
May 8, 2024 1:25

Nonperturbative thermodynamic extrinsic curvature of the anyon gas
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Thermodynamic extrinsic curvature is a new mathematical tool in thermodynamic geom-

etry. By using the thermodynamic extrinsic curvature, one may obtain a more complete

geometric representation of the critical phenomena and thermodynamics. We introduce
nonperturbative thermodynamic extrinsic curvature of an ideal two dimensional gas of

anyons. Using extrinsic curvature, we find new fixed points in nonperturbative thermo-
dynamics of the anyon gas that particles behave as semions. Here, we investigate the

critical behavior of thermodynamic extrinsic curvature of two-dimensional Kagome Ising

model near the critical point βc = (kBTc)−1 in a constant magnetic field and show that
it behaves as |β − βc|α with α = 0, where α denotes the critical exponent of the specific

heat. Then, we consider the three dimensional spherical model and show that the scaling

behavior is |β − βc|α , where α = −1. Finally, using a general argument, we show that
extrinsic curvature K have two different scaling behaviors for positive and negative α.

For α > 0, our results indicate that K ∼ |β − βc|
1
2
(α−2). However, for α < 0, we found

a different scaling behavior, where K ∼ |β − βc|α.

Keywords: Thermodynamic extrinsic curvature; Anyon gas; Semions; Spherical Ising
model.

1. Introduction

Weinhold introduced a geometrical metric based on the Hessian matrix of the in-

ternal energy [1]. However, he did not investigate the distance between the ther-

modynamic states. Ruppeiner introduced a metric and suggested a correspondence

between the singularities that appears in thermodynamic geometry and phase tran-

sitions [2, 3]. A proof of the correspondence was proposed in [4, 5]. It was suggested

by Ruppeiner that the sign of the thermodynamic scalar curvature may determine

the character of the microscopic interaction, whether it is repulsive (R < 0) or

attractive (R > 0). The thermodynamic scalar curvature R of the ideal gas is equal

to zero (R = 0) [2]. The scalar curvature can be used as a new tool to measure the

amount of interaction among microstates.

So far, the thermodynamic geometry of various sytems has been obtained. For

a review of those models, see [6]. Janyszek and Mrugala have obtained the ther-

modynamic scalar curvature of ideal quantum gases [7]. The results show that R
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is negative for a gas of Fermions and is positive for a Bose gas. Thermodynamic

geometry of an anyon gas which obeys fractional statistics has been investigated via

the thermodynamic scalar curvature R and some notable aspects of anyon gas has

been reported [8, 9]. The scalar curvature of anyons has both signs, whose change

from positive (Bose like behavior) to negative values (Fermi like gas).

Near the critical point, both correlation length ξ and the thermodynamic cur-

vature R diverge. It was suggested and confirmed in different studies that near

the critical point the thermodynamic scalar curvature can be written as R ∼ κ ξd,

where d is dimension of the system, ξ is the correlation length and κ is a constant

[2, 3, 10–14]. Considering the scaling relation νd = 2−α where α and ν are critical

exponents, the thermodynamic curvature behaves as R ∼ tα−2 where t denotes the

difference in the temperature from its critical value, t = β − βc. Therefore, using

the scaling behavior of R, the critical exponent of the thermodynamic system can

be investigated, e.g. the scaling behavior of the thermodynamic scalar curvature

for three dimensional Van-der Walls model and four dimensional spherical model

is R ∼ tα−2 (α = 0) [15]. While the critical behavior of thermodynamic scalar

curvature of two dimensional Kagome Ising model is R ∼ tα−1, where α = 0 [11].

Therefore, we expect that in some cases the scaling behavior of R depends on the

dimension of thermodynamic system.

Thermodynamic geometry of black holes may give us useful information about

their microstates interactions [16]. It was suggested that microstes in the Kerr-

Newman black holes might behave as fermions and represent repulsive interactions

[17, 18]. Also, it was found that the critical exponents of the Van der Waals fluid

are the same as that of the charged AdS black holes [19–21].

Among these, an interesting subject is to investigate thermodynamic extrinsic

curvature in statistical systems. The inspiration of this work is the earlier study of

black holes thermodynamic geometry by using the extrinsic curvature [22]. The re-

sults indicate the correspondence between the singularities of the thermodynamic

extrinsic curvature and the phase transition points that are corresponded to the

heat capacity. The thermodynamic extrinsic curvature could be an important ge-

ometrical quantity in the study of critical phenomena. In this work we start to

investigate the following issues. Whether the extrinsic curvature on an embedded

hypersurface in the thermodynamic manifold can provide useful information about

critical phenomenon. Does the scaling behavior of the thermodynamic extrinsic

curvature depends on the dimension? What type of universal behaviors and in-

formation may be obtained study of the thermodynamic extrinsic curvature. To

explore usefulness of thermodynamic extrinsic curvature, we study some statistical

systems in the following sections. In this paper, we study the critical behavior of

the gas of anyons and two critical spin systems by using thermodynamic extrin-

sic curvature. We derive the thermodynamic extrinsic curvature and compare its

properties with the well known thermodynamic Ricci scalar.

This paper is outlined as follows. In section 2, we review some of the basic re-

lations in the thermodynamic geometry. In section 3, we first briefly present the
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thermodynamic properties of an anyon gas which obeys fractional statistics and

obtain it’s thermodynamic extrinsic curvature. In section 4, we consider thermo-

dynamic geometry of two dimensional Kagome Ising model and find the critical

exponent using the extrinsic curvature. We also explore thermodynamic geometry

of three dimensional spherical model. The standard scaling behavior of the extrinsic

curvature is given in 5. A summary of the results can be found in section 6. Details

on relations of the Kagome Ising model can be reached in Appendix.

2. Thermodynamic geometry

Weinhold and Ruppeiner introduced a geometrical formulation of thermodynamic

[1, 2]. Weinhold suggested the energy representation by using the internal energy

and its second derivative. Ruppeiner introduced the metric by the second derivative

of entropy. It was suggested that both formulations are equivalent and the metrics

are related by a conformal transformation [23]. Using Legendre transformations one

may generate other forms of thermodynamic metrics. A new form of thermodynamic

metric was recently proposed in [4]. In 1990, Janyszek and Mrugala used logarithm

of the partition function and its second derivative to generate a metric for geometric

formulation of thermodynamic as follows [7]

gij =
∂2 lnZ

∂βi∂βj
, (1)

where βi =
1
kB

∂S
∂Xi

, S is the entropy and Xi denote the extensive parameters of

the thermodynamic systems (in the following sections we use both Latin and Greek

indices for the metric components). Then, one may calculate other geometrical

quantities such as the scalar and the extrinsic curvatures. The thermodynamic

scalar curvature in a two dimensional space is determined as follows

R =

∣∣∣∣∣∣
g11 g22 g12
g11,1 g22,1 g12,1
g11,2 g22,2 g12,2

∣∣∣∣∣∣
2

∣∣∣∣g11 g12g21 g22

∣∣∣∣2
, (2)

where the parameters of the thermodynamic space are (β1, β2) and gij,k =
∂gij
∂Xk

. It

was argued that curvature singularities which are roots of the denominator of R are

corresponded to the second order phase transitions [4, 5]. So far, most of attempts

in thermodynamic geometry of statistical systems were in the context of scalar

curvature. However, recently the extrinsic curvature was introduced as a new tool

in thermodynamic geometry [22]. It was shown that the extrinsic curvature plays

a key role in determining the stability of the thermodynamic system. Here, we are

going to use extrinsic curvature to study the critical behaviour of some statistical

systems.
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In the following lines, we review definition of extrinsic curvature in differential

geometry. A hypersurface Σ can be defined by a restriction on coordinates H(Xa) =

0, where Xa are coordinates. The extrinsic curvature is expressed as

K = ∇µñ
µ =

1
√
g
∂µ (

√
g ñµ) , (3)

where g denotes the determinant of the metric and ñµ is a normal vector to hyper-

surface Σ. The normalized vector ñµ is given by

ñµ =
∂µH√

gµν∂µH∂νH
. (4)

In this paper, we deal with two dimensional thermodynamic manifolds therefore

each hypersurface refers to a one-dimensional curve. In the following, we investigate

the extrinsic curvature of anyon gas, two dimensional Kagome Ising model and the

spherical model. We elaborate on new aspects of using the extrinsic curvature in

thermodynamic geometry.

3. Anyon gas

In this section, our main goal is to derive the nonperturbative thermodynamic

extrinsic curvature of an anyon gas and compare its thermodynamic behavior with

the corresponding scalar curvature obtained in [8, 9].

It is known that in 3 + 1 dimensions states of identical bosons (fermions) are

symmetric (antisymmetric) under the interchange of particles. However, the inter-

change of two identical particles in 2+1 dimensions may produce an arbitrary phase

eiπα. The statistical parameter α is in the range 0 ≤ α ≤ 1 where, α = 0, 1 corre-

sponds to bosons and fermions, respectively. The particles with fractional statistics

(0 < α < 1) were called anyons by Wilczek [24]. Over the years, much works have

been done to investigate anyons [24–27]. Although fractional exchange statistics

mostly defined in two dimensional space, it may also be appear in d = 1 [28, 29].

Another type of fractional statistics is fractional exclusion statistic that was intro-

duced by Haldane [25]. Fractional exclusion statistic is based on Hilbert space and

therefore can be defined for an arbitrary dimension d ≥ 2 [30–34].

In this section, we will obtain the thermodynamic extrinsic curvature of an anyon

gas obeying fractional exclusion statistics. To do this, we first briefly review the

thermodynamic formulation of the anyon gas [35–37]. Wu formulated the statistical

distribution of anyons by using Haldane’s fraction exclusion statistics as follows [27]

ni =
1

w(exp
[
εi−µ
kB T

]
) + α

, (5)

where, µ denotes the chemical potential of anyons and ε is the energy of the sin-

gle particle. The function w(χ) fulfills a certain functional equation, w(χ)α[1 +

w(χ)1−α] = χ where, w(χ) = χ − 1 for bosons (α = 0) and for fermions (α = 1),
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w(χ) = χ. In the classical limit (exp
[
εi−µ
kB T

]
≫ 1), we have w(χ) = χ + α − 1

therefore the particle number and the internal energy of anyons are given by

N =
∑
i

ni =
∑
i

1

exp[ εi−µkBT
] + 2α− 1

,

U =
∑
i

niεi =
∑
i

εi

exp[ εi−µkBT
] + 2α− 1

. (6)

The above particle number and internal energy reduce to boson and fermion cases

by choosing α = 0 and α = 1, respectively. It was proposed by Huang that a system

of N particles with both α fractions of fermions and (1−α) fractions of bosons can
establish anyon statistics [36]. Therefore, Based on the Huang’s factorized method,

the thermodynamic quantity Q(α) can be written as

Qanyon = αQfermion + (1− α)Qboson. (7)

As a consequence, the particle number and the internal energy of the anyons can

be written as the combination of the particle number and the internal energy of

fermions and bosons. Moreover, at finite temperatures for N particle number of

anyons in the volume V with a mass m we have [27]

µa
kBT

=
αh2

2πmkBT

N

V
+ ln

(
1− exp[

−h2

2πmkBT

N

V
]

)
. (8)

By rewriting Eq. (8) for boson (α = 0), fermion (α = 1) and assuming that Na =

Nb = Nf = N we arrive at

µa = αµf + (1− α)µb, (9)

which is compatible with the factorized property (Eq.(7)), where a, f and b indices

means anyon, fermion and boson, respectively. Therefore, the fugacity of anyons is

written as za = zαf z
(1−α)
b where

zb = exp[
µb
kBT

] = (1− exp[
−Nb β
y

], (10)

zf = exp[
µf
kBT

] = exp[
αNf β

y
](1− exp[

−Nf β
y

]),

za = exp[
µa
kBT

] = exp[
αNa β

y
](1− exp[

−Na β
y

])),

where β = 1
kBT

and y = 2πmV
h2 . In the following, we consider two dimensional space.

Therefore, for two dimensional momentum space we replace the summation with

2πmV
h2

∞∫
0

dε in Eq. (6). Then, the particle number and the internal energy of anyons

are given by [9]

Na = y β−1 (α ln(1 + zf )− (1− α) ln(1− zb)),

Ua = y β−2 (−αLi2(−zf ) + (1− α)Li2(zb)), (11)
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where Lin(x) represents the polylogarithm function. To simplify the relations, we

set y = 1. Considering Eq.(11) the parameter space is (β, γi), where γi = − µi

kBT
.

The metric elements of boson gas, fermion gas and anyon gas can be obtained via

Eq. (1) where Z(β, γi) = Tr exp[−βH − γiN ] and ⟨H⟩ = U . Therefore, using

Eq.(11), the metric elements for the ideal boson gas (α = 0) with the parameters

of (β, γb) is written as

(gb)ββ =
∂2 ln(Zb)

∂β2
= −(

∂Ub
∂β

)γb = 2β−3Li2(zb),

(gb)βγb = (gb)γbβ =
∂2 ln(Zb)

∂γb∂β
= −(

∂Ub
∂γb

)γb = −β−2 ln(1− zb), (12)

(gb)γbγb =
∂2 ln(Zb)

∂γf∂γf
= −(

∂Nb
∂γb

)β = β−1 zb
1− zb

,

and the metric elements of the ideal fermion gas (α = 1) with the parameters (β, γf )

are as follows

(gf )ββ =
∂2 ln(Zf )

∂β2
= −(

∂Uf
∂β

)γf = −2β−3Li2(−zf ),

(gf )βγf = (gf )γfβ =
∂2 ln(Zf )

∂γf∂β
= −(

∂Uf
∂γf

)γf = β−2 ln(1 + zf ), (13)

(gf )γfγf =
∂2 ln(Zf )

∂γf∂γf
= −(

∂Nf
∂γf

)β = β−1 zf
1 + zf

.

Then, the metric elements of anyon takes the following form

(ga)ββ =
∂2 ln(Za)

∂β2
= −(

∂Ua
∂β

)γa = 2β−3(−αLi2(−zf ) + (1− α)Li2(zb)),

(ga)βγa = (ga)γaβ =
∂2 ln(Za)

∂γa∂β
= −(

∂Na
∂β

)γa = β−2(α ln(1 + zf )− (1− α) ln(1− zb)),

(14)

(ga)γaγa =
∂2 ln(Za)

∂γa∂γa
= −(

∂Na
∂γa

)β =
−1

( ∂γa∂Na
)β

= β−1 zf zb
2αzf zb + α zb − α zf − zf zb + zf

.

Also, It is known that in the calssical limit, the equation of state takes the following

form [27]

PV = NkBT (1 + (2α− 1)
Nλ2

4V
), (15)

where λ = h√
2πmkBT

. Therefore, the interaction is repulsive for α > 1
2 and is attrac-

tive for α < 1
2 . For α = 1

2 an ideal equation of state is reached [8]. Nonperturbative
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thermodynamic geometry of anyon gas was investigated in [9]. It was found that

the scalar curvature has opposite signs for boson (R > 0) and fermion (R < 0)

cases [7, 8]. It is known that the positive scalar curvature indicates the attractive

interaction while the negative one leads to repulsive interaction [6, 8]. Moreover, at

the Bose-Einstein condensation the corresponding thermodynamic scalar curvature

diverges. It was shown that anyons behave as an ideal classical gas at α = 1
2 where

R = 0 [8]. For a thorough discussion, the interested reader is referred to [9].

Now, we will compute the thermodynamic extrinsic curvature of bosons,

fermions and anyon gas. We assume a constant hypersurface, β = cte, in order to

compare the results with thermodynamic properties obtained via thermodynamic

scalar curvature for an isotherm in [9]. The starting point is to compute a normal

vector of the hypersurface. So, using Eq.(4) and Eq.(12) the normal vector (ñb)β
for bosons is given by

(ñb)β =
∂βH√

(gb)ββ ∂βH ∂βH
(16)

=
1√

(gb)ββ
=

(
2zb Li2(zb) + (zb − 1) ln (1− zb)

2

β3zb

) 1
2

,

it should be noted that another component ((ñb)γb) is equal to zero. For fermions

using the same calculations we have

(ñf )β =
1√

(gf )ββ
=

(
−2zf Li2(−zf ) + (zf + 1) ln(zf + 1)

2

β3zf

) 1
2

, (17)

where we have used Eq.(13), and the other component ((ñf )γf ) is equal to zero.

The normal vector with upper indices has both components ((ñi)
β and (ñi)

γi ) due

to the off-diagonal metrics (Eqs.(12), (13), (14)). Therefore, for bosons we arrive at

(gb)
ββ(ñb)β = (ñb)

β =

(
β3zb

2zb Li2(zb) + (zb − 1) ln(1− zb)2

) 1
2

, (18)

(gb)
βγb(ñb)β = (ñb)

γb =
(1− zb) ln(1− zb)

zb

×
(

β zb
2zb Li2(zb) + (zb − 1) ln(1− zb)2

) 1
2

,
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and for fermions we have

(gf )
ββ(ñf )β = (ñf )

β =

(
− β3zf
2zf Li2(−zf ) + (zf + 1) ln(zf + 1)2

) 1
2

, (19)

(gf )
βγf (ñf )β = (ñf )

γf = − (zf + 1) ln(zf + 1)

zf

×

(
− β zf

(1 + zf ) ln (1 + zf )
2
+ 2zf Li2(−zf )

) 1
2

.

As a result, the extrinsic curvature for bosons takes the following form

Kb =
1

√
gb
∂µ (

√
gb n

µ
b ) (20)

=
1

√
gb

(
∂β(

√
gb (ñb)

β) + ∂γb(
√
gb (ñb)

γb)
)
,

where gb denotes the determinant of the metric for bosons and ∂µ = ( ∂∂β ,
∂
∂γb

).

The computation for fermions is the same and therefore, the extrinsic curvature for

bosons and fermions can be found as follows

Kb =
(zb + ln(1− zb))

2zb

(
β zb

2zb Li2(zb) + (zb − 1) ln (1− zb)
2

) 1
2

, (21)

Kf =
(zf − ln(1 + zf ))

2zf

(
− β zf

2zf Li2(−zf ) + (zf + 1) ln (1 + zf )
2

) 1
2

.

Fig.1 and Fig.2 show the extrinsic curvatures of bosons and fermions, respectively,

with respect to fugacities zb and zf . It is seen that the extrinsic curvature has

opposite signs for bosons and fermions. Moreover, There is a singularity for bosons

which is located at zb = 1. This point in higher dimensions corresponds to the

Bose-Einstein condensation phase transition [7]. It is known that boson gas are less

stable than fermion gas [7, 9]. Therefore, we observe the thermodynamic extrinsic

curvature of bosons and fermions behaves properly as a geometric tool in study of

statistical mechanics of the anyon gas.
Now, let us investigate the extrinsic curvature of anyons. The parameters of

space for anyons is (β, γa), where γa = − µa

kBT
. Now, by using Eq.(10), we can

replace zf by zb
1−zb in the metric components (Eq.(14)). The unit normal vectors of
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Fig. 1. The thermodynamic extrinsic curvature for bosons as a function of zb. The singular point

at zb = 1 displays Bose-Einstein condensation phase transition. We have set β = 1.

Fig. 2. The thermodynamic extrinsic curvature for fermions as a function of zf and β = 1.

anyons with upper indicies take the following form

(ña)
β =

 β3zb

2(1− α)zb Li2(zb)− 2α zb Li2

(
zb
zb−1

)
+ ((1− α) zb − 1)

(
α ln

(
1

1−zb

)
− (1− α) ln(1− zb)

)2


1
2

,

(ña)
γa =

((1− α)zb − 1)
(
α ln

(
1

1−zb

)
+ (α− 1) ln(1− zb)

)
zb

×

 β zb

2(1− α)zb Li2(zb)− 2α zb L i2

(
zb
zb−1

)
+ ((1− α) zb − 1)

(
α ln

(
1

1−zb

)
+ (α− 1) ln(1− zb)

)2


1
2

.

(22)
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Fig. 3. The thermodynamic extrinsic curvature of anyon gas as a function of α. The values of
anyon fugacity have been considered as za = 0.01 (dashed red curve), 0.6 (yellow curve), 1.0 (

green curve), 1.1 (brown), 1.2 (blue), 1.5 (purple), 2.0 (pink) and 3.0 (gray upper curve). We have

set β = 1 for all diagrams.

The extrinsic curvature of anyons is given by

Ka =
1

√
ga

(
∂β(

√
ga (ña)

β) + ∂γa(
√
ga (ña)

γa)
)
, (23)

where ga denotes the determinant of the metric of anyons which components are

given in Eq.(14). Eq.(9) implies γa = αγf + (1 − α)γb, therefore we can write the

second term in Eq.(23) as follows

∂γa (
√
ga (ña)

γa) =
1
∂γa

∂(
√
ga(ña)

γa)

(24)

=

(
α

∂γf (
√
ga(ña)

γa)
+

(1− α)

∂γb(
√
ga(ña)

γa)

)−1

=

(
α(1 + zb

1−zb )

∂γb(
√
ga(ña)

γa)
+

(1− α)

∂γb(
√
ga(ña)

γa)

)−1

,

where we have used Eq.(10), ∂
∂γf

= ∂γb
∂γf

∂
∂γb

and ∂γb
∂γf

= (1 + zb
1−zb )

−1. Fig.3 shows

the extrinsic curvature for different values of anyon fugacities. In the classical limit

we have obtained Eq.(15) therefore at α = 1
2 it represents a classical ideal gas

(PV = NkBT ). It is seen for za = 0.01 the extrinsic curvature behaves as an ideal

classical gas whose sign changes at α = 1
2 . For larger values of za, we observe a

fermionic behavior where the extrinsic curvature is positive. The extrinsic curvature

has a minimum point for za > 1 that exists in the range α < 1
2 . As the value of

anyon fugacity increases the minimum point goes toward the bigger values of α.

Furthermore, for some values of anyon fugacities (za > 1), there are two points of
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(a)

(b)

Fig. 4. The thermodynamic extrinsic curvature of anyon gas as a function of α for different β
hypersurfaces. The diagrams are for β = 20 (dotted-dashed gray curve), β = 10 (dashed-red

curve) and β = 1 ( solid blue curve) at constant anyon fugacities (a) za = 0.01 (b) za = 1.2.

α where the extrinsic curvature has the same amount, indicating a duality relation

between those points. For za = 1, the extrinsic curvature goes to negative infinity

(green curve) at α = 0 that represents the bosonic behavior. The results are in

agreement with behavior of thermodynamic Ricci scalar that was investigated in

[9].

Now, let us investigate the thermodynamic extrinsic curvature for different val-

ues of β hypersurfaces. Fig.4 shows the thermodynamic extrinsic curvature as a

function of α for three values of inverse temperatures β. First, we consider the

classical limit and za = 0.01. There is a fixed point that the value of the thermo-

dynamic extrinsic curvature is equal to zero for all values of inverse temperatures,

where α = 0.5 in Fig.4(a). At this fixed point, the gas particles behave as semions
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and do not have bosonic or fermionic behavior. Then, we restrict our attention to

the other interesting case za = 1.2. Fig.4(b) shows by increasing the value of inverse

temperature β (upper curves to downer curves) the minimum absolute value of the

extrinsic curvature increases which moves toward the small values of α. Therefore,

for larger values of β or as T → 0, the thermodynamic extrinsic curvature for α = 0

has the bosonic behavior with Ka < 0. Also, we observe semionic behavior of the

anyon gas particles where α = 0.25. Therefore, for values away from the classical

limit, the fixed point with Ka = 0 moves toward the small values of α. Also, we

find two different points with Ka = 0. These new fixed points can not be obtained

by using the thermodynamic Ricci scalar curvature.

4. Critical systems

Thermodynamic geometry of the two dimensional Kagome Ising model was inves-

tigated in [11]. It was shown that at zero magnetic filed the thermodynamic scalar

curvature behaves as R ∼ εα−1 where ε = β − βc and α = 0 (βc denotes the

critical point). For positive values of α the critical behavior of the thermodynamic

scalar curvature is R ∼ εα−2 [15]. The critical scaling behavior of the thermody-

namic scalar curvature not only determines the phase transition points but also can

be used to extract the critical exponent α. Consider the critical region, where we

expect a standard scaling form of the free energy per site as follows

f(ε, h) = λ−1f(ελaε , hλah), (25)

where ah and aε are scaling dimensions of spin operators and the energy, respec-

tively. In the high temperature region (ε = βc − β > 0), using the scaling assump-

tions and the scaling function ψ+ we arrive at

f(ε, h) = ε
1
aε ψ+(h ε

− ah
aε ). (26)

In the second order transition, the scalar curvature can be written as R ∼ ξd, where

d is the dimension of the system and ξ is the correlation length. Here, we are going

to obtain the critical exponents via the scaling behavior of the extrinsic curvature.

We study the two dimensional Kagome Ising model and the spherical model. The

relevant parameters of the spin systems are (β, h) where β = 1
kBT

and h is the

external magnetic field.

4.1. Kagome Ising model

The two dimensional Ising model in a magnetic field background has been studied

by different methods [38, 39]. Fisher obtained a unique exact solution of an anti-

ferromagnetic Ising model [40]. The Fisher model was defined on a square lattice

in the nonzero magnetic field. It was also generalized to the Ising model on the

Kagome lattice and in a magnetic field background which is soluble for a few cases

[41–44]. In one of the cases, the Kagome Ising model was solved by using the equiv-

alency between those partition functions of the Kagome and the Honycomb Ising
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models [44]. That case transforms into the Fisher model for the square lattice. In

recent years, Kagome lattice has received attention for its applications in high-Tc

superconductivity. Here, we obtain the thermodynamic extrinsic curvature and the

critical exponent using the Fisher model. For an Ising model on the Kagome lattice,

see Fig.5, the interacting energy of every triangle composed of the spins σ1, σ2, σ3
is given by

−J1σ1σ2 + J(σ2σ3 − σ3σ1)− µH(σ1 + σ2), (27)

where H denotes the magnetic field which affects the 2
3 of sites on the lattice. The

reduced field determines by h = βH and reduce interactions are b = βJ, b1 = βJ1.

The Ising spin σ3 with zero magnetic moment does not couple to the magnetic

field. Therefore, σ1, σ2 have a super-exchange interaction with the spin σ3 (non-

magnetic). The Fisher model can be obtained from this model by assuming b1 = 0.

The partition functions of the Ising model on the kagome and Honeycomb lattices

are equivalent at zero magnetic field, ZKG = FNZHC , where N represents the num-

ber of lattice sites in the Honeycomb model and the magnetic spins in the Kagome

lattice, the parameter F is a constant. The per-site free energy for Honeycomb

lattice and the per magnetic spin free energy are, respectively, given by

fHC = lim
N→∞

N−1 lnZHC, and fKG = lim
N→∞

N−1 lnZKG, (28)

The relation of FHC was reported in [45, 46]. Therefore, by using Eq.(28) we arrive

at the free energy of Kagome Ising model

f =
1

16π2

∫ 2π

0

∫ 2π

0

dθdφ ξ(θ, φ) +
3

4
ln 2 + lnF, (29)

where

ξ(θ, φ) = cosh 2r1 cosh
2 2r − sinh2 2r cos(θ + φ)− sinh 2r1

× sinh 2r(cos θ + cosφ) + 1, (30)

and r1 and r are, respectively, as a function of b1 and b. We have the Fisher model

in the case b1 = 0. Therefore, by Setting b1 = 0 in the above relation, we can write

the free energy per spin as follows [44]

f = f1(b, h) + f2(r), (31)

where f1(b, h), f2(r) are defined as follows

f1(b, h) =
1

4
ln{cosh2 h (sinh2 h+ cosh2 2b)}+ 3

2
ln 2, (32)

f2(r) =
1

16π2

∫ 2π

0

∫ 2π

0

dθ dφ ln{cosh2 2r − sinh 2r (cos θ + cosφ)}.

Also, r fulfills the below relation

r = −1

4
ln(

sinh2 h+ cosh2 2b

cosh2 h
). (33)
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Fig. 5. Kagome Ising lattice in a magnetic field. Colorful circles show magnetic Ising spins 1, 2
and open circles non-magnetic spins 3.

.

With some simplifications f2(r) takes the following form [11]

f2(r) =
1

π

∫ π
2

0

dθ ln(
1

2
(1 +

√
1− κ2 sin2 θ)) +

1

2
ln(cosh2 2r), (34)

where κ = − 2 sinh 2r
cosh2 2r

. Here, the parameters of the thermodynamic space are (b, h)

and from the metric defined in Eq.(1) where lnZ = f , the metric elements of two

dimensional Kagome Ising model are given by

gij ≡ fij = ∂i∂jf. (35)

Therefore, we arrive at

gbb ≡ fbb =
∂fb
∂b

,

ghh ≡ fhh =
∂fh
∂h

, (36)

ghb = gbh ≡ fbh =
∂fh
∂b

,

where

fb ≡
∂f

∂b
=
∂f1
∂b

+
∂f2
∂r

∂r

∂b
,

fh ≡ ∂f

∂h
=
∂f1
∂h

+
∂f2
∂r

∂r

∂h
. (37)

The relations are lengthy so we write them in the general form. The first deriva-

tives of free energy can be found in Appendix. The thermodynamic geometry of
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the Kagome Ising model in two dimensions was studied in [11]. The results show

the scalar curvature R is positive at high temperature that shows disordered state

(paramagnetic), while it is negative for low temperature ordered state (antiferro-

magnetic). Moreover, as the temperature decreases the scalar curvature diverges at

plus infinity. It was shown the critical line where the scalar curvature also diverges

at the same points coincides with the Fisher expression

h = arccosh (

√√
2− 1

2
sinh (2b)), (38)

and in the zero field case (h = 0) upon setting the denominator of R equals to zero,

the critical point is obtained as

bc = arccosh(

√
2 +

√
2

2
), (39)

where bc denotes the critical point. Now, we will obtain the extrinsic curvature

using the Fisher model. We first assume a constant b hypersurface, therefore from

Eq.(4) we have ñb =
∂bH√

gbb∂bH ∂bH
. From this relation, the upper indices unit normal

vectors for constant b hypersurface takes the following form

ñb = gbb ñb =
f bb√
f bb

, (40)

ñh = gbhñb =
f bh√
f bb

,

where we have used Eq.(36). Then, by making use of Eq.(3) the extrinsic curvature

is expressed as

K =
1
√
g
(∂b
(√
g ñb

)
+ ∂h

(√
g ñh

)
), (41)

where g denotes the determinant of the two dimensional Kagome Ising metric.

Also, the computation of the thermodynamic extrinsic curvature for the h constant

hypersurface can be done by using the following unit normal vectors (ñh = 1√
ghh

)

ñb = gbb ñh =
f bb√
fhh

, (42)

ñh = gbhñh =
f bh√
fhh

.

We have depicted the thermodynamic extrinsic curvature of the 2-d Kagome Ising

model in Fig.6 and Fig.7, respectively, for different h and b hypersurfaces. The

points h = 1.24 and b = 1.06 satisfy the Fisher expression in Eq.(38). Fig.6 and

Fig.7 show divergence points of the thermodynamic extrinsic curvature, properly.

The divergence points correspond to the phase transition points. Moreover, Fig.6

shows that K < 0 at high temperature or small value of β while K > 0 for law
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Fig. 6. Thermodynamic extrinsic curvature K of two dimensional Kagome Ising model for h
hypersurface. At h = 1.24, the thermodynamic extrinsic curvature K diverges at the critical point

b = 1.06.

Fig. 7. Thermodynamic extrinsic curvature K of two dimensional Kagome Ising model for b hy-

persurface. At b = 1.06, K diverges at the critical point h = 1.24.

temperature. Therefore, by decreasing the temperature a transition occurs from

the disordered (paramagnetic) to an ordered state (antiferromagnetic). In Fig.7, by

increasing an external field we observe a phase transition from the ordered state

(K > 0) to the disordered state (K < 0) at the critical point hc = 1.24. We also

observe that signs of the thermodynamic extrinsic curvature K and the thermody-

namic scalar curvature are opposite to each other. The thermodynamic extrinsic
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curvature is depicted at zero magnetic field in Fig.8. It is seen that the divergence

point corresponds to the critical point in Eq.(39) exactly. The correspondence of

the divergence points of the thermodynamic extrinsic and scalar curvatures is an

important issue that should be studied more in the feature.

Now, we are going to derive the critical behavior of the thermodynamic extrinsic

curvature. As usual, we expect a power law behavior near critical points. Therefore,

around the critical points, the extrinsic curvature behaves as K ∝ −
(
1− b̃+

)a
or

ln |K| = −a ln
(
1− b̃+

)
+ c, (43)

where the reduced parameter b̃+ = b
bc

and bc is the critical point, where K diverges.

In the following lines, we obtain the scaling behavior of the extrinsic curvature at

zero magnetic field, h = 0 hypersurface. Using the definition of the extrinsic curva-

ture in Eq.(41), we can compute Eq.(43) for different values of b near the critical

point bc (Eq.(39)). We extrapolate the numerical values and find the coefficients a

and c by a numerical method. We indicate the numerical results in Fig.9 by blue

points and the red fitting line. From Fig.9 we obtain a ≃ 0.07148 and c ≃ 1.75139.

Extrapolating the numerical values, our results are consistent with a = 0. So, we

find that the thermodynamic extrinsic curvature behaves as K ∼ (b − bc)
α ≡ εα,

where α = 0 as it was expected. However, it was found that the thermodynamic

scaling behavior of the scalar curvature is R ∼ εα−1 with α = 0 which is the same as

2d-Ising model on planar random graph with α = −1. There is a unit of difference

between the power of the thermodynamic scalar and extrinsic curvatures. Also, we

have recently studied thermodynamic of pure Lovelock black holes by using ther-

modynamic geometry method [47]. We have found the scaling behavior of the scalar

and the extrinsic curvatures are, respectively, R ∼ εα−2 and K ∼ εα−1 with α = 0.

It is interesting that a universal behavior appears as R
K ∼ 1

ε for different models

such as pure Lovelock black holes and Kagome Ising model.
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Fig. 8. Extrinsic curvature of two dimensional Kagome Ising model at h = 0 hypersurface, the

critical point is bc = 0.76.

Fig. 9. The numerical values (blue points) of ln
∣∣Kkg

∣∣ as a function of ln(1 − b̃+) for two
dimensional Kagome Ising model near the critical point bc = 0.76428. The data are fitted by the

red line with the slope 0.07148.

4.2. The spherical model

The spherical model is a generalized form of the two dimensional Ising model. Kac

introduced this model that spin variable si have arbitrary values [48] such as∑
i

si
2 = N. (44)
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Therefore, the value of the spin can vary continuously on the sphere with the radius

N
1
2 from −N 1

2 toN
1
2 . This approach is useful for spin models with an external field.

In 1952, Berlin and Kac solved this model for one, two and three dimensions. Three

dimensional spherical model presents transition at finite temperature while one and

two dimensional cases do not that differs from the two dimensional Ising model. The

model is reliable for entire temperatures. It was shown that the critical exponents

of the Ising model on two dimensional planar random graphs are the same as the

three dimensional spherical model [49, 50] and α = −1. As α is negative the scalar

curvature behaves as R ∼ εα−1 rather than R ∼ εα−2. Moreover, for d ≥ 4 the

model can be described by a mean field theory with α = 0. The spherical model’s

partition function is given by

Z =

∫
ds1 . . . dsN exp (β

∑
<ij>

sisj + h
∑
i

si) δ(
∑
i

si
2 −N), (45)

where si denotes the value of a spin, N is the number of sites and h is the mag-

netic field. Using the saddle-point method and f = lnZ, the free energy in the

thermodynamic limit (N → ∞) is written as

f =
1

2
Log

(
π

β

)
+ β z − 1

2
g(z) +

h2

4β (z − d)
, (46)

where

g(z) =
1

(2π)
d

2π∫
0

dω1 . . . dωd Log

(
z −

d∑
k=1

cos(ωk)

)
. (47)

Therefore, the saddle point for the free energy is given by

g′(z) = 2β − h2

2β(z − d)
2 . (48)

We focus our attention to the case d = 3, since there is no phase transition for

d = 1 and d = 2. Using Eq.(48) with h = 0 we have

dz

dβ
=

2

g′′(z)
, (49)

therefore

d2z

dβ2
=

−4g′′′(z)

g′′(z)
3 . (50)

The critical point is given by z = d = 3 for h = 0 and the phase transition correlate

with the spontaneous magnetization in three dimensional lattice [48]. To reach g(z)

in the critical region, we derive the second derivative of g(z) by differentiating

Eq.(47) and expanding around small values of ωk therefore we have

g′′(z) ∼ −1

2
√
2π

(z − 3)
−1
2 , (51)
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and

g′′′(z) ∼ 1

4
√
2π

(z − 3)
−3
2 . (52)

Therefore by integrating we have

g′(z) ∼ 1

4
√
2π

(z − 3)
1
2 + g′(3), (53)

Now, inserting h = 0 in Eq.(48) and using the above relation we arrive at the

following relation

(z − 3) ∼ 8π2(β − βc)
2 ∼ ε2, (54)

where βc = g′(3)
2 ≈ 0.25,. Therefore by using Eq.(51) and Eq.(52), the scaling

behavior of dz
dβ and d2z

dβ2 from Eq.(49) and Eq.(50) may be written as

lim
z→3

dz

dβ
= lim
z→3

{
−4

√
2π(z − 3)

1
2

}
= 0, (55)

lim
z→3

d2z

dβ2
= 16π2. (56)

It was shown that for α = −1 the scalar scalar curvature behaves as R ∼ εα−1

[51]. We expect that this type of scaling behavior of R to be universal for α < 0.

In the next section, we derive the scaling behavior of the thermodynamic extrinsic

curvature by a simple method.

5. The critical behavior of the extrinsic curvature

In this section, we derive the scaling form of the extrinsic curvature by using Eq.(26).

We also simplify the notation and define A = 1
aε
, C = −ah

aε
. With respect to

standard critical exponents we have A = 2 − α and A + C = β [51]. Therefore,

from Eq.(26) the scaling form of the free energy is given by f = εAψ+(h ε
C), where

ε = βc − β and h is the external magnetic field. The scaling form of the metric

elements with parameters (β, h) are calculated in the following form

gββ = ∂2βf = A(A− 1)ϕ(0), (57)

ghh = ∂2hf = εA+2Cψ′′
+(h ε

C),

gβh = ghβ = ∂β∂hf = −εA+C−1
(
(A+ C)ψ′

+

(
h εC

)
+ ChεCψ′′

+(h ε
C)
)
,

which is for α < 0 (A > 2). In this case, we expect that the specific heat is a

constant at the critical point and we define it by A(A − 1)ϕ(0), where ϕ(0) is a

constant function. We assume a constant β hypersurface. Using Eq.(4), the unit

normal vector is given by

ñβ =
1√
gββ

(58)

= (
A(A− 1)ϕ(0)ψ′′

+

(
h εC

)
− εA−2

(
(A+ C)ψ′

+

(
h εC

)
+ C h εCψ′′

+

(
h εC

))2
ψ′′
+ (h εC)

)
1
2 .
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Table 1. The standard scaling behavior of the thermodynamic scalar and extrinsic curvatures for
the spherical model at the critical point (h = 0), where, α < 0 and α > 0 are, respectively, for

d = 3 and d = 4. Derivation of the scaling thermodynamic extrinsic curvature was done on an

isotherm hypersurface.

Extrinsic curvature Scalar curvature α

K ∼ εα R ∼ εα−1 α < 0

K ∼ ε
1
2 (α−2) R ∼ εα−2 α > 0

The upper indices of the vector are given by

ñβ = gββ ñβ =
gββ√
gββ

, (59)

ñh = gβhñβ =
gβh√
gββ

.

Then the extrinsic curvature by using Eq.(3) at zero magnetic field (h = 0) near

the critical point (ε→ 0) is written in the following form

K =
1
√
g

(
∂β(

√
g ñβ) + ∂h(

√
g ñh)

)

=
ε
(
ψ′′′
+ (0) (A+ C)ψ′

+(0)− (A+ 2C)ψ′′
+(0)

2
) (

(A− 1)Aϕ(0)− (A+C)2ψ′
+(0)2 εA−2

ψ′′
+(0)

) 1
2

2ψ′′
+(0)

(
(A− 1)Aϕ(0) ε2 ψ′′

+(0)− (A+ C)2 ψ′
+(0)

2 εA
)

= − A+ 2C

2 ε(A(A− 1)ϕ(0))
1
2

, (60)

where, g denotes the determinant of the metric in Eq.(57). We have used ψ′(0) = 0

and ψ
′′′
(0) = 0 since the odd h derivatives of the scaling function should vanish

at h = 0 for Ising-like models [52]. Therefore in the case α < 0, we find the

scaling behavior of the extrinsic curvature is K ∼ ε−1 which is consistent with

K ∼ εα, where α = −1. However, the scaling behavior of the thermodynamic scalar

curvature can be obtained as R ∼ εα−1 for α < 0 which is the same as the two

dimensional Ising model on planar random graph. This result is in accordance with

the standard scaling behavior of the thermodynamic scalar curvature for negative

α. Therefore we expect that the extrinsic curvature of three dimensional spherical

model behaves as K ∼ εα.

The spherical model has mean field behavior in d ≥ 4 with α = 0. The scaling

behavior of the thermodynamic scalar curvature is R ∼ ε−2 which corresponds to

R ∼ εα−2, where α = 0. In this case, the scaling metric elements are given by

gββ = ∂2βf, (61)

ghh = ∂2hf = εA+2Cψ′′
+(h ε

C),

gβh = ghβ = ∂β∂hf = −εA+C−1
(
(A+ C)ψ′

+

(
h εC

)
+ C h εCψ′′

+(h ε
C)
)
,
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where f = εAψ+(h ε
C) as before. Therefore, gββ in Eq.(61) is not constant and is

given by A(A− 1)εA−2 ψ+(0) at h = 0 which is different from gββ in Eq.(57). The

normal vector components indices ñβ , ñ
β and ñh can be obtained as before. We

derive the standard scaling behavior of the thermodynamic extrinsic curvature at

zero magnetic field (h = 0) near the critical point (ε→ 0) as follows

K =
1
√
g

(
∂β(

√
g ñβ) + ∂h(

√
g ñh)

)
=

(
(A+ C)ψ′

+(0)ψ
′′′
+ (0)− (A+ 2C)ψ′′

+(0)
2
)
( ψ′′(0) ε2−A

(A−1)Aψ+(0)ψ′′
+(0)−(A+C)2 ψ′

+(0)2 )
1
2

2εψ′′
+(0)

2

= −(A+ 2C)(
ε−A

(A− 1)Aψ+(0)
)

1
2 , (62)

where we have used ψ′(0) = 0 and ψ
′′′
(0) = 0. Therefore, we expect that the scaling

behavior of the thermodynamic extrinsic curvature of the spherical model behaves

as K ∼ ε
1
2 (α−2) for d ≥ 4 while the scaling behavior of the scalar curvature is

R ∼ εα−2, where α = 0. It should be noted that we obtain the same scaling behavior

of the thermodynamic extrinsic curvature by assuming a constant h hypersurface.

Moreover, we expect that the same behavior to be valid for α > 0 in d ≥ 4, we have

gathered the whole results in Table 1.

6. Conclusions

The thermodynamic extrinsic curvature is a geometric tool for observing some

aspects of statistical mechanics. It is a new geometric window to observe the critical

phenomena. In this paper, we investigated the thermodynamic extrinsic curvature

of an anyon gas. We explored nonperturbative thermodynamic extrinsic curvature

of an anyon gas Ka at constant fugacities za = 0.01 and za = 1.2 and obtained

certain fixed points that particles behave as semions. This is a new result that can

not be obtained in the context of the thermodynamic Ricci scalar curvature. Then,

we studied the two dimensional Kagome Ising model and showed that K ∼ εα

with α = 0. Therefore, for two dimensional Ising models with α ≤ 0 we expect

that the scaling of the extrinsic curvatures behave as K ∼ εα. Then, we derived

the scaling behavior of the extrinsic curvature related to the spherical model. We

found that the scaling extrinsic curvature behaves as K ∼ εα with α = −1. We

also studied the spherical model in d ≥ 4 and obtained K ∼ ε
1
2 (α−2), where α =

0. However, for α > 0 we derived a different scaling behavior for the extrinsic

curvature as K ∼ ε
1
2 (α−2). In this work, we obtained some important properties of

the extrinsic curvature. The fermion gas and an ordered state of the two dimensional

Kagome Ising model have positive thermodynamic extrinsic curvatures. It should be

noted that the sign of the thermodynamic extrinsic curvature is positive for stable

states. Also, we showed the results from the computing thermodynamic extrinsic

curvature of Kagome Ising model K ∼ εα is consistent with what we expected from
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the standard scaling behavior of the thrmodynamic extrinsic curvature. We hope

to study the extrinsic curvature and related geometric pictures for other physical

systems in the near future.
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Appendix

Usefull equations that are related to Eq.(37):

∂f1
∂b

=
sinh 2b cosh 2b

sinh2 h+ cosh2 2b
,

∂f1
∂h

=
tanhh (cosh2 2b+ cosh2 h)

cosh 4b+ cosh 2h
, (A.1)

and

∂f2
∂b

=
1

16π(cosh 4b+ cosh 2h)2
csch [

1

2
log(cosh2 2b sech2h+ tanh2 h)]

× sech [
1

2
log(cosh2 2b sech2h+ tanh2 h)]

× {π(1 + cosh 4b+ 2 cosh 2h)2 sech2h− sech2h− 16 k̄

× {4sech2[ 1
2
log(cosh2 2b sech2h+ tanh2 h)]× tanh2[

1

2
log(cosh2 2b sech2h+ tanh2 h)]}

× (cosh 4b+ cosh 2h− 8 cosh4 b sech2h sinh 4b)} sinh 4b, (A.2)

∂f2
∂h

=
1

16π(cosh 4b+ cosh 2h)2
csch[

1

2
log(cosh2 2b sech2h+ tanh2 h)]

× sech[
1

2
log(cosh2 2b sech2h+ tanh2 h)]

× {π(1 + cosh 4b+ 2 cosh 2h)2 sech2h− 16 k̄{4sech2[ 1
2
log(cosh2 2b sech2h+ tanh2 h)]

× tanh2[
1

2
log(cosh2 2b sech2h+ tanh2 h)]}(cosh 4b+ cosh 2h− 8 cosh4 b sech2h sinh 4b)}

× sinh2 2b tanhh. (A.3)

where the parameter k̄ defines the first type of the elliptic integral.
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