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Non-preservation of concavity properties

by the Dirichlet heat flow on Riemannian manifolds
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Abstract. We prove that no concavity properties are preserved by the Dirichlet heat
flow in a totally convex domain of a Riemannian manifold unless the sectional curvature
vanishes everywhere on the domain.
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2 DIRICHLET HEAT FLOW ON RIEMANNIAN MANIFOLDS

1. Introduction

Let M be a complete, connected, and smooth Riemannian manifold without boundary
of dimension at least 2 and Ω a non-empty totally convex domain of M . Consider the
Cauchy–Dirichlet problem for the heat equation





∂

∂t
u = ∆Mu in Ω× (0,∞),

u = 0 in ∂Ω × (0,∞) if ∂Ω 6= ∅,

u(·, 0) = φ in Ω,

(H)

where φ is a nonnegative L∞(Ω)-function. Problem (H) possesses a unique (nonnegative
and minimal) solution

u ∈ C2,1(Ω× (0,∞)) ∩ C(Ω× (0,∞)) satisfying lim
t→+0

‖u(·, t)− φ(·)‖L2(Ω∩K) = 0

for all compact sets K of M (see e.g. [26, Chapters III and IV]). We call the solution u
the Dirichlet heat flow (which is abbreviated as DHF) in Ω. This paper is concerned with
the preservation of concavity properties by DHF.

The preservation of concavity properties by DHF is a classical subject and it has fasci-
nated many mathematicians since the pioneering work by Brascamp and Lieb [3]. They
found the preservation of log-concacvity by DHF in Rn via the Prékopa–Leindler inequal-
ity. Subsequently, the preservation of log-concavity by DHF in convex domains of Rn was
elaborated as follows (see e.g. [12, 13, 22, 25]).

• Let u be a solution to problem (H) in a convex domain of Rn. If logφ is concave in
the domain, then log u(·, t) is concave in the domain for every t > 0.

Here and in what follows, we adhere to the convention that log 0 := −∞. The preservation
of concavities properties on Rn has been studied for various parabolic equations such as
nonlinear heat equations [12, 13, 23]; the porous medium equation [2, 9–11]; the evolution
of p-Laplace operator [27]; fully nonlinear nonlocal parabolic equations [18]. See also
[19–21, 25] for related topics. In contrast, the non-preservation of concavity properties in
convex domains of Rn was obtained in the following cases: the heat equation [5, 14, 15];
the heat equation with variable coefficients [1, 24]; the one-phase Stefan problem [6]; the
porous medium equation [8, 15]; the quasi-static droplet model [7]. Recently, in [17], the
notion of F -concavity was introduced as the largest available generalization of the notion
of concavity on Rn, and F -concavity preserved by DHF in convex domains of Rn was
characterized completely.

Compared with the Euclidean space, much less is known about the preservation of
concavity properties by DHF on Riemannian manifolds, even of space forms, and the
following question naturally arises.

Are there any concavity properties preserved by DHF in a totally convex domain

of a Riemannian manifold?
(Q)

Concerning this question, Shih [30, Theorem 1.5] found a totally convex domain of H2

whose first Dirichlet eigenfunction of −∆H2 is not quasi-concave. Since quasi-concavity is
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the weakest conceivable concavity property, this result together with the Fourier expansion
of DHF implies that no concavity properties are preserved by DHF in this domain. Note
that the first Dirichlet eigenfunctions in bounded convex domains of Rn are log-concave
due to the preservation of log-concavity by DHF, and those in totally convex domains
of Sn are also log-concave (see e.g. [28]). We also refer to [16, Theorem 1.2] for the
preservation of log-concavity by rotationally symmetric DHF on a Riemannian manifold.

In this paper we investigate the preservation of concavity properties by DHF in Ω to
obtain our answer to question (Q). Surprisingly, the answer is that no concavity properties
are preserved by DHF in Ω unless the sectional curvature vanishes everywhere on Ω (see
Theorem 1.4).

We introduce some notation to state our answer precisely. We first recall the definition
of F -concavity.

Definition 1.1. Let a ∈ (0,∞].

(1) A function F : [0, a) → [−∞,∞) is admissible on [0, a) if F ∈ C((0, a)), F is strictly
increasing on [0, a), and F (0) = −∞.

(2) Let F be admissible on [0, a). Define

AΩ(a) := {f : Ω → R | f(Ω) ⊂ [0, a)}.

For f ∈ AΩ(a), we say that f is F -concave in Ω if F ◦ f is concave in Ω, more
precisely, for any minimal geodesic c : [0, 1] → Ω,

F (f(cτ)) ≥ (1− τ)F (f(c0)) + τF (f(c1)) for all τ ∈ (0, 1). (1.1)

We denote by CΩ[F ] the set of F -concave functions in Ω.
(3) For i = 1, 2, let Fi be admissible on [0, ai) with ai ∈ (0,∞] and a ∈ (0,min{a1, a2}].

We say that F1-concavity is weaker (resp. strictly weaker) than F2-concavity, or
equivalently that F2-concavity is stronger (resp. strictly stronger) than F1-concavity,
in AΩ(a) if

CΩ[F2] ∩ AΩ(a) ⊂ CΩ[F1] (resp. CΩ[F2] ∩ AΩ(a) ( CΩ[F1] ∩AΩ(a)).

As a typical example of F -concavity, we introduce α-concavity, where α ∈ R. Define
an admissible function Φα on [0,∞) by

Φα(r) :=





1

α
(rα − 1) for r > 0 if α 6= 0,

log r for r > 0 if α = 0,

−∞ for r = 0.

We refer to Φα-concavity as α-concavity. Note that 0-concavity corresponds to log-
concavity. We also define ±∞-concavity as follows.

Definition 1.2. A nonnegative function f in Ω is ∞-concave (resp.−∞-concave) if

f(cτ ) ≥ max{f(c0), f(c1)} (resp. f(cτ ) ≥ min{f(c1), f(c1)})

for all τ ∈ (0, 1) and minimal geodesic c : [0, 1] → Ω with f(c0), f(c1) > 0.
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We often refer to −∞-concavity as quasi-concavity. Power concavity is a generic term
for α-concavity with α ∈ [−∞,∞] and it possesses the following property via Jensen’s
inequality.

• For any α, β ∈ [−∞,∞] with β ≤ α, an α-concave function in Ω is β-concave in Ω.

This property establishes a hierarchy among power concavities and quasi-concavity is the
weakest one while ∞-concavity is the strongest one. Furthermore, an F -concave function
is quasi-concave and an ∞-concave function is F -concave for every admissible function F .
Thus quasi-concavity (resp.∞-concavity) remains the weakest (resp. strongest) conceiv-
able concavity. Since both concavities do not posses any corresponding admissible func-
tions, we use the expression F -concavity when we consider all the F -concave functions
jointly with quasi-concave and ∞-concave functions. Then F -concavity is the largest
available generalization of concavity on Rn.

We define the notion of the preservation of F -concavity by DHF.

Definition 1.3. Denote by et∆Ωφ the unique nonnegative and minimal solution to prob-
lem (H). We say that F -concavity is preserved by DHF in Ω if, for any bounded and
F -concave function φ in Ω, et∆Ωφ is F -concave in Ω for every t > 0.

Note that the maximum principle for problem (H) implies that

et∆Ωφ ∈ AΩ(a) ∩ L
∞(Ω) holds for every t > 0 if φ ∈ AΩ(a) ∩ L

∞(Ω),

where a ∈ (0,∞].
Now we are ready to state our main result, which gives our negative answer to ques-

tion (Q).

Theorem 1.4. If some F -concavity is preserved by DHF in Ω, then the sectional curvature

is identically zero on Ω.

Thus no concavity properties are preserved by the Dirichlet heat flow in a curved
totally convex domain. While at the same time there are several notions of convexity
for sets and concavity of functions due to the non-uniqueness of minimal geodesics so
that there is room to answer question (Q) with other notions. Recall that a subset A
of M is totally convex if any minimal geodesic in M joining two points in A also lies
in A. On one hand, as for a stronger convexity, A is strongly convex if for any two
points in A there exists a unique minimal geodesic joining them in M and the geodesic
is contained in A (see e.g. [29, Definition IV.5.1]). On the other hand, as for a weaker
one, A is convex if every two points in A there is a minimal geodesic joining them which
entirely belongs to A (see e.g. [4, Definition 3.6.5]). Theorem 1.4 obviously holds for
strongly convex domains and also for convex domains since any open convex set is totally
convex. We can also discuss weak F -concavity. Recall that a function f in a convex
is weakly F -concave in A if for any two points in A there exists at least one minimal
geodesic c : [0, 1] → A joining them such that (1.1) holds (see e.g. [31, Definition 16.1]).
The weak ±∞-concavity is also defined in a similar way. Then F -concavity and weak
F -concavity are equivalent to each other in a strongly convex domain but not necessarily
in a totally convex domain. In addition, the preservation of F -concavity by DHF in a
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totally convex domain may not always imply that of weak F -concavity and vice versa.
However, with our method, Theorem 1.4 holds even if we replace F -concavity with weak
F -concavity (see Theorem 4.2). Thus our answer to question (Q) is still negative even if
we treat strongly convex domains, convex domains, and weak F -concavity. There is still
another notion of concavity for functions. As mentioned before, the Prékopa–Leindler
inequality plays an important role in the proof of the preservation of log-concavity in Rn

and there is a Riemannian version of the Prékopa–Leindler inequality inequality (see
e.g. [31, Theorem 19.16]). The Prékopa–Leindler inequality on a Riemannian manifold
incorporates a distortion coefficient, not linear coefficients, due to the curvature of a
Riemannian manifold, which suggests the possibility of affirmative to question (Q) with
the definition of concavity involving distortion coefficients.

We explain the strategy of the proof of Theorem 1.4. Assume that F -concavity is
preserved by DHF in Ω. We apply similar transformation of the heat equation on Rn to
prove that F -concavity is also preserved by DHF in Rn (see Proposition 3.1). In this step
we require delicate approximations of DHF. Next, we apply the arguments in [17] to obtain
a characterization of F -concavity, and we deduce that log-concavity is also preserved by
DHF in Ω (see Proposition 3.5). Finally, we employ the arguments in [8] (see Lemma 4.1)
to find a log-concave initial data for which the corresponding solution to problem (H) is
not log-concave for some t > 0 if the sectional curvature does not vanish on Ω. Then we
see that no F -concavity is preserved by DHF in Ω unless the sectional curvature vanishes
everywhere on Ω, and complete the proof of Theorem 1.4.

The rest of this paper is organized as follows. Section 2 concerns with the notation and
some properties of F -concavity. Section 3 is devoted to a characterization of F -concavity
preserved by DHF in totally convex domains of a Riemannian manifold. In Section 4 we
prove Theorem 1.4. Furthermore, we obtain non-preservation of weak F -concavity.

2. Preliminary

In this section we fix our notation and recall some properties of F -concavity. Through-
out this paper, let n ≥ 2 andM = (M, g) be a complete, connected, smooth n-dimensional
Riemannian manifold without boundary. We denote by x1, . . . , xn the natural coordinate
functions of Rn. For o ∈ M and r > 0, let BM

o (r) denotes the open ball in M centered
at o of radius r. Let 1E denote the characteristic function of a set E.

Let us first recall some expressions in terms of a coordinate system (U, ξ) in M . As
usual, setting

Rijkℓ := g

(
∂

∂ξi
, D ∂

∂ξℓ

(
D ∂

∂ξk

∂

∂ξj

)
−D ∂

∂ξk

(
D ∂

∂ξℓ

∂

∂ξj

))
for i, j, k, ℓ = 1, . . . , n,

where D is the Levi-Civita connection of M , we have Rijkℓ = −Rjikℓ = −Rijℓk = Rkℓij.
The coordinate expression of the gradient vector field, Hessian, and the Laplacian of a
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smooth function f on U are given by

∇Mf =

n∑

i,j=1

gij
∂f

∂ξj
∂

∂ξi
,

HessM f

(
∂

∂ξi
,
∂

∂ξj

)
=

∂2f

∂ξi∂ξj
−

n∑

k=1

Γkij
∂f

∂ξk
for i, j = 1, . . . , n,

∆Mf =
n∑

i,j=1

gij

(
∂2f

∂ξi∂ξj
−

n∑

k=1

Γkij
∂f

∂ξk

)
,

respectively. If (U, ξ) is a normal coordinate system at o determined by the orthonormal
basis e1, . . . , en for ToM , then, for i, j, k = 1, . . . , n, we have

ei =
∂

∂ξi

∣∣∣∣
o

,

gij = g

(
∂

∂ξi
,
∂

∂ξj

)
= δij +

1

3

n∑

k,ℓ=1

Rikjℓ(o)ξ
kξℓ +O(|ξ|3),

gij = δij −
1

3

n∑

k,ℓ=1

Rikjℓ(o)ξ
kξℓ +O(|ξ|3),

Γkij =
1

3

n∑

ℓ=1

(Riℓkj(o) +Rjℓki(o)) ξ
ℓ +O(|ξ|2),

(2.1)

as ξ → 0, which in turn yields gij(o) = gij(o) = δij and Γkij(o) = 0 (see e.g. [29, Proposi-
tion II 3.1]). For distinct i, j = 1, . . . , n, −Rijij(o) is the sectional curvature of the tangent
plane spanned by ei and ej .

Next, we introduce hot-concavity (see [17]).

Definition 2.1. Let H : (0, 1) → R be the inverse function of

(
e∆R1[0,∞)

)
(s) = (4π)−

1
2

∫ ∞

0

e−
(s−s′)2

4 ds′ for s ∈ R.

Given a ∈ (0,∞], we define an admissible function Ha on [0, a) by

Ha(r) :=





H(a−1r) for r ∈ (0, a) if a > 0,

log r for r ∈ (0, a) if a = ∞,

−∞ for r = 0.

Hot-concavity is a generic term for Ha-concavity with a ∈ (0,∞].

We recall a result on a characterization of F -concavity preserved by DHF in convex
domains of Rn.
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Proposition 2.2 ([17, Theorem 1.5, Theorem 5.2]). Let Ω be a convex domain of Rn.

Let F be admissible on [0, a) with a ∈ (0,∞] and assume that F -concavity is preserved by

DHF in Ω.

(1) F -concavity is weaker than Ha-concavity and stronger than log-concavity in AΩ(a).
(2) If a function f is F -concave in Ω, then so is εf for ε ∈ (0, 1).
(3) If F -concavity is strictly weaker than log-concavity in AΩ(a), then there exists a

bounded continuous function φ on Ω with the following properties:

• φ is F -concave in Ω and φ = 0 on ∂Ω if ∂Ω 6= ∅;
• et∆Ωφ is not quasi-concave in Ω for some t > 0.

Proposition 2.2 (1) together with the following lemma implies that if an admissible
function F satisfies limr→0+ F (r) > −∞, then F -concavity is not preserved by Dirichlet
heat flow in Rn. Note that limr→+0Ha(r) = −∞.

Lemma 2.3 ([17, Lemma 2.7]). Let F1 and F2 be admissible on I = [0, a) with a ∈ (0,∞].
If F1-concavity is weaker than F2-concavity in ARn(a) and limr→+0 F2(r) = −∞, then

limr→+0 F1(r) = −∞.

The following lemmas are shown similarly to the argument for [17, Lemma 2.6] and
[17, Lemma 2.10], respectively. We omit the proofs.

Lemma 2.4. Let F1 and F2 be admissible on [0, a) with a ∈ (0,∞]. For a totally convex

domain Ω of M ,

CΩ[F2] ⊂ CΩ[F1] if and only if CR[F2] ⊂ CR[F1].

Similarly, any weakly F2-concave function in Ω is weakly F1-concave in Ω if and only if

CR[F2] ⊂ CR[F1].

Lemma 2.5. Let Ω be a totally convex domain Ω of M . For any bounded log-concave

(resp. weakly log-concave) function f in Ω, there exists a sequence {fa}a>0 such that fa is

Ha-concave (resp. weakly Ha-concave) in Ω and lima→∞ fa = f uniformly on Ω.

3. Characterization of F -concavity preserved by DHF

In this section we give a characterization of F -concavity preserved by DHF in convex
domains. Throughout the rest of this paper, let Ω be a totally convex domain of M and
F an admissible on [0, a) with a ∈ (0,∞] unless otherwise indicated. Recall that, given
nonnegative φ ∈ L∞(Rn),

(et∆Rnφ)(x) = (4πt)
n
2

∫

Rn

e−
|x−y|2

4t φ(y) dy for (x, t) ∈ Rn × (0,∞).

We first prove that the preservation of F -concavity by DHF in Ω implies that in Rn.

Lemma 3.1. If F -concavity is not preserved by DHF in Rn and limr→+0 F (r) = −∞,

then neither F -concavity nor weak F -concavity is preserved by DHF in Ω.
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Proof. We first assume that F -concavity is not preserved by DHF in Rn, that is, there
exists ψ ∈ CRn [F ] ∩ L∞(Rn) such that

F
(
(et∗∆Rnψ)((1− τ)y + τz)

)
< (1− τ)F

(
(et∗∆Rnψ)(y)

)
+ τF

(
(et∗∆Rnψ)(z)

)

for some y, z ∈ Rn, t∗ > 0, and τ ∈ (0, 1). Without loss of generality, we can assume that
y, z and the origin are on the same straight line.

Let r∗ > 0 be such that ψ∗ = ψ 1BRn

0 (r∗) is F -concave in Rn and

F
(
(et∗∆Rnψ∗)((1− τ)y + τz)

)
< (1− τ)F

(
(et∗∆Rnψ∗)(y)

)
+ τF

(
(et∗∆Rnψ∗)(z)

)
. (3.1)

Since eF (ψ∗) is log-concave in Rn, the preservation of log-concavity together with the strong
maximum principle and the smoothing effect by the heat flow in Rn implies that

log
(
et∆RneF (ψ∗)

)
is smooth and concave in Rn for every t > 0. (3.2)

Furthermore, by the fact that

lim
t→+0

∥∥et∆RneF (ψ∗) − eF (ψ∗)
∥∥
L2(K)

= 0 for all compact sets K of Rn,

we find a sequence {εm}m∈N such that limm→∞ εm = 0 and

lim
m→∞

(
eεm∆RneF (ψ∗)

)
(x) = eF (ψ∗(x)) for almost all x ∈ Rn. (3.3)

Now we assume that limr→+0 F (r) = −∞, and set

ψm(x) := F−1
(
log
((
eεm∆RneF (ψ∗)(x)

))
− εm|x|

2)
)

for x ∈ Rn.

Then ψm is F -concave in Rn. In particular, for any v ∈ Rn, we observe from (3.2) that

HessRn(F ◦ ψm)(v, v) ≤ −2εm|v|
2 in Rn. (3.4)

Since Lebesgue’s dominated convergence theorem with (3.3) implies

lim
m→∞

(
et∆Rnψm

)
(x) = (4πt)−

n
2 lim
m→∞

∫

Rn

exp

(
−
|x− x′|2

4t

)
ψm(x

′) dx′ =
(
et∆Rnψ∗

)
(x)

for (x, t) ∈ Rn × (0,∞), we observe from (3.1) that

F
(
(et∗∆Rnψm)((1− τ)y + τz)

)
< (1− τ)F

(
(et∗∆Rnψm)(y)

)
+ τF

(
(et∗∆Rnψm)(z)

)
(3.5)

for every large enough m ∈ N. We fix such m. For x ∈ Rn, we calculate

∣∣(∇Rneεm∆RneF (ψ∗)
)
(x)
∣∣ ≤ (4πεm)

−n
2

2εm

∫

BRn

0 (r∗)

|x− x′| exp

(
−
|x− x′|2

4εm

)
eF (ψ(x′)) dx′

≤
(4πεm)

−
n
2

2εm
(|x|+ r∗)

∫

BRn

0 (r∗)

exp

(
−
|x− x′|2

4εm

)
eF (ψ(x′)) dx′

=
|x|+ r∗
2εm

(
eεm∆RneF (ψ∗)

)
(x),

which yields

|∇Rn(F ◦ ψm)(x)| =
∣∣(∇Rn log

(
eεm∆RneF (ψ∗)

))
(x)− 2εmx

∣∣ ≤ |x|+ r∗
2εm

+ 2εm|x|. (3.6)
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Fix o ∈ Ω and choose r > 0 such that BM
o (r) is strongly convex with BM

o (r) ⊂ Ω.
Then BM

o (r) becomes a normal neighborhood of o. Since all the Christoffel symbols for
the normal coordinate system (BM

o (r), ξ) vanish at o, the quantity

Λ(r) := sup
p∈BM

o (r)

max
1≤k≤n

{
the operator norm of the matrix [Γkij(p)]1≤i,j≤n

}

goes to 0 as r → +0. For λ > 1, define φλ : Ω → R by

φλ(p) :=

{
ψm(λξ(p)) for p ∈ BM

o (r),

0 otherwise.

By the strong convexity of BM
o (r) φλ is F -concave in Ω if and only if φλ is F -concave

in BM
o (r), which is equivalent to the nonpositive definiteness of HessM(F ◦ φλ) in B

M
o (r).

For p ∈ BM
o (r), it follows from (3.4) and (3.6) that

HessM(F ◦ φλ)

(
n∑

i=1

vi
∂

∂ξi

∣∣∣∣
p

,

n∑

j=1

vj
∂

∂ξj

∣∣∣∣
p

)

= λ2HessM(F ◦ ψm)|λξ(p)(v, v)− λ

n∑

i,j,k=1

Γkij(p)v
ivj
∂(F ◦ ψm)

∂xk
(λξ(p))

≤ −2λ2εm|v|
2 + λΛ(r)|v|2

(
λr + r∗
2εm

+ 2εmλr

)

< −2λ2εm|v|
2

[
1− Λ(r)

(
r + r∗
4ε2m

+ r

)]

for v = (v1, . . . , vn) ∈ Rn. This is negative if r > 0 is small enough since Λ(r) → 0 as
r → +0. We fix such r > 0 determined independent of λ > 1.

For i, j, k = 1, . . . , n, define the functions ãijλ and b̃kλ on BRn

0 (λr) by

ãijλ (x) := gij(ξ−1(λ−1x)), b̃kλ(x) := λ−1

n∑

i,j=1

gij(ξ−1(λ−1x))Γkij(ξ
−1(λ−1x)),

for x ∈ BRn

0 (λr). Setting

uλ(p, t) :=
(
et∆Ωφλ

)
(p) for (p, t) ∈ Ω× (0,∞),

ũλ(x, t) := uλ(ξ
−1(λ−1x), λ−2t) for (x, t) ∈ BRn

0 (λr)× (0,∞),

we see that




∂

∂t
ũλ =

n∑

i,j=1

ãijλ
∂2

∂xi∂xj
ũλ −

n∑

k=1

b̃kλ
∂

∂xk
ũλ in BRn

0 (λr)× (0,∞),

ũλ(·, 0) = ψm in BRn

0 (λr).
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Thanks to parabolic regularity theorem and the Ascoli–Arzelá theorem, applying the
diagonal argument, we find a sequence {λℓ}ℓ∈N ⊂ (0,∞) with limℓ→∞ λℓ = ∞ such that

lim
ℓ→∞

ũλℓ(x, t) = (et∆Rnψm)(x)

uniformly for all compact sets in Rn × (0,∞). This together with (3.5) implies that

F (ũλℓ((1− τ)y + τz, t∗)) < (1− τ)F (ũλℓ(y, t∗)) + τF (ũλℓ(z, t∗)) (3.7)

for every large enough ℓ ∈ N with λ−1
ℓ y, λ−1

ℓ z ∈ BRn

0 (r). Since y, z, and the origin are on
the same straight line,

τ 7→ ξ−1
(
(1− τ)λ−1

ℓ y + τλ−1
ℓ z
)
∈ BM

o (r) for τ ∈ [0, 1]

forms a unique minimal geodesic from ξ−1(λ−1
ℓ y) to ξ−1(λ−1

ℓ z). Thus, by (3.7) uλℓ(·, λ
−2
ℓ t∗)

is not weakly F -concave in Ω hence neither F -concavity nor weakly F -concavity is pre-
served by DHF in Ω. Thus Lemma 3.1 follows. �

We modify the argument in the proof of Lemma 3.1 to prove the following two lemmas.

Lemma 3.2. Assume that F -concavity is strictly weaker than log-concavity in ARn(a).
Then there exists φ ∈ CΩ[F ]∩L

∞(Ω) such that et∗∆Ωφ is not weakly quasi-concave in Ω for

some t∗ > 0. In particular, neither quasi-concavity nor weak quasi-concavity is preserved

by DHF in Ω.

Proof. Assume that F -concavity is strictly weaker than log-concavity in ARn(a). It follows
from Lemma 2.3 that

lim
r→+0

F (r) = −∞.

By Proposition 2.2 (3) we find ψ ∈ CRn [F ] ∩ L∞(Rn) such that
(
et∗∆Rnψ

)
((1− τ)y + τz) < min

{(
et∗∆Rnψ

)
(y),

(
et∗∆Rnψ

)
(z)
}

(3.8)

for some y, z ∈ Rn, τ ∈ (0, 1), and t∗ > 0. Without loss of generality, we can assume that
y, z and the origin are on the same straight line. Then we apply the same argument as
in the proof of Lemma 3.1 to define F -concave functions {φλ}λ>1. Furthermore, by (3.8)
we find a sequence {λℓ}ℓ∈N such that

(
et∆Ωφλℓ

) (
ξ−1

(
(1− τ)λ−1

ℓ y + τλ−1
ℓ z
))

< min
{(
et∆Ωφλℓ

) (
ξ−1(λ−1

ℓ y)
)
,
(
et∆Ωφλℓ

) (
ξ−1(λ−1

ℓ z)
)} (3.9)

for every large enough ℓ ∈ N with λ−1
ℓ y, λ−1

ℓ z ∈ BRn

0 (r), where (BM
o (r), ξ) is a normal

coordinate system at o. Then, similarly to the proof of Lemma 3.1, we obtain the desired
conclusion. �

Lemma 3.3. Assume limr→+0 F (r) > −∞. Then there exists ∞-concave function φ in Ω
such that ‖φ‖L∞(Ω) < a and et∗∆Ωφ is not weakly F -concave in Ω for some t∗ > 0. In

particular, neither ∞-concavity nor weak ∞-concavity is preserved by DHF in Ω.
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Proof. Let a′ ∈ (0, a) and set ψ := a′1BRn
o (1). Then ψ is∞-concave in Rn. Since (e∆Rnψ)(x)

vanishes at infinity, we find x∗ ∈ Rn such that

(e∆Rnψ)(0) > (e∆Rnψ)(x∗).

This together with the strict monotonicity of F yields

F ((e∆Rnψ)(0)) > F ((e∆Rnψ)(x∗)).

If e∆Rnψ ∈ CRn [F ], then the function f in [0,∞) defined by

f(s) := F (e∆Rnψ(sx∗)) for s ∈ [0,∞)

is concave in [0,∞). Then we see that

−∞ = lim
s→∞

f(s) = lim
r→+0

F (r) > −∞,

which is a contradiction. Thus e∆Rnψ /∈ CRn [F ] and there exist y, z ∈ Rn and τ ∈ (0, 1)
such that

F
(
(e∆Rnψ)((1− τ)y + τz)

)
< (1− τ)F

(
(e∆Rnψ)(y)

)
+ τF

(
(e∆Rnψ)(z)

)
. (3.10)

Then we apply the same argument as in the proof of Lemma 3.1 to define ∞-concave
functions {φλ}λ>1 in Ω by using ψ instead of ψm. Furthermore, by (3.10) we have the
same inequality as (3.7) and obtain the desired conclusion. �

Combining these three lemmas, we have the following proposition.

Proposition 3.4. If either F -concavity or weak F -concavity is preserved by DHF in Ω,
then F -concavity is preserved by DHF in Rn.

Next, we show that the preservation of F -concavity implies that of log-concavity.

Proposition 3.5. Assume that some F -concavity (resp. weak F -concavity) is preserved

by DHF in Ω. Then log-concavity (resp. weak log-concavity)is preserved by DHF in Ω.

Proof. Assume that some F -concavity (resp.weak F -concavity) is preserved by DHF in Ω.
Then F |[0,a′)-concavity (resp.weak F |[0,a′)-concavity) is also preserved by DHF in Ω for any
a′ ∈ (0, a) hence we can assume a ∈ (0,∞). By Proposition 3.1 we find that F -concavity
is preserved by DHF in Rn. We observe from Proposition 2.2 (1) and Lemma 2.4 that
F -concavity is weaker than Ha-concavity and stronger than log-concavity in AΩ(a).

Let f be a bounded log-concave (resp.weakly log-concave) function in Ω. By Lemma 2.5
we find a sequence {fb}b>0 such that fb is Hb-concave (resp.weakly Hb-concave) in Ω and
limb→∞ fb = f uniformly on Ω. For b ∈ (a,∞), set εb := ab−1 ∈ (0, 1). By definition we
have

Ha(εbfb) = H(a−1εbfb) = H(b−1fb) = Hb(fb) in Ω.

Thus εbfb isHa-concave (resp.weakly Ha-concave) in Ω hence also F -concave (resp.weakly
F -concave). Furthermore, the preservation of F -concavity (resp.weak F -concavity) by
DHF in Ω implies that et∆Ω (εbfb) = εbe

t∆Ωfb is F -concave (resp.weakly F -concave) in Ω
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for every t > 0. We observe from the property CRn [F ] ⊂ CRn [Φ0] with Lemma 2.4 that
εbe

t∆Ωfb is log-concave (resp.weak log-concavity) in Ω for every t > 0. This implies that

log
((
et∆Ωfb

)
(cτ )

)
≥ (1− τ) log

((
et∆Ωfb

)
(c0)
)
+ τ log

((
et∆Ωfb

)
(c1)
)

for any (resp. some) minimal geodesic c : [0, 1] → Ω joining any two points in Ω and
τ ∈ (0, 1). Letting b→ ∞, we have

log
((
et∆Ωf

)
(cτ )

)
≥ (1− τ) log

((
et∆Ωf

)
(c0)
)
+ τ log

((
et∆Ωf

)
(c1)

)
,

that is, log-concavity (resp.weak log-concavity) is preserved by DHF in Ω. Thus the
proposition follows. �

4. Proof of Theorem 1.4

In this section we discuss the non-preservation of log-concavity and weak log-concavity
by DHF in Ω, and complete the proof of Theorem 1.4. We employ the arguments of [8,
Lemma 3.1] with parabolic regularity theorems to prepare the following lemma.

Lemma 4.1. Fix o ∈ Ω. Let δ > 0 be such that BM
o (δ) is strongly convex and BM

o (δ) ⊂ Ω.
Assume that there exist a bounded, smooth function ψ on BM

o (δ) and v ∈ ToM with the

following three properties:

(C1) ψ is concave in BM
o (δ);

(C2) HessM ψ(v, v) = 0;
(C3) HessM(∆Mψ + g(∇Mψ,∇Mψ))(v, v) > 0.

Then φ := eψ1BM
o (δ) is bounded and log-concave in Ω. Furthermore, et∆Ωφ is not weakly

log-concave in Ω for every small enough t > 0.

Proof. It follows from (C1) that φ is bounded and log-concave in Ω. Notice that

∆Mψ + g(∇Mψ,∇Mψ) = φ−1∆Mφ in BM
o (δ).

Applying parabolic regularity theorems (see [26, Chapters III and IV], in particular, [26,
Chapter IV, Theorem 10.1]), we see that et∆Ωφ is C4,σ;,2,σ/2-smooth in Bδ(o)× [0,∞) for
some σ ∈ (0, 1). Then it follows from (C3) that

d

dt
HessM

(
log et∆Ωφ

)
(v, v)

∣∣∣∣
t=0

= HessM

(
∂

∂t
log et∆Ωφ

)
(v, v)

∣∣∣∣
t=0

= HessM

((
et∆Ωφ

)−1 ∂

∂t
et∆Ωφ

)
(v, v)

∣∣∣∣
t=0

= HessM

((
et∆Ωφ

)−1
∆Me

t∆Ωφ
)
(v, v)

∣∣∣∣
t=0

= HessM
(
φ−1∆Mφ

)
(v, v) > 0.

This together with (C2) implies that

HessM
(
log et∆Ωφ

)
(v, v) > 0
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for every small enough t > 0 hence et∆Ωφ is not weakly log-concave in Ω for every small
enough t > 0. This completes the proof. �

Now we are ready to complete the proof of Theorem 1.4.

Proof of Theorem 1.4. Assume that the sectional curvature does not vanish at o ∈ Ω. Fix
r > 0 such that BM

o (r) is strongly convex and BM
o (r) ⊂ Ω. Let ξ be a normal coordinate

map on BM
o (r) determined by the orthonormal basis e1, . . . , en for ToM such that the

sectional curvature of some tangent plane containing e1 is not zero. By the symmetry of
[R1i1j(o)]2≤i,j≤n we can assume that e2, . . . , en are eigenvectors of [R1i1j(o)]2≤i,j≤n hence

R1i1j(o) = −κiδij for i, j = 1, . . . , n,

where κ1 = 0 and κi is the sectional curvature of the tangent plane spanned by e1 and ei
for i = 2, . . . , n. Set

I+ := {i = 2, . . . , n | κi > 0}.

By the assumption we find I+ 6= ∅. Let C > 0 satisfy

Cg(v, v) +
1

2

∑

k∈I+

HessM Γk11(v, v) ≥ 0 for v ∈ ToM,

(n− 1)·

(
κi1I+(i) + n

3
2 max
1≤k,ℓ≤n

|R1ℓki(o)|

)2

≤ C for i = 2, . . . , n.

For λ > 0 to be specified later, define a bounded, smooth function ψ on BM
o (r) by

ψ(p) := 2λ

n∑

i∈I+

ξi(p)− λ2
n∑

i=2

ξi(p)2 +
2

3
λξ1(p)2

n∑

i∈I+

κiξ
i(p)

− ξ1(p)2
[
C(1 + λ)|ξ(p)|2 + λ2

n∑

i∈I+

κiξ
i(p)2

]
for p ∈ BM

o (r).

For i = 2, . . . , n, we calculate that

∂ψ

∂ξi
(o) = 2λ1I+(i),

∂2ψ

∂(ξi)2
(o) = −2λ2,

∂3ψ

∂(ξ1)2∂ξi
(o) =

4

3
λκi1I+(i),

∂4ψ

∂(ξ1)2∂(ξi)2
(o) = −4

[
C(1 + λ) + λ2κi1I+(i)

]
,

∂4ψ

∂(ξ1)4
(o) = −24C(1 + λ),

and all the other partial derivatives of ψ at o are zero. In particular, we have

[HessM ψ(ei, ej)]1≤i,j≤n =

[
∂2ψ

∂ξi∂ξj
(o)

]

1≤i,j≤n

= diag[0,−2λ2, . . . ,−2λ2],

which implies that ψ satisfies (C2) for v = e1.
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We show that there exists δ ∈ (0, r) such that ψ satisfies (C1), that is,

H(τ) = [hij(τ)]1≤i,j≤n :=

[
HessM ψ

(
∂

∂ξi
,
∂

∂ξj

)
(expo(τv))

]

1≤i,j≤n

=

[
∂2ψ

∂ξi∂ξj
(expo(τv))−

n∑

k=1

Γkij(expo(τv))
∂ψ

∂ξk
(expo(τv))

]

1≤i,j≤n

is nonpositive definite for any unit tangent vector v at o and τ ∈ [0, δ). Thanks to

H(0) = diag[0,−2λ2, . . . ,−2λ2],

it is enough to show

(−1)n−1 d

dτ
detH(τ)

∣∣∣∣
τ=0

= 0, (4.1)

(−1)n−1 d
2

dτ 2
detH(τ)

∣∣∣∣
τ=0

< 0. (4.2)

We denote by H̃(τ) = [h̃ij(τ)]1≤i,j≤n the adjugate matrix of H(τ). Then we have

H̃(0) = diag[(−2λ2)n−1, 0, . . . , 0]

and deduce from Jacobi’s formula that

d

dτ
detH(τ)

∣∣∣∣
τ=0

= tr
(
H̃(τ)H ′(τ)

) ∣∣∣∣
τ=0

= (−2λ2)n−1h′11(0),

d2

dτ 2
detH(τ)

∣∣∣∣
τ=0

= tr
(
H̃(0)H ′′(0)

)
+ tr

(
H̃ ′(0)H ′(0)

)

= (−2λ2)n−1h′′11(0) +

n∑

i,j=1

h̃′ij(0)h
′
ji(0).

By the Taylor expressions of the Christoffel symbols (see (2.1)) we compute

Γk11(o) = 0,
∂Γk11
∂ξℓ

(o) =
1

3

n∑

ℓ=1

(R1ℓk1(o) +R1ℓk1(o)) =
2

3
κkδkℓ for k, ℓ = 1, . . . , n

hence

h′11(0) =
n∑

ℓ=1

∂

∂ξℓ

(
∂2ψ

∂(ξ1)2
−

n∑

k=1

Γk11
∂ψ

∂ξk

) ∣∣∣∣
o

vℓ =
4

3
λ
∑

ℓ∈I+

κℓv
ℓ −

4

3
λ
∑

k∈I+

κkv
k = 0,
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which shows (4.1). Let us next prove (4.2). A direct computation with the definition of
C > 0 gives

h′′11(0) =

n∑

ℓ,m=1

∂2

∂ξℓ∂ξm

(
∂2ψ

∂(ξ1)2
−

n∑

k=1

Γk11
∂ψ

∂ξk

) ∣∣∣∣
o

vℓvm

=
n∑

ℓ,m=1

∂4ψ

∂(ξ1)2∂ξℓ∂ξm
(o)vℓvm

− 2
n∑

k,ℓ,m=1

∂Γk11
∂ξℓ

(o)
∂2ψ

∂ξk∂ξm
(o)vℓvm −

n∑

k=1

HessM Γk11(v, v)
∂ψ

∂ξk
(o)

=− 4


5C(1 + λ)(v1)2 + C(1 + λ)g(v, v) + λ2

n∑

ℓ∈I+

κℓ(v
ℓ)2




+
8

3
λ2

n∑

k=2

κk(v
k)2 − 2λ

∑

k∈I+

HessM Γk11(v, v)

=− 4C
[
5(1 + λ)(v1)2 + g(v, v)

]

+
4

3
λ2

n∑

i=2

κi
(
2− 31I+(i)

)
(vi)2 − 4λ


Cg(v, v) + 1

2

∑

k∈I+

HessM Γk11(v, v)




≤− 4C
[
5(1 + λ)(v1)2 + g(v, v)

]

≤− 4C,

(4.3)

where the inequality follows from the property κi(2 − 31I+(i)) ≤ 0 for i = 2, . . . , n. To

compute tr(H̃ ′(0)H ′(0)), we observe from (4.1) that

H(0)H̃ ′(0) +H ′(0)H̃(0) =
d

dτ

(
H(τ)H̃(τ)

) ∣∣∣∣
τ=0

=
d

dτ
(detH(τ)En)

∣∣∣∣
τ=0

= On.

By the properties H(0) = diag[0,−2λ2, . . . ,−2λ2] and H̃(0) = diag[(−2λ2)n−1, 0, . . . , 0]

this implies that h̃′ij(0) 6= 0 happens only for either i = 1 or j = 1 hence

n∑

i,j=1

h̃′ij(0)h
′
ji(0) =

n∑

j=2

h̃′1j(0)h
′
j1(0) +

n∑

i=2

h̃′i1(0)h
′
1i(0) = 2

n∑

i=2

h̃′i1(0)h
′
1i(0),

where we used h′11(0) = 0 in the first equality and the symmetry of H(τ) and H̃(τ) in the
last equality. Let i = 2, . . . , n. We observe from the cofactor expansion and the property
H(0) = diag[0,−2λ2, . . . ,−2λ2] that

h̃′i1(0) = (−1)1+i · (−2λ2)n−2 · (−1)i−2 · h′1i(0) = (−1)n−1 · (2λ2)n−2 · h′1i(0).
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We also find

h′1i(0) =
n∑

ℓ=1

∂

∂ξℓ

(
∂2ψ

∂ξ1∂ξi
−

n∑

k=1

Γk1i
∂ψ

∂ξk

)∣∣∣∣
o

vℓ

=
4

3
λκi1I+(i)v

1 −
2

3
λ

n∑

k,ℓ=1

(R1ℓki(o) + Riℓk1(o))1I+(k)v
ℓ,

which yields

|h′1i(0)| ≤
4

3
λ

(
κi1I+(i) + n

3
2 max
1≤k,ℓ≤n

|R1ℓki(o)|

)
|v| ≤

4

3
λ

√
C

n− 1
.

Combining this with (4.3), we obtain

(−1)n−1 d
2

dτ 2
detH(τ)

∣∣∣∣
τ=0

= (2λ2)n−1h′′11(0) + (2λ2)n−2 · λ−2
n∑

i=2

h′1i(0)
2

≤ (2λ2)n−1 ·

(
−4C +

16

9
C

)
< 0,

which leads to (4.2). Thus ψ satisfies (C1) for every small enough δ > 0.
Let us verify (C3) for v = e1, and complete the proof of Theorem 1.4. We compute

HessM(∆Mψ + g(∇Mψ,∇Mψ))(e1, e1)

=
∂2

∂(ξ1)2

[
n∑

i,j=1

gij
(

∂2ψ

∂ξi∂ξj
+
∂ψ

∂ξi
∂ψ

∂ξj
−

n∑

k=1

Γkij
∂ψ

∂ξk

)] ∣∣∣∣
o

=

n∑

i,j=1

∂2gij

∂(ξ1)2
(o)

(
∂2ψ

∂ξi∂ξj
(o) +

∂ψ

∂ξi
(o)

∂ψ

∂ξj
(o)

)

+
n∑

i=1

∂2

∂(ξ1)2

[
∂2ψ

∂(ξi)2
+

(
∂ψ

∂ξi

)2

−
n∑

k=1

Γkii
∂ψ

∂ξk

]∣∣∣∣
o

=
2

3

n∑

i=1

κi(−2λ2 + 4λ21I+(i))

− 4

[
C(n + 5)(1 + λ) + λ2

∑

i∈I+

κi

]
+

16

3
λ2
∑

i∈I+

κi − 2λ
∑

k∈I+

n∑

i=1

HessM Γkii(e1, e1)

=
4

3
λ2

n∑

i=1

κi(−1 + 31I+(i))− 4λ

[
C(n + 5) +

1

2

∑

k∈I+

n∑

i=1

HessM Γkii(e1, e1)

]
− 4C(n+ 5),

where we used the properties (see (2.1))

gij(o) = δij ,
∂gij

∂ξ1
(o) = 0,

∂gij

∂(ξ1)2
(o) = −

2

3
Ri1j1 =

2

3
κiδij, for i, j = 1, . . . , n.
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Since κi(−1 + 31+(i)) ≥ 0 with equality if and only if κi = 0, we observe from the
assumption I+ 6= ∅ that HessM(∆Mψ + g(∇Mψ,∇Mψ))(e1, e1) is a quadratic function
of λ and there exists λ > 0 such that

HessM(∆Mψ + g(∇Mψ,∇Mψ))(e1, e1) > 0,

that is, ψ satisfies (C3) for v = e1. Thus ψ satisfies (C1)–(C3) for v = e1, consequently,
log-concavity is not preserved by DHF in Ω by Lemma 4.1. Then the theorem follows
from Proposition 3.5. �

Similarly, we obtain the following result on a weak F -concavity version of Theorem 1.4.

Theorem 4.2. If some weak F -concavity is preserved by DHF in Ω, then the sectional

curvature is identically zero on Ω.
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