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Abstract
Temporal difference (TD) learning algorithms
with neural network function parameterization
have well-established empirical success in many
practical large-scale reinforcement learning tasks.
However, theoretical understanding of these al-
gorithms remains challenging due to the nonlin-
earity of the action-value approximation. In this
paper, we develop an improved non-asymptotic
analysis of the neural TD method with a general
L-layer neural network. New proof techniques
are developed and an improved new Õ(ϵ−1) sam-
ple complexity is derived. To our best knowl-
edge, this is the first finite-time analysis of neural
TD that achieves an Õ(ϵ−1) complexity under
the Markovian sampling, as opposed to the best
known Õ(ϵ−2) complexity in the existing litera-
ture.

1. Introduction
The temporal difference (TD) learning method, firstly de-
signed for policy evaluation (Sutton, 1988), is a fundamental
building block of many popular Reinforcement Learning
(RL) algorithms. In standard TD learning algorithms for
tabular MDP, based on the Bellman operator, the agent itera-
tively obtains a state-action-reward-transition tuple and then
updates the Q values by a weighted average of the current
value and the TD target. Once the algorithm converges, the
Q function is considered to be the final return obtained by
executing the target policy given some initial action-state
pair.
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For large-scale reinforcement learning (RL) problems, ap-
propriate parameterization of the Q function is crucial for
better scalability of the TD algorithms. Common examples
include linear (Tesauro et al., 1995), general smooth non-
linear (Maei et al., 2009), and neural network (Mnih et al.,
2013) function approximations. However, it is well known
that the naive extension of TD learning and Q-learning al-
gorithms can diverge under the general function approxi-
mation Tsitsiklis & Van Roy (1996). To encourage conver-
gence, numerous variants of TD and Q-learning have been
proposed, including Least-squares TD (LSTD) (Bradtke &
Barto, 1996; Boyan, 2002) and gradient TD (GTD) (Sutton
et al., 2009a;b), to name a few.

The applications of neural network function approximation
have witnessed huge empirical success in many real-world
tasks, including Deep Q-network (DQN) algorithms (Mnih
et al., 2013; Van Hasselt et al., 2016), policy improvement
method (Sutton et al., 1999), trust region policy optimiza-
tion (Schulman et al., 2015) and the actor-critic algorithms
(Konda & Tsitsiklis, 1999; Lillicrap et al., 2015; Fujimoto
et al., 2018), etc. However, due to the analysis difficulties
brought by the function approximation, a significant gap
exists between the empirical success and the theoretical
understanding of these algorithms. Hence analyzing the
convergence and sample complexity of TD learning and
Q-learning under various Q function parameterizations has
always been an active topic in the RL community during the
past decades.

Early works focus on the asymptotic convergence of the al-
gorithms with tabular or linear function approximation. For
the tabular (stochastic) TD or Q learning method, Jaakkola
et al. (1993) established the asymptotic convergence for
the first time. Later on, the asymptotic convergence of
algorithms with linear function approximation has been ex-
tensively discussed using ODE-based methods, see e.g. Tsit-
siklis & Van Roy (1996); Perkins & Pendrith (2002); Borkar
(2009). Meanwhile, in contrast to the convergent results
for RL algorithms under the tabular or linear settings, TD
with nonlinear function approximation is known to diverge
in general Tsitsiklis & Van Roy (1996); Brandfonbrener &
Bruna (2019). To overcome this issue, Maei et al. (2009)
proposed to optimize the Mean Squared Projected Bellman
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Error (MSPBE) via a gradient-based algorithm. Due to
the problem nonconvexity, only asymptotic convergence to
stationary points can be guaranteed.

More recently, benefiting from the improved techniques
for analyzing stochastic optimization algorithms, there has
been a growing number of research on providing finite-time
analysis for TD and Q-learning algorithms with function
approximations.

For linear function approximation, the non-asymptotic re-
sults of TD learning and its variants are relatively well-
understood, including TD Bhandari et al. (2018); Dalal et al.
(2018); Zou et al. (2019), gradient TD Dalal et al. (2018);
Touati et al. (2018); Liu et al. (2020a), and Least-Squares
TD Lazaric et al. (2010); Prashanth et al. (2014); Tagorti &
Scherrer (2015), etc. In particular, Bhandari et al. (2018)
established the first finite-time analysis of linear Q-learning
under both i.i.d. sampling and Markovian sampling settings.

For neural network function approximation, which is di-
rectly related to this paper, we provide a more detailed
discussion. Based on the recent advances in the understand-
ing of optimizing ReLU network Jacot et al. (2018); Du
et al. (2018); Allen-Zhu et al. (2019a;b); Cao & Gu (2019;
2020), a few recent works have successfully developed the
finite-time analysis of the neural TD and neural Q-learning
algorithms, as long as the Q network is sufficiently wide.
Let Q∗ be the true action-value function and let Q(s, a;θ)
denote the action-value function parameterized by a neu-
ral network with weights θ, at any state action pair (s, a).
Then we aim to find some ϵ-optimal parameter θ̄ such that
E
[
(Q(s, a; θ̄)−Q∗(s, a))2

]
≤ ϵ+ ϵF , where the expecta-

tion is taken over the possible randomness in the output θ̄ as
well as the distribution over the state-action pairs (s, a), and
ϵF is the optimal approximation error of the parameteriza-
tion function class. In (Xu & Gu, 2020), a neural Q-learning
algorithm with a general L-layer ReLU network is analyzed,
and an Õ(ϵ−2) sample complexity is guaranteed given that
the network is sufficiently wide. In (Cai et al., 2023), the
authors studied both the neural TD learning and neural Q-
learning algorithms for minimizing the MSPBE for policy
evaluation and policy optimization, respectively. For policy
evaluation, the Q∗ in the definition of an ϵ-optimal solution
is defaulted as Qπ with π being the policy to be evaluated.
For both cases, an Õ(ϵ−2) sample complexity is guaranteed
for wide two-layer ReLU networks. In (Sun et al., 2022),
an Õ(ϵ−

2
2−α ) complexity has been achieved by an adap-

tive neural TD algorithm with multi-layer ReLU networks,
where α ∈ (0, 1] is a constant that characterizes the sparsity
and decay rate of the stochastic semi-gradients. However,
without additional assumption, only an Õ(ϵ−2) complexity
with α = 1 can be theoretically guaranteed. Finally, for
policy evaluation problems, there are also several works
that aim at reducing the width of the over-parameterized

Q networks in the existing works (Tian et al., 2022; Cayci
et al., 2023). In terms of complexity, both of them requires
Õ(ϵ−2) samples to obtain an ϵ-optimal solution.

Despite the fact that existing analysis of the neural TD or
neural Q-learning algorithms merely provides the Õ(ϵ−2)
sample complexity under various settings, an Õ(ϵ−1) sam-
ple complexity should be expected. In fact, a double-loop
fitted Q-iteration (FQI) method (Fan et al., 2020) and its
single-loop Gauss-Newton variant (Ke et al., 2023) can
achieve an Õ(ϵ−1) sample complexity is obtained for two-
layer Q networks. Let T be the Bellman (optimality)
operator, then the FQI method repeatedly solves a non-
linear least square subproblem to obtain the next itera-
tion: θk+1 ≈ argminθ∈Θ E

[
(Q(s, a;θ)−T Q(s, a;θk))

2
]
.

Compared to the single-loop neural TD or neural Q-learning
method that takes only one sample (or a mini-batch) to up-
date the weights of Q networks, the update scheme of FQI
requires repeatedly solving a subproblem to sufficiently high
accuracy to enable convergence, which makes it inefficient
and less favorable in practice. Therefore, we would like to
raise a question:

Can we improve the existing analysis of
the neural temporal difference learning
algorithm and obtain an Õ(ϵ−1) sample
complexity under general multi-layer Q
neural networks?

To answer this question, we revisit the convergence analysis
of the neural TD learning or Q-learning algorithms under the
non-i.i.d. Markovian observations where a general L-layer
neural network is used for Q function parameterization. By
proposing a new subspace analysis technique, under suitable
conditions, we derive a brand new Õ(ϵ−1) sample complex-
ity for neural TD learning or Q-learning, improving the
state-of-the-art Õ(ϵ−2) sample complexity in the existing
works. Our contributions are summarized as follows.

• Under the non-i.i.d. Markovian sampling setting, we
derive an Õ(ϵ−1) sample complexity for both neural TD
learning and Q-learning methods under the multi-layer
network approximation for Q functions. Our result also
improves the best known Õ(ϵ−2) sample complexity in
the existing works.

• Based on our newly developed techniques, we further
provide a finite-sample analysis for a minimax neural
Q-learning algorithm that solves two-player zero-sum
Markov games. An Õ(ϵ−1) sample complexity is ob-
tained under the non-i.i.d. Markovian sampling setting.

Technically, the subspace analysis approach that we propose
to establish the Õ(ϵ−1) sample complexity is by itself of in-
dependent interest. We believe this technique can potentially
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Neural Approximation Network Depth Network Width Activation Sample Complexity

(Bhandari et al., 2018) No NA NA NA O(1/ϵ)
(Cai et al., 2023) Yes 2 Ω(1/ϵ4) ReLu O(1/ϵ2)
(Xu & Gu, 2020) Yes L Ω(1/ϵ6) ReLu O(1/ϵ2)

(Sun et al., 2022) Yes L Ω(1/ϵ6) ReLu O(1/ϵ
2

2−α ), α ∈ (0, 1]
(Tian et al., 2022) Yes L Ω(1/ϵ2) ELU, GeLU O(1/ϵ2)
Ours Yes L Ω(1/ϵ2) ELU, GeLU O(1/ϵ)

Table 1. Sample complexity for parameterized Q learning to find some θ̄ such that E
[
∥Q(s, a; θ̄)−Q∗(s, a)∥2µ

]
≤ ε, where ∥f∥2µ :=∫

|f |2dµ and Q∗(s, a) satisfies the Bellman optimality equation Q∗(s, a) = T Q∗(s, a).

be applied to linear Q-learning algorithms and linear Actor-
Critic algorithms without requiring the positive definiteness
assumption of the feature covariance matrix (Bhandari et al.,
2018; Zou et al., 2019; Barakat et al., 2022), while main-
taining the Õ(ϵ−1) complexity.

In summary, we provide a comprehensive comparison be-
tween our work and the most related works in their respec-
tive settings and sample complexity in Table 1. Our work
establishes an optimal sample complexity analysis within a
broader contextual framework.

2. Preliminaries
We consider the infinite-horizon discounted Markov de-
cision process (MDP), which is denoted as M =
(S,A,P, r, γ). We consider a general state space S and
a finite action space A. At any state s ∈ S, if the
agent takes an action a ∈ A, it will receive a reward
r(s, a) ∈ [−Rmax, Rmax] and transition to the next state
s′ ∈ S with probability P(s′|s, a). We call r the reward
function and P the transition kernel. Let γ ∈ (0, 1) be a
discount factor, then an MDP aims to find a sequence of
actions {at}t≥0 to maximize the expected and discounted
cumulative reward E

[∑∞
t=0 γ

t · r(st, at)|s0 ∼ µ
]
, where µ

is the distribution of the initial state s0.

Let ∆A denote the set of all probability distributions over
the action space A, and let a policy π : S 7→ ∆A be a
mapping that returns a probability distribution π(·|s) ∈ ∆A
given any state s ∈ S . If an agent follows a policy π, then at
any state st, it will act by sampling an action at ∼ π(·|st).
Therefore, the action-value function (Q-function) under the
policy π is

Qπ(s, a) := Eπ

[ ∞∑
t=0

γt · r(st, at)|s0 = s, a0 = a

]
,

for ∀(s, a) ∈ S×A, where all actions except a0 are sampled
according to π. For any mapping Q : S × A → R, let the
Bellman operator T π be

T πQ(s, a) := r(s, a) + γE [Q(s′, a′) | s′ ∼ P(· | s, a),
a′ ∼ π(· | s′)] , ∀s, a.

Then T π is a γ-contraction under the infinity norm and Qπ

is the unique solution to the fixed-point equation Q = T πQ
(Bertsekas, 2012). If the Q function is parameterized by
some function Q(s, a;θ) to gain better scalability for large-
scale RL problems, popular approaches for finding a good
θ include minimizing the the Mean-Squared Bellman Error
(MSBE):

min
θ∈Θ

E(s,a)∼µ

[
(Q(s, a;θ)− T πQ(s, a;θ))

2
]
, (1)

and minimizing the Mean-Squared Projected Bellman Error
(MSPBE):

min
θ∈Θ

E(s,a)∼µ

[
(Q(s, a;θ)−ΠFT πQ(s, a;θ))

2
]
, (2)

where Θ is a feasible domain of the parameter θ, µ is some
distribution over state action pairs, and ΠF is the projection
onto some function class F . Typical choices of F includes
the Q function parameterization class itself F := {Q(·;θ) :
θ ∈ Θ} (Maei et al., 2009), and some local linearization of
the parameterization function class (Cai et al., 2023).

In this paper, we study the neural temporal difference learn-
ing method where the action-value function is parameterized
by some multi-layer neural network. Let us define a feed-
forward neural network by the following recursion:

x(l) =
1√
m
σ
(
W lx

(l−1)
)
, l ∈ {1, 2, · · · , L}, (3)

where W 1 ∈ Rm×d, W l ∈ Rm×m for 2 ≤ l ≤ L are
the weight matrices of the network, σ(·) is an activation
function, and the input is a feature map x(0) = ϕ(s, a) ∈ Rd

for any state action pair (s, a). For simplicity of notation,
we write x = x(0), then Q(s, a) is parameterized by

Q(x;θ) =
1√
m
b⊤x(L), (4)

where the parameter θ = (Vec(W 1); · · · ;Vec(WL)) de-
notes the collection of all weight matrices, and b is given by
a random initialization. Vec(·) stands for the vetorization
operator that reshapes a matrix to a column vector by stack-
ing its columns one by one and the “;” separator in θ stands
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for the vertical stacking of the elements. That is, we reshape
θ to a long column vector for the notational convenience in
later discussion.

Assumption 2.1. The activation function σ(·) is L1-
Lipschitz and L2-smooth, i.e. , for ∀y1, y2 ∈ R :

|σ(y1)− σ(y2)| ≤ L1|y1 − y2|

and

|σ′(y1)− σ′(y2)| ≤ L2|y1 − y2|.

Assumption 2.1 indicates that our results below are not
based on the popular ReLU activation function. However,
we primarily focus on some twice-differentiable activation
functions (such as Sigmoid, ELU, GeLU, etc.), which are
smooth approximations of the ReLU function and are fre-
quently utilized in practical problems (Devlin et al., 2018;
Godfrey, 2019). Such a setup aligns with (Liu et al., 2020b),
and provides a O(m− 1

2 )-smooth property for the neural
Q-function.

Let θ0 =
(
Vec(W 0

1); · · · ;Vec(W 0
L)
)

be the initial solu-
tion. For each l, we initialize the weights of W 0

l element-
wise from a normal distribution N (0, 1) and each element
of b is drawn uniformly from {−1,+1}. The parameter b
will not be optimized during training. For regularity pur-
pose, we would like to restrict the iterations to a bounded
set around θ0, which is defined as

Sω := {θ = (Vec (W 1) ; · · · ;Vec(WL)) :

∥θ − θ0∥2 ≤ ω, 1 ≤ l ≤ L
}
.

In each iteration t, the neural Q-learning algorithm
obtains a sample of state-action-reward-transition tuple
(st, at, rt, st+1, at+1) and computes the TD error by

∆t = Q(xt;θ
t)−

(
rt + γQ(xt+1;θ

t)
)

(5)

with xt = ϕ(st, at),xt+1 = ϕ(st+1, at+1). Then a pro-
jected stochastic semi-gradient step is performed to update
the weight matrices:

θt+1 = ΠSω

(
θt − ηtg

(
θt
))

(6)

with

g(θt) = ∆t · ∇θQ(xt;θ
t).

We formally describe the neural TD learning method in
Algorithm 1.

Algorithm 1 Neural Temporal Difference Learning with
Markovian Sampling

Input: A learning policy π, a discount factor γ ∈ (0, 1), a
sequence of learning rates {ηt}t≥0, a maximum iteration
number T , a projection radius ω > 0, a Q network with
architecture (4).
Initialization: Generate each entry of W 0

l independently
from N (0, 1), for l = 1, 2, · · · , L, and each entry of
b independently from Unif{−1,+1}. Generate s0 ∼
µ, a0 ∼ π(·|s0).
for t = 0, 1, · · · , T − 1 do

Sample (st, at, rt, st+1, at+1) from the learning policy
π with at+1 ∼ π(·|st+1).
Compute the TD error ∆t by (5).
Update θt+1 by the projected stochastic semi-gradient
step (6).

end for
Output: θT .

One remark is that, under the non-i.i.d. Markovian sampling
setting, the agent is only able to generate a trajectory of
samples following some given learning policy π, which is
very common in the offline RL (Wu et al., 2019; Levine et al.,
2020; Kostrikov et al., 2021) where the data trajectories are
generated by some learning policy.

In later sections, we will revisit the Algorithm 1 and design
a novel subspace analysis technique for this method and
achieve an improved sample complexity of Õ(ϵ−1). More-
over, by replacing the TD error induced by the Bellman op-
erator (5) with TD error induced by the Bellman optimality
operator: ∆t = Q(xt;θ

t)−
(
rt + γmaxb∈A Q(s′, b;θt)

)
,

Algorithm 1 can be reduced to the neural Q-learning method
for finding optimal state-action value Q∗. Our analysis for
neural TD learning can be extended to the neural Q-learning
analogously and obtain the same Õ(ϵ−1) sample complex-
ity.

3. Convergence of Neural Temporal Difference
Learning

3.1. Basic Settings and Assumptions

To analyze Algorithm 1, let us first define the local lineariza-
tion function class of the multi-layer Q network (4) at the
random initialization θ0:

Fω,m :=
{
Q̂(· ;θ) = Q(· ;θ0) +

〈
∇θQ(· ;θ0),θ − θ0

〉}
(7)

for any θ ∈ Sω. Consider the MSPBE minimization prob-
lem:

min
θ∈Sω

Eµ,π,P

[(
Q(x;θ)−ΠFω,m

T πQ(x;θ)
)2]

, (8)
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where µ is the initial state distribution, π is the learning pol-
icy, and P is the transition kernel, the expectation Eµ,π,P[·]
is taken over s ∼ µ, a ∼ π(·|s), and s′ ∼ P(·|s, a), a′ ∼
π(·|s′) in T π . Define the set Ξβ as

Ξβ := {θ ∈ Sβ : Q̂(x;θ) = ΠFω,m
T πQ̂(x;θ),

∀x = ϕ(s, a)} . (9)

Then the set Ξω consists of the points θ with which Q̂(· ;θ)
forms a fixed point of the projected Bellman operator
ΠFω,m

T π for the problem (8). By Section 4.1 in (Cai et al.,
2023), the fixed point of ΠFω,mT π is unique for θ ∈ Sω.
Therefore, the following relationship holds

Q̂(x;θ) = Q̂(x;θ′). (10)

for ∀x = ϕ(s, a), ∀(s, a) ∈ S×A, ∀θ,θ′ ∈ Ξβ ,∀β ≥ ω.
Moreover, it is also shown that a point θ∗ ∈ Ξω if and only
if it satisfies the stationarity condition:

Eµ,π,P

[
∆̂ (x,x′;θ∗)

〈
∇θQ̂ (x;θ∗) ,θ − θ∗〉] ≥ 0,

(11)
where Q̂(· ;θ∗) ∈ Fω,m is a local linearization provided by
(7) and ∆̂ is defined as

∆̂ (x,x′;θ∗) = Q̂(x;θ∗)−
(
r(s, a) + γQ̂ (x′;θ∗)

)
.

Hence people may analyze the gap between Qπ(·) and
Q(·, ;θT ) by first connecting it to Q̂(· ;θ∗). Based on this,
Cai et al. (2023) derived an Õ(ϵ−2) sample complexity for
the neural TD method. Now we define

Σπ = Eµ,π

[
∇θQ(x;θ0)∇θQ(x;θ0)⊤

]
. (12)

It is worth noting that the matrix Σπ only depends on π and
θ0. In the original assumption about (12), (Zou et al., 2019;
Xu & Gu, 2020) in fact assumed positive definiteness (≻ 0)
of Σπ , which can be viewed as a generalized version of the
positive definite feature covariance matrix assumption in the
analysis of linear TD and linear Q-learning, see e.g. (Zou
et al., 2019). However, in this paper we adopt the following
weaker regularity assumption.

Assumption 3.1. Let σmin(Σπ) denote the minimum non-
zero singular value of the matrix Σπ, then there exist con-
stants λ0,m

∗ > 0 such that σmin(Σπ) ≥ λ0 as long as the
Q network width m ≥ m∗.

For neural Q function approximation, a sufficient but not
necessary condition for Assumption 3.1 can be obtained by
exploiting the theory of over-parameterized neural networks.
Roughly speaking, for a finite MDP with an L-layer ReLU
Q network, if the feature map satisfies ϕ(s, a) ∦ ϕ(s′, a′)
for ∀(s, a) ̸= (s′, a′), the results of (Jacot et al., 2018;
Allen-Zhu et al., 2019a;b; Cao & Gu, 2019; 2020) suggest

that there exist λ′,m∗ > 0 such that with high probability
Gram(θ0) ≻ λ′ ·I for networks with width m ≥ m∗. Here
Gram(θ0) stands for the Gram matrix of the network at the
initialization θ0. A lower bound on σmin(Σπ) can then be
constructed with λ′, refer to Remark D.6 in Appendix D.

Finally, to facilitate the sample complexity analysis under
the non-i.i.d. Markovian sampling setting, let us make the
following assumption on the fast mixing rate of the MDP
sample trajectories, which is widely adopted in the related
analysis (Zou et al., 2019; Xu & Gu, 2020; Cai et al., 2023).

Assumption 3.2. We assume that the Markov chain
{st}t=0,1,... induced by the learning policy π and the tran-
sition kernel P is uniformly ergodic with its invariant mea-
sure Pπ. Furthermore, we assume that there are constants
κ > 0, ρ ∈ (0, 1) such that

sup
s∈S

dTV (P (st ∈ · | s0 = s) ,Pπ) ≤ κρt

for all t ≥ 0.

Without loss of generality, we also make the following tech-
nical assumption, which is not fundamental as opposed to
Assumption 3.1, and 3.2.

Assumption 3.3. We assume the initial state distribution µ
to be the stationary state distribution under policy π.

This assumption is in fact very natural. Concerning the sta-
tionarity of µ, it can always be guaranteed by abandoning
the first Õ(tmix) samples while Assumption 3.2 indicates
that the mixing time tmix = Õ(1). This assumption guar-
antees that the operator T π is γ-contractive w.r.t. ∥ · ∥µ
in policy evaluation. Similar assumptions are included in
(Bhandari et al., 2018; Cai et al., 2023).

3.2. An Improved Complexity of Neural TD Learning

To derive the Õ(ϵ−1) sample complexity, we rely on the fol-
lowing key observation on subspace decomposition, which
is beyond the existing analysis framework.

Proposition 3.4. Let R(Σπ) and K(Σπ) denote the range
space and kernel space of the matrix Σπ , respectively. Then
for any parameter θ ∈ Sω , there exists θ∗ such that

θ∗ ∈ Ξ2ω and θ − θ∗ ∈ R(Σπ),

which also implies that the projections of θ and θ∗ onto the
subspace K(Σπ) are identical.

Based on this argument, for the iteration sequence
{θt}t≥0 generated by Algorithm 1, there exists a sequence
{θt

∗}t≥0 ⊆ Ξ2ω such that {θt − θt
∗}t≥0 ⊆ R(Σπ). There-

fore, unlike the existing works that analyze ∥θt − θ∗∥2 for
some θ∗ ∈ Ξω, c.f. (Cai et al., 2023; Xu & Gu, 2020), we
will prove a much faster convergence in ∥θt − θt

∗∥2. Com-
bined with (10), this further indicates the improved sample

5
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complexity in this paper. The proof of this proposition is
presented as follows.

Proof. For the ease of discussion, let us denote the dimen-
sion of weight parameter θ as n. Then we may denote
Σπ ∈ Rn×n and θ ∈ Rn. First of all let us fix an arbitrary
θ̄ ∈ Ξω, then we may decompose it into two orthogonal
components:

θ̄ = θ̄∥ + θ̄⊥ s.t. θ̄∥ ∈ R(Σπ) and θ̄⊥ ∈ K(Σπ).

Similarly, we can decompose the currently considered vector
θ as

θ = θ∥ + θ⊥ s.t. θ∥ ∈ R(Σπ) and θ⊥ ∈ K(Σπ).

Note that having an arbitrary vector v ∈ Rn in the kernel
space of Σπ means that Σπv = 0, which further indicates
that

0 = v⊤Σπv

= v⊤Eµ,π

[
∇θQ(x;θ0)∇θQ(x;θ0)⊤

]
v

= Eµ,π

[〈
∇θQ(x;θ0),v

〉2]
.

Therefore, under the measure (s, a) ∼ µ× π, we have

v ∈ K(Σπ) =⇒
〈
∇θQ(x;θ0),v

〉
= 0 a.s. (13)

where a.s. stands for almost surely. Therefore, define θ∗ =
θ̄∥ + θ⊥, we can check the stationarity condition (11) for
θ∗ by establishing:

Eµ,π,P

[
∆̂ (x,x′;θ∗) ·

〈
∇θQ̂ (x;θ∗) ,θ

′ − θ∗
〉]

(14)

= Eµ,π,P

[
∆̂
(
x,x′; θ̄

)
·
〈
∇θQ̂ (x;θ0) ,θ

′ − θ̄
〉]

≥ 0

The proof of (14) is lengthy and is thus moved to Appendix
A.1 for succinctness. As a result we have θ∗ ∈ Ξ2ω and
θ − θ∗ = θ̄∥ ∈ K(Σπ). Note that for any θ ∈ Sω ,

∥θ∗ − θ0∥ ≤ ∥θ̄∥ − θ0
∥∥+ ∥θ⊥ − θ0

⊥∥

≤ ∥θ̄ − θ0∥+ ∥θ̄ − θ0∥ ≤ 2ω,

which completes the proof.

Following basic linear algebra analysis, we also have the
following proposition.

Proposition 3.5. Under Assumption 3.1, suppose the
adopted Q network is sufficiently wide so that m ≥ m∗,
then for any θ ∈ R(Σπ), we have θ⊤Σπθ ≥ λ0∥θ∥22.

Proposition 3.4 indicates that the variations in the lo-
cal linearization of Q-function values solely depend
on the variations in parameters within the subspace

R(Σπ). In the mean while, Proposition 3.5 indi-
cates that such local linearization is non-singular within
R(Σπ). Based on these observations, we can first pro-
vide a fast convergence of ∥θt − θt

∗∥2 = O(1/T )

and then show that E
[(
Q̂(x;θT )− Q̂(x;θ∗)

)2]
=

E
[(
Q̂(x;θT )− Q̂(x;θT

∗ )
)2] ≤ O(1/T ) for any θ∗ ∈

Ξω . We summarize this result in Theorem 3.6 while present-
ing its proof in Appendix A.2.

Theorem 3.6. Suppose Assumptions 3.1, 3.2 and 3.3 hold.
We set ω = C̃1 and the learning rate ηt = 1

2(1−γ)λ0(t+1) .
If the feature map ∥ϕ(s, a)∥ = 1 for each state-action pair
(s, a) and the network width m ≥ m∗, then the output θT

of Algorithm 1 satisfies

E
[(
Q̂(x;θT )− Q̂(x;θ∗)

)2 | θ0
]

≤ C̃3(log T + 1)

(1− γ)2λ2
0T

+
C̃4m

−1/2

(1− γ)λ0
·
√
log(T/δ)

+
C̃5τ

∗ (log(T/δ) + 1) log T

(1− γ)2λ2
0T

,

with probability at least 1− 2δ − 2L exp
(
− C̃2m

)
, where

τ∗ is the mixing time of Markov chain in Assumption 3.2,
and C̃1, · · · , C̃5 > 0 are universal constants.

Let Qπ be the true state-action value function that satis-
fies the Bellman equation Qπ = T πQπ . Then based on the
convergence of the local linearization in Theorem 3.6, we es-
tablish the global convergence of neural temporal difference
learning as Theorem 3.7.

Theorem 3.7. Suppose the conditions in Theorem 3.6 hold.
Then the output of Algorithm 1 satisfies

E
[(
Q(ϕ(s, a);θT )−Qπ(s, a)

)2 | θ0
]

≤
3E
[(
Qπ(s, a)−ΠFω,m

Qπ(s, a)
)2]

(1− γ)2
+ C̃6m

−1

+
C̃7(log T + 1)

(1− γ)2λ2
0T

+
C̃8m

−1/2

(1− γ)λ0

√
log(T/δ) (15)

+
C̃9τ

∗ (log(T/δ) + 1) log T

(1− γ)2λ2
0T

w.p. 1−2δ−2L exp
(
− C̃2m

)
, where C̃6, · · · , C̃9 > 0 are

universal constants.

Let ϵF := 3
(1−γ)2E

[(
Qπ(s, a)−ΠFω,m

Qπ(s, a)
)2]

be the
optimal approximation error of the function class Fω,m.
Then Theorem 3.7 demonstrates that under suitable parame-
ter choices, neural TD learning method identify an approx-
imation error bound of O(ϵF + ϵ +m− 1

2 ) within Õ(ϵ−1)
samples. Existing works include Cai et al. (2023); Xu &

6



An Improved Finite-time Analysis of Temporal Difference Learning with Deep Neural Networks

Gu (2020); Tian et al. (2022); Cayci et al. (2023) achieve
Õ(ϵ−2) sample complexity, and (Sun et al., 2022) achieves
O
(
ϵ−

2
2−a
)
, a ∈ (0, 1] with additional assumptions.

Following a similar analysis while adopting an additional
regularity assumption on the matrix Σπ, one can further
extend the above analysis to the neural Q-learning by sub-
stituting the Bellman operator with the Bellman optimality
operator. A similar O(ϵ−1) sample complexity can still be
achieved, which is relegated to Appendix for succinctness.

4. Convergence of Minimax Neural
Q-Learning

A two-player zero-sum Markov game (Littman, 1994; Bowl-
ing & Veloso, 2001; Perolat et al., 2018), as a simple variant
of MDP, is defined as a six-tuple M = (S,A1,A2,P, r, γ).
Here S is state space, A1 and A2 are the action space of the
first and second player, respectively, P : A1 ×A2 → P(S)
is the transition probability, r : S × A1 × A2 → R is the
reward function and γ is the discounted factor. At time t,
player 1 and player 2 take actions (a1t ∈ A1 and a2t ∈ A2)
simultaneously. Player 1 obtains the reward r(st, a

1
t , a

2
t ).

while player 2 obtains −r(st, a
1
t , a

2
t ). The goal of the two

players is to maximize their cumulative rewards respectively.
For a policy pair (π1, π2), we can define the state-action
value function as follows:

Qπ1,π2(s, a1, a2) = Eπ1,π2

[ ∞∑
t=0

γt · r(st, a1t , a2t ) | s0 = s,

a10 = a1, a20 = a2
]
, ∀s, a1, a2.

The optimal state-action value function Q∗ is defined as

Q∗(s, a1, a2) = max
π1

min
π2

Qπ1,π2(s, a1, a2)

= min
π2

max
π1

Qπ1,π2(s, a1, a2).

We denote the optimal policy pair π∗ = {π∗
1 , π

∗
2} if

Q∗(s, a1, a2) = Qπ∗
1 ,π

∗
2 . Moreover, the Minimax Bellman

operator H for the Markov game is defined as

HQ(s, a1, a2) = r(s, a1, a2) + γE
[
min
b1

max
b2

Q(s′, b1, b2) |

s′ ∼ P(· | s, a1, a2)
]
, ∀s, a1, a2.

Thus HQ∗ = Q∗. Let the feature map x = ϕ(s, a1, a2) and
π = {π1, π2} be a given learning policy for players 1 and
2. Assume that {st, a1t , a2t , rt}Tt=0 is a sampled trajectory of
states, actions and rewards obtained from the environment
using policy π. Let us recall the definition of the local lin-
earization function class Fω,m introduced in (7). Consider
the MSPBE minimization problem with multi-layer neural
network approximation:

min
θ∈Sω

Eµ,π,P

[(
Q(x;θ)−ΠFω,m

HQ(x;θ)
)2]

.

To solve this problem, we still adopt the projected stochastic
semi-gradient iteration method is provided described by (6),
that is,

θt+1 = ΠSω

(
θt − ηtg

(
θt
))
, (16)

while redefining the stochastic semi-gradient estimator
g(θt) as

g(θt) = ∆
(
st, a

1
t , a

2
t , st+1;θ

t
)
· ∇θQ(xt;θ

t),

where xt := ϕ(st, a
1
t , a

2
t ) and

∆
(
st, a

1
t ,a

2
t , st+1;θ

t
)
= Q(xt;θ

t)−
(
r(st, a

1
t , a

2
t ) +

γ max
b1∈A1

min
b2∈A2

Q(ϕ(st+1, b
1, b2);θt)

)
.

(17)
Now we redefine the function class Fω,m as a collection of
all local linearization of Q(x;θ) at the initial point θ0:

Fω,m =
{
Q̂(x;θ) = Q(x;θ0) +

〈
∇θQ(x;θ0),

θ − θ0
〉
, θ ∈ Sω

}
.

To analyze this method, for any β > 0, we redefine the set
Ξβ introduced in (9) by replacing the Bellman operator T π

with the Minimax Bellman operator H. Similar to (10), we
still have a point θ∗ ∈ Ξω if and only if

Eµ,π,P

[
∆̂
(
s, a1, a2, s′;θ∗) 〈∇θQ̂

(
ϕ(s, a1, a2);θ∗) ,

θ − θ∗〉] ≥ 0,

where Q̂(· ;θ∗) ∈ Fω,m, and ∆̂
(
s, a1, a2, s′;θ

)
has the

same structure as ∆
(
s, a1, a2, s′;θ

)
expect that the func-

tion Q(·;θ) is replaced by Q̂(·;θ).

Unlike the neural temporal difference learning method that
aims at evaluating the state-action values of a fixed learning
policy. The Minimax Bellman operator significantly sophis-
ticates the analysis. Let us redefine the feature covariance
matrix Σπ with respect to the learning policy π = {π1, π2},
that is

Σπ = Eπ

[
∇θQ(s, a1, a2;θ0)∇θQ(s, a1, a2;θ0)⊤

]
.

Let the actions (a1θ, a
2
θ) satisfies

〈
∇θQ(s, a1, a

2;θ0),θ
〉
=

maxa1∈A1
mina2∈A2

〈
∇θQ(s, a1, a2;θ0),θ

〉
. For each

parameter pair θs = (θ1,θ2), we define the action pair
(a1θs

, a2θs
) that satisfies

(a1θs
, a2θs

) = argmax
(a1,a2)∈

{(
a1
θ1

,a2
θ2

)
,
(
a1
θ2

,a2
θ1

)}{ ∣∣〈∇θQ(s, a1, a2;θ0),θ1 − θ2

〉∣∣ }.
Then for any θ1,θ2, the minimax feature covariance matrix
is defined as follows:

Σ∗
π(θ1,θ2) = Eπ

[
∇θQ(s, a1θs

, a2θs
;θ0)

∇θQ(s, a1θs
, a2θs

;θ0)⊤
]
.
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Figure 1. Training curves and the ratio of the largest and smallest non-zero singular values of Σπ over different network widths m.

Assumption 4.1. For any θ1,θ2, there exists a constant
ν ∈ (0, 1) such that (1− ν)2Σπ − γ2Σ∗

π(θ1,θ2) ⪰ 0.

Note the original version of this assumption in (Zou et al.,
2019) in fact requires a strict positive definite condition:
((1 − ν)2Σπ − γ2Σ∗

π(θ1,θ2) ≻ 0. Under this additional
assumption, (Zou et al., 2019) obtained an Õ(ϵ−1) sample
complexity for minimax Q-learning with linear function
approximation. With the help of our subspace analysis
technique, in this paper, we relax it to the positive semi-
definiteness (⪰ 0). Now we are ready to state our result for
minimax neural Q-learning.
Theorem 4.2. Suppose Assumptions 3.1, 3.2 and 4.1 hold.
We set ω = C̃1 and the learning rate ηt =

1
2νλ0(t+1) . If the

feature map ∥ϕ(s, a1, a2)∥ = 1 for each state-action pair
(s, a1, a2) and the network width m ≥ m∗, then the output
θT of neural minimax Q-learning Algorithm 3 satisfies

E
[(

Q̂(x;θT )− Q̂(x;θ∗)
)2

| θ0

]
≤ C̃3(log T + 1)

ν2λ2
0T

+
C̃4m

−1/2

νλ0
·
√
log(T/δ)

+
C̃5τ

∗ (log(T/δ) + 1) log T

ν2λ2
0T

,

with probability at least 1− 2δ − 2L exp (−C̃2m), where
τ∗ is the mixing time of Markov chain in Assumption 3.2,
and

{
C̃i > 0

}
i=1,...,5

are universal constants.

Theorem 4.2 establishes a finite-time analysis of Õ(ϵ−1)-
sample complexity for minimax neural Q-learning in terms
of the function class Fω,m. For a more specific description
and theorem proof, see Appendix C. To the best of our
knowledge, this is the first analysis of minimax Q-learning
with neural network function approximation, characterized
by a complexity bound of Õ(ϵ−1).

5. Experiments
Finally, we construct several experiments over the OpenAI
Gym (Brockman et al., 2016) tasks and validate our theoret-

ical findings. We consider a two-layer neural network, as
follows:

Q(s, a;θ) :=
1√
m

m∑
r=1

brσ(θ
⊤
r ϕ(s, a)),

where σ(·) is ELU activation in this section. Furthermore,
details regarding the initialization and iteration methods for
the parameters can be found in Section 2. For all experi-
ments, we generate samples based on a prescribed ϵ-greedy
policy with ϵ = 0.1. To prevent redundancy in the features
ϕ(s, a), we employ one-hot encoding for discrete action-
state spaces and implement a fixed grid discretization for
continuous spaces. when both ϕ(s, a) and ϕ(s′, a′) belong
to the same one-hot encoding or grid, we treat them as the
same sample point. Our investigation into the impact of
network width on the TD learning algorithm will be con-
ducted from two perspectives: (i) examining whether the
network width m is correlated with the TD error, and (ii)
exploring the existence of constants m∗ and λ0 that satisfy
Assumption 3.1.

The four subfigures in Figure 1 represent two types of en-
vironments: one with a discrete state space and the other
with a continuous state space. The first two subfigures de-
pict the convergence performance of the TD algorithm at
different network widths. We generate 2,000 sample points
and run for 500 epochs. Notably, as the parameter m in-
creases, the TD algorithm demonstrates faster convergence,
resulting in smaller final TD errors. The latter two sub-
figures illustrate the existence of m∗ and λ0. Specifically,
we compute the largest non-zero singular value σmax and
smallest non-zero singular value σmin of the matrix Σπ . To
mitigate the absolute magnitude of σmin, we introduce the
ratio r = σmax/σmin as a metric to validate Assumption 3.1.
It can be observed that the value of r approaches a constant
as m increases for all cases, providing empirical support for
the validity of the assumption.

6. Conclusion
We study the finite-time analysis of the TD and Q learn-
ing methods with neural network approximation, where the

8
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state-action pairs are generated by a given policy under
the Markovian sampling. Besides the convergence to the
true action-value function except for an inevitable function
approximation error, an improved analysis technique is in-
troduced to establish an Õ(ϵ−1) complexity for the neural
TD and Q learning methods, which improves the existing
Õ(ϵ−2) complexity. For future work, it is also interesting to
investigate if the proposed technique can improve the cur-
rent complexity estimate of the actor-critic methods, which
are partially built upon the neural TD methods.
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A. Details of Section 3
A.1. Proof of (14)

Eµ,π,P

[
∆̂ (x,x′;θ∗) ·

〈
∇θQ̂ (x;θ∗) ,θ

′ − θ∗
〉]

(i)
= Eµ,π

[
EP
[
∆̂ (x,x′;θ∗)

]
·
〈
∇θQ̂ (x;θ0) ,θ

′ − θ̄
〉]

(ii)
= Eµ,π

[
EP
[
∆̂
(
x,x′; θ̄

) ]
·
〈
∇θQ̂ (x;θ0) ,θ

′ − θ̄
〉]

= Eµ,π,P

[
∆̂
(
x,x′; θ̄

)
·
〈
∇θQ̂ (x;θ0) ,θ

′ − θ̄
〉]

where (i) is because ∇θQ̂ (· ;θ∗) = Q̂ (· ;θ0), the decomposition

θ′ − θ∗ = θ′ − θ̄ + θ̄ − θ∗ = θ′ − θ̄ + (θ̄⊥ − θ⊥)

the fact that (θ̄⊥ − θ⊥) ∈ K(Σπ), and (13), (ii) is because (θ̄ − θ∗) ∈ K(Σπ).

A.2. Proof of Theorem 3.6

Proof. Recall the definition of the semi-gradient in Section (6). We denote ḡ(θ) as its expectation. Let m̄(θ) and m(θ)

also be the corresponding semi-gradients based on the linearized function Q̂(·;θ), that is,

g(θt) = ∆(xt,xt+1;θ
t) · ∇θQ(xt;θ

t), ḡ(θt) = Eµ,π,P
[
g(θt)

]
m(θt) = ∆̂(xt,xt+1;θ

t) · ∇θQ(xt;θ
0), m̄(θt) = Eµ,π,P

[
m(θt)

]
,

where

∆(xt,xt+1;θ
t) = Q(xt;θ

t)−
(
r(st, at) + γ ·Q(xt+1;θ

t)
)
,

∆̂(xt,xt+1;θ
t) = Q̂(xt;θ

t)−
(
r(st, at) + γ · Q̂(xt+1;θ

t)
)
.

To simplify the notation, let ∆t := ∆(xt,xt+1;θ
t) and ∆̂t := ∆̂(xt,xt+1;θ

t). Recall the definition of the range space
R(Σπ) and the kernel space K(Σπ). By Proposition 3.4, we know that v⊤

1 v2 = 0 for any vector v1 ∈ R(Σπ),v2 ∈ K(Σπ)
thus

〈
∇θQ(x;θ0),θ⊥

〉
= 0 for any feature map x and parameter θ⊥ ∈ K(Σπ). Then we can decompose ∥θt+1 − θt+1

∗ ∥2
as

∥θt+1 − θt+1
∗ ∥2 =

∥∥ΠS2ω

(
θt − ηtg(θ

t)
)
−ΠS2ω

(
θt+1
∗
)∥∥2

≤ ∥θt − ηtg(θ
t)− θt+1

∗ ∥2

= ∥θt − ηtg(θ
t)− θt

∗ + θt
∗ − θt+1

∗ ∥2

= ∥θt − θt
∗∥2 + η2t ∥g(θ

t)∥2 + ∥θt
∗ − θt+1

∗ ∥2 − 2ηt
〈
θt − θt

∗,g(θ
t)
〉

−2ηt
〈
θt
∗ − θt+1

∗ ,g(θt)
〉
+ 2ηt

〈
θt − θt

∗,θ
t
∗ − θt+1

∗
〉

(i)
= ∥θt − θt

∗∥2 − 2ηt
〈
θt − θt

∗,g(θ
t)
〉

−2ηt
〈
θt
∗ − θt+1

∗ ,g(θt)−m(θt)
〉
+ η2t ∥g(θ

t)∥2,

where (i) follows 〈
θt − θt

∗,θ
t
∗ − θt+1

∗
〉
=
〈
θt
∥ − θ∗

∥,θ
t
⊥ − θt+1

⊥

〉
= 0,

and 〈
θt
∗ − θt+1

∗ ,m(θt)
〉

=
〈
θt
⊥ − θt+1

⊥ ,m(θt)
〉

= ∆̂t ·
〈
θt
⊥ − θt+1

⊥ ,∇Q(xt;θ
0)
〉
= 0.

12
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Recall the stationarity condition (11), for any t ∈ {1, 2, · · · , T},

0 ≤ Eµ,π,P

[
∆̂ (xt,xt+1;θ

∗)
〈
∇θQ̂ (xt;θ

∗) ,θt − θ∗〉]
=

〈
Eµ,π,P

[
∆̂
(
xt,xt+1;θ

t
∗
)
∇θQ̂

(
xt;θ

t
∗
)]

,θt − θ∗〉
(i)
=

〈
Eµ,π,P

[
∆̂
(
xt,xt+1;θ

t
∗
)
∇θQ̂

(
xt;θ

t
∗
)]

,θt − θt
∗
〉
=
〈
m̄(θt

∗),θ
t − θt

∗
〉
,

where (i) is the same as the proof in Section A.1. Therefore,

∥θt+1 − θt+1
∗ ∥2

≤ ∥θt − θt
∗∥2 − 2ηt

〈
θt − θt

∗,g(θ
t)
〉
− 2ηt

〈
θt
∗ − θt+1

∗ ,g(θt)−m(θt)
〉
+ η2t ∥g(θ

t)∥2

= ∥θt − θt
∗∥2 − 2ηt

〈
θt − θt

∗,g(θ
t)−m(θt)

〉
− 2ηt

〈
θt − θt

∗,m(θt)− m̄(θt)
〉

−2ηt
〈
θt − θt

∗, m̄(θt)
〉
− 2ηt

〈
θt
∗ − θt+1

∗ ,g(θt)−m(θt)
〉
+ η2t ∥g(θ

t)∥2

(i)

≤ ∥θt − θt
∗∥2 + η2t ∥g(θt)∥2︸ ︷︷ ︸

I1: Gradient Bound

−2ηt
〈
θt − θt+1

∗ ,g(θt)−m(θt)
〉︸ ︷︷ ︸

I2: Gradient Gap

−2ηt
〈
θt − θt

∗,m(θt)− m̄(θt)
〉︸ ︷︷ ︸

I3: Markov Sampling Error

−2ηt
〈
θt − θt

∗, m̄(θt)− m̄(θt
∗)
〉︸ ︷︷ ︸

I4: Gradient Decent

, (18)

where (i) follows
〈
θt − θt

∗, m̄(θt
∗)
〉
≥ 0 for any 0 ≤ t ≤ T − 1.

Next, we analyze the upper bounds of I1, I2, I3 and I4 item by item. To simplify the notation, let {Ci > 0}i=1,...,7 be
universal constants in this section. We set ω = C1 and δ ∈ (0, 1). By Lemma D.5, we have

∥g(θt)∥2 ≤ C2

√
log(T/δ) (19)

and

Eµ,π,P
[∣∣〈g (θt

)
−m

(
θt
)
,θt − θt+1

∗
〉∣∣ | θ0

]
≤

(
C3ωm

− 1
2

√
log(T/δ) + C4m

− 1
2

)∥∥θt − θt+1
∗
∥∥

(i)

≤ C5m
−1/2

√
log(T/δ), (20)

with probability at least 1− 2δ − 2 exp (−C6m), where (i) follows ω = C1 and

∥θt − θt+1
∗ ∥ ≤ ∥θt − θ0∥+ ∥θ0 − θ0∗∥+ ∥θ0∗ − θt+1

∗ ∥
= ∥θt − θ0∥+ ∥θ0 − θ0∗∥+ ∥θ0⊥ − θt+1

⊥ ∥
≤ ∥θt − θ0∥+ ∥θ0 − θ0∗∥+ ∥θ0 − θt+1∥ ≤ 3ω.

Thus (19) and (20) provide upper bounds on I1 and I2, respectively. The next lemma provides an estimate of the Markov
sampling error.

Lemma A.1. Suppose the learning rate sequence {η0, η1, . . . , ηT } is non-increasing. Under Assumption 3.2, it holds that

Eµ,π,P
[〈
m
(
θt
)
−m

(
θt
)
,θt − θ∗〉 | θ0

]
≤ C7

(
log(T/δ) + C2

1

)
τ∗ηmax{0,t−τ∗}, (21)

for any fixed t ≤ T , where
τ∗ = min

{
t = 0, 1, 2, . . . | κρt ≤ ηT

}
is the mixing time of the Markov chain {st, at}t=0,1,.....

13



An Improved Finite-time Analysis of Temporal Difference Learning with Deep Neural Networks

Proof. We adopt the proof framework outlined in Lemma 6.2 of Xu & Gu (2020). However, variations in the neural network
settings lead to differences in the norms of gradients and parameters, thereby resulting in slight variations in the results.
Thereby we have

Eµ,π,P
[〈
m
(
θt
)
−m

(
θt
)
,θt − θ∗〉 | θ0

]
≤ C7

(
log(T/δ) + ω2

)
τ∗ηmax{0,t−τ∗}.

Looking back at the definitions of λ0 and Σπ , and the discussion in Section 3.2, we derive Lemmas A.2 and A.3 to estimate
I4.

Lemma A.2. Let λ0 as the minimum nonzero singular value of Σπ . For any θ ∈ R(Σπ), we have

θ⊤Σπθ ≥ λ0∥θ∥22.

Lemma A.3. Under Assumption 3.3, we have that

Eµ,π,P
[〈
θt − θt

∗, m̄(θt)− m̄(θt
∗)
〉
| θ0

]
≥ (1− γ)λ0 · ∥θt − θt

∗∥2. (22)

Proof. Define d ∼ µ× π. To begin with, the Bellman operator T π is a γ-contraction with ℓ2-norm since d is the stationary
distribution of (s, a) corresponding to the policy π. In details, consider

E(s,a)∼d

[
(T πQ1(x)− T πQ2(x))

2
]
= γ2E(s,a)∼d

[
E
[
(Q1(x

′)−Q2(x
′))

2 | s′ ∼ P(·|s, a), a′ ∼ π(·|s′)
]]

(i)

≤ γ2E(s,a)∼d

[
(Q1(x)−Q2(x))

2
]
,

(23)

where (i) follows that x and x′ have the same stationary distribution. To simplify the notation, we denote E[·] as Eµ,π,P[·] in
the proof of this lemma. Then we compute

E
[〈
θt − θt

∗, m̄(θt)− m̄(θt
∗)
〉
| θ0

]
= E

[(
∆̂(x,x′;θt)− ∆̂(x,x′;θt

∗)
) 〈

∇Q(x;θ0),θt − θt
∗
〉
| θ0

]
= E

[(
Q̂(x;θt)− Q̂(x;θt

∗)
) 〈

∇Q(x;θ0),θt − θt
∗
〉
| θ0

]
−γE

[(
Q̂(x′;θt)− Q̂(x′;θt

∗)
) 〈

∇Q(x;θ0),θt − θt
∗
〉
| θ0

]
= E

[(
Q̂(x,θt)− Q̂(x,θt

∗)
)2]

− γE
[(

Q̂(x,θt)− Q̂(x,θt
∗)
)
·
(
Q̂(x′;θt)− Q̂(x′;θt

∗)
)]

(i)

≥ E
[(

Q̂(x,θt)− Q̂(x,θt
∗)

2
)]

− γ

√
E
[(

Q̂(x,θt)− Q̂(x,θt
∗)
)2]

·

√
E
[(

Q̂(x′;θt)− Q̂(x′;θt
∗)
)2]

(i)

≥ (1− γ)E
[
Q̂(x,θt)− Q̂(x,θt

∗)
2
]

= (1− γ)(θt − θt
∗)

⊤Σπ(θ
t − θt

∗)

(ii)

≥ (1− γ)λ0 · ∥θt − θt
∗∥2, (24)

where (i) follows the Cauchy-Schwarz inequality, (ii) follows (23), and (iii) follows θt − θt
∗ = θt

∥ − θ̄∥ ∈ R(Σπ) and
Lemma A.2, which provides λ0-strong convexity. Thus we complete the proof of Lemma A.3.

Given θ0, taking the expectation on both sides of (18) and plugging (19)∼(22) into (18) yields that

Eµ,π,P
[
∥θt+1 − θt+1

∗ ∥2 | θ0
]
≤ (1− 2ηt(1− γ)λ0)E

[
∥θt − θt

∗∥2 | θ0
]
+ C2η

2
t

+ 2ηtC5m
−1/2

√
log(T/δ) + 2ηtC7

(
log(T/δ) + C2

1

)
τ∗ηmax{0,t−τ∗}.

14
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We choose ηt =
1

2(1−γ)λ0(t+1) and have that

(1− γ)λ0(t+ 1)Eµ,π,P
[
∥θt+1 − θt+1

∗ ∥2 | θ0
]
≤ (1− γ)λ0t E

[
∥θt − θt

∗∥2 | θ0
]
+ C2ηt

+ C5m
−1/2

√
log(T/δ) + C7

(
log(T/δ) + C2

1

)
τ∗ηmax{0,t−τ∗}.

Summing (25) from t = 0, 1, · · · , T − 1 yields that

Eµ,π,P

[
∥θT − θT

∗ ∥2 | θ0
]

≤ 1

(1− γ)λ0T

T−1∑
t=0

(
C2ηt + C5m

−1/2
√
log(T/δ)

+C7

(
log(T/δ) + C2

1

)
τ∗ηmax{0,t−τ∗}

)
≤ C2(log T + 1)

2(1− γ)2λ2
0T

+
C5m

−1/2
√
log(T/δ)

(1− γ)λ0
+

C8τ
∗ (log(T/δ) + 1) log T

2(1− γ)2λ2
0T

.

Therefore, according to the gradient bound (19), we have

Eµ,π

[(
Q̂(x;θT )− Q̂(x;θ∗)

)2
| θ0

]
= E

[(
Q̂(x;θT )− Q̂(x;θT

∗ )
)2

| θ0

]
≤ C2

3mE
[
∥θT − θT

∗ ∥2 | θ0
]

≤ C3
2 (log T + 1)

2(1− γ)2λ2
0T

+
C2

2C5m
−1/2

√
log(T/δ)

(1− γ)λ0

+
C2

2C8τ
∗ (log(T/δ) + 1) log T

2(1− γ)2λ2
0T

with probability at least 1 − 2δ − 2L exp (−C6m). Let C̃1 = max{1, C1}, C̃2 = C6, C̃3 =
C3

2

2 , C̃4 =
C2

2C5

2 , and

C̃5 =
C2

2C8

2 , and we complete the proof.

A.3. Proof of Theorem 3.7

Proof. Let (s, a) ∼ µ× π =: d. To simplify the notation, we denote E[·] as E(s,a)∼d[·] in this subsection. Note that

E
[(

Q(x;θT ) − Q∗(s, a))
2 | θ0

]
≤ 3E

[(
Q(x;θT )− Q̂(x;θT )

)2
| θ0

]
+ 3E

[(
Q̂(x;θT )− Q̂(x;θ∗)

)2
| θ0

]
+ 3E

[(
Q̂(x;θ∗)−Q∗(s, a)

)2
| θ0

]
.

By Lemma D.4, we have

E
[(

Q(x;θT )− Q̂(x;θT )
)2

| θ0

]
≤ C8m

−1 (25)

with probability at least 1− δ. Recall that Q̂(x;θ∗) is the fixed point of ΠFω,m
T and Q∗(s, a) is the fixed point of T . We

define the ℓ2-norm ∥f(s, a)∥2d = E(s,a)∼d

[
f(s, a)2

]
. Thus∥∥∥Q̂(x;θ∗)−Q∗(s, a)

∥∥∥
d

=
∥∥∥Q̂(x;θ∗)−ΠFω,m

Q∗(s, a) + ΠFω,m
Q∗(s, a)−Q∗(s, a)

∥∥∥
d

(i)
=

∥∥∥ΠFω,m
T Q̂(x;θ∗)−ΠFω,m

T Q∗(s, a) + ΠFω,m
Q∗(s, a)−Q∗(s, a)

∥∥∥
d

≤
∥∥∥ΠFω,m

T Q̂(x;θ∗)−ΠFω,m
T Q∗(s, a)

∥∥∥
d
+
∥∥ΠFω,m

Q∗(s, a)−Q∗(s, a)
∥∥
d

(ii)

≤ γ
∥∥∥Q̂(x;θ∗)−Q∗(s, a)

∥∥∥
d
+
∥∥ΠFω,m

Q∗(s, a)−Q∗(s, a)
∥∥
d
,

where (i) is due to the properties of the fixed point, and (ii) is due to ΠFω,mT is γ-contractive on the ∞-norm. This further
means that ∥∥∥Q̂(x;θ∗)−Q∗(s, a)

∥∥∥2
d
≤ 1

(1− γ)2
∥∥ΠFω,m

Q∗(s, a)−Q∗(s, a)
∥∥2
d
. (26)

Plugging (25) and (26) into (25) and using Theorem 3.6, we complete the proof.
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B. Convergence Results of Neural Q-learning
B.1. Neural Q-Learning Algorithm

For neural Q-learning, let us redefine some of the above notations. Let the optimal Q-function be Q∗(s, a) = supπ Q
π(s, a)

for all state action pairs (s, a), then the optimal sequence of actions that maximizes the expected cumulative reward will
follow at = argmaxa′∈A Q∗(st, a

′), t ≥ 0. Therefore, to obtain a near-optimal policy, it is sufficient to find some Q̂ that
approximates Q∗ well. Define the Bellman optimality operator T as

T Q(s, a) := r(s, a) + γE
[
max
a′

Q(s′, a′) | s′ ∼ P(· | s, a)
]
,

for any (s, a). Let us remain the definition of the local linearization function class Fω,m introduced in (7). Consider the
MSPBE minimization problem with multi-layer neural network approximation:

min
θ∈Sω

Eµ,π,P

[(
Q(x;θ)−ΠFω,m

T Q(x;θ)
)2]

.

Then the projected neural Q-learning algorithm can be written as follows:

θt+1 = ΠSω

(
θt − ηtg

(
θt
))
, with g(θt) = ∆

(
st, at, st+1;θ

t
)
· ∇θQ(ϕ(st, at);θ

t) (27)

where

∆
(
s, a, s′;θt

)
=Q(ϕ(s, a);θt)−

(
r(s, a) + γmax

b∈A
Q
(
ϕ (s′, b) ;θt

) )
. (28)

The algorithm details can be described by Algorithm 2 as follows.

Algorithm 2 Neural Q-Learning with Markovian Sampling
Input: A learning policy π, a discount factor γ ∈ (0, 1), a sequence of learning rates {ηt}t≥0, a maximum iteration
number T , a projection radius ω > 0, a Q network with architecture (4).
Initialization: Generate each entry of W 0

l independently from N (0, 1), for l = 1, 2, · · · , L, and each entry of b
independently from Unif{−1,+1}.
for t = 0, 1, · · · , T − 1 do

Sample (st, at, rt, st+1) from the learning policy π with at ∼ π(·|st).
Compute the TD error ∆t by (28).
Update θt+1 by the projected stochastic semi-gradient step (27).

end for
Output: θT .

B.2. Global Convergence

Similar to Section 3, we define the function class Fω,m as a collection of all local linearization of Q(x;θ) at the initial point
θ0:

Fω,m :=
{
Q̂(x;θ) = Q(x;θ0) +

〈
∇θQ(x;θ0),θ − θ0

〉
, θ ∈ Sω

}
.

Let Q̂(· ;θ∗) ∈ Fω,m, and ∆̂ (s, a, s′;θ) has the same structure as ∆(s, a, s′;θ) expect that the function Q(·;θ) is replaced
by Q̂(·;θ). The stationary point θ∗ satisfies Q̂(x;θ∗) = ΠFω,m

T Q̂(x;θ∗) for neural Q-learning. We redefine Ξβ by
replacing the Bellman operator T π in Section 3 with the Bellman optimality operator T . A point θ∗ ∈ Ξω if and only if

Eµ,π,P

[
∆̂ (s, a, s′;θ∗)

〈
∇θQ̂ (ϕ(s, a);θ∗) ,θ − θ∗〉] ≥ 0.

The maximum operator introduced by the Bellman optimality operator significantly sophisticates the analysis. Let us remain
the definition of Σπ in (12), and we define Σ∗

π(θ) as follows:

Eµ,π

[
∇θQ(ϕ(s, aθmax);θ

0)∇θQ(ϕ(s, aθmax);θ
0)⊤
]
, (29)

where aθmax = argmaxa∈A
∣∣〈∇θQ(s, a;θ0),θ

〉∣∣. To facilitate the analysis of neural Q-learning, we further assume the
following regularity condition introduced by (Xu & Gu, 2020).
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Assumption B.1. ∃ν ∈ (0, 1) such that (1− ν)2Σπ − γ2Σ∗
π(θ) ⪰ 0 for any θ0 and θ ∈ Sω .

The original version of this assumption comes from (Xu & Gu, 2020), which requires a strict positive definite condition:
(1− ν)2Σπ − γ2Σ∗

π(θ) ≻ 0. Under this additional assumption, (Xu & Gu, 2020) obtained an Õ(ϵ−2) sample complexity
for neural Q-learning. A similar complexity result was also derived in (Cai et al., 2023) under a similar regularity condition
on the learning policy π. At this time, we relax it to the positive semi-definiteness (⪰ 0) and provide a convergence result of
neural Q-learning. See Theorem B.2.

Theorem B.2. Suppose Assumptions 3.1, 3.2 and B.1 hold. We set ω = C̃1 and the learning rate ηt =
1

2νλ0(t+1) . If the

feature map ∥ϕ(s, a)∥ = 1 for each state-action pair (s, a) and the network width m ≥ m∗, then the output θT of neural
Q-learning algorithm (i.e. (27)) satisfies

E
[(
Q̂(x;θT )− Q̂(x;θ∗)

)2 | θ0
]
≤ C̃3(log T + 1)

ν2λ2
0T

+
C̃4m

−1/2

νλ0
·
√

log(T/δ) +
C̃5τ

∗ (log(T/δ) + 1) log T

ν2λ2
0T

,

with probability at least 1− 2δ − 2L exp
(
− C̃2m

)
, where τ∗ is the mixing time of Markov chain in Assumption 3.2, and

C̃1, · · · , C̃5 > 0 are universal constants.

Proof. For a little notation abuse, we redefine

g(θt) = ∆(st, at, s
′
t,θ

t) · ∇θQ(xt;θ
t), ḡ(θt) = Eµ,π,P

[
g(θt)

]
m(θt) = ∆̂(st, at, s

′
t,θ

t) · ∇θQ(xt;θ
0), m̄(θt) = Eµ,π,P

[
m(θt)

]
,

where

∆(st, at, s
′
t,θ

t) = Q(xt;θ
t)−

(
r(st, at) + γmax

b∈A
Q(ϕ(st+1, b);θ

t)

)
,

∆̂(st, at, s
′
t,θ

t) = Q̂(xt;θ
t)−

(
r(st, at) + γmax

b∈A
Q̂(ϕ(st+1, b);θ

t)

)
.

Let ∆t = ∆(st, at, s
′
t,θ

t) and ∆̂t = ∆̂(st, at, s
′
t,θ

t). Similarly, (18) can be derived in neural Q-learning. To estimate the
terms I1 ∼ I4, we can apply Lemmas D.5 and A.1. However, due to the utilization of the Bellman optimality operator in
neural Q-learning, some modifications based on Lemma A.3 are required.

Lemma B.3. Under Assumption B.1, we have that

Eµ,π,P
[〈
θt − θt

∗, m̄(θt)− m̄(θt
∗)
〉
| θ0

]
≥ νλ0 · ∥θt − θt

∗∥2. (30)

Proof. To simplify the notation, we denote E[·] as Eµ,π,P[·] in the proof of this lemma. Define Q̂#(s;θ) :=

maxa∈A Q̂(ϕ(s, a);θ). Then we have

E
[〈
θt − θt

∗, m̄(θt)− m̄(θt
∗)
〉
| θ0

]
= E

[(
∆̂(st, at, s;t ,θ

t)− ∆̂(st, at, s;t ,θ
t
∗)
) 〈

∇Q(x;θ0),θt − θt
∗
〉
| θ0

]
= E

[(
Q̂(x;θt)− Q̂(x;θt

∗)
) 〈

∇Q(x;θ0),θt − θt
∗
〉
| θ0

]
−γE

[(
Q̂#(s;θt)− Q̂#(s;θt

∗)
) 〈

∇Q(x;θ0),θt − θt
∗
〉
| θ0

]
(31)

= E
[(

Q̂(x,θt)− Q̂(x,θt
∗)
)2]

− γE
[(

Q̂(x,θt)− Q̂(x,θt
∗)
)
·
(
Q̂#(s;θt)− Q̂#(s;θt

∗)
)]

.
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For the second term of (31), we consider

E
[(

Q̂#(s;θt)− Q̂#(s;θt
∗)
)2]

≤ E
[
max
a∈A

∣∣∣Q̂(s, a;θt)− Q̂(s, a;θt
∗)
∣∣∣2]

(i)
= E

[
max
a∈A

∣∣∣Q̂(s, a;θt − θt
∗)
∣∣∣2]

= (θt − θt
∗)

⊤Σ∗
π(θ

t − θt
∗)

(ii)

≤ (1− ν)2

γ2
(θt − θt

∗)
⊤Σπ · (θt − θt

∗)

(iii)
=

(1− ν)2

γ2
E
[(

Q̂(x,θt)− Q̂(x,θt
∗)
)2]

, (32)

where (i) and (iii) follow that Q̂(x; ·) is linear, and (ii) follows Assumption B.1. Therefore,

E
[〈
θt − θt

∗, m̄(θt)− m̄(θt
∗)
〉
| θ0

]
= E

[(
Q̂(x,θt)− Q̂(x,θt

∗)
)2]

− γE
[(

Q̂(x,θt)− Q̂(x,θt
∗)
)
·
(
Q̂#(s;θt)− Q̂#(s;θt

∗)
)]

≥ E
[(

Q̂(x,θt)− Q̂(x,θt
∗)

2
)]

− γ

√
E
[(

Q̂(x,θt)− Q̂(x,θt
∗)
)2]

·

√
E
[(

Q̂#(s;θt)− Q̂#(s;θt
∗)
)2]

(i)

≥
(
1− γ · 1− ν

γ

)
E
[
Q̂(x,θt)− Q̂(x,θt

∗)
2
]

= ν · (θt − θt
∗)

⊤Σπ(θ
t − θt

∗)

(ii)

≥ νλ0 · ∥θt − θt
∗∥2,

where (i) follows (32), and (ii) follows θt − θt
∗ = θt

∥ − θ∗ ∈ R(Σπ) and Lemma A.2, which provides λ0-strong
convexity.

Now given θ0, we can deduce that

Eµ,π,P
[
∥θt+1 − θt+1

∗ ∥2 | θ0
]
≤ (1− 2ηtνλ0)E

[
∥θt − θt

∗∥2 | θ0
]
+ C1η

2
t

+ 2ηtC2m
−1/2

√
log(T/δ) + 2ηtC3

(
log(T/δ) + C2

1

)
τ∗ηmax{0,t−τ∗},

with probability at least 1 − 2δ − 2L exp(−C4m), where {Ci > 0}i=1,...,4 are universal constants in this subsection.
Choosing ηt =

1
2νλ0(t+1) can derive the similar results as (25). This suggests that we can utilize the techniques outlined in

Section A.2 to finalize the remaining proof of Theorem B.2. As a result, we conclude the proof.

C. Details of Section 4
We formally describe the minimax neural Q-learning method in Algorithm 3.
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Algorithm 3 Minimax Neural Q-Learning with Gaussian Initialization
Input: A learning policy pair π = (π1, π2), a discount factor γ ∈ (0, 1), a sequence of learning rates {ηt}t≥0, a
maximum iteration number T , a projection radius ω > 0, a Q network with architecture (4).
Initialization: Generate each entry of W 0

l independently from N (0, 1), for l = 1, 2, · · · , L, and each entry of b
independently from Unif{−1,+1}.
for t = 0, 1, · · · , T − 1 do

Sample (st, a
1
t , a

2
t , rt, st+1) from the learning policy pair π with a1t ∼ π1(·|st), a2t ∼ π2(·|st).

Compute the TD error ∆t by (17).
Update θt+1 by the projected stochastic semi-gradient step (16).

end for
Output: θT .

C.1. Proof of Theorem 4.2

The proof of Theorem 4.2 is similar to Sections A.2 and B.2. However, due to the difference in Bellman operators, we still
need to make some modifications to Lemma A.3 or Lemma B.3. See Lemma C.1.

Lemma C.1. Under Assumption 4.1, we have that

Eµ,π,P
[〈
θt − θt

∗, m̄(θt)− m̄(θt
∗)
〉
| θ0

]
≥ νλ0 · ∥θt − θt

∗∥2. (33)

Proof. To simplify the notation, we denote E[·] as Eµ,π,P[·] in the proof of this lemma. Define Q̂#(s;θ) :=

maxa1∈A mina2∈A Q̂(ϕ(s, a1, a2);θ). Define the sets S+ = {s : Q̂#(s;θt) > Q̂#(s;θt
∗)} and S− = S/S+. For

each s ∈ S+,

Q̂#(s;θt)− Q̂#(s;θt
∗) =

〈
∇θQ

(
ϕ(s, a1θt , a2θt);θ

0
)
,θt
〉
−
〈
∇θQ

(
ϕ(s, a1θt

∗
, a2θt

∗
);θ0

)
,θt

∗

〉
=

(〈
∇θQ

(
ϕ(s, a1θt , a2θt);θ

0
)
,θt
〉
−
〈
∇θQ

(
ϕ(s, a1θt , a2θt

∗
);θ0

)
,θt
〉)

−〈
∇θQ

(
ϕ(s, a1θt , a2θt

∗
);θ0

)
,θt − θt

∗

〉
−(〈

∇θQ
(
ϕ(s, a1θt , a2θt

∗
);θ0

)
,θt

∗

〉
−
〈
∇θQ

(
ϕ(s, a1θt

∗
, a2θt

∗
);θ0

)
,θt

∗

〉)
≤

〈
∇θQ

(
ϕ(s, a1θt , a2θt

∗
);θ0

)
,θt − θt

∗

〉
and

Q̂#(s;θt)− Q̂#(s;θt
∗) =

(〈
∇θQ

(
ϕ(s, a1θt , a2θt);θ

0
)
,θt
〉
−
〈
∇θQ

(
ϕ(s, a1θt

∗
, a2θt);θ

0
)
,θt
〉)

−〈
∇θQ

(
ϕ(s, a1θt

∗
, a2θt);θ

0
)
,θt − θt

∗

〉
−(〈

∇θQ
(
ϕ(s, a1θt

∗
, a2θt);θ

0
)
,θt

∗

〉
−
〈
∇θQ

(
ϕ(s, a1θt

∗
, a2θt

∗
);θ0

)
,θt

∗

〉)
≥

〈
∇θQ

(
ϕ(s, a1θt

∗
, a2θt);θ

0
)
,θt − θt

∗

〉
.

In the same way, for each s ∈ S−,〈
∇θQ

(
ϕ(s, a1θt , a2θt

∗
);θ0

)
,θt − θt

∗

〉
≤ Q̂#(s;θt)− Q̂#(s;θt

∗)

≤
〈
∇θQ

(
ϕ(s, a1θt

∗
, a2θt);θ

0
)
,θt − θt

∗

〉
.

Therefore, ∣∣∣Q̂#(s;θt)− Q̂#(s;θt
∗)
∣∣∣ ≤ max

{∣∣∣ 〈∇θQ
(
ϕ(s, a1θt , a2θt

∗
);θ0

)
,θt − θt

∗

〉 ∣∣∣,∣∣∣ 〈∇θQ
(
ϕ(s, a1θt

∗
, a2θt);θ

0
)
,θt − θt

∗

〉 ∣∣∣} . (34)
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By Assumption 4.1, we compute

Eµ,π,P

[∣∣∣Q̂#(s;θt)− Q̂#(s;θt
∗)
∣∣∣2] (i)

≤
(
θt − θt

∗
)⊤

Σ∗
π(θ

t,θt
∗)
(
θt − θt

∗
)

(ii)

≤ (1− ν)2

γ2
·
(
θt − θt

∗
)⊤

Σπ

(
θt − θt

∗
)

(35)

=
(1− ν)2

γ2
· Eµ,π,P

[∣∣∣Q̂(s, a1, a2;θt)− Q̂(s, a1, a2;θt
∗)
∣∣∣2] ,

where (i) is due to (34), and (ii) is due to Assumption 4.1. Similar to Lemma B.3, we can also obtain (31) in this lemma. By
substituting (35) into (31), the proof can be completed.

Now we are ready to prove Theorem 4.2. For a little notation abuse, we redefine

g(θt) = ∆(st, a
1
t , a

2
t , s

′
t,θ

t) · ∇θQ(xt;θ
t), ḡ(θt) = Eµ,π,P

[
g(θt)

]
m(θt) = ∆̂(st, a

1
t , a

2
t , s

′
t,θ

t) · ∇θQ(xt;θ
0), m̄(θt) = Eµ,π,P

[
m(θt)

]
,

where

∆(st, a
1
t , a

2
t , s

′
t,θ

t) = Q(xt;θ
t)−

(
r(st, at) + γ max

b1∈A
min
b2∈A

Q(ϕ(st+1, b
1, b2);θt)

)
,

∆̂(st, a
1
t , a

2
t , s

′
t,θ

t) = Q̂(xt;θ
t)−

(
r(st, at) + γ max

b1∈A
min
b2∈A

Q̂(ϕ(st+1, b
1, b2);θt)

)
.

Let ∆t = ∆(st, a
1
t , a

2
t , s

′
t,θ

t) and ∆̂t = ∆̂(st, a
1
t , a

2
t , s

′
t,θ

t). After redefining the corresponding notation, we can similarly
derive (18) and adopt the associated lemmas. Due to the introduction of the additional Assumption 4.1, we provide Lemma
C.1, ensuring that terms I1 ∼ I4 can be estimated. The remainder of the proof is entirely analogous to Sections A.2 and B.2.
Thus, we conclude the proof.

D. Supporting Lemmas for Multi-layer Neural Network
Recalling the definition of the parameterized Q-function, we present the following lemmas related to neural network
functions, which play a crucial role in illustrating the main results of our paper. {τi > 0}i=1,...,10 mentioned below are
universal constants.

Lemma D.1. For any t ∈ {1, 2, · · · , T}, we have

∥θt∥ ≤ τ1
√
m, w.p.1− L exp (−τ2m).

Proof. By Lemma G.2 in (Du et al., 2019), ∥θ0∥ ≤ O (
√
m) with probability at least 1− L exp (−τ2m). Therefore,

∥θt∥2 ≤ ∥θt − θ0∥+ ∥θ0∥
≤ ω + ∥θ0∥
≤ O

(√
m
)
.

Lemma D.2. For any l ∈ {1, 2, · · · , L}, we have

∥x(l)∥ ≤ τ3
√
m, and ∥∇θQ(x;θ)∥ ≤ τ4, w.p. 1− L exp (−τ2m).

Lemma D.2 has been proved by (Tian et al., 2022) (Lemmas A.6∼A.10).
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Lemma D.3. For any t ∈ {1, 2, · · · , T} and θ ∈ Sω , we have

|Q(xt;θ)| ≤ τ5
√
log(T/δ), w.p. 1− δ − L exp (−τ2m).

Proof. By Lemma D.2, we have 1√
m
∥x(L)∥ ≤ τ3, w.p. 1 − L exp (−τ2m). Recall the definition of the parameterized

Q-function:

Q(x;θ) =
1√
m
b⊤x(L),

where each element of b is generated from a uniform distribution over {−1,+1}. For each x, by Hoeffding inequality, we
have

P
(∣∣∣∣〈 1

m
x(L), b

〉∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

4∥ 1
mx(L)∥2

)
(i)

≤ 2 exp

(
− t2

2τ23

)
,

where (i) follows Lemma D.2. Substituting δ
T = 2 exp

(
− t2

2τ2
3

)
, we get

P
(∣∣∣∣〈 1

m
x(L), b

〉∣∣∣∣ ≥ τ3
√

2 log(T/δ)

)
≤ δ

T
.

Now, by the union bound, if we set τ5 = τ3
√
2, then

P
(
max
t∈[T ]

|Q(xt;θ)| ≥ τ5
√

log(T/δ)

)
≤

T∑
t=1

P
(
|Q(xt;θ)| ≥ τ5

√
log(T/δ)

)
≤ δ,

which completes the proof.

Lemma D.4. Denote ∇2
θQ(x;θ) as the Hessian matrix of Q(x;θ). Then for all x,θ ∈ Sω , we have w.p. 1− δ that

∥∇2
θQ(x;θ)∥2 ≤ τ6m

− 1
2

and ∣∣∣Q(x;θ)− Q̂(x;θ)
∣∣∣ ≤ τ7m

− 1
2 .

Proof. The first inequality in Lemma D.4 has been proved by (Liu et al., 2020b) (Theorem 3.2), which implies that Q(x;θ)

is O(m− 1
2 )-smoothness w.r.t. θ. Therefore,∣∣∣Q(x;θ)− Q̂(x;θ)

∣∣∣ = ∣∣Q(x;θ)−Q(x;θ0)−
〈
∇θQ(x;θ0),θ0 − θ

〉∣∣ = O(m− 1
2 ).

Lemma D.5. Let θ ∈ Sω with the radius satisfying ω = O(1). Then for all ∥x∥2 = 1 and θt
∗ ∈ S2ω in the neural temporal

difference learning algorithm 1, it holds that∣∣〈g (θt
)
−m

(
θt
)
,θt − θt+1

∗
〉∣∣ ≤

(
τ8τ9ωm

− 1
2

√
log(T/δ) + 2τ4τ8m

− 1
2

)∥∥θt − θt+1
∗
∥∥

with probability at least 1−2δ−2L exp (−τ2m) over the randomness of the initial point, and
∥∥g (θt

)∥∥
2
≤ τ10

√
log(T/δ)

holds with probability at least 1− δ − 2L exp (−τ2m).

Proof. Note that∥∥g (θt
)
−m

(
θt
)∥∥ =

∥∥∥∆(xt,xt+1,θ
t) · ∇θQ(xt;θ

t)− ∆̂(xt,xt+1,θ
t) · ∇θQ(xt;θ

0)
∥∥∥

≤
∥∥∆(xt,xt+1,θ

t) ·
(
∇θQ(xt;θ

t)−∇θQ(xt;θ
0)
)∥∥ (36)

+
∥∥∥(∆(xt,xt+1,θ

t)− ∆̂(xt,xt+1,θ
t)
)
· ∇θQ(xt;θ

0)
∥∥∥ ,
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where

∆(xt,xt+1,θ
t) = Q(xt;θ

t)−
(
r(st, at) + γQ(xt+1;θ

t)
)
,

∆̂(xt,xt+1,θ
t) = Q̂(xt;θ

t)−
(
r(st, at) + γQ̂(xt+1;θ

t)
)
.

For the first term in (36), by Lemma D.3, we have w.p. 1− δ − L exp (−τ2m) that∣∣∆(xt,xt+1,θ
t)
∣∣ ≤ τ8

√
log(T/δ).

By Lemma D.4, we get that∥∥∇θQ(xt;θ
t)−∇θQ(xt;θ

0)
∥∥ ≤ ∥∇2

θQ(xt;θt)∥2 · ∥θt − θ0∥ ≤ τ9ωm
− 1

2 .

Therefore, ∥∥∆(xt,xt+1,θ
t) ·
(
∇θQ(xt;θ

t)−∇θQ(xt;θ
0)
)∥∥ ≤ τ8τ9ωm

− 1
2

√
log(T/δ). (37)

For the second term in (36), we decompose it into∥∥∥(∆(xt,xt+1,θ
t)− ∆̂(xt,xt+1,θ

t)
)
· ∇θQ(xt;θ

0)
∥∥∥

≤
∥∥∥(Q(x,θt)− Q̂(x,θt)

)
· ∇θQ(xt;θ

0)
∥∥∥+ ∥∥∥(Q(xt+1;θ

t)− Q̂(xt+1;θ
t)
)
· ∇θQ(xt;θ

0)
∥∥∥

≤
∣∣∣Q(x,θt)− Q̂(x,θt)

∣∣∣ · ∥∥∇θQ(xt;θ
0)
∥∥+ ∣∣∣Q(xt+1;θ

t)− Q̂(xt+1;θ
t)
∣∣∣ · ∥∥∇θQ(xt;θ

0)
∥∥

(i)

≤ 2τ4τ8m
− 1

2 , (38)

with probability at least w.p. 1− δ − L exp (−τ2m), where (i) is due to Lemmas D.3 and D.4. Plugging (37) and (38) into
(36) yields that∣∣〈g (θt

)
−m

(
θt
)
,θt − θt+1

∗
〉∣∣ ≤

∥∥g (θt
)
−m

(
θt
)∥∥ · ∥∥θt − θt+1

∗
∥∥

≤
(
τ8τ9ωm

− 1
2

√
log(T/δ) + 2τ4τ8m

− 1
2

)∥∥θt − θt+1
∗
∥∥ .

Thus we complete the proof.

Lemma D.5 provides the upper bounds on I1 and I2 in Section A.2. As discussed in Section 3.1, for a finite MDP, the Gram
matrix of the L-layer neural network function is positive definite and has a minimum eigenvalue of O(1) when the network
width is sufficiently large. This, in fact, serves as an upper bound for m∗ in Assumption 3.1. Further details are provided in
Remark D.6.
Remark D.6. In this special case, we assume that both state space and action space are finite. Let |S| and |A| represent the
dimensions of the state space and action space, respectively. For simplicity of notation, we view Q(θ) as an |S||A| × 1
column vector, with (s, a) being a multi-index arranged in the lexicographical order. Let d ∼ µ× π and D = diag(d) be an
|S||A|-dimensional diagonal matrix, whose (s, a)-th diagonal entry is d(s, a), and the order of (s, a) in D is the same as
Q(θ). Denote J as the Jacobian matrix of Q(θ0) and JD = D

1
2J. Thus we can rewrite Σπ = J⊤

DJD. Notice that Σπ is
different from the Gram matrix Jacot et al. (2018); Du et al. (2018; 2019); Cao & Gu (2019); Allen-Zhu et al. (2019b) in
deep neural network. To derive the µ-weighted Gram matrix Gram(θ0), we provide the following definition.
Definition D.7. (Du et al. (2019); Cao & Gu (2019); Allen-Zhu et al. (2019b;a), Neural Tangent Kernel Matrix). For any
i, j ∈ [|S||A|], define

Θ̃
(1)

i,j = Σ
(1)
i,j = ⟨x̂i, x̂j⟩ , A

(l)
ij =

(
Σ

(l)
i,i Σ

(l)
i,j

Σ
(l)
i,j Σ

(l)
j,j

)
,

Σ
(l+1)
i,j = 2 · E

(u,v)∼N
(
0,A

(l)
ij

)[σ(u)σ(v)],
Θ̃

(l+1)

i,j = Θ̃
(l)

i,j · 2 · E(u,v)∼N
(
0,A

(l)
ij

) [σ′(u)σ′(v)] +Σ
(l+1)
i,j ,

where x̂ =
√
d(s, a)ϕ(s, a). Then we call Θ(L) =

[(
Θ̃

(L)

i,j +Σ
(L)
i,j

)
/2

]
|S||A|×|S||A|

the µ-weighted neural tangent

kernel matrix of an L-layer ReLU network on µ-weighted state-action pairs x̂1, . . . , x̂|S||A|.
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There is a large body of work Jacot et al. (2018); Du et al. (2018; 2019); Cao & Gu (2019); Allen-Zhu et al. (2019b) exploring
the positive definiteness of Gram(θ0) in the literature. Suppose that for all pairs (s, a), (s′, a′), ∥ϕ(s, a)∥ = 1, d(s, a) > 0
and ϕ(s, a) ∦ ϕ(s′, a′). The results of Theorem 1 and Proposition 2 in Jacot et al. (2018) shows that for an L-layer neural
network with Gaussian initialization parameters,

〈
∇θQ(x̂i;θ

0),∇θQ(x̂j ,θ
0)
〉
→ Θ

(L)
i,j , as m → ∞.

That is, under the NTK regime, the µ-weighted Gram matrix Gram(θ0) = JDJ⊤
D converges to Θ(L) when m is sufficiently

large. Let λmin

(
Θ(L)

)
= 2λ′ = O(1). For any δ ∈ (0, 1), there exists m∗ = Poly(|S||A|, L, δ, λ′) such that if m ≥ m∗,

we have
λmin

(
Gram(θ0)

)
≥ λ′ w.p. 1− δ.

This signifies that if the network width m ≥ m∗, then we have λ0 ≥ λmin

(
Gram(θ0)

)
≥ λ′, thereby substantiating our

claim.

E. Additional Notes on the Experiments in Section 5
In this section, we further discuss the experimental setup introduced in Section 5. As mentioned in Section 5, our experiments
mainly test the following two aspects: (1) how does the network width m affects the final error of the algorithm (first two
subfigures in Figure 1); (2) the minimum nonzero singular value in Assumption 3.3 (latter two subfigures in Figure 1).

For point (1), we first generate 2000 samples according to a given policy π to imitate the Markov process of Algorithm 1. A
two-layer neural network with ELU activation is introduced, and the parameters are initialized using Algorithm 1. We set
the initial learning rate at 0.001 with linear decay (per epoch) and a batch size of 100. Notably, as the parameter m increases,
the TD algorithm demonstrates smaller final TD errors.

For point (2), our experiments are based on three main points. First, note that the norm of feature map and parameter random
initialization will affect the scaling of the gradient norm w.r.t. Q(s, a;θ). Thus we employ the ratio r = σmax/σmin to
characterize the minimum non-zero singular value in order to eliminate the impact of numerical scaling. Second, we set
varying network widths to verify the existence of λ0. Finally, it’s tough to directly obtain the joint distribution of (s, a)
with a fixed learning policy. However, we have that

∥∥∥ 1
N

∑
(s,a)∼µ×π ∇θQ(s, a;θ)∇θQ(s, a;θ)⊤ − Σπ

∥∥∥
2
= O(1/N). To

avoid the effects of sampling randomness, we estimate Σπ from different samples. The experiments demonstrate that the
minimum non-zero singular value λ0 converges to a constant as m increases.
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