to H . In this way, the “spin” operators
in Eq. (1) are transformed into the boson operators as

S+
i =

√
2S − niai, S

−
i = a†i

√
2S − ni and Si · êi3 = S−ni

with ni ≡ a†iai where a†i (ai) is the creation (annihila-
tion) operator of the boson at the ith site. We keep the

quadratic terms with respect to a†i and ai, which are spec-
ulated to be valid at least for the ground state. Since the
hedgehog state and antihedgehog state have non-collinear
“spin” alignments, the anomalous terms such as aiaj and

a†ia
†
j emerge besides the normal terms a†iaj and aia

†
j .

As noted below Eq. (2), the position vector of the ith
site is expressed as ri = Rj + r0m where Rj denotes
the position of the center of the jth unit cell and r0m
(m = 1, 2, · · · , 24) denotes the position of the mth Tb
site inside the unit cell. Hence, by carrying out the Fourie
transformations ai = aj,m = 1√

NL

∑

q e
iq·(Rj+r0m)aq,m

and a†i = a†j,m = 1√
NL

∑

q e
−iq·(Rj+r0m)a†q,m with q be-

ing the wave vector, the spin-wave Hamiltonian is ex-
pressed as the boson operators a†q,m and aq,m. Then,

by executing the para-unitary transformation34 i.e., the
Bogoliubov transformation, the spin-wave Hamiltonian
is diagonalized as

H =
∑

q

24
∑

m′=1

ωm′(q)b†q,m′bq,m′ , (13)

where ωm′(q)(> 0) is the energy of the m′th spin wave.

Here, b†q,m′ (bq,m′) is the creation (annihilation) operator
of the boson which is composed of the linear combination
of a†q,m and aq,m.

A. Energy dispersion of excitation from
hedgehog-anti-hedgehog order

We analyze the energy dispersion of the excitation
ωm′(q) in the hedgehog-antihedgehog order in the 1/1
AC. We have performed the numerical calculations for
J1 = −1.0 and J2 = −0.1 in the systems for NL = N3

1

with N1 = 8, 16, 32, 64, and 128. The results of the
excitation energy ωm′(q) for N1 = 64 and 128 are seen
as the same and we show the result in the system with
N1 = 128 for forD = 50 in Fig. 4. Here q is plotted along
the symmetry line (orange line) in the Brillouin zone il-
lustrated as the frame box with the side length 2π

a
in the

inset. The coordinate of each symmetry point in the re-
ciprocal space is as follows: Γ: (0, 0, 0), X: 2π

a
(12 , 0, 0), M:

 q
 -q

X

M

R

G

q
x

q
y

q
z

104

102

100

X M R MG G

98

106

w
(q

)/
(S

1
)

J

FIG. 4. The energy dispersion of the excitation in the
hedgehog-antihedgehog order in the 1/1 AC for D = 50 at
J1 = −1.0 and J2 = −0.1. The inset illustrates the Brillouin
zone of the cubic unit cell with the side length 2π

a
.

2π
a
(12 ,

1
2 , 0), and R: 2π

a
(12 ,

1
2 ,

1
2 ). Since there exist 24 Tb

sites in the unit cell [see Fig. 1(c)], the 24 energy bands for
the excitation appear in Fig. 4. Because of the uniaxial
anisotropyD arising from the CEF, the lowest excitation
energy appears at the finite energy. It is noted that the
energy gap opens for D ≥ 1.7836 which was obtained by
the linear-spin-wave calculation assuming the hedgehog-
antihedgehog order as the ground state. It is cofirmed
that the overall features of the energy dispersions of the
magnetic excitations ω(q) shown in Fig. 4 are the same
as long as D >∼ 5.

In Fig. 4, we also plot ωm′(−q) as the blue dashed
line for q along the symmetry line illustrated in the in-
set, where −q follows the blue line in the inset. We
see that all the blue dashed lines coincide with the or-
ange solid lines, which indicates that the reciprocal en-
ergy dispersion ωm′(q) = ωm′(−q) is realized. This is
in sharp contrast to the nonreciprocal energy dispersion
ωm′(q) 6= ωm′(−q) shown in the uniform hedgehog order
in the QC23 and 1/1 AC31. This can be intuitively un-
derstood in terms of the symmetry operation as follows.

Let us consider the global coordinate in Fig. 1(c) whose
origin is set to be the center of the unit cell. When the
magnetic moment located at the position r in Fig. 1(c) is
spatially inverted as −r with the moment direction be-
ing kept, the hedgehog state on the central IC is trans-
formed to the antihedgehog state and the antihedgehog
state on the corner IC is transformed to the hedgehog
state, as shown in Fig. 5. Since the magnetic structure
shown in Fig. 5 is regarded to be equivalent to that shown
in Fig. 1(c) as the global structure of the whole crys-
tal, the spatial inversion symmetry is not broken by the
hedgehog-antihedgehog ordering. Hence, the reciprocal
energy dispersion is understood to appear in Fig. 4.

On the contrary, in the case of the uniform hedgehog
order in the 1/1 AC, when the magnetic moment located
at the position r is spatially inverted as −r with the mo-
ment direction being kept, both the hedgehog states on
the central IC and the corner IC are transformed to the
antihedgehog states. Since the uniform hedgehog state
and the uniform antihedgehog state are different mag-
netic states each other, this implies that the spatially
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O

x
yz

FIG. 5. In the 1/1 AC, the antihedgehog state on the center
IC and the hedgehog state on the corner IC in the bcc unit
cell illustrated by the frame box.

inversion symmetry is broken by the uniform hedgehog
ordering. The same is applied to the uniform hedgehog
order in the QC discussed in Ref.23. Hence, nonrecipro-
cal energy dispersions emerge, i.e., ωm′(q) 6= ωm′(−q),
in these cases.
From these analyzes, it turns out that the pair forma-

tion of the hedgehog state and the antihedgehog state
in the 1/1 AC [see Fig. 1(c) and Fig. 5] preserves the
inversion symmetry.

B. Dynamical structure factor of magnetism

On the basis of the linear spin-wave theory, we analyze
the dynamics of the magnetic excitation in the hedgehog-
antihedgehog order in the 1/1 AC. The magnetic dynam-
ical structure factor is defined by

Sαβ(q, ω) = − 1

π
Im〈GS|Sqα

1

ω + E0 −H + iη
S−qβ |GS〉,(14)

where |GS〉 is the ground state with the energy E0 and
Sqα is the Fourier transformation of the “spin” operator

defined by Sqα = 1√
N

∑N
i=1 e

−iq·riSiα. In this study, we

set η = 10−3. Experimentally, the magnetic dynamical
structure factor can be observed by the neutron mea-
surement. The intensity of inelastic neutron scattering is
expressed by the dynamical structure factor

S⊥(q, ω) =
∑

α,β=x,y,z

(δαβ − q̂αq̂β)Sαβ(q, ω), (15)

where q is the incident wave vector and q̂α is defined as
q̂α ≡ qα/|q|35. We have performed the numerical calcu-
lations of S⊥(q, ω) for J1 = −1.0 and J2 = −0.1 in the
systems for NL = N3

1 with N1 = 8, 16, 32, 64, and 128.
We have confirmed that the results in N1 = 64 and 128
are almost the same and the result for D = 50 in the
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FIG. 6. The intensity plot of the dynamical structure factor
S⊥(q, ω) for D = 50 at J1 = −1.0 and (a)J2 = −0.1 and
(b) J2 = −0.2 where q is plotted along the symmetry line
illustrated in the inset of Fig. 4.

system with N1 = 128 is shown in Fig. 6. Here, the in-
tensity of S⊥(q, ω) is plotted for q along the symmetry
line (orange line) illustrated in the inset of Fig. 4.
In Fig. 6, the high intensity appears in the lowest-

energy branch along the Γ-X line and also in the
second-lowest energy branch along the R-Γ-M line. The
relatively-high to moderate intensities appear in the
lowest- and second-lowest-energy branches along the X-
M-R line. We confirmed that this feature appears for
D >∼ 2 by calculating S⊥(q, ω) on the basis of the linear-

spin-wave theory applied to the hedgehog-antihedgehog
order.

Since it was shown that the hedgehog-antihedgehog or-
der is realized for J2/J1 < 0.284 in the effective mag-
netic model which corresponds to the large-D limit of
the model (1) in Ref.19, we have discussed the results of
the linear spin-wave theory for J1 = −1.0 and J2 = −0.1
as the typical parameters. Here, the J2 dependence of
the results is discussed. We have calculated the dynam-
ical structure factor S⊥(q, ω) as well as the excitation
energy ωm′(q) for various J2/J1 < 0.284 with the FM
interaction J1 < 0.

We calculated S⊥(q, ω) of the excitation from the
hedgehog-antihedgehog order for J2 = −0.2, as shown
in Fig. 6(b). The energy dispersion and the intensity
of S⊥(q, ω) are almost similar to the result for J2 =
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−0.1 shown in Fig. 6, where all blanches are slightly
shifted to smaller ω, i.e., the lowest-excitation energy is
ω/(S|J1|) = 97.56 and the highest-excitation energy is
ω/(S|J1|) = 105.5.

V. SUMMARY AND DISCUSSION

We have theoretically analyzed the dynamical struc-
ture factor as well as the static structure factor in the
hedgehog-antihedgehog order in the 1/1 AC.
We have shown that the static structure factor Fs(q)

is generally expressed as the convolution form Fs(q) =
FL(q)S2IC(q) of the lattice structure factor FL(q) and
the magnetic structure factor of the 2 ICs S2IC(q) in the
unit cell. In the bulk limit, Fs(q) can have a finite value
for q = 2π

a
(h, k, l) with integer h, k, and l because of the

requirement from the lattice structure factor FL(q). By
the numerical calculation for the hedgehog-antihedgehog
ordered state, we have shown that the systematic absence
of reflection Fs(q) = 0 occurs for q = 2π

a
(h, k, l) for

case that all h, k, and l are even integers or one of h,
k, and l is even integer. This extinction rule and the
distribution of the intensities of Fs(q) revealed in this
study is useful for identifying the hedgehog-antihedgehog
order experimentally.
On the basis of the linear spin-wave theory, we have

analyzed the excitation energy and the dynamical struc-
ture factor by introducing the effective magnetic model
with uniaxial anisotropy D arising from the CEF. The
results for large D show that the reciprocal energy dis-
persion emerges, which is understood as the symmetry
argument that the hedgehog-antihedgehog ordering pre-
serves the spatial inversion symmetry. This is in sharp
contrast to the emergence of the non-reciprocal excita-
tions in the uniform hedgehog order in the 1/1 AC and
QC where the spatial inversion symmetry is broken by
the hedgehog ordering. The high intensity of S⊥(q, ω)
appears in the low-energy branch in the vicinity of the Γ
point along the Γ-X line and the R-Γ-X line.
So far, the hedgehog and antihedgehog states have

been theoretically shown in the 1/1 AC and QC19,22 but
have not been observed experimentally. To observe the
dynamical as well as the static structure factor shown in
this paper, it is necessary to identify the material which
shows the hedgehog-anti-hedgehog state in the 1/1 AC.

The CEF in the Au-SM-Tb (SM=Si, Ge, Al, and
Ga) was analyzed theoretically on the basis of the point
charge model in refs.19 and22. It was shown that as
the ratio of the valences of the screened ligand ions
α ≡ ZSM/ZAu surrounding the Tb3+ ion varies, the di-
rection of the magnetic easy axis at each Tb site changes.
This suggests that by changing the compositions of the
non-rare earth elements in the ternary compounds Au-
SM-Tb, there is the possibility that the hedgehog state
and anti-hedgehog state are realized. It is also noted
that the CEF in the Au-Al-Yb was analyzed theoreti-
cally in ref.18. It was shown that the tendency of the α
dependence of the magnetic easy axis in the CEF ground
state is different from that in the Au-SM-Tb systems.
Hence, there also exists the possibility that in the 1/1
AC Au-SM-R with the other rare-earth element(s), the
hedgehog-anti-hedgehog state is realized. Hence, the syn-
thesis of the rare-earth based Au-SM-R compounds is
interesting future subject to realize the hedgehog-anti-
hedgehog state.
Since the effective model for magnetism (1) is con-

sidered to be relevant to the broad range of the rare-
earth based ACs not only for Tb but also for the other
rare-earth atoms, the results of the dynamical as well
as static structure factor clarified in the present study
are expected to be useful for identifying the hedgehog-
antihedgehog order in the 1/1 AC. Moreover, the obser-
vation of the magnetic dynamics of the “spin” structures
on the IC has neither been reported in the icosahedral
QCs and ACs, thus far. The present study is expected
to stimulate future experiments to detect the dynamical
as well as static structure factor in the unique magnetic
structure with the non-collinear and non-coplanar align-
ments of “spins” in the icosahedral 1/1 ACs and also
QCs.
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