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INHOMOGENEOUS WAVE KINETIC EQUATION AND ITS HIERARCHY IN

POLYNOMIALLY WEIGHTED L∞ SPACES

IOAKEIM AMPATZOGLOU, JOSEPH K. MILLER, NATAŠA PAVLOVIĆ, AND MAJA TASKOVIĆ

Abstract. Inspired by ideas stemming from the analysis of the Boltzmann equation, in this
paper we expand well-posedness theory of the spatially inhomogeneous 4-wave kinetic equation,
and also analyze an infinite hierarchy of PDE associated with this nonlinear equation. More
precisely, we show global in time well-posedness of the spatially inhomogeneous 4-wave kinetic
equation for polynomially decaying initial data. For the associated infinite hierarchy, we construct
global in time solutions using the solutions of the wave kinetic equation and the Hewitt-Savage
theorem. Uniqueness of these solutions is proved by using a combinatorial board game argument
tailored to this context, which allows us to control the factorial growth of the Dyson series.
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1. Introduction

The goal of this paper is to establish global well-posedness results for certain partial differential
equations that appear in the context of wave turbulence, so we start by briefly reviewing some
mathematical results pertaining to wave turbulence.

1.1. A framework of wave turbulence. When faced with a dynamical system containing a
large number of nonlinear interacting waves, instead of considering individual trajectories it is
often helpful to study ensembles. Such a statistical mechanic treatment of the dynamics is what
is usually referred to as wave turbulence, the main topic of which is focused on rigorously deriving
and analyzing an effective equation for the non-equilibrium dynamics of the relevant microscopic
system. While appearance of a wave kinetic equation goes back to works of Peierls in 1920 [41]
and Hasselmann in early 1960s [27, 28], revived interest was inspired, in part, by the influential
work [51] of Zakharov, L’vov and Falkovich in 1992 that uncovered a power-law type stationary
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solutions analogous to the Kolmogorov spectra of hydrodynamic turbulence. For more details, see
for example Nazarenko [39] and Newell-Rumpf [40].

The attention of the mathematical community in wave turbulence has largely focused, so far, on
the derivation of wave kinetic equations starting from dynamics governed by nonlinear dispersive
equations. In a pioneering work [37], Lukkarinen and Spohn obtained a rigorous derivation of a
linearized spatially homogeneous wave kinetic equation from a cubic nonlinear Scrödinger equation
(NLS) at statistical equilibrium, by employing Feynmann diagrams expansions. For 3-wave systems,
linearized wave turbulence convergence results were also obtained by Faou [22]. Regarding the out
of the equilibrium case, starting from a cubic NLS with random data out of equilibrium, emergence
of the 4-wave spatially homogeneous kinetic equation

∂tf = C[f ], (1.1)

with the collision operator defined as in (1.8), has been studied in a sequence of papers [8, 13, 14, 15]
that led to the works of Deng-Hani [16, 17], who obtained a derivation up to the kinetic time1

and their recent work [18] where the derivation is obtained as long as the nonlinear wave kinetic
equation (1.1) is well-posed. We would also like to note that starting from a stochastic Zakharov-
Kuznetsov equation (which is a multidimensional generalization of Korteveg-de-Vries equation) with
multiplicative noise, Staffilani-Tran [47] derived the spatially homogeneous 3-wave kinetic equation
up to the kinetic time.

The spatially inhomogeneous wave kinetic equation

∂tf + v · ∇xf = C[f ], (1.2)

with operator C describing interaction of waves, appears in the physics literature [50, 51]. This
type of equation is used for modeling ocean waves [44]. Moreover, Spohn [46] discusses the emer-
gence of an inhomogeneous phonon Boltzmann equation and addresses its connection to nonlinear
waves. The first rigorous derivation result regarding the spatially inhomogeneous wave kinetic
equation was obtained by the first author of this paper, Collot and Germain [5], who derived a
3-wave kinetic equation from quadratic Scrödinger-type nonlinearities. On the other hand, starting
from a stochastic Zakharov-Kuznetsov equation with multiplicative noise, Hannani-Rosenzweig-
Staffilani-Tran [26] derived a spatially inhomogeneous 3-wave kinetic equation up to the kinetic
time. Recently, Hani-Shatah-Zhu [29] derived several inhomogeneous and homogeneous wave ki-
netic equations from the simplified model of the Wick NLS whose main feature is the absence of all
self-interactions in the correlation expansions of its solutions.

Despite exciting activity on the rigorous derivation of wave kinetic equations, to the best of
our knowledge, the analysis of wave kinetic equations themselves has been carried out only in some
instances. For example, we note that Escobedo-Velázquez [21] constructed solutions to the spatially
homogeneous bosonic Nordheim equation that exhibit blow up in finite time. Germain-Ionescu-Tran
[25] proved local well-posedness of the spatially homogeneous 4-wave kinetic equations in L2

v and L∞
v

based spaces. Moreover, Menegaki [38] showed L2-stability near equilibrium, and Collot-Dietert-
Germain [12] showed stability and cascades of the Kolomogorov-Zakharov spectra, all in the cases
of spatially homogeneous equations. On the other hand, for the spatially inhomogeneous equation,
we are aware only of the work the first author of this paper [4], who recently obtained global well-
posedness for the 4-wave kinetic equation in exponentially weighted L∞

x,v spaces, employing classical
tools of the kinetic theory of particles.

1The kinetic time is the relevant time scale for which one expects the system to exhibit a kinetic behavior.
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The aim of this paper is to broaden the analysis of the inhomogeneous 4-wave kinetic equation
and its associated infinite hierarchy of PDE - the inhomogeneous 4-wave kinetic hierarchy. We start
by presenting an overview of the results of this paper. Notation and precise statements of results
are then presented in subsections 1.3 and 1.4.

1.2. Results of this paper in a nutshell.

(1) Inspired by ideas stemming from the analysis of the Boltzmann equation, in this paper we
expand well-posedness theory of the spatially inhomogeneous 4-wave kinetic equation

∂tf + v · ∇xf = C[f ], (1.3)

where the collision operator is defined in (1.8). In particular, we prove existence of a unique
global in time solution to the corresponding integral equation in polynomially weighted L∞

x,v

spaces (see Definition 1.21 for the precise definition of the solution and Theorem 1.4 for
the well-posedness result for the equation). This result is a consequence of a novel a priori
bound (Proposition 2.1), which is motivated by the a priori bound obtained by Toscani
[48] for solutions of the Boltzmann equation. However, in the current context of the wave
kinetic equation (1.3), by exploiting higher order multilinear operators (1.10), we were able
to rely on the integrals with higher order velocity weights (see Lemma A.9). Thanks to
these additional weights, we did not need Carleman-like representation, as was the case for
the Boltzmann equation in [48, 6]

(2) Furthermore, in this paper we also study the spatially inhomogeneous 4-wave kinetic hier-
archy

∂tf
(k) +

k∑

j=1

vk · ∇xk
f (k) = C

(k+2)f (k+2), (1.4)

with C
(k+2) given by (1.29). To the best of our knowledge, this is the first paper that

analyzes a spatially inhomogeneous wave kinetic hierarchy. We note that homogeneous
version of the 4-wave kinetic hierarchy has been studied by Rosenzweig-Staffilani in [43],
who obtained a local in time existence and uniqueness of solutions in polynominally weighted
L∞
v spaces. Also, Deng-Hani [17] derived2 spatially homogeneous 4-wave kinetic hierarchy

based on a derivation of 4-wave kinetic equation and a propagation of chaos for this equation.
The main objects of this paper - the equation (1.3) and the hierarchy (1.4) - are connected

by the fact that the hierarchy (1.4) admits a special class of factorized solutions

f (k)(t,Xk, Vk) =
k∏

j=1

f(t, xj , vj), (1.5)

with each factor f solving the 4-wave kinetic equation (1.3), where Xk = (x1, . . . , xk) and
Vk = (v1, . . . , vk). We note that this factorization is analogous to the relationship between
solutions of the Boltzmann equation and the Boltzmann hierarchy3 [36, 33, 24, 42, 9] as well
as the relationship between solutions of the NLS and the infinite hierarchy that appears in

2This kind of derivation is in contrast to derivations of infinite Boltzmann and Schrödinger hierarchies from
particles systems, where corresponding nonlinear equations are obtained from infinite hierarchies. Instead, in [17],
authors utilize the derivation of nonlinear wave kinetic equation in order to derive associated infinite hierarchy.

3which is an infinite hierarchy of coupled linear equations appearing in a rigorous derivation of the Boltzmann
equation from many particle systems
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the derivation of the NLS from quantum many particle systems, referred to as the Gross-
Pitaevskii hierarchy [19, 20, 10, 11, 45, 34, 3]. In contrast to known derivations of the
Boltzmann and Gross-Pitaevskii hierarchies from many particle systems, the derivation of
the inhomogeneous wave kinetic hierarchy (1.4) is an open problem.

We now summarize main results of this paper pertaining to the spatially inhomogeneous
wave kinetic hierarchy (1.4).
(a) Since in this paper we first establish the existence of global in time solutions to the

wave kinetic equation (1.3), we can use these solutions to construct a global in time
solution of the wave kinetic hierarchy (1.4) for a special class of initial data, the so-
called admissible4 initial data (for the precise statement, see Definition 1.7). This
construction is implemented in a similar fashion as in our recent work [6] on the well-
posedness for the Boltzmann hierarchy. More precisely,

Step 1: Since initial data F0 = (f
(k)
0 )∞k=1 of the wave kinetic hierarchy (1.4) is assumed

to be admissible, by the Hewitt-Savage theorem [30], there is a unique Borel
probability measure π such that F0 can be represented as a convex combination
of tensorized states with respect to π over the set of probability densities P i.e.

f
(k)
0 =

ˆ

P
h⊗k
0 dπ(h0).

It can be shown that the measure π is supported on a set of probability densi-
ties of a space-velocity polynomial decay (see Proposition 3.2 below, which was
proved in [6]).

Step 2: For each h0 in the support of the measure π, by the well-posedness result of
this paper for the wave kinetic equation (see Theorem 1.4), there exists a global
in time solution h(t) to the wave kinetic equation (1.3) of the same polynomial
decay as the initial data. Finally, equipped with these solutions of the wave
kinetic equation, we construct a solution F = (f (k))∞k=1 of the wave kinetic
hierarchy (1.4) as follows:

f (k)(t) :=

ˆ

P
h(t)⊗kdπ(h0), k ∈ N, (1.6)

and prove that it belongs to the class of polynomially weighted L∞
x,v solutions of

(1.4).

Remark 1.1. This two-step proof of existence of solutions to the inhomogeneous wave
kinetic hierarchy (1.4) is different than the proof of existence of solutions to the homo-
geneous wave kinetic hierarchy by Rosenzweig-Staffilani in [43]. Our approach utilizes
the global in time existence of solutions to the corresponding nonlinear equation. In-
deed, as it can be seen in (1.6), our solution to the hierarchy is built from corresponding
solutions to the nonlinear equation (1.3). On the other hand, the work [43] employs
representing a solution of the infinite hierarchy by iterating Duhamel formulas. In our
case, such an iteration is not needed for proving existence of solutions for the infinite
hierarchy (1.4).

(b) We also prove uniqueness of solutions to the wave kinetic hierarchy (1.4). While
existence of solutions to the wave kinetic hierarchy is established in this paper for
admissible initial data, our uniqueness proof does not use admissibility. More precisely,

4In instances of particle systems, admissible data can be thought of as the marginals of a probability density.
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we prove uniqueness of a mild solution (see Definition 1.6) to the wave kinetic hierarchy
(1.4) corresponding to initial data in polynomially weighted L∞

x,v spaces. The main
ingredients of the uniqueness proof are:

(i) an a priori estimate (see Proposition 3.5) for the wave kinetic hierarchy (1.4).
We prove this estimate by adapting to the context of the infinite hierarchy ideas
used to obtain the a priori bound (see Proposition 2.1) for the wave kinetic
equation (1.3);

(ii) a new combinatorial board game argument, inspired by:
• the board game argument introduced by Klainerman and Machedon [35]
in the context of the Gross-Pitaevskii hierarchy corresponding to the cubic
nonlinear Schrödinger equation,

• the adaptation of T. Chen and the third author of this paper [10] of the
board game for the Gross-Pitaevskii hierarchy corresponding to the quntic
NLS, and

• our recent use [6] of board game arguments in the context of the Boltzmann
hierarchy in L∞

x,v-based spaces5.
At the heart of board game arguments is a reorganization of the iterated Duhamel
formulas (which contain a factorial number of terms) into an exponential number
of equivalence classes (see Proposition 3.16 which achieves that6 for hierarchy
(1.4)). We note that this paper presents the first application of a board game
argument in the context of a wave kinetic hierarchy.

We continue the introduction by precisely describing our results for the wave kinetic equation in
Section 1.3 and results for the wave kinetic hierarchy in Section 1.4.

1.3. Wave kinetic equation: notation and the main result. The Cauchy problem for the
spatially inhomogeneous 4-wave kinetic equation for a function f : [0,∞) × R3 × R3 → R with
initial data f0 : R3 × R3 → R, is given by

{
∂tf + v · ∇xf = C[f ],
f(t = 0) = f0,

(1.7)

with the collisional operator defined as follows

C[f ] =
ˆ

R9

δ(Σ)δ(Ω)ff1f2f3

(
1

f
+

1

f1
− 1

f2
− 1

f3

)
dv1 dv2 dv3, (1.8)

and where the resonant manifolds are given by

Σ = v + v1 − v2 − v3, Ω = |v|2 + |v1|2 − |v2|2 − |v3|2. (1.9)

We use the notation f := f(v), fi := f(vi), i = 1, 2, 3.

The collisional operator C[f ] can be equivalently written as follows:

C[f ] = L0(f, f, f) + L1(f, f, f)− L2(f, f, f)− L3(f, f, f), (1.10)

5We note that prior to [6] all implementations of the board game argument were done in L
2-based spaces.

6A special upper echelon form in this proposition can be understood as a representative of an equivalence class
mentioned above.
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where for functions g, h, l : [0,∞)× R3 × R3 → R we denote

L0(g, h, l) =

ˆ

R9

δ(Σ)δ(Ω)g(v1)h(v2)l(v3) dv1 dv2 dv3, (1.11)

L1(g, h, l) =

ˆ

R9

δ(Σ)δ(Ω)g(v)h(v2)l(v3) dv1 dv2 dv3, (1.12)

L2(g, h, l) =

ˆ

R9

δ(Σ)δ(Ω)g(v)h(v1)l(v3) dv1 dv2 dv3, (1.13)

L3(g, h, l) =

ˆ

R9

δ(Σ)δ(Ω)g(v)h(v1)l(v2) dv1 dv2 dv3. (1.14)

Notice that the operators L0, L1, L2, L3 are multilinear with respect to their arguments and mono-
tone when the inputs are non-negative.

The collisional operator C[f ] can also be written in weak formulation as follows [39, pp.122, eqn
(8.18)]
ˆ

R3

C[f ]φdv =

ˆ

R12

δ(Σ)δ(Ω)ff1f2f3

(
1

f
+

1

f1
− 1

f2
− 1

f3

)
(φ+ φ1 − φ2 − φ3) dv1 dv2 dv3 dv,

(1.15)
where φ is a test function appropriate for all the above integrations to make sense. Choosing
φ ∈ {1, v, |v|2} and using the resonant conditions, one can formally see that a solution f to (1.7)
conserves mass, momentum and energy:

∂t

ˆ

R3

fφ dv = 0, φ ∈ {1, v, |v|2}. (1.16)

We now introduce the spaces that will be used in the formulation of the well-posedness result
for the wave kinetic equation (1.7). We shall be using the notation that for y ∈ R3,

〈y〉2 = 1 + |y|2

to define the following function space.

Definition 1.2. For each T > 0, p, q > 1 and α, β > 0 we define the space

Xp,q,α,β :=
{
f : R3 × R

3 → R measurable functions such that ‖f‖p,q,α,β < ∞
}
,

where we define the norm as

‖f‖p,q,α,β := ‖〈αx〉p〈βv〉qf(x, v)‖L∞ .

We additionally define the functional spaces in time as

Xp,q,α,β,T = C([0, T ], Xp,q,α,β),

where we are using the natural supremum norm on this space:

|||f(·)|||p,q,α,β,T := sup
t∈[0,T ]

‖f(t)‖p,q,α,β.

Before we define a concept of the solution we will be working with, we note that we will denote
by T1 the transport operator, which is defined by its action on a function g : [0,∞)×Rd ×Rd → R

as follows:

T s
1 g

(k)(t, x, v) := g(k)(t, x− sv, v). (1.17)
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With this notation, by Duhamel’s formula, the wave kinetic equation (1.7) can be formally written
in mild form as:

f(t) = T t
1f0 +

ˆ t

0

T t−s
1 C[f ](s) ds, t ∈ [0, T ], (1.18)

or equivalently after applying T−t
1 ,

T−t
1 f(t) = f0 +

ˆ t

0

T−s
1 C[f ](s) ds, t ∈ [0, T ]. (1.19)

We can now state precisely the definition of a mild solution we will be using in this paper.

Definition 1.3 (Mild solution of the wave kinetic equation). Let T > 0, p, q > 1 and α, β > 0,
and consider initial data f0 ∈ Xp,q,α,β. A measurable function f : [0, T ]× R

3 × R
3 → R is called a

mild solution to the wave kinetic equation (1.7) in [0, T ] corresponding to the initial data f0 if

T
−(·)
1 f(·) ∈ Xp,q,α,β,T , (1.20)

and

T−t
1 f(t, x, v) = f0 +

ˆ t

0

T−s
1 C[f ](s, x, v) ds, t ∈ [0, T ]. (1.21)

We now state the main result regarding the well-posedness of the wave kinetic equation (1.7).

Theorem 1.4. Let p > 1, q > 3, α, β > 0 and T > 0. Let M > 0 with M < (24Cp,q,α,β)
−1/2,

where Cp,q,α,β is given by (2.2). Consider f0 ∈ Xp,q,α,β, with ‖f0‖p,q,α,β ≤ M
2 . Then there exists a

unique mild solution to the wave kinetic equation (1.7), in the class of functions satisfying:

|||T−(·)
1 f(·)|||p,q,α,β,T ≤ M. (1.22)

If f0 ≥ 0, the solution remains non-negative. Additionally, assuming that f and g are the mild
solutions corresponding to initial data f0 and g0 respectively, we have the continuity with respect to
initial data estimate:

|||T−(·)
1 f(·)− T

−(·)
1 g(·)|||p,q,α,β,T ≤ 2‖f0 − g0‖p,q,α,β. (1.23)

In particular

|||T−(·)
1 f(·)|||p,q,α,β,T ≤ 2‖f0‖p,q,α,β. (1.24)

Moreover, the solution satisfies the following conservation laws: for any t ∈ [0, T ] and a.e. x ∈ R3:

If p > 3, q > 4 :

ˆ

R3

f(t, x, v) dv =

ˆ

R3

f0(x, v) dv, (1.25)

If p > 3, q > 5 :

ˆ

R3

vf(t, x, v) dv =

ˆ

R3

vf0(x, v) dv, (1.26)

If p > 3, q > 6 :

ˆ

R3

|v|2f(t, x, v) dv =

ˆ

R3

|v|2f0(x, v) dv. (1.27)

Remark 1.5. We note that we work in dimension d = 3 because one of the key estimates (Lemma
A.9) is established only for this dimension.
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1.4. Wave kinetic hierarchy: notation and the main result. As mentioned in subsection 1.2,
we introduce the spatially inhomogeneous 4-wave kinetic hierarchy as follows:

∂tf
(k)(t,Xk, Vk) +

k∑

j=1

vk · ∇xk
f (k) = C

k+2f (k+2), (1.28)

with collision operator defined by

C
k+2f (k+2) =

k∑

j=1

Cj,k+2f
(k+2) (1.29)

:=

k∑

j=1

(
C
L0

j,k+2f
(k+2) + C

L1

j,k+2f
(k+2) − C

L2

j,k+2f
(k+2) − C

L3

j,k+2f
(k+2)

)
, (1.30)

where

CL0

j,k+2f
(k+2)(t,Xk, Vk)

=

ˆ

R9

dvk+1dvk+2dvk+3 δ(Σj,k+2) δ(Ωj,k+2) f
(k+2)(t,Xk, xj , xj , V

j,vk+1

k , vk+2, vk+3), (1.31)

C
L1

j,k+2f
(k+2)(t,Xk, Vk)

=

ˆ

R9

dvk+1dvk+2dvk+3 δ(Σj,k+2) δ(Ωj,k+2) f
(k+2)(t,Xk, xj , xj , Vk, vk+2, vk+3), (1.32)

C
L2

j,k+2f
(k+2)(t,Xk, Vk)

=

ˆ

R9

dvk+1dvk+2dvk+3 δ(Σj,k+2) δ(Ωj,k+2) f
(k+2)(t,Xk, xj , xj , Vk, vk+1, vk+3), (1.33)

C
L3

j,k+2f
(k+2)(t,Xk, Vk)

=

ˆ

R9

dvk+1dvk+2dvk+3 δ(Σj,k+2) δ(Ωj,k+2) f
(k+2)(t,Xk, xj , xj , Vk, vk+1, vk+2), (1.34)

and
Σj,k+2 = vj + vk+1 − vk+2 − vk+3,

Ωj,k+2 = |vj |2 + |vk+1|2 − |vk+2|2 − |vk+3|2,
(1.35)

and

V
j,vk+1

k = (v1, . . . , vj−1, vk+1︸︷︷︸
j−th

, vj+1, . . . , vk). (1.36)

One can also represent each operator Cj,k+2 as a difference:

Cj,k+2 = C
+
j,k+2 − C

−
j,k+2, (1.37)

where

C
+
j,k+2 = C

L0

j,k+2 + C
L1

j,k+2, (1.38)

C
−
j,k+2 = C

L2

j,k+2 + C
L3

j,k+2. (1.39)
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With this notation we have

C
k+2 =

k∑

j=1

C
+
j,k+2 − C

−
j,k+2. (1.40)

Motivated by [6], we define Banach spaces that will be used throughout the paper. For Yk =
(y1, y2, . . . , yk) ∈ R

3k, we define

〈〈Yk〉〉 :=
k∏

i=1

〈yi〉, 〈yi〉 :=
√
1 + |yi|2, i = 1, · · · , k. (1.41)

We are ready to define the following Banach spaces and their corresponding norms:

• Given k ∈ N, p, q > 1, α, β > 0, we define

Xk
p,q,α,β :=

{
g(k) : R3k × R

3k → R, measurable and symmetric : ‖g(k)‖k,p,q,α,β < ∞
}
, (1.42)

‖g(k)‖k,p,q,α,β := sup
Xk,Vk

〈〈αXk〉〉p〈〈βVk〉〉q
∣∣∣g(k)(Xk, Vk)

∣∣∣ . (1.43)

Here by symmetric, we mean

g(k) ◦ σk = g(k), for any permutation σk of pairs of variables {xi, vi}ki=1. (1.44)

• Given T > 0, k ∈ N, p, q > 1, α, β > 0, we define

Xk
p,q,α,β,T := C([0, T ], Xk

p,q,α,β), (1.45)

|||g(k)(·)|||k,p,q,α,β,T := sup
t∈[0,T ]

‖g(k)(t)‖k,p,q,α,β (1.46)

= sup
t∈[0,T ]

sup
Xk,Vk

〈〈αXk〉〉p〈〈βVk〉〉q
∣∣∣g(k)(t,Xk, Vk)

∣∣∣ .

In order to be able to look at a solution of the infinite hierarchy (1.28) as a single object
F = (f (k))∞k=1, we also introduce the following spaces:

• Given p, q > 1, α, β > 0, µ ∈ R, we define

X∞
p,q,α,β,µ :=

{
G = (g(k))∞k=1 ∈

∞∏

k=1

Xk
p,q,α,β : ‖G‖p,q,α,β,µ < ∞

}
, (1.47)

‖G‖p,q,α,β,µ = sup
k∈N

eµk‖g(k)‖k,p,q,α,β (1.48)

= sup
k∈N

eµk sup
Xk,Vk

〈〈αXk〉〉p〈〈βVk〉〉q
∣∣∣g(k)(Xk, Vk)

∣∣∣ . (1.49)

• Given T > 0, p, q > 1, α, β > 0, we define

X∞
p,q,α,β,µ,T := C([0, T ],X∞

p,q,α,β,µ) (1.50)

|||G(·)|||p,q,α,β,µ,T := sup
t∈[0,T ]

‖G(t)‖p,q,α,β,µ (1.51)

= sup
t∈[0,T ]

sup
k∈N

eµk sup
Xk,Vk

〈〈αXk〉〉p〈〈βVk〉〉q
∣∣∣g(k)(t,Xk, Vk)

∣∣∣ .
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With definition of functional spaces in hand, we are ready to give a precise definition of mild
solutions to the wave kinetic hierarchy (1.28), which we motivate by the following observation. For
k ∈ N, we denote the transport operator acting on a function g(k) : [0,∞)× R3k × R3k → R by

T s
kg

(k)(t,Xk, Vk) := g(k)(t,Xk − sVk, Vk). (1.52)

With this notation, in analogy to (1.19), a mild solution of the wave kinetic hierarchy (1.28) is
formally given by

T−t
k f (k)(t) = f

(k)
0 +

ˆ t

0

T−s
k C

k+2f (k+2)(s)ds, ∀k ∈ N, ∀ t ∈ [0, T ]. (1.53)

Definition 1.6 (Mild solution to the wave kinetic hierarchy). Let T > 0, p, q > 1, α, β > 0, µ ∈ R,

and consider initial data F0 = (f
(k)
0 )∞k=1 ∈ X∞

p,q,α,β,µ. A sequence F = (f (k))∞k=1 of measurable

functions f (k) : [0, T ] × R3k × R3k → R is called a mild µ-solution to the wave kinetic hierarchy
(1.28) in [0, T ], corresponding to the initial data F0, if

T −(·)F (·) := (T
−(·)
k f (k)(·))∞k=1 ∈ X∞

p,q,α,β,µ,T , (1.54)

and

T−t
k f (k)(t) = f

(k)
0 +

ˆ t

0

T−s
k C

k+2f (k+2)(s) ds, ∀ t ∈ [0, T ], ∀k ∈ N. (1.55)

Our main result for the wave kinetic hierarchy (1.7) concerns its well-posedness, which means
existence and stability of solutions and their uniqueness. While uniqueness part does not require
special structure of the initial data, our existence part utilizes the concept of admissible initial data.
In order to be able to state the entire well-posedness result, we first recall the notion of admissibility.

Definition 1.7 (Admissibility). The set of admissible functions, denoted by A, is defined by

A :=
{
(g(k))∞k=1 ∈

∞∏

k=1

L1
Xk,Vk

: ∀k ∈ N we have g(k) ≥ 0, g(k) is symmetric (1.44),

ˆ

R6k

g(k) dXk dVk = 1, g(k) =

ˆ

R6

g(k+1)dvk+1dxk+1

}
. (1.56)

We are now ready to state our main result on the well-posedness of the wave kinetic hierarchy.

Theorem 1.8 (Global well-posedness for the wave kinetic hierarchy). Consider the wave kinetic
hierarchy (1.28) in dimension d = 3. Let T > 0, p > 1, q > 3, α, β > 0 and let µ ∈ R be such that

e2µ > 32Cp,q,α,β, where Cp,q,α,β is given by (2.2). Consider admissible initial data F0 = (f
(k)
0 )∞k=1 ∈

A ∩ X∞
p,q,α,β,µ′ , where µ′ = µ+ ln 2. Then, there exists a unique mild µ-solution F = (f (k))∞k=1 of

the wave kinetic hierarchy (1.28), with f (k) ≥ 0 for all k. In addition, the solution satisfies the
estimate

|||T −(·)F (·)|||p,q,α,β,µ,T ≤ 1. (1.57)

Moreover, the following k-particle conservation laws hold for any t ∈ [0, T ] and a.e. Xk ∈ R3k:
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If p > 3, q > 4 :

ˆ

R3k

f (k)(t,Xk, Vk) dVk = 1, (1.58)

If p > 3, q > 5 :

ˆ

R3k

Vkf
(k)(t,Xk, Vk) dVk =

ˆ

R3k

Vkf
(k)
0 (Xk, Vk) dVk, (1.59)

If p > 3, q > 6 :

ˆ

R3k

|Vk|2f (k)(t,Xk, Vk) dVk =

ˆ

R3k

|Vk|2f (k)
0 (Xk, Vk) dVk. (1.60)

In the case that the initial data are tensorized i.e. F0 = (f⊗k
0 )∞k=1 ∈ A ∩ X∞

p,q,α,β,µ′ , there holds
the stability estimate

|||T −(·)F (·)|||p,q,α,β,µ,T ≤ ‖F0‖p,q,α,β,µ′ . (1.61)

Organization of the paper. In Section 2 we address global well-posedness of the wave kinetic
equation. Global well-posedness of the wave kinetic hierarchy is proved in Section 3. In the appendix
we gather auxiliary results used throughout the paper, including properties of tensorized functions in
Appendix A.1, properties of the resonant manifold in Appendix A.2, and various integral estimates
in Appendix A.3.
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DMS-1840314, DMS-2009549 and DMS-2052789. M.T. gratefully acknowledges support from the
NSF grant DMS-2206187.

2. Global well-posedness of the wave kinetic equation

In this section, we obtain global in time existence, uniqueness and stability of mild solutions of
the inhomogeneous wave kinetic equation (1.7) for initial data polynomially close to vacuum. When
the initial data are non-negative, we show that the corresponding solution remains non-negative,
which is physically anticipated since the equation describes a localized point energy spectrum.
Additionally, we prove that the solution conserves mass, momentum and energy for sufficiently
decaying initial data.

The strategy for proving the global well-posedness of (1.7) relies on the following global in time
a-priori estimate.

Proposition 2.1. Let p > 1, q > 3, α, β > 0 and T > 0. For any j = 0, 1, 2, 3, and t ∈ [0, T ], the
following bound holds
∥∥∥∥
ˆ t

0

T−s
1 Lj(g, h, l)(s) ds

∥∥∥∥
p,q,α,β

≤ Cp,q,α,β |||T−(·)
1 g|||p,q,α,β,T |||T−(·)

1 h|||p,q,α,β,T |||T−(·)
1 l|||p,q,α,β,T

(2.1)
where Lj, with j ∈ {0, 1, 2, 3} are defined in (1.11)-(1.14). One can take

Cp,q,α,β =
16 p π3

α(p− 1)

(
1

3
+

1

q − 3

)
max{βq, β−3q}. (2.2)
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Remark 2.2. The proof of this Proposition is inspired by the work of Toscani [48] for the Boltzmann
equation. However, the presence of higher order multilinear operators Lj, j ∈ {0, 1, 2, 3} in the wave
kinetic equation allows simplifications, as mentioned in subsection 1.2.

Proof. Without loss of generality, assume that

|||T−(·)
1 g|||p,q,α,β,T = |||T−(·)

1 h|||p,q,α,β,T = |||T−(·)
1 l|||p,q,α,β,T = 1. (2.3)

Given v, v1, v2, v3 ∈ R3, we will use the following notation

ui,j := vi − vj , i, j ∈ {0, 1, 2, 3}, i 6= j,

where we abbreviate notation denoting v0 = v.

• Proof for L0. For any x, v ∈ R3 and t ∈ [0, T ], we have

IL0(t, x, v) := 〈αx〉p〈βv〉q
∣∣∣∣
ˆ t

0

T−s
1 L0(g, h, l)(s, x, v) ds

∣∣∣∣

= 〈αx〉p〈βv〉q
∣∣∣∣
ˆ t

0

[L0(g, h, l)](s, x+ sv, v)ds

∣∣∣∣

≤ 〈αx〉p〈βv〉q
ˆ t

0

ˆ

R9

dv1 dv2 dv3ds δ(Σ)δ(Ω) |g(s, x+ sv, v1)h(s, x+ sv, v2)l(s, x+ sv, v3)|

= 〈αx〉p〈βv〉q
ˆ t

0

ˆ

R9

dv1 dv2 dv3 ds δ(Σ)δ(Ω)

∣∣T−s
1 g(s, x+ s(v − v1), v1)T

−s
1 h(s, x+ s(v − v2), v2)T

−s
1 l(s, x+ s(v − v3), v3)

∣∣ (2.4)

≤ 〈αx〉p
ˆ

R9

δ(Σ)δ(Ω)
〈βv〉q

〈βv1〉q〈βv2〉q〈βv3〉q
(
ˆ t

0

〈αx+ αsu0,2〉−p〈αx+ αsu0,3〉−p
ds

)
dv1 dv2 dv3,

(2.5)

where we use the notation (1.9) and where in the last inequality we used (2.3) and the fact that

〈αx + αsu0,1〉−p ≤ 1.

Now, by (A.6), (A.9) from Lemma A.3, on the resonant manifold determined by Σ and Ω we
have

u0,2 · u0,3 = 0, (2.6)

as well as

min{|u0,2|, |u0,3|} ≥ |u0,1|
2

√
1− (û0,1 · û2,3)2. (2.7)

Thus, applying Lemma A.5 for x := αx, ξ := αu0,2, η := αu0,3, and using the above estimate, we
obtain

ˆ t

0

〈αx+ αsu0,2〉−p〈αx+ αsu0,3〉−p
ds ≤ 8p

α(p− 1)

〈αx〉−p

|u0,1|
√
1− (û0,1 · û2,3)2

. (2.8)

Combining (2.5) and (2.8), we obtain

IL0(t, x, v) ≤
8p

α(p− 1)

ˆ

R9

dv1 dv2 dv3 δ(Σ)δ(Ω)

|u0,1|
√
1− (û0,1 · û2,3)2

〈βv〉q

〈βv1〉q〈βv2〉q〈βv3〉q
.
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Finally, we can use that

〈βv〉q
〈βv1〉q〈βv2〉q〈βv3〉q

≤ max{βq, β−3q} 〈v〉q
〈v1〉q〈v2〉q〈v3〉q

,

together with (A.24) from Lemma A.9, to obtain

IL0(t, x, v) ≤
8p

α(p− 1)
2π3

(
1

3
+

1

q − 3

)
max{βq, β−3q}.

Since x, v, t were arbitrary, estimate (2.1) follows for j = 0.

• Proof for L1. For any x, v ∈ R3 and t ∈ [0, T ], we have

IL1(t, x, v) := 〈αx〉p〈βv〉q
∣∣∣∣
ˆ t

0

T−s
1 L1(g, h, l)(s, x, v) ds

∣∣∣∣

≤ 〈αx〉p〈βv〉q
ˆ t

0

ˆ

R9

dv1 dv2 dv3ds δ(Σ)δ(Ω) |g(s, x+ sv, v)h(s, x+ sv, v2)l(s, x+ sv, v3)|

= 〈αx〉p〈βv〉q
ˆ t

0

ˆ

R9

dv1 dv2 dv3 ds δ(Σ)δ(Ω)

×
∣∣T−s

1 g(s, x, v)T−s
1 h(s, x+ s(v − v2), v2)T

−s
1 g(s, x+ s(v − v3), v3)

∣∣

≤
ˆ

R9

dv1 dv2 dv3δ(Σ)δ(Ω)

(
ˆ t

0

〈αx+ αsu0,2〉−p〈αx+ αsu0,3〉−p
ds

)
1

〈βv2〉q〈βv3〉q
.

Applying again estimate (2.8) on the time integral above, the fact that 〈βv2〉−q〈βv3〉−q ≤
max{1, β−2q}〈v2〉−q〈v3〉−q

together with the fact that 〈αx〉−p ≤ 1, and estimate (A.25) from Lemma
A.9, we obtain

IL1(t, x, v) ≤
8p

α(p− 1)
max{1, β−2q}

ˆ

R9

dv1 dv2 dv3 δ(Σ)δ(Ω)

|u0,1|
√
1− (û0,1 · û2,3)2 〈v2〉q〈v3〉q

≤ 8p

α(p− 1)
2π3

(
1

3
+

1

q − 3

)
max{1, β−2q},

and estimate (2.1) follows for j = 1.

• Proof for L2. We note that the proof for L3 is identical. For any x, v ∈ R3 and t ∈ [0, T ], we have

IL2(t, x, v) := 〈αx〉p〈βv〉q
∣∣∣∣
ˆ t

0

T−s
1 L2(g, h, l)(s, x, v) ds

∣∣∣∣

≤ 〈αx〉p〈βv〉q
ˆ t

0

ˆ

R9

dv1 dv2 dv3ds δ(Σ)δ(Ω) |g(s, x+ sv, v)h(s, x+ sv, v1)h(s, x+ sv, v3)|

= 〈αx〉p〈βv〉q
ˆ t

0

ˆ

R9

dv1 dv2 dv3 ds δ(Σ)δ(Ω)

×
∣∣T−s

1 g(s, x, v)|T−s
1 h(s, x+ s(v − v1), v1)|T−s

1 l(s, x+ s(v − v3), v3)
∣∣

≤
ˆ

R9

dv1 dv2 dv3 δ(Σ)δ(Ω)
1

〈βv1〉q〈βv3〉q
(
ˆ t

0

〈αx+ αsu0,1〉−p
ds

)
, (2.9)
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since 〈αx+ αsu0,3〉−p ≤ 1. Now, by Lemma A.4 we have
ˆ +∞

−∞
〈αx + αsu0,1〉−p

ds ≤ 2p

α(p− 1)
|u0,1|−1.

Therefore by using that 〈βv3〉−q ≤ 1 and the fact that 〈βv1〉−q ≤ max{1, β−q}〈v1〉−q
, we have

IL2(t, x, v) ≤
2p

α(p− 1)
max{1, β−q}

ˆ

R9

δ(Σ)δ(Ω)

|u0,1|〈v1〉q
dv1 dv2 dv3

≤ 8p

α(p− 1)
π2

(
1

3
+

1

q − 3

)
max{1, β−q},

where in the last inequality we used Lemma A.8 for d = 3. Estimate (2.1) then follows for j = 2. �

Now, using the above a-priori estimate in conjunction with the contraction mapping principle,
we can prove the global well-posedness of (1.7) for arbitrary signed data which are polynomially
close to vacuum. In order to guarantee non-negativity of the solution when the initial data are non-
negative, one needs a more refined argument taking advantage of the monotonicity properties of the
equation. This can be achieved by employing a classical tool from the kinetic theory of particles,
namely the Kaniel-Shinbrot iteration [32, 31, 7, 48, 49, 1, 2]. Recently in [4], this technique was
applied for the first time in the context of wave turbulence by the first author of this paper, who
addressed the problem for exponentially decaying initial data.

Proof of Theorem 1.4. In order to obtain existence, uniqueness, non-negativity and stability of
solutions to (1.7), we can essentially follow the strategy of the proofs in [4] (using Proposition 2.1
instead of the exponential type a priori estimate of [4] when needed), so we omit details of the
proof, and show the setup only. In particular, let us define the mapping Φ as follows

Φ(g(t)) = f0 +

ˆ t

0

T−s
1 C[T s

1 g](s)ds. (2.10)

Then using Proposition 2.1 it can be shown that Φ : BM
Xp,q,α,β,T

7→ BM
Xp,q,α,β,T

, where

BM
Xp,q,α,β,T

:= {h ∈ Xp,q,α,β,T with |||h|||p,q,α,β,T ≤ M}, (2.11)

is a contraction in BM
Xp,q,α,β,T

. Hence, there exists a unique fixed point g ∈ BM
Xp,q,α,β,T

such that

g(t) = Φ(g(t)). (2.12)

By letting f(·) = T
(·)
1 g(·), this is equivalent to

T−t
1 f(t) = Φ(T−t

1 f(t)) = f0 +

ˆ t

0

T−s
1 C[f ](s)dx, (2.13)

and we also have T−t
1 f ∈ BM

Xp,q,α,β,T
as claimed. This completes proof of well-posedness.

It remains to verify the conservation laws (1.25)-(1.27) for the constructed solution f . For this,
we define the space

L1,ℓ
v =

{
g : R3 → R measurable such that

ˆ

R3

〈v〉ℓg(v) dv < ∞
}
,

where ℓ ≥ 0.



GLOBAL EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE WAVE KINETIC HIERARCHY 15

Assume that p > 3 and q > 4 + i, where i ∈ {0, 1, 2}. By (1.22), for any t ∈ [0, T ] and a.e.
x, v ∈ R3, we have

〈βv〉1+i
f(t, x, v) ≤ M〈α(x− vt)〉−p〈βv〉1+i−q ≤ M〈βv〉1+i−q

. (2.14)

Since q > 4 + i, integrating (2.14) in velocity we obtain that f(t, x, v) ∈ L1,1+i
v , for any t ∈ [0, T ]

and a.e. x ∈ Rd. Therefore, by Lemma A.7, the weak form (1.15) is valid for any test function φ

with |φ(v)| ≤ C〈v〉i. Hence, using (1.15) and the resonant conditions, we obtain
ˆ

R3

C[f ]φ(v) dv = 0, ∀t ∈ [0, T ], a.e. x ∈ R
3, (2.15)

where φ = 1 if i = 0, φ ∈ {1, v} if i = 1, and φ ∈ {1, v, |v|2} if i = 2.

Additionally f ∈ L∞([0, T ], L1
xL

1,1+i
v ), which can be seen by integrating the first inequality of

(2.14) in x, v and taking supremum in time:

sup
t∈[0,T ]

ˆ

R6

〈βv〉1+i
f(t, x, v) dx dv ≤ M sup

t∈[0,T ]

ˆ

R3

(
ˆ

R3

〈α(x − vt)〉−p
dx

)
〈βv〉1+i−q

dv

= Mα−3β−3

(
ˆ

R3

〈x′〉−p
dx′
)(
ˆ

R3

〈v′〉1+i−q
dv′
)

< ∞, (2.16)

since p > 3 and q > 4 + i. By Lemma A.7, we also obtain that Q(f, f) ∈ L∞([0, T ], L1
xL

1,i
v ).

Now let φ = 1 if i = 0, φ ∈ {1, v} if i = 1, and φ ∈ {1, v, |v|2} if i = 2. We integrate (1.21) in
x, v and use Fubini’s theorem and (2.15), to obtain that for any t ∈ [0, T ] we have
ˆ

R6

f(t, x+ tv, v)φ(v) dx dv =

ˆ

R6

f0(x, v)φ(v) dxdv +

ˆ t

0

ˆ

R3

ˆ

R3

C[f ](s, x+ sv, v)φ(v)dxdvds

=

ˆ

R6

f0(x, v)φ(v) dx dv +

ˆ t

0

ˆ

R3

ˆ

R3

C[f ](s, x, v)φ(v) dx dv ds

=

ˆ

R6

f0(x, v)φ(v) dx dv.

Thus for any t ∈ [0, T ], we have
ˆ

R6

f(t, x, v)φ(v) dx dv =

ˆ

R6

f(t, x+ vt, v)φ(v) dx dv =

ˆ

R6

f0(x, v)φ(v) dx dv,

and (1.25)-(1.27) follow.

�

3. Global well-posedness of wave kinetic hierarchy

In this section we construct the unique global in time mild solution to the wave kinetic hierarchy
(1.28) for admissible initial data and for a range of values of the parameter µ. The construction is
inspired by a similar construction of mild solutions for the Boltzmann hierarchy in [6]. The strategy
consists of the following steps. First, since the initial data will be assumed to be admissible, we
will be able to employ a Hewitt-Savage representation [30] tailored to our norms, to express such
initial data as a convex combination of tensorized states under an appropriate probability measure
π. Then, each element in the support of the measure π can be treated as initial data to the wave
kinetic equation for which we have a mild solution. Finally, by taking the same convex combination
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of these tensorized solutions to the wave kinetic equation under the same probability measure π,
we will prove that one obtains a mild solution to the wave kinetic hierarchy. Finally, we will utilize
the uniqueness result (Theorem 3.4) to conclude that that mild solution is unique.

3.1. Proof of existence for the wave kinetic hierarchy. In this section we prove the existence
part of Theorem 1.8. In particular we claim the following.

Theorem 3.1 (Existence of solutions for the wave kinetic hierarchy). Consider the wave kinetic
hierarchy (1.28) in dimension d = 3. Let T > 0, p > 1, q > 3, α, β > 0 and let µ ∈ R be such that

e2µ > 32Cp,q,α,β, where Cp,q,α,β is given by (2.2). Consider admissible initial data F0 = (f
(k)
0 )∞k=1 ∈

A∩X∞
p,q,α,β,µ′ , where µ′ = µ+ln2. Then, there exists a non-negative mild µ-solution F = (f (k))∞k=1

of the wave kinetic hierarchy (1.28). In addition, this solution satisfies the estimate

|||T −(·)F (·)|||p,q,α,β,µ,T ≤ 1. (3.1)

We start by stating the Hewitt-Savage theorem that is tailored to our norms. It is exactly the
same as Proposition 4.4. in [6], but we include it here so that the paper is self-contained. Similar
versions of this theorem can be found in, for example, [24, Proposition 6.1.3], [23, Theorem 2.6],
[43], [17].

Proposition 3.2 (Hewitt-Savage). Suppose G = (g(k))∞k=1 is admissible in the sense of Definition
1.7. Then, there exists a unique Borel probability measure π on the set of probability measures P,
where

P =

{
h ∈ L1(R2d) : h ≥ 0,

ˆ

R2d

h(x, v) dx dv = 1

}
, (3.2)

such that

g(k) =

ˆ

P
h⊗kdπ(h), ∀ k ∈ N. (3.3)

If additionally G ∈ X∞
p,q,α,β,µ′ , for some p, q > 1, α, β > 0 and µ′ ∈ R, then

supp(π) ⊆
{
h ∈ P : ‖h‖p,q,α,β ≤ e−µ′

}
. (3.4)

Remark 3.3. We note that representation (3.3), and the support condition (3.4) imply that A ∩
X∞

p,q,α,β,µ′ = A ∩BX∞

p,q,α,β,µ′
, where BX∞

p,q,α,β,µ′
denotes the unit ball of X∞

p,q,α,β,µ′ .

We are now ready to prove Theorem 3.1 in a similar manner to the proof of the analogous result
for the Boltzmann hierarchy (see proof of [6, Theorem 2.1]).

Proof of Theorem 3.1. Let µ be such that e2µ > 32Cp,q,α,β, let µ
′ = µ+ln2, and consider an initial

datum F0 = (f
(k)
0 )∞k=1 ∈ A ∩ X∞

p,q,α,β,µ′ . By the Hewitt-Savage theorem (Proposition 3.2), there
exists a Borel probability measure π on P such that

f
(k)
0 =

ˆ

P
h⊗k
0 dπ(h0), (3.5)

and

supp(π) ⊆
{
h0 ∈ P : ‖h0‖p,q,α,β ≤ e−µ′

}
. (3.6)

Therefore, for π-almost any h0 ∈ P , we have that ‖h0‖p,q,α,β ≤ e−µ′

= e−µ

2 . Let M = e−µ

and note that then ‖h0‖p,q,α,β ≤ M
2 , and that due to the assumption e2µ > 32Cp,q,α,β, we have
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that M = e−µ < (32Cp,q,α,β)
−1/2 < (24Cp,q,α,β)

−1/2. Therefore, we can apply Theorem 1.4 with
M = e−µ and initial data h0 to conclude that there is a mild solution h(t) to the wave kinetic
equation corresponding to the initial datum h0. By (1.24), we have that this solution satisfies

||T−t
1 h(t)‖p,q,α,β ≤ 2‖h0‖p,q,α,β ≤ e−µ, ∀ t ∈ [0, T ]. (3.7)

Thanks to the continuity with respect to initial data (1.23), given t ∈ [0, T ], the map h0 7→ h(t) is
continuous and thus Borel measurable.

Now we construct an infinite sequence of functions, which we will show will be a mild solution
of the wave kinetic hierarchy (1.28). Namely, we define F = (f (k))∞k=1, by

f (k)(t) :=

ˆ

P
h(t)⊗kdπ(h0), t ∈ [0, T ], k ∈ N. (3.8)

For any k ∈ N and t ∈ [0, T ], we have

eµk‖T−t
k f (k)(t)‖k,p,q,α,β ≤ eµk

ˆ

P
‖T−t

k h⊗k(t)‖k,p,q,α,βdπ(h0)

= eµk
ˆ

P
‖T−t

1 h(t)‖kp,q,α,βdπ(h0)

≤ 1,

where the equality follows from (A.3) and the last inequality follows from (3.7). Since this estimate
is true for any k ∈ N and t ∈ [0, T ], the estimate (3.1) follows, which also implies that T −(·)F (·) ∈
X∞

p,q,α,β,µ,T . Now that we know that F is in the right space, a standard computation shows that F ,

defined via (3.8), is a mild µ-solution to the wave kinetic hierarchy (1.28), corresponding to initial
data F0 ∈ X∞

p,q,α,β,µ′ ⊂ X∞
p,q,α,β,µ. This solution is non-negative since h(t) in (3.8) are solutions to

the wave kinetic equation with non-negative initial data h0.

�

3.2. Proof of uniqueness of mild solutions to the wave kinetic hierarchy. The goal of this
section is to prove uniqueness of solutions to the wave kinetic hierarchy stated as follows:

Theorem 3.4 (Uniqueness of solutions to the wave kinetic hierarchy). Consider the wave kinetic
hierarchy (1.28) in dimension d = 3. Let T > 0 and assume that p > 1, q > 3 and α, β > 0. Let µ ∈
R be such that e2µ > 32Cp,q,α,β for Cp,q,α,β as in (2.2). Let F0 = (f

(k)
0 )∞k=1 ∈ X∞

p,q,α,β and assume

F = (f (k))∞k=1 ∈ X∞
p,q,α,β,T is a mild µ-solution to wave kinetic hierarchy (1.28) corresponding to

the initial data F0. Then F is unique.

Since the wave kinetic hierarchy in linear, it suffices to show that if F0 = 0 and F is a mild
solution, then F = 0. In order to motivate the proof, let us start by recalling that a mild solution
F = (f (k))∞k=1 to the wave kinetic hierarchy (1.28) is given by

T−t
k f (k)(t) = f

(k)
0 +

ˆ t

0

T−s
k C

k+2f (k+2)(s)ds, ∀k ∈ N, ∀ t ∈ [0, T ].
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When initial data is zero (F0 = 0), one can apply this formula iteratively n ∈ N times to obtain

T−t
k f (k)(t) =

ˆ t

0

ˆ tk+2

0

· · ·
ˆ tk+2n−2

0

dtk+2n · · · dtk+4dtk+2

T
−tk+2

k C
k+2T

tk+2−tk+4

k+2 C
k+4 · · ·T tk+2n−2−tk+2n

k+2n−2 C
k+2nf (k+2n)(tk+2n). (3.9)

In order to prove that F = 0, it will suffice to show that
∥∥T−t

k f (k)(t)
∥∥
p,q,α,β

. Cn, where C < 1.

Then by letting n → ∞ one can conclude that for each k ∈ N, f (k) = 0, thus completing the proof.
Recall that each C

k+2j is a sum of k+2j−2 operators, and thus the iterated Duhamel formula (3.9)
contains a factorial number of terms. For each of them, we will use an (iterated) a priori estimate
(see Proposition 3.6). This fact alone is not enough to obtain the needed geometric growth estimate
since the number of terms is factorial. This is where a board game argument inspired by [35, 10]
will come into play and will allow us to rearrange the factorial number of terms in (3.9) in an
exponential number of equivalence classes, and the sum over each equivalence class will be bounded
by a constant, thus allowing us to obtain the geometric growth estimate

∥∥T−t
k f (k)(t)

∥∥
p,q,α,β

. Cn.

We have organized this section into three subsections. The first one establishes the (iterated) a
priori estimate. The second subsection discusses the combinatorial board game argument. Finally,
in the third subsection, we combine the a priori estimate and the board game argument to prove
the uniqueness of solutions to the wave kinetic hierarchy as stated in Theorem 3.4.

Throughout this section, we will use the following notation

ui,j = vi − vj . (3.10)

Also for any vector v ∈ R3, we denote by v̂ its unit vector

v̂ =
v

|v| . (3.11)

3.2.1. A priori estimate. The following estimate is the hierarchy level analogue of the nonlinear a
priori estimate presented in Proposition 2.1.

Proposition 3.5. Let T > 0, p > 1 and q > 3. Let Cλ
j,k+2, where λ ∈ {L0, L1, L2, L3}, be defined

in (1.31)-(1.34). Then for any t ∈ [0, T ], k ∈ N, j ∈ {1, · · · , k}, and λ ∈ {L0, L1, L2, L3} we have

∥∥∥∥
ˆ t

0

T−s
k C

λ
j,k+2g

(k+2)(s) ds

∥∥∥∥
k,p,q,α,β

≤ Cp,q,α,β |||T−(·)
k+2 g

(k+2)(·)|||k+2,p,q,α,β,T , (3.12)

where Cp,q,α,β is the constant appearing in (2.2).

Proof. The proof of the estimate (3.12) is analogous to the proof of the nonlinear estimate (2.1) at
the level of the equation. As a result, we will only present the proof for λ = L0 to demonstrate
this. The other cases are proved in a similar spirit to the proof of Proposition 2.1.
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Fix k ∈ N, j ∈ {1, · · · , k} and λ = L0. Recall notation introduced in (3.10). For anyXk, Vk ∈ R3k

we have

IL0(Xk, Vk) := 〈〈αXk〉〉p〈〈βVk〉〉q
∣∣∣∣
ˆ t

0

T−s
k C

L0

j,k+2g
(k+2)(s,Xk, Vk) ds

∣∣∣∣

= 〈〈αXk〉〉p〈〈βVk〉〉q
∣∣∣∣
ˆ t

0

[CL0

j,k+2g
(k+2)](s,Xk + sVk, Vk)ds

∣∣∣∣

≤ 〈〈αXk〉〉p〈〈βVk〉〉q
ˆ t

0

ˆ

R9

dvk+1 dvk+2 dvk+3ds δ(Σj,k+2)δ(Ωj,k+2)

×
∣∣∣g(k+2)(s,Xk + sVk, xj + svj , xj + svj , V

j,vk+1

k , vk+2, vk+3)
∣∣∣

= 〈〈αXk〉〉p〈〈βVk〉〉q
ˆ t

0

ˆ

R9

dvk+1 dvk+2 dvk+3 ds δ(Σj,k+2)δ(Ωj,k+2)

∣∣∣T−s
k+2g

(k+2)(s,Xk + s(Vk − V
j,vk+1

k ), xj + suj,k+2, xk + suj,k+3, V
j,vk+1

k , vk+2, vk+3)
∣∣∣

≤ 〈αxj〉p|||T−(·)
k+2 g

(k+2)(·)|||k+2,p,q,α,β,T

ˆ

R9

δ(Σj,k+2)δ(Ωj,k+2)
〈βvj〉q

〈βvk+1〉q〈βvk+2〉q〈βvk+3〉q

×
(
ˆ t

0

〈αxj + αsuj,k+2〉−p〈αxj + αsuj,k+3〉−p
ds

)
dvk+1 dvk+2 dvk+3, (3.13)

where in the last inequality we used that 〈αxj + αsuj,k+1〉−p ≤ 1.

Now, by (A.6), (A.9) from Lemma A.3, on the resonant manifold determined by Σj,k+2 and
Ωj,k+2 we have

uj,k+2 · uj,k+3 = 0,

as well as

min{|uj,k+2|, |uj,k+3|} ≥ |uj,k+1|
2

√
1− (ûj,k+1 · ûk+2,k+3)2. (3.14)

Applying Lemma A.5 for x = αxj , ξ = αuj,k+2, η = αuj,k+3, and using the above estimate
(3.14), yields

ˆ t

0

〈αxj + αsuj,k+2〉−p〈αxj + αsuj,k+3〉−p
ds ≤ 8p

α(p− 1)

〈αxj〉−p

|uj,k+1|
√
1− (ûj,k+1 · ûk+2,k+3)2

.

(3.15)

Combining (3.13) and (3.15), we obtain

IL0(Xk, VK) ≤ 8p

α(p− 1)
|||T−(·)

k+2 g
(k+2)(·)|||k+2,p,q,α,β,T

ˆ

R9

dvk+1 dvk+2 dvk+3 δ(Σj,k+2)δ(Ωj,k+2)

× 1

|uj,k+1|
√
1− (ûj,k+1 · ûk+2,k+3)2

〈βvj〉q

〈βvk+1〉q〈βvk+2〉q〈βvk+3〉q
.

Finally, we can use that

〈βvj〉q
〈βvk+1〉q〈βvk+2〉q〈βvk+3〉q

≤ max{βq, β−3q} 〈vj〉q
〈vk+1〉q〈vk+2〉q〈vk+3〉q

,
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together with Lemma A.9, to obtain

IL0(Xk, VK) ≤ 8p

α(p− 1)
2π3

(
1

3
+

1

q − 3

)
max{βq, β−3q} |||T−(·)

k+2 g
(k+2)(·)|||k+1,p,q,α,β,T .

Since t,Xk, Vk were arbitrary, estimate (3.12) follows. �

We next derive an iterated estimate by recursively applying Proposition 3.5. We start by recalling
the notation introduced in (1.38)-(1.39).

Proposition 3.6. Let T > 0, p > 1, q > 3 and k, n ∈ N with n ≥ 2. For each ℓ ∈ {1, 2, . . . , n}, let
jk+2ℓ be a number in the set {1, 2, . . . , k + 2ℓ− 2} and let πk+2ℓ ∈ {+,−}. Then we have

∥∥∥∥∥

ˆ

[0,T ]n
T

−tk+2

k C
πk+2

jk+2,k+2T
tk+2−tk+4

k+2 C
πk+4

jk+4,k+4 · · ·

· · ·T tk+2n−2−tk+2n

k+2n−2 C
πk+2n

jk+2n,k+2nf
(k+2n)(tk+2n) dtk+2n · · · dtk+4dtk+2

∥∥∥∥∥
k,p,q,α,β

≤ (2Cp,q,α,β)
n
∣∣∣
∣∣∣
∣∣∣T−(·)

k+2nf
(k+2n)

∣∣∣
∣∣∣
∣∣∣
k+2n,p,q,α,β,T

, (3.16)

where Cp,q,α,β is given in (2.2).

Proof. Let

I :=

∥∥∥∥∥

ˆ

[0,T ]n
T

−tk+2

k C
πk+2

jk+2,k+2T
tk+2−tk+4

k+2 C
πk+4

jk+4,k+4 · · ·

· · ·T tk+2n−2−tk+2n

k+2n−2 C
πk+2n

jk+2n,k+2nf
(k+2n)(tk+2n) dtk+2n · · · dtk+4dtk+2

∥∥∥∥∥
k,p,q,α,β

=

∥∥∥∥∥

ˆ T

0

T
−tk+2

k C
πk+2

jk+2,k+2 G(k+2)(tk+2) dtk+2

∥∥∥∥∥
k,p,q,α,β

where

G(k+2)(tk+2) =

ˆ

[0,T ]n−1

dtk+2n · · · dtk+4

T
tk+2−tk+4

k+2 C
πk+4

jk+4,k+4 · · ·T
tk+2n−2−tk+2n

k+2n−2 C
πk+2n

jk+2n,k+2nf
(k+2n)(tk+2n).
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By Proposition 3.5, we have

I ≤ 2Cp,q,α,β

∣∣∣
∣∣∣
∣∣∣T−(·)

k+2 G
(k+2)

∣∣∣
∣∣∣
∣∣∣
k+2,p,q,α,β,T

= 2Cp,q,α,β sup
tk+2∈[0,T ]

∥∥∥∥∥T
−tk+2

k+2

ˆ

[0,T ]n−1

dtk+2n · · · dtk+4

T
tk+2−tk+4

k+2 C
πk+4

jk+4,k+4 · · ·T
tk+2n−2−tk+2n

k+2n−2 C
πk+2n

jk+2n,k+2nf
(k+2n)(tk+2n)

∥∥∥∥∥
k+2,p,q,α,β

= 2Cp,q,α,β

∥∥∥∥∥

ˆ

[0,T ]n−1

dtk+2n · · · dtk+4

T
−tk+4

k+2 C
πk+4

jk+4,k+4 · · ·T
tk+2n−2−tk+2n

k+2n−2 C
πk+2n

jk+2n,k+2nf
(k+2n)(tk+2n)

∥∥∥∥∥
k+2,p,q,α,β

.

Repeating these calculations (n− 1) more times, we obtain

I ≤ (2Cp,q,α,β)
n
∣∣∣
∣∣∣
∣∣∣T−(·)

k+2nf
(k+2n)

∣∣∣
∣∣∣
∣∣∣
k+2n,p,q,α,β,T

.

�

3.2.2. Combinatorial board game argument. In this section, inspired by [35] and [10], we devise a
combinatorial board game argument which, together with the a priori estimates from the previous
section, will allow us to prove uniqueness of solutions to the wave kinetic hierarchy (1.28). As
indicated earlier in this section, the wave kinetic hierarchy is linear, and thus uniqueness boils
down to proving that the solution corresponding to zero initial data is zero. Recall that such a
solution has the expansion (3.9), and that the integrand in the iterated time integral has a factorial
number of terms since each operator Ck+2ℓ is a sum of k+2ℓ− 2 operators. The goal of this section
is to find a way to reorganize the integral (3.9) in such a way that allows us to estimate it with
an exponential number of terms instead. In order to achieve this, we start by introducing some
notation, starting with the notation for the integrand in (3.9).

Definition 3.7. Let k, n ∈ N with n ≥ 2, and let tk+2n = (tk+2, tk+4, . . . , tk+2n) ∈ R
n
+. We define

the operator Jn,k by

Jn,k(tk+2n)f
(k+2n) = T

−tk+2

k C
k+2T

tk+2−tk+4

k+2 C
k+4 · · ·T tk+2n−2−tk+2n

k+2n−2 C
k+2nf (k+2n)(tk+2n). (3.17)

By (1.29), each C
k+2ℓ is a sum of k + 2ℓ− 2 terms, so we can write the Jn,k operator as a sum

Jn,k(tk+2n) =
∑

µ∈Mn,k

Jn,k(tk+2n, µ), (3.18)

where

Mn,k =
{
µ : {k + 2, k + 4, . . . , k + 2n} → {1, 2, . . . , k + 2n− 2}, with ∀j µ(j) < j − 1

}
(3.19)

and

Jn,k(tk+2n, µ)f
(k+2n) := T

−tk+2

k Cµ(k+2),k+2T
tk+2−tk+4

k+2 Cµ(k+4),k+4 · · ·
· · ·T tk+2n−2−tk+2n

k+2n−2 Cµ(k+2n),k+2nf
(k+2n)(tk+2n). (3.20)



22 IOAKEIM AMPATZOGLOU, JOSEPH K. MILLER, NATAŠA PAVLOVIĆ, AND MAJA TASKOVIĆ

We next define operator In,k as a time integral of the operator Jn,k. In what follows, we use the
following notation for the group of all permutations of elements {k + 2, . . . , k + 2n}:

Sn,k = S({k + 2, . . . , k + 2n}). (3.21)

Definition 3.8. Let k, n ∈ N with n ≥ 2. For each (µ, σ) ∈ Mn,k × Sn,k define the operator
In,k(µ, σ) by the expression

In,k(µ, σ) :=
ˆ

t≥tσ(k+2)≥tσ(k+4)≥···≥tσ(k+2n)≥0

Jn,k(tk+2n;µ)dtk+2ndtk+2n−2 . . . dtk+2. (3.22)

Note that it is equivalent to write

In,k(µ, σ) =
ˆ

t≥tk+2≥tk+4≥···≥tk+2n≥0

Jn,k(σ
−1(tk+2n);µ)dtk+2ndtk+2n−2 . . . dtk+2, (3.23)

where
σ−1(tk+2n) := (tσ−1(k+2), . . . , tσ−1(k+2n)). (3.24)

The operator In,k can be represented on a (k+2n−2)×n board with carved in names Ci,j , with
1 ≤ i ≤ j − 2, for j ∈ {k + 2, k + 4, ..., k + 2n}, arranged as in (3.25). The board also has an extra
top row that keeps track of the order of times in the operator In,k. For each (µ, σ) ∈ Mn,k × Sn,k

we associate a state of the game, where µ determines which C operators on the board are circled,
and σ determines the order of the times in the top row.




tσ−1(k+2) tσ−1(k+4) ...... tσ−1(k+2n)

C1,k+2 C1,k+4 ...... C1,k+2n row 1
C2,k+2 C2,k+4 ...... C2,k+2n row 2
... ... ...... ... ...

... Cµ(k+4),k+4 ..... ... ...

... ... ...... ... ...

Cµ(k+2),k+2 ... ...... ... ...

... ... ...... ... ...

Ck,k+2 Ck,k+4 ...... ... ...

0 Ck+1,k+4 ...... Cµ(k+2n),k+2n ...

0 Ck+2,k+4 ...... ... ...

... 0 ...... ... ...

... ... ...... ... ...

0 0 ...... Ck+2n−2,k+2n row k + 2n− 3
0 0 ...... Ck+2n−2,k+2n row k + 2n− 2

col k + 2 col k + 4 ...... col k + 2n




. (3.25)

The strategy is to define an ”acceptable move” on the board which will allow us to move the
circles in such a way that the value of the iterated Duhamel integral (3.22) is invariant. Ultimately,
this will enable us to define an equivalence relation between integrals of the type (3.22), and the
sum over all integrals in the same equivalence class will be estimated by a single time integral
(see Proposition 3.17), while the number of equivalence classes will be exponential (see Proposition
3.41), thus resolving the issue of the factorial number of terms.

Inspired by [10] we define an acceptable move as follows.
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Definition 3.9 (Acceptable move). Let k, n ∈ N with n ≥ 2, and let Mk,n and Sn,k be defined
as in (3.19) and (3.21). Suppose (µ, σ) ∈ Mn,k × Sn,k is a state of the game for which one has
µ(j + 2) < µ(j) for some j ∈ {k + 2, k + 4, . . . , k + 2n− 2}. An acceptable move transforms (µ, σ)
to (µ′, σ′), where

µ′ = (j − 1, j + 1) ◦ (j, j + 2) ◦ µ ◦ (j, j + 2),

σ′ = (j, j + 2) ◦ σ. (3.26)

Note that under an acceptable move, due to µ(j + 2) < µ(j) < j − 1 and µ(j − 1) < j − 2, we
have

µ′(ℓ) =





(j − 1, j + 1) ◦ (j, j + 2) ◦ µ(ℓ) for ℓ ∈ {k + 2, k + 4, . . . k + 2n} \ {j, j + 2},
µ(j + 2) for ℓ = j,

µ(j) for ℓ = j + 2,

(3.27)

and

σ′−1(ℓ) =





σ−1(ℓ) for ℓ ∈ {k + 2, k + 4, . . . k + 2n} \ {j, j + 2},
σ−1(j + 2) for ℓ = j,

σ−1(j) for ℓ = j + 2.

(3.28)

Therefore, the effect of an acceptable move to the board is:

• it exchanges positions of times in column j and column j + 2 (due to σ′), and
• it exchanges positions of circles in column j and column j + 2 (due to µ′), and
• it exchanges positions of circles in row j and row j +2 if such rows exist (due to µ′) (if one
of those rows does not exist, no changes are made at the level of rows), and

• it exchanges positions of circles in row j − 1 and row j +1 if such rows exist (due to µ′) (if
one of those rows does not exist, no changes are made at the level of rows).

Before we show that an acceptable move doesn’t change the value of the integral In,k(µ, σ), let
us introduce the following operator.

Definition 3.10 (Operator Sj,j+2). We define Sj,j+2 to be an operator that exchanges x variables
in positions j− 1, j with x variables in positions j+1, j+2, and exchanges v variables in positions
j − 1, j with v variables in positions j + 1, j + 2. In other words, for ℓ > j + 1, we define

[
Sj,j+2f

(ℓ)
]
(Xℓ, Vℓ) := f (ℓ)(x1, . . . , xj−2, xj+1, xj+2, xj−1, xj , xj+3, . . . , xℓ;

v1, . . . , vj−2, vj+1, vj+2, vj−1, vj , vj+3, . . . , vℓ), (3.29)

Now we are ready to state and prove the invariance of integrals In,k(µ, σ) under acceptable
moves.

Proposition 3.11 (Acceptable move invariance). Suppose (µ, σ) and (µ′, σ′) are as in Definition
3.9. Then (µ′, σ′) ∈ Mn,k × Sn,k and

In,k(µ, σ) = In,k(µ′, σ′).
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Proof. Suppose j is as in Definition 3.9, that is, suppose j ∈ {k + 2, k + 4, . . . , k + 2n− 2} is such
that µ(j + 2) < µ(j). We first write what In,k(µ′, σ′)f (k+2n) is:

In,k(µ′, σ′)f (k+2n) =

ˆ

tk≥tk+2≥tk+4≥···≥tk+2n≥0

Jn,k(σ
′−1(tk+2n);µ

′) dtk+2n . . . dtk+4dtk+2

=

ˆ

tk≥tk+2≥tk+4≥···≥tk+2n≥0

T
−tσ′−1(k+2)

k Cµ′(k+2),k+2 T
tσ′−1(k+2)−tσ′−1(k+4)

k+2 Cµ′(k+4),k+4

. . . T
t
σ′−1(j−2)−t

σ′−1(j)

j−2 Cµ′(j),j T
t
σ′−1(j)−t

σ′−1(j+2)

j Cµ′(j+2),j+2 T
t
σ′−1(j+2)−t

σ′−1(j+4)

j+2 . . .

· · · T t
σ′−1(k+2n−2)−t

σ′−1(k+2n)

k+2n−2 Cµ′(k+2n),k+2n f (k+2n)(tσ′−1(k+2n))dtk+2n . . . dtk+2.

(3.30)

According to properties (3.27) and (3.28), for the operators appearing before Tj−2 in (3.30),
each µ′ and σ′−1 can be replaced by µ and σ−1, respectively. For operators appearing after Tj+2

in (3.30) one can drop primes from σ′−1 and turn µ′ to (j − 1, j +1) ◦ (j, j +2) ◦µ. Finally, for the
operators appearing between and including Tj−2 and Tj+2 in (3.30), the evaluation of σ′−1 and µ′

at j (resp. j + 2) turns into an evaluation of σ−1 and µ at j + 2 (resp. j). For all other σ′−1, one
can drop the prime. Therefore, we can rewrite In,k(µ′, σ′) in terms of µ and σ as follows

In,k(µ′, σ′)f (k+2n) =

ˆ

tk≥tk+2≥tk+4≥···≥tk+2n≥0

T
−t

σ−1(k+2)

k Cµ(k+2),k+2 T
t
σ−1(k+2)−t

σ−1(k+4)

k+2 Cµ(k+4),k+4

. . . T
t
σ−1(j−2)−t

σ−1(j+2)

j−2 Cµ(j+2),j T
t
σ−1(j+2)−t

σ−1(j)

j Cµ(j),j+2 T
t
σ−1(j)−t

σ−1(j+4)

j+2 . . .

· · · T t
σ−1(k+2n−2)−t

σ−1(k+2n)

k+2n−2 C(j−1,j+1)◦(j,j+2)◦µ(k+2n),k+2n f (k+2n)(tσ−1(k+2n))dtk+2n . . . dtk+2.

In order to complete the proof of the proposition, it suffices to show two identities:

T a−b
j−2 Cα,jT

b−c
j Cβ,j+2T

c−d
j+2 = T a−c

j−2 Cβ,jT
c−b
j Cα,j+2T

b−d
j+2 Sj,j+2, (3.31)

Sj,j+2C(j−1,j+1)◦(j,j+2)◦µ(ℓ),ℓ = Cµ(ℓ),ℓ Sj,j+2. (3.32)

Namely, if these two identities are true, then an application of the identity (3.31) with a =
tσ−1(j−2), b = tσ−1(j+2), c = tσ−1(j), α = µ(j + 2), β = µ(j) one would get

In,k(µ′, σ′)f (k+2n) =

ˆ

tk≥tk+2≥tk+4≥···≥tk+2n≥0

T
−t

σ−1(k+2)

k Cµ(k+2),k+2 T
t
σ−1(k+2)−t

σ−1(k+4)

k+2 Cµ(k+4),k+4

. . . T
t
σ−1(j−2)−t

σ−1(j)

j−2 Cµ(j),j T
t
σ−1(j)−t

σ−1(j+2)

j Cµ(j+2),j+2 T
t
σ−1(j+2)−t

σ−1(j+4)

j+2 Sj,j+2 . . .

· · · T t
σ−1(k+2n−2)−t

σ−1(k+2n)

k+2n−2 C(j−1,j+1)◦(j,j+2)◦µ(k+2n),k+2n f (k+2n)(tσ−1(k+2n))dtk+2n . . . dtk+2.

Then by using the identity (3.32) iteratively, the fact that Sj,j+2 commutes with translation oper-
ators and that fk+2n is a symmetric function, one would be able to conclude that In,k(µ′, σ′) =
In,k(µ, σ). Thus it remains to prove identities (3.31) and (3.32), which will be done the next two
lemmata. �

We first prove identity (3.32).

Lemma 3.12. For ℓ > j + 2 and for any λ ∈ {L0, L1, L2, L3}, we have

Sj,j+2C
λ
(j−1,j+1)◦(j,j+2)◦µ(ℓ),ℓ = C

λ
µ(ℓ),ℓ Sj,j+2. (3.33)
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Proof of Lemma 3.12. We will present the proof for λ = L0 and λ = L1. The cases λ = L2 and
λ = L3 are done analogously to λ = L1. Throughout the proof, we will use notation (1.35):

Σp,q = vp + vq−1 − vq − vq+1, (3.34)

Ωp,q = |vp|2 + |vq−1|2 − |vq|2 − |vq+2|2. (3.35)

• We first prove (3.33) with λ = L0 by considering three cases.

Case 1: assume that ℓ > j+2 and µ(ℓ) 6∈ {j−1, j, j+1, j+2}. Then (j−1, j+1)◦(j, j+2)◦µ(ℓ) =
µ(ℓ), and so for any non-negative measurable function f (ℓ) we have

[Sj,j+2C
L0

(j−1,j+1)◦(j,j+2)◦µ(ℓ),ℓf
(ℓ)](t,Xℓ−2, Vℓ−2) = [Sj,j+2C

L0

µ(ℓ),ℓf
(ℓ)](t,Xℓ−2, Vℓ−2)

= [CL0

µ(ℓ),ℓf
(ℓ)](x1, . . . , xj+1, xj+2, xj−1, xj , . . . , xℓ−2; v1, . . . , vj+1, vj+2, vj−1, vj , . . . , vℓ−2)

=

ˆ

R3d

dvℓ−1dvℓdvℓ+1 δ(Σµ(ℓ),ℓ) δ(Ωµ(ℓ),ℓ)

(
f (ℓ)(x1, . . . , xj+1, xj+2, xj−1, xj , . . . . . . . . . , xℓ−2, xµ(ℓ), xµ(ℓ);

v1, . . . , vj+1, vj+2, vj−1, vj , . . . , vℓ−1︸︷︷︸
µ(ℓ)−th

, . . . , vℓ−2, vℓ, vℓ+1)

=

ˆ

R3d

dvℓ−1dvℓdvℓ+1 δ(Σµ(ℓ),ℓ) δ(Ωµ(ℓ),ℓ)[Sj,j+2f
(ℓ)](Xℓ−2, xµ(ℓ), xµ(ℓ); V

µ(ℓ),vℓ−1

ℓ−2 , vℓ, vℓ+1)

= [CL0

µ(ℓ),ℓSj,j+2f
(ℓ)](t,Xℓ−2, Vℓ−2).

Case 2: assume that ℓ > j + 2 and µ(ℓ) ∈ {j, j + 2}. Without loss of generality, µ(ℓ) = j. Then
(j − 1, j + 1) ◦ (j, j + 2) ◦ µ(ℓ) = j + 2, and so for any non-negative measurable f (ℓ) we have

[Sj,j+2C
L0

(j−1,j+1)◦(j,j+2)◦µ(ℓ),ℓf
(ℓ)](t,Xℓ−2, Vℓ−2) = [Sj,j+2C

L0

j+2,ℓf
(ℓ)](t,Xℓ−2, Vℓ−2)

= [CL0

j+2,ℓf
(ℓ)](x1, . . . , xj+1, xj+2, xj−1, xj︸︷︷︸

(j+2)nd

, . . . , xℓ−2; v1, . . . , vj+1, vj+2, vj−1, vj︸︷︷︸
(j+2)nd

, . . . , vℓ−2)

=

ˆ

R3d

dvℓ−1dvℓdvℓ+1 δ(Σj,ℓ) δ(Ωj,ℓ)

(
f (ℓ)(x1, . . . , xj+1, xj+2, xj−1, xj , . . . . . . , xℓ−2, xj , xj ;

v1, . . . , vj+1, vj+2, vj−1, vℓ−1︸︷︷︸
(j+2)nd

, . . . , vℓ−2, vℓ, vℓ+1)

=

ˆ

R3d

dvℓ−1dvℓdvℓ+1 δ(Σj,ℓ) δ(Ωj,ℓ)[Sj,j+2f
(ℓ)](Xℓ−2, xj , xj ; V

j,vℓ−1

ℓ−2 , vℓ, vℓ+1)

= [CL0

j,ℓSj,j+2f
(ℓ)](t,Xℓ−2, Vℓ−2) = [CL0

µ(ℓ),ℓSj,j+2f
(ℓ)](t,Xℓ−2, Vℓ−2).

Case 3: assume that ℓ > j + 2 and µ(ℓ) ∈ {j − 1, j + 1}. Without loss of generality, µ(ℓ) = j − 1.
Then (j − 1, j + 1) ◦ (j, j + 2) ◦ µ(ℓ) = j + 1, and so for any non-negative measurable f (ℓ) we have
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[Sj,j+2C
L0

(j−1,j+1)◦(j,j+2)◦µ(ℓ),ℓf
(ℓ)](t,Xℓ−2, Vℓ−2) = [Sj,j+2C

L0

j+1,ℓf
(ℓ)](t,Xℓ−2, Vℓ−2)

= [CL0

j+1,ℓf
(ℓ)](x1, . . . , xj+1, xj+2, xj−1︸︷︷︸

(j+1)st

, xj , . . . , xℓ−2; v1, . . . , vj+1, vj+2, vj−1︸︷︷︸
(j+1)st

, vj , . . . , vℓ−2)

=

ˆ

R3d

dvℓ−1dvℓdvℓ+1 δ(Σj−1,ℓ) δ(Ωj−1,ℓ)

(
f (ℓ)(x1, . . . , xj+1, xj+2, xj−1, xj , . . . , xℓ−2, xj−1, xj−1;

v1, . . . , vj+1, vj+2, vℓ−1︸︷︷︸
(j+1)st

, vj , . . . , vℓ−2, vℓ, vℓ+1)

=

ˆ

R3d

dvℓ−1dvℓdvℓ+1 δ(Σj−1,ℓ) δ(Ωj−1,ℓ)[Sj,j+2f
(ℓ)](Xℓ−2, xj−1, xj−1; V

j−1,vℓ−1

ℓ−2 , vℓ, vℓ+1)

= [CL0

j−1,ℓSj,j+2f
(ℓ)](t,Xℓ−2, Vℓ−2) = [CL0

µ(ℓ),ℓSj,j+2f
(ℓ)](t,Xℓ−2, Vℓ−2).

• We next prove (3.32) with λ = L1 by again considering three cases.

Case 1: assume that ℓ > j+2 and µ(ℓ) 6∈ {j−1, j, j+1, j+2}. Then, (j−1, j+1)◦(j, j+2)◦µ(ℓ) =
µ(ℓ), and so for any non-negative measurable function f (ℓ) we have

[Sj,j+2C
L1

(j−1,j+1)◦(j,j+2)◦µ(ℓ),ℓf
(ℓ)](t,Xℓ−2, Vℓ−2) = [Sj,j+2C

L1

µ(ℓ),ℓf
(ℓ)](t,Xℓ−2, Vℓ−2)

= [CL1

µ(ℓ),ℓf
(ℓ)](x1, . . . , xj+1, xj+2, xj−1, xj , . . . , xℓ−2; v1, . . . , vj+1, vj+2, vj−1, vj , . . . , vℓ−2)

=

ˆ

R3d

dvℓ−1dvℓdvℓ+1 δ(Σµ(ℓ),ℓ) δ(Ωµ(ℓ),ℓ)f
(ℓ)(x1, . . . , xj+1, xj+2, xj−1, xj , . . . , xℓ−2, xµ(ℓ), xµ(ℓ);

v1, . . . , vj+1, vj+2, vj−1, vj , . . . , vℓ−2, vℓ, vℓ+1)

=

ˆ

R3d

dvℓ−1dvℓdvℓ+1 δ(Σµ(ℓ),ℓ) δ(Ωµ(ℓ),ℓ)[Sj,j+2f
(ℓ)](Xℓ−2, xµ(ℓ), xµ(ℓ); Vℓ−2, vℓ, vℓ+1)

= [CL1

µ(ℓ),ℓSj,j+2f
(ℓ)](t,Xℓ−2, Vℓ−2).

Case 2: assume that ℓ > j + 2 and µ(ℓ) ∈ {j, j + 2}. Without loss of generality, assume that
µ(ℓ) = j. Then, (j − 1, j + 1) ◦ (j, j + 2) ◦ µ(ℓ) = j + 2, and so for any non-negative measurable
function f (ℓ) we have

[Sj,j+2C
L1

(j−1,j+1)◦(j,j+2)◦µ(ℓ),ℓf
(ℓ)](t,Xℓ−2, Vℓ−2) = [Sj,j+2C

L1

j+2,ℓf
(ℓ)](t,Xℓ−2, Vℓ−2)

= [CL1

j+2,ℓf
(ℓ)](x1, . . . , xj+1, xj+2, xj−1, xj︸︷︷︸

(j+2)nd

, . . . , xℓ−2; v1, . . . , vj+1, vj+2, vj−1, vj︸︷︷︸
(j+2)nd

, . . . , vℓ−2)

=

ˆ

R3d

dvℓ−1dvℓdvℓ+1 δ(Σj,ℓ) δ(Ωj,ℓ)f
(ℓ)(x1, . . . , xj+1, xj+2, xj−1, xj , . . . , xℓ−2, xj , xj ;

v1, . . . , vj+1, vj+2, vj−1, vj , . . . , vℓ−2, vℓ, vℓ+1)

=

ˆ

R3d

dvℓ−1dvℓdvℓ+1 δ(Σj,ℓ) δ(Ωj,ℓ)[Sj,j+2f
(ℓ)](Xℓ−2, xj , xj ; Vℓ−2, vℓ, vℓ+1)

= [CL1

j,ℓSj,j+2f
(ℓ)](t,Xℓ−2, Vℓ−2) = [CL1

µ(ℓ),ℓSj,j+2f
(ℓ)](t,Xℓ−2, Vℓ−2).
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Case 3: assume that ℓ > j + 2 and µ(ℓ) ∈ {j − 1, j + 1}. Without loss of generality, assume that
µ(ℓ) = j − 1. Then, (j − 1, j + 1) ◦ (j, j +2) ◦ µ(ℓ) = j + 1, and so for any non-negative measurable
function f (ℓ) we have

[Sj,j+2C
L1

(j−1,j+1)◦(j,j+2)◦µ(ℓ),ℓf
(ℓ)](t,Xℓ−2, Vℓ−2) = [Sj,j+2C

L1

j+1,ℓf
(ℓ)](t,Xℓ−2, Vℓ−2)

= [CL1

j+1,ℓf
(ℓ)](x1, . . . , xj+1, xj+2, xj−1︸︷︷︸

(j+1)st

, xj , . . . , xℓ−2; v1, . . . , vj+1, vj+2, vj−1︸︷︷︸
(j+1)st

, vj , . . . , vℓ−2)

=

ˆ

R3d

dvℓ−1dvℓdvℓ+1 δ(Σj−1,ℓ) δ(Ωj−1,ℓ)f
(ℓ)(x1, . . . , xj+1, xj+2, xj−1, xj , . . . , xℓ−2, xj−1, xj−1;

v1, . . . , vj+1, vj+2, vj−1, vj , . . . , vℓ−2, vℓ, vℓ+1)

=

ˆ

R3d

dvℓ−1dvℓdvℓ+1 δ(Σj−1,ℓ) δ(Ωj−1,ℓ)[Sj,j+2f
(ℓ)](Xℓ−2, xj−1, xj−1; Vℓ−2, vℓ, vℓ+1)

= [CL1

j−1,ℓSj,j+2f
(ℓ)](t,Xℓ−2, Vℓ−2) = [CL1

µ(ℓ),ℓSj,j+2f
(ℓ)](t,Xℓ−2, Vℓ−2).

�

Next we prove identity (3.31).

Lemma 3.13. For any a, b, c, d ≥ 0, any β < α < j and any k, ℓ ∈ {0, 1, 2, 3}, we have

T a−b
j−2 C

Lk

α,jT
b−c
j C

Lℓ

β,j+2T
c−d
j+2 = T a−c

j−2 C
Lℓ

β,jT
c−b
j C

Lk

α,j+2T
b−d
j+2 Sj,j+2 (3.36)

Proof of Lemma 3.13. By applying the operator T c−a
j−2 from the left and the operator T d−b

j+2 from
the right, the identity can be written in its equivalent form

T c−b
j−2C

Lk

α,jT
b−c
j C

Lℓ

β,j+2T
c−b
j+2 = C

Lℓ

β,jT
c−b
j C

Lk

α,j+2Sj,j+2. (3.37)

If we introduce notation

τ = b− c,

it suffices to show that for any β < α < j and any k, ℓ ∈ {0, 1, 2, 3}, we have

T−τ
j−2C

Lk

α,jT
τ
j C

Lℓ

β,j+2T
−τ
j+2 = C

Lℓ

β,jT
−τ
j C

Lk

α,j+2Sj,j+2. (3.38)

The strategy of the proof is to expand the left-hand side (LHS) and the right-hand side (RHS) of
these identities separately and then compare their formulas.

Note that the operator Cα,j comes with three integrating variables vj−1, vj and vj+1, while the
corresponding variables for Cβ,j+2 are vj+1, vj+2 and vj+3. In order to avoid confusion due to the
repeated letter vj+1, we will add stars to the variables corresponding to Cα,j, primes for Cβ,j+2,
sharps for Cβ,j and tildes for Cα,j+2. This notation will be used only within this lemma.
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• We first prove identity (3.38) with k = ℓ = 0. We start by computing its left-hand side.

LHS00 = [T−τ
j−2C

L0

α,jT
τ
j C

L0

β,j+2T
−τ
j+2f

(j+2)](t,Xj−2, Vj−2)

= [CL0

α,jT
τ
j C

L0

β,j+2T
−τ
j+2f

(j+2)](t,Xj−2 + τVj−2, Vj−2)

=

ˆ

R3d

dv∗j−1dv
∗
j dv

∗
j+1 δ(Σ

∗
α,j) δ(Ω

∗
α,j)

[T τ
j C

L0

β,j+2T
−τ
j+2f

(j+2)](t,Xj−2 + τVj−2, xα + τvα, xα + τvα; V
α,v∗

j−1

j−2 , v∗j , v
∗
j+1)

=

ˆ

R3d

dv∗j−1dv
∗
j dv

∗
j+1 δ(Σ

∗
α,j) δ(Ω

∗
α,j)

[CL0

β,j+2T
−τ
j+2f

(j+2)](t,Xj−2 + τ(Vj−2 − V
α,v∗

j−1

j−2 ), xα + τ(vα − v∗j ), xα + τ(vα − v∗j+1); V
α,v∗

j−1

j−2 , v∗j , v
∗
j+1)

=

ˆ

R6d

dv∗j−1dv
∗
j dv

∗
j+1dv

′
j+1dv

′
j+2dv

′
j+3 δ(Σ

∗
α,j) δ(Ω

∗
α,j) δ(Σ

′
β,j+2) δ(Ω

′
β,j+2)

[T−τ
j+2f

(j+2)](t,Xj−2 + τ(Vj−2 − V
α,v∗

j−1

j−2 ), xα + τ(vα − v∗j ), xα + τ(vα − v∗j+1), xβ , xβ ;

V
β,v′

j+1;α,v
∗

j−1

j−2 , v∗j , v
∗
j+1, v

′
j+2, v

′
j+3)

=

ˆ

R6d

dv∗j−1dv
∗
j dv

∗
j+1dv

′
j+1dv

′
j+2dv

′
j+3 δ(Σ

∗
α,j) δ(Ω

∗
α,j) δ(Σ

′
β,j+2) δ(Ω

′
β,j+2)

f (j+2)(t,Xj−2 + τV
β,v′

j+1

j−2 , xα + τvα, xα + τvα, xβ + τv′j+2, xβ + τv′j+3;

V
β,v′

j+1;α,v
∗

j−1

j−2 , v∗j , v
∗
j+1, v

′
j+2, v

′
j+3),

where in the last equality we used that Vj−2 − V
α,v∗

j−1

j−2 + V
β,v′

j+1;α,v
∗

j−1

j−2 = V
β,v′

j+1

j−2 .

We next calculate the right-hand side of (3.38) with k = ℓ = 0.

RHS00 = [CL0

β,jT
−τ
j C

L0

α,j+2Sj,j+2f
(j+2)](t,Xj−2, Vj−2)

=

ˆ

R3d

dv
#
j−1dv

#
j dv

#
j+1 δ(Σ

#
β,j) δ(Ω

#
β,j)[T

−τ
j C

L0

α,j+2Sj,j+2f
(j+2)](t,Xj−2, xβ , xβ ; V

β,v#
j−1

j−2 , v
#
j , v

#
j+1)

=

ˆ

R3d

dv
#
j−1dv

#
j dv

#
j+1 δ(Σ

#
β,j) δ(Ω

#
β,j)

[CL0

α,j+2Sj,j+2f
(j+2)](t,Xj−2 + τV

β,v#
j−1

j−2 , xβ + τv
#
j , xβ + τv

#
j+1; V

β,v#
j−1

j−2 , v
#
j , v

#
j+1)

=

ˆ

R6d

dv
#
j−1dv

#
j dv

#
j+1dṽj+1dṽj+2dṽj+3 δ(Σ

#
β,j) δ(Ω

#
β,j)δ(Σ̃α,j+2) δ(Ω̃α,j+2)

[Sj,j+2f
(j+2)](t,Xj−2 + τV

β,v#
j−1

j−2 , xβ + τv
#
j , xβ + τv

#
j+1, xα + τvα, xα + τvα;

V
β,v#

j−1;α,ṽj+1

j−2 , v
#
j , v

#
j+1, ṽj+2, ṽj+3)

=

ˆ

R6d

dv
#
j−1dv

#
j dv

#
j+1dṽj+1dṽj+2dṽj+3 δ(Σ

#
β,j) δ(Ω

#
β,j)δ(Σ̃α,j+2) δ(Ω̃α,j+2)

f (j+2)(t,Xj−2 + τV
β,v#

j−1

j−2 , xα + τvα, xα + τvα, xβ + τv
#
j , xβ + τv

#
j+1;

V
β,v#

j−1;α,ṽj+1

j−2 , ṽj+2, ṽj+3, v
#
j , v

#
j+1).
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By applying the change of variables:




v
#
j−1 7→ v′j+1

v
#
j 7→ v′j+2

v
#
j+1 7→ v′j+3

and





ṽj+1 7→ v∗j−1

ṽj+2 7→ v∗j
ṽj+3 7→ v∗j+1

(3.39)

one can see that RHS00 = LHS00, which completes the proof of (3.38) with k = ℓ = 0.

• Next we prove identity (3.38) for k = 0 and ℓ = 1. When ℓ = 2 or ℓ = 3, the proof can be done
analogously. We start by expanding the left-hand side:

LHS01 = [T−τ
j−2C

L0

α,jT
τ
j C

L1

β,j+2T
−τ
j+2f

(j+2)](t,Xj−2, Vj−2)

= [CL0

α,jT
τ
j C

L1

β,j+2T
−τ
j+2f

(j+2)](t,Xj−2 + τVj−2, Vj−2)

=

ˆ

R3d

dv∗j−1dv
∗
j dv

∗
j+1 δ(Σ

∗
α,j) δ(Ω

∗
α,j)

[T τ
j C

L1

β,j+2T
−τ
j+2f

(j+2)](t,Xj−2 + τVj−2, xα + τvα, xα + τvα; V
α,v∗

j−1

j−2 , v∗j , v
∗
j+1)

=

ˆ

R3d

dv∗j−1dv
∗
j dv

∗
j+1 δ(Σ

∗
α,j) δ(Ω

∗
α,j)

[CL1

β,j+2T
−τ
j+2f

(j+2)](t,Xj−2 + τ(Vj−2 − V
α,v∗

j−1

j−2 ), xα + τ(vα − v∗j ), xα + τ(vα − v∗j+1); V
α,v∗

j−1

j−2 , v∗j , v
∗
j+1)

=

ˆ

R6d

dv∗j−1dv
∗
j dv

∗
j+1dv

′
j+1dv

′
j+2dv

′
j+3 δ(Σ

∗
α,j) δ(Ω

∗
α,j) δ(Σ

′
β,j+2) δ(Ω

′
β,j+2)

[T−τ
j+2f

(j+2)](t,Xj−2 + τ(Vj−2 − V
α,v∗

j−1

j−2 ), xα + τ(vα − v∗j ), xα + τ(vα − v∗j+1), xβ , xβ ;

V
α,v∗

j−1

j−2 , v∗j , v
∗
j+1, v

′
j+2, v

′
j+3)

=

ˆ

R6d

dv∗j−1dv
∗
j dv

∗
j+1dv

′
j+1dv

′
j+2dv

′
j+3 δ(Σ

∗
α,j) δ(Ω

∗
α,j) δ(Σ

′
β,j+2) δ(Ω

′
β,j+2)

f (j+2)(t,Xj−2 + τVj−2, xα + τvα, xα + τvα, xβ + τv′j+2, xβ + τv′j+3;V
α,v∗

j−1

j−2 , v∗j , v
∗
j+1, v

′
j+2, v

′
j+3).

On the other hand, the right-hand side of (3.38) for k = 0 and ℓ = 1 can be expanded as follows

RHS01 = [CL1

β,jT
−τ
j C

L0

α,j+2Sj,j+2f
(j+2)](t,Xj−2, Vj−2)

=

ˆ

R3d

dv
#
j−1dv

#
j dv

#
j+1 δ(Σ

#
β,j) δ(Ω

#
β,j)[T

−τ
j C

L0

α,j+2Sj,j+2f
(j+2)](t,Xj−2, xβ , xβ ; Vj−2, v

#
j , v

#
j+1)

=

ˆ

R3d

dv
#
j−1dv

#
j dv

#
j+1 δ(Σ

#
β,j) δ(Ω

#
β,j)[C

L0

α,j+2Sj,j+2f
(j+2)](t,Xj−2 + τVj−2, xβ + τv

#
j , xβ + τv

#
j+1; Vj−2, v

#
j , v

#
j+1)

=

ˆ

R6d

dv
#
j−1dv

#
j dv

#
j+1dṽj+1dṽj+2dṽj+3 δ(Σ

#
β,j) δ(Ω

#
β,j)δ(Σ̃α,j+2) δ(Ω̃α,j+2)

[Sj,j+2f
(j+2)](t,Xj−2 + τVj−2, xβ + τv

#
j , xβ + τv

#
j+1, xα + τvα, xα + τvα;V

α,ṽj+1

j−2 , v
#
j , v

#
j+1, ṽj+2, ṽj+3)

=

ˆ

R6d

dv
#
j−1dv

#
j dv

#
j+1dṽj+1dṽj+2dṽj+3 δ(Σ

#
β,j) δ(Ω

#
β,j)δ(Σ̃α,j+2) δ(Ω̃α,j+2)

f (j+2)(t,Xj−2 + τVj−2, xα + τvα, xα + τvα, xβ + τv
#
j , xβ + τv

#
j+1;V

α,ṽj+1

j−2 , ṽj+2, ṽj+3, v
#
j , v

#
j+1).

Under the same change of variables as in (3.39), we see that RHS01 = LHS01, which completes the
proof of the identity (3.38) for k = 0 and ℓ = 1.
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• Finally we prove identity (3.38) for k = 1 and ℓ = 2. Any other combination of k, ℓ ∈ {1, 2, 3}
can be proved analogously. We start by expanding the left-hand side:

LHS12 = [T−τ
j−2C

L1

α,jT
τ
j C

L2

β,j+2T
−τ
j+2f

(j+2)](t,Xj−2, Vj−2)

= [CL1

α,jT
τ
j C

L2

β,j+2T
−τ
j+2f

(j+2)](t,Xj−2 + τVj−2, Vj−2)

=

ˆ

R3d

dv∗j−1dv
∗
j dv

∗
j+1 δ(Σ

∗
α,j) δ(Ω

∗
α,j)

[T τ
j C

L2

β,j+2T
−τ
j+2f

(j+2)](t,Xj−2 + τVj−2, xα + τvα, xα + τvα; Vj−2, v
∗
j , v

∗
j+1)

=

ˆ

R3d

dv∗j−1dv
∗
j dv

∗
j+1 δ(Σ

∗
α,j) δ(Ω

∗
α,j)

[CL2

β,j+2T
−τ
j+2f

(j+2)](t,Xj−2, xα + τ(vα − v∗j ), xα + τ(vα − v∗j+1); Vj−2, v
∗
j , v

∗
j+1)

=

ˆ

R6d

dv∗j−1dv
∗
j dv

∗
j+1dv

′
j+1dv

′
j+2dv

′
j+3 δ(Σ

∗
α,j) δ(Ω

∗
α,j) δ(Σ

′
β,j+2) δ(Ω

′
β,j+2)

[T−τ
j+2f

(j+2)](t,Xj−2, xα + τ(vα − v∗j ), xα + τ(vα − v∗j+1), xβ , xβ ;Vj−2, v
∗
j , v

∗
j+1, v

′
j+1, v

′
j+3)

=

ˆ

R6d

dv∗j−1dv
∗
j dv

∗
j+1dv

′
j+1dv

′
j+2dv

′
j+3 δ(Σ

∗
α,j) δ(Ω

∗
α,j) δ(Σ

′
β,j+2) δ(Ω

′
β,j+2)

f (j+2)(t,Xj−2 + τVj−2, xα + τvα, xα + τvα, xβ + τv′j+1, xβ + τv′j+3;Vj−2, v
∗
j , v

∗
j+1, v

′
j+1, v

′
j+3).

On the other hand, the right-hand side of (3.38) for k = 1 and ℓ = 2 can be expanded as follows

RHS12 = [CL2

β,jT
−τ
j C

L1

α,j+2Sj,j+2f
(j+2)](t,Xj−2, Vj−2)

=

ˆ

R3d

dv
#
j−1dv

#
j dv

#
j+1 δ(Σ

#
β,j) δ(Ω

#
β,j)[T

−τ
j C

L1

α,j+2Sj,j+2f
(j+2)](t,Xj−2, xβ , xβ ; Vj−2, v

#
j−1, v

#
j+1)

=

ˆ

R3d

dv
#
j−1dv

#
j dv

#
j+1 δ(Σ

#
β,j) δ(Ω

#
β,j)[C

L1

α,j+2Sj,j+2f
(j+2)]

(t,Xj−2 + τVj−2, xβ + τv
#
j−1, xβ + τv

#
j+1; Vj−2, v

#
j−1, v

#
j+1)

=

ˆ

R6d

dv
#
j−1dv

#
j dv

#
j+1dṽj+1dṽj+2dṽj+3 δ(Σ

#
β,j) δ(Ω

#
β,j)δ(Σ̃α,j+2) δ(Ω̃α,j+2)[Sj,j+2f

(j+2)]

(t,Xj−2 + τVj−2, xβ + τv
#
j−1, xβ + τv

#
j+1, xα + τvα, xα + τvα;Vj−2, v

#
j−1, v

#
j+1, ṽj+2, ṽj+3)

=

ˆ

R6d

dv
#
j−1dv

#
j dv

#
j+1dṽj+1dṽj+2dṽj+3 δ(Σ

#
β,j) δ(Ω

#
β,j)δ(Σ̃α,j+2) δ(Ω̃α,j+2)

f (j+2)(t,Xj−2 + τVj−2, xα + τvα, xα + τvα, xβ + τv
#
j−1, xβ + τv

#
j+1;Vj−2, ṽj+2, ṽj+3, v

#
j−1, v

#
j+1).

Under the same change of variables as in (3.39), we see that RHS12 = LHS12, which completes the
proof of the identity (3.38) for k = 1 and ℓ = 2, and thus also the proof of this lemma. �

Inspired by [35] and [10], we define a special upper echelon form as the state which does not
admit any further acceptable moves.

Definition 3.14 (Special Upper Echelon Form). Let k, n ∈ N with n ≥ 2, and let Mn,k be defined
as in (3.19). We say that µ ∈ Mn,k is in special upper echelon form if for every j ∈ {k + 2, k +
4, . . . , k + 2n} we have µ(j) ≤ µ(j + 2). We will denote by

Mn,k the set of all special upper echelon forms in Mn,k. (3.40)
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In the same way as in [35, Lemma 3.2], one can show that every state on the board can be
transformed by finitely many acceptable moves into a special upper echelon form.

Proposition 3.15. Let k, n ∈ N with n ≥ 2, and let Mn,k be defined as in (3.19). Any µ ∈ Mn,k

can be changed to a special upper echelon form via a finite sequence of acceptable moves.

Next we provide an upper bound on the number of special upper echelon forms. The proof of
this proposition can be done exactly in the same way as in [10], since their board is of the same
size as ours (k + 2n− 2)× n.

Proposition 3.16 (Number of special upper echelon forms; [10, Lemma 7.3]). Let k, n ∈ N with
n ≥ 2, and let Mn,k be the set of all special upper echelon forms defined in (3.40). Then the
following upper bound holds:

#Mn,k ≤ 2k+3n−2. (3.41)

Finally, one can show that the sum over all states that can be turned into the same special upper
echelon form can be reorganized as follows. The proof of this proposition is identical to that of
Theorem 7.4 in [10].

Proposition 3.17 (Sum over one equivalence class; [10, Theorem 7.4]). Let µu ∈ Mn,k be a special
upper echelon form, and write µ ∼ µu if µ can be reduced to µu in finitely many acceptable moves.
Then there exists a set D ⊂ [0, t]n, that depends on µu, such that

∑

µ∼µu

ˆ

t≥tk+2≥···≥tk+2n≥0

J(tn,k;µ) dtk+2n . . . dtk+2 =

ˆ

D

J(tn,k;µu) dtk+2n . . . dtk+2, (3.42)

where the sum goes over all µ ∈ Mn,k such that µ can be changed to µu via a finite sequence of
acceptable moves.

3.2.3. Combining a priori estimates and the board game argument. In this section we combine the
iterated a priori estimate from Proposition 3.6 and the board game argument described in the
previous subsection to prove uniqueness of solutions to the wave kinetic hierarchy as stated in
Theorem 3.4. Since wave kinetic hierarchy in linear, it suffices to show that if F0 = 0 and F is
a mild solution, then F = 0. Here, for F = (f (k))∞k=1, we say F = 0 if for each k ∈ N we have

f (k) = 0.

Proof of Theorem 3.4. Recall from (3.9) that for zero initial data, a mild solution to the wave
kinetic hierarchy can be expressed as

T−t
k f (k)(t) =

ˆ t

0

ˆ tk+2

0

· · ·
ˆ tk+2n−2

0

dtk+2n · · · dtk+4dtk+2

T
−tk+2

k C
k+2T

tk+2−tk+4

k+2 C
k+4 · · ·T tk+2n−2−tk+2n

k+2n−2 C
k+2nf (k+2n)(tk+2n) (3.43)

=
∑

µ∈Mn,k

ˆ t

0

ˆ tk+1

0

· · ·
ˆ tk+n−1

0

Jn,k(tn;µ) dtk+n · · · dtk+1, (3.44)

where the sum is taken over all the mappings in Mn,k given by (3.19), and where Jn,k(tn;µ) is
defined as in (3.20). By Proposition 3.15 and Proposition 3.17, we can instead sum over all upper
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echelon forms:

T−t
k f (k)(t) =

∑

µu∈Mn,k

ˆ

D(µu)

Jn,k(tn;µu) dtk+n · · · dtk+1. (3.45)

Since each operator Cµu(k+2j),k+2j appearing in Jn,k(tn;µu) is a difference of two operators defined

in (1.37): C+
µu(k+2j),k+2j −C

−
µu(k+2j),k+2j , if we use notation π = (πk+2, πk+4, . . . , πk+2n) ∈ {+,−}n

and sgn(π) = πk+2 · πk+4 · ... · πk+2n, we can write

T−t
k f (k)(t) =

∑

µu∈Mn,k

∑

π∈{+,−}n

sgn(π)

ˆ

D(µu)

T
−tk+2

k C
πk+2

µu(k+2),k+2T
tk+2−tk+4

k+2 C
πk+4

µu(k+4),k+4 · · ·

· · ·T tk+2n−2−tk+2n

k+2n−2 C
πk+2n

µu(k+2n),k+2nf
(k+2n)(tk+2n) dtk+2n · · · dtk+4dtk+2.

Since, |C±
j,kg

(k)| ≤ C
±
j,k|g(k)| and |T τ

k g
(k)| = T τ

k |g(k)|, we have

∣∣∣T−t
k f (k)(t)

∣∣∣ ≤
∑

µu∈Mn,k

∑

π∈{+,−}n

ˆ

D(µu)

T
−tk+2

k C
πk+2

µu(k+2),k+2T
tk+2−tk+4

k+2 C
πk+4

µu(k+4),k+4 · · ·

· · ·T tk+2n−2−tk+2n

k+2n−2 C
πk+2n

µu(k+2n),k+2n

∣∣∣f (k+2n)(tk+2n)
∣∣∣ dtk+2n · · · dtk+4dtk+2

≤
∑

µu∈Mn,k

∑

π∈{+,−}n

ˆ

[0,T ]n
T

−tk+2

k C
πk+2

µu(k+2),k+2T
tk+2−tk+4

k+2 C
πk+4

µu(k+4),k+4 · · ·

· · ·T tk+2n−2−tk+2n

k+2n−2 C
πk+2n

µu(k+2n),k+2n

∣∣∣f (k+2n)(tk+2n)
∣∣∣ dtk+2n · · · dtk+4dtk+2,

where in the last inequality we enlarged the domain of the time integration thanks to the fact that
the integrand is non-negative. Multiplying both sides of the above inequality with the polynomial
weights 〈〈αXk〉〉p〈〈βVk〉〉q, taking the supremum in Xk, Vk, and using the triangle inequality on the
norm ‖ · ‖k,p,q,α,β , we obtain

∥∥∥T−t
k f (k)(t)

∥∥∥
k,p,q,α,β

≤
∑

µu∈Mn,k

∑

π∈{+,−}n

∥∥∥∥∥

ˆ

[0,T ]n
T

−tk+2

k C
πk+2

µu(k+2),k+2T
tk+2−tk+4

k+2 C
πk+4

µu(k+4),k+4 · · ·

· · ·T tk+2n−2−tk+2n

k+2n−2 C
πk+2n

µu(k+2n),k+2n

∣∣∣f (k+2n)(tk+2n)
∣∣∣ dtk+2n · · · dtk+4dtk+2

∥∥∥
k,p,q,α,β

.

By Proposition 3.6, combined with the fact that #Mn,k ≤ 2k+3n−2 (Proposition (3.16)) and
#{+,−}n = 2n, we have

∥∥∥T−t
k f (k)(t)

∥∥∥
k,p,q,α,β

≤ 2k+5n−2 Cn
p,q,α,β

∣∣∣
∣∣∣
∣∣∣T−(·)

k+2n

∣∣∣f (k+2n)(·)
∣∣∣
∣∣∣
∣∣∣
∣∣∣
k+2n,p,q,α,β,T

= 2k+5n−2 Cn
p,q,α,β

∣∣∣
∣∣∣
∣∣∣T−(·)

k+2nf
(k+2n)(·)

∣∣∣
∣∣∣
∣∣∣
k+2n,p,q,α,β,T

.

From the definition of the norm (1.51), we can further deduce that
∥∥∥T−t

k f (k)(t)
∥∥∥
k,p,q,α,β

≤ 2k+5n−2 Cn
p,q,α,β e

−µ(k+2n)
∣∣∣
∣∣∣
∣∣∣T −(·)F (·)

∣∣∣
∣∣∣
∣∣∣
p,q,α,β,T

=
(2e−µ)k

4

(
32e−2µCp,q,α,β

)n ∣∣∣
∣∣∣
∣∣∣T −(·)F (·)

∣∣∣
∣∣∣
∣∣∣
p,q,α,β,T

.



GLOBAL EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE WAVE KINETIC HIERARCHY 33

Since µ was chosen so that e2µ > 32Cp,q,α,β , and since
∣∣∣
∣∣∣
∣∣∣T −(·)F (·)

∣∣∣
∣∣∣
∣∣∣
p,q,α,β,T

< ∞, when we

let n → ∞, we get that
∥∥T−t

k f (k)(t)
∥∥
k,p,q,α,β

= 0. Since t ∈ [0, T ] was arbitrary, we obtain

T
−(·)
k f (k)(·) = 0. Hence f (k) = 0, and thus F = 0. �

3.3. Proof of Theorem 1.8. Thanks to the assumption e2µ > 32Cp,q,α,β in Theorem 1.8, the
solution constructed in Theorem 3.1 is unique due to Theorem 3.4.

Using representation (3.8), Fubini’s theorem, and the conservation laws (1.25)-(1.27) at the level
of the wave kinetic equation, one can obtain the conservation laws (1.58)-(1.60) for the wave kinetic
hierarchy.

Also, we prove the stability estimate (1.61) under the assumption that the initial datum F0 ∈
A∩X∞

p,q,α,β,µ′ is tensorised, i.e. F0 = (f⊗k
0 )∞k=1. For such data, by Remark 3.3, we have ‖f0‖p,q,α,β ≤

e−µ′

and F = (f⊗k)∞k=1 is the solution to the wave kinetic hierarchy (1.28), where f is the mild
solution of the wave kinetic equation with initial data f0, obtained by Theorem 1.4. In particular,
by (1.24), we have ‖T−t

1 f‖p,q,α,β ≤ 2‖f0‖p,q,α,β . Therefore, using (A.3) and (A.1), we obtain

eµk‖T−t
k f⊗k(t)‖k,p,q,α,β = eµk‖T−t

1 f(t)‖kp,q,α,β ≤ 2keµk‖f0‖kp,q,α,β
≤ eµ

′k‖f⊗k
0 ‖k,p,q,α,β ≤ ‖F0‖p,q,α,β,µ′,T .

Taking supremum over time, bound (1.57) follows.

Appendix A.

A.1. Properties of tensorized functions. Here we state results from [6] regarding the relation-
ship between the norms used in this paper and tensorized products of a given function h : R2d → R

defined by

h⊗k(Xk, Vk) =

k∏

i=1

h(xi, vi), k ∈ N.

Remark A.1. We note that given k ∈ N, h⊗k ∈ Xk
p,q,α,β if and only if h ∈ Xp,q,α,β. In particular,

there holds

‖h⊗k‖k,p,q,α,β = ‖h‖kp,q,α,β, ∀k ∈ N. (A.1)

Remark A.2. We note that the transport operator tensorizes as well. Namely for given h : R2d →
R, we have

T s
kh

⊗k = (T s
1h)

⊗k, ∀ s ∈ R, ∀ k ∈ N. (A.2)

In particular, by (A.1), we have

‖T s
kh

⊗k‖k,p,q,α,β = ‖T s
1h‖kp,q,α,β, ∀ s ∈ R, ∀ k ∈ N. (A.3)

A.2. Resonant manifold properties. Here we gather several properties of resonant manifolds.

Lemma A.3. Suppose w0, w1, w2, w3 ∈ Rd lie on the resonant manifold determined by Σ = {w0 +
w1 = w2 + w3} and Ω =

{
|w0|2 + |w1|2 = |w2|2 + |w3|2

}
. For any i, j ∈ {0, 1, 2, 3}, define

Wi,j = wi − wj , (A.4)
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and for any v ∈ Rd, let v̂ denote the unit vector in the direction of v, that is

v̂ =
v

|v| . (A.5)

Then the following identities hold

W0,2 ·W0,3 = 0, (A.6)

|W0,1| = |W2,3|, (A.7)

|W0,2|2 + |W0,3|2 = |W0,1|2 (A.8)

Additionally, the following estimate holds

min{|W0,2|, |W0,3|} ≥ |W0,1|
2

√
1− (Ŵ0,1 · Ŵ2,3)2. (A.9)

Proof. Suppose w0, w1, w2, w3 ∈ Rd belong to Σ and Ω, that is, they satisfy

w0 + w1 = w2 + w3, (A.10)

|w0|2 + |w1|2 = |w2|2 + |w3|2. (A.11)

By squaring (A.10) and subtracting from it (A.11), one has that

w0 · w1 = w2 · w3. (A.12)

Next, by multiplying the identity (A.10) by w0 and combining that with (A.12), one has

|w0|2 + w2 + w3 = w0 · (w2 + w3),

which is equivalent to (A.6).

Identity (A.7) easily follows from (A.11) and (A.12).

By combining the orthogonality property (A.6) and (A.7), we have

|W0,2|2 + |W0,3|2 = |W2,3|2 = |W0,1|2. (A.13)

Finally, we prove (A.9). Momentum equation (A.10) and (A.7) imply that

w2 =
w0 + w1

2
+

|W0,1|
2

Ŵ2,3, (A.14)

w3 =
w0 + w1

2
− |W0,1|

2
Ŵ2,3. (A.15)

Therefore,

|W0,2| =
|W0,1|

2
|Ŵ0,1 − Ŵ2,3|, |W0,3| =

|W0,1|
2

|Ŵ0,1 + Ŵ2,3|.

and thus

|W0,2| |W0,3| =
|W0,1|2

4

√
|Ŵ0,1 − Ŵ2,3|2 |Ŵ0,1 + Ŵ2,3|2

=
|W0,1|2

4

√(
2− 2 Ŵ0,1 · Ŵ2,3

)(
2 + 2 Ŵ0,1 · Ŵ2,3

)

=
|W0,1|2

2

√
1− (Ŵ0,1 · Ŵ2,3)2. (A.16)
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Then, the estimate (A.9) follows from the elementary inequality min{|x|, |y|} ≥ |xy|√
x2+y2

and iden-

tities (A.13) and (A.16).

�

A.3. Various integral estimates. In this section we gather several estimates that will be used
throughout the paper. We begin by two lemmas that will be used to estimate time integrals
appearing in proofs a priori estimates in Section 3.2.1.

Lemma A.4 ([6, Lemma A.1]). For p > 1 and x, η ∈ Rd with η 6= 0, we have
ˆ ∞

−∞
〈x+ sη〉−p

ds ≤ 2p

p− 1

1

|η| . (A.17)

Lemma A.5 ([6, Lemma 3.3]). Let p > 1 and x ∈ Rd. Consider ξ, η ∈ Rd with ξ, η 6= 0 and
ξ · η = 0. Then for any t ≥ 0 there holds the bound

ˆ t

0

〈x+ sξ〉−p〈x+ sη〉−p
ds ≤ 4p

p− 1

〈x〉−p

min{|ξ|, |η|} . (A.18)

Our next goal is to provide estimates (see Lemma A.8 and Lemma A.9) that are used to control
velocity integrals in a priori estimates in Section 3.2.1. They, in turn, rely on two results - a
convolution lemma from [6] (Lemma A.6) and a paramertization lemma for the integration over
resonant manifolds (Lemma A.7). We start by recalling the convolution lemma from [6].

Lemma A.6 ([6, Lemma A.2.]). Suppose δ ∈ (−d, 0] and let q > d+ δ. Then there exists a positive
constant Lq,δ such that

ˆ

Rd

|y − v|δ〈y〉−q
dy ≤ Lq,δ, ∀v ∈ R

d. (A.19)

One can take

Lq,δ = ωd−1

(
1

d
+

1

d+ δ
+

2

q − d− δ

)
. (A.20)

Next we prove a parametrization lemma for the integration over resonant manifolds determined
by Σ = v + v1 − v2 − v3 and Ω = |v|2 + |v1|2 − |v2|2 − |v3|2.
Lemma A.7. For f : R4d → R for which the integrals below make sense, we have
ˆ

R3d

δ(Σ)δ(Ω)f(v, v1, v2, v3) dv1 dv2 dv3 = 2−d

ˆ

Rd×Sd−1

|v − v1|d−2f(v, v1, v2(σ), v3(σ)) dσ dv1,

where Σ = v + v1 − v2 − v3, Ω = |v|2 + |v1|2 − |v2|2 − |v3|2, and

v2(σ) =
v + v1

2
+

|v − v1|
2

σ, v3(σ) =
v + v1

2
− |v − v1|

2
σ. (A.21)

Proof. Let us write

I(v) =

ˆ

R3d

δ(Σ)δ(Ω)f(v, v1, v2, v3) dv1 dv2 dv3

=

ˆ

R2d

δ(|v2|2 + |v + v1 − v2|2 − |v|2 − |v1|2)f(v, v1, v2, v + v1 − v2) dv1 dv2.
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It is easy to verify that

|v2|2 + |v + v1 − v2|2 − |v|2 − |v1|2 = 2

(∣∣∣∣v2 −
v + v1

2

∣∣∣∣
2

−
∣∣∣∣
v − v1

2

∣∣∣∣
2
)
,

and so

I(v) =

ˆ

R2d

δ

(
2

∣∣∣∣v2 −
v + v1

2

∣∣∣∣
2

− 2

∣∣∣∣
v − v1

2

∣∣∣∣
2
)
f(v, v1, v2, v + v1 − v2) dv1 dv2.

By letting y =
√
2
(
v2 − v+v1

2

)
, and using polar coordinates, we obtain

I(v) = 2−d/2

ˆ

R2d

δ

(
|y|2 − |v − v1|2

2

)
f

(
v, v1,

v + v1

2
+

y√
2
,
v + v1

2
− y√

2

)
dv1dy

= 2−d/2

ˆ

Rd

ˆ ∞

0

ˆ

Sd−1

δ

(
r2 − |v − v1|2

2

)
f

(
v, v1,

v + v1

2
+

rσ√
2
,
v + v1

2
− rσ√

2

)
rd−1dσdrdv1.

Next we apply another change of variables z = r2 (and so dr = dz
2
√
z
) to further obtain

I(v) = 2−
d
2−1

ˆ

Rd

ˆ ∞

0

ˆ

Sd−1

δ

(
z − |v − v1|2

2

)
f

(
v, v1,

v + v1

2
+

√
zσ√
2
,
v + v1

2
−

√
zσ√
2

)
z

d−2
2 dσdzdv1

= 2−
d
2−1 2−

d−2
2

ˆ

Rd

ˆ

Sd−1

|v − v1|d−2 f

(
v, v1,

v + v1

2
+

|v − v1|
2

σ,
v + v1

2
− |v − v1|

2
σ

)
dσdv1,

which completes the proof of the lemma. �

The following two lemmata, which are a consequence of Lemma A.6 and A.7, will be essential in
providing estimates on velocity integrals in Section 3.2.1.

Lemma A.8 (Analogue of Lemma A.6 in delta notation). Let d ∈ {2, 3} and q > 2d − 3. Then

there exists a positive constant L̃q such that for Σ = v+ v1 − v2 − v3, Ω = |v|2 + |v1|2 − |v2|2 − |v3|2
we have

ˆ

R3d

δ(Σ)δ(Ω)
1

|v − v1|〈v1〉q
dv1 dv2 dv3 ≤ L̃q, ∀v ∈ R

d. (A.22)

One can take

L̃q = 2−dω2
d−1

(
1

d
+

1

2d− 3
+

2

q − 2d+ 3

)
, (A.23)

where ωd−1 denotes the area of the unit sphere Sd−1 in Rd. In particular, for d = 3 we have

L̃q = 4π2
(

1
3 + 1

q−3

)
.

Proof. By Lemma A.7, we have

I :=

ˆ

R3d

δ(Σ)δ(Ω)
1

|v − v1|〈v1〉q
dv1 dv2 dv3 = 2−d

ˆ

Rd×Sd−1

|v − v1|d−3〈v1〉−q
dσ dv1.

Since d ∈ {2, 3} and q > 2d− 3, we can apply Lemma A.6 with δ = d− 3 to obtain

I ≤ 2−dωd−1Lq,d−3,

where Lq,d−3 is given by (A.20) with δ = d− 3. This completes the proof of the lemma. �
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Lemma A.9. For d = 3 and q > 3 there exists a positive constant Uq such that

sup
v∈Rd

ˆ

R3d

δ(Σ)δ(Ω)

|v − v1|
√
1− ( v−v1

|v−v1| ·
v2−v3
|v2−v3| )

2

〈v〉q

〈v1〉q〈v2〉q〈v3〉q
dv1 dv2 dv3 ≤ Uq, (A.24)

sup
v∈Rd

ˆ

R3d

δ(Σ)δ(Ω)

|v − v1|
√
1− ( v−v1

|v−v1| ·
v2−v3
|v2−v3| )

2

1

〈v2〉q〈v3〉q
dv1 dv2 dv3 ≤ Uq. (A.25)

One can take

Uq = 2π3

(
1

3
+

1

q − 3

)
. (A.26)

Proof. Let us denote the integral appearing in (A.24) by I1(v) and the integral in (A.25) by I2(v).
By the conservation of energy, we have

〈v2〉2〈v3〉2 = (1 + |v2|2)(1 + |v3|2) = 1 + |v|2 + |v1|2 + |v2|2|v3|2 ≥ max{〈v〉2, 〈v1〉2},

and thus
〈v〉q

〈v2〉q〈v3〉q
≤ 1, and

1

〈v2〉2〈v3〉2
≤ 1

〈v1〉2
,

which implies that both I1(v) and I2(v) can be estimated by the same upper bound:

I1(v), I2(v) ≤
ˆ

R3d

δ(Σ)δ(Ω)

|v − v1|
√
1− ( v−v1

|v−v1| ·
v2−v3
|v2−v3| )

2

1

〈v1〉q
dv1 dv2 dv3.

Then by Lemma A.7, we have

I1(v), I2(v) ≤ 2−d

ˆ

Rd

|v − v1|d−3

〈v1〉q
ˆ

Sd−1

1√
1− ( v−v1

|v−v1| · σ)2
dσdv1.

For d ≥ 3, integration in spherical coordinates yields
ˆ

Sd−1

1√
1− (n̂ · σ)2

dσ = ωd−2

ˆ π

0

sind−3(θ) dθ ≤ πωd−2, (A.27)

where ωd−2 denotes the area of the unit sphere Sd−2. We next apply Lemma A.6 with δ = d − 3,
which requires that d ∈ {2, 3} and q > 2d − 3. Since the estimate (A.27) required d ≥ 3, we need
the dimension to be d = 3, and together with q > 2d− 3 = 3, we have

I1(v), I2(v) ≤ 2−dπωd−2

ˆ

Rd

|v − v1|d−3〈v1〉−q
dv1 ≤ 2−dπωd−2Lq,d−3,

where Lq,d−3 is the constant from Lemma A.6. Since d = 3, we in fact have

I1(v), I2(v) ≤ 2−3π(2π)(4π)

(
1

3
+

1

3
+

2

q − 3

)
= 2π3

(
1

3
+

1

q − 3

)
.

This completes the proof of the lemma. �
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