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NEF AND EFFECTIVE CONES OF SOME QUOT SCHEMES

CHANDRANANDAN GANGOPADHYAY AND RONNIE SEBASTIAN

Abstract. Let C be a smooth projective curve over C of genus g(C) > 3 (respectively,
g(C) = 2). Fix integers r, k such that 2 6 k 6 r − 2, (respectively, 3 6 k 6 r − 2). Let
Q := QC/C(O

⊕r
C , k, d) be the Quot scheme parametrizing rank k and degree d quotients

of the trivial bundle of rank r. Let QL denote the closed subscheme of the Quot scheme
parametrizing quotients such that the quotient sheaf has determinant L. It is known that
QL is an integral, normal, local complete intersection, locally factorial scheme of Picard rank
2, when d ≫ 0. In this article we compute the nef cone, effective cone and canonical divisor
of this variety when d ≫ 0. We show this variety is Fano iff r = 2k + 1.

1. Introduction

Let C be a smooth projective curve over the field of complex numbers C. Fix integers
0 < k < r. Let QuotC/C(O

⊕r
C , k, d) denote the Quot scheme parametrizing rank k and degree

d quotients of the trivial bundle of rank r. When C ∼= P1, Stromme, in [Str87], proved that
QuotC/C(O

⊕r
C , k, d) is a smooth projective variety of Picard rank 2 and computed its nef

cone. In [Jow12], the author computed the effective cone of QuotP1/C(O
⊕n
P1 , k, d). In [Ven11],

the author determined the movable cone of QuotP1/C(O
⊕n
P1 , k, d) and the stable base locus

decomposition of the effective cone. In [Ito17], the author studied the birational geometry of
QuotP1/C(O

⊕n
P1 , k, d).

For curves of higher genus, the space QuotC/C(O
⊕r
C , k, d) was studied in [BDW96] and it

was proved that when d ≫ 0, this Quot scheme is irreducible and generically smooth. This
was generalized by Popa and Roth [PR03], who proved the same result for QuotC/C(E, k, d),

the Quot scheme parametrizing quotients of a vector bundle E. See also [Gol19], [CCH21],
[CCH22], [RS24] for similar results on other variations of this Quot scheme. In [Ras24], the
author generalizes the above mentioned result of Popa and Roth to the case of nodal curves.

In [GS24] it was proved that for d ≫ 0, QuotC/C(E, k, d) is in fact locally factorial and its
Picard group was computed. Consider the determinant map

det : QuotC/C(E, k, d) → Picd(C) ,

which sends a closed point [E → F ] to the determinant line bundle [det(F )]. For [L] ∈ Picd(C)
let us denote the fiber over [L] by QuotC/C(E, k, d)L. By definition, QuotC/C(E, k, d)L
parametrizes quotients [E → F ] such that rank of F is k and determinant of F is L. With
some mild assumptions on the genus of C and k, it was proved in [GS24] that when d ≫ 0
the scheme QuotC/C(E, k, d)L is irreducible, locally factorial and moreover, its Picard rank

is 2. See Theorem 2.3 for precise statements of the main results in [GS24].
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2 C. GANGOPADHYAY AND R. SEBASTIAN

For ease of notation, let QL denote QuotC/C(O
⊕r
C , k, d)L. Let N1(QL) denote the Neron-

Severi group of QL. Let Nef(QL) ⊂ N1(QL)⊗Z R denote the cone of nef divisors. Similarly,
we have the cone of effective divisors, which we denote by Eff(QL) and the movable cone
of divisors which we denote Mov(QL). In this article, we compute these cones, thereby,
generalizing the results in [Str87], [Jow12], [Ven11]. Note that in the case of C ∼= P 1 this
scheme is just QuotC/C(O

⊕r
C , k, d). We also compute the class of the canonical divisor of

QL in terms of α and βd+g−1. Combining this with Theorem 4.14 we give a necessary and
sufficient condition for QL to be Fano. This question, regarding when QL is Fano, was raised
by Pieter Belmans in his Blog (see Fortnightly links (160)).

In the following Theorem, for the definitions of the line bundles α and βd+g−1, see the
discussion before (4.3), the discussion before Lemma 4.7 and Remark 4.8. For the definitions
of the curves D1 and D2, see the proofs of Proposition 4.4 and Proposition 4.9.

Theorem. Assume one of the following two holds:

• g(C) > 3 and 2 6 k 6 r − 2, or
• g(C) = 2 and 3 6 k 6 r − 2.

Let d ≫ 0. Then we have the following results:

(A) (Theorem 4.14) Pic(QL) is generated by the line bundles α, βd+g−1. Both these are
globally generated, nef but not ample. In particular,

Nef(QL) = R>0α+ R>0βd+g−1 .

The boundaries of the cone of effective curves are given by the classes of the curves
D1 and D2.

(B) (Theorem 5.16) The effective cone of QL is given by

Eff(QL) = R>0(d(k + 1)α− kβd+g−1) + R>0(−d(r − k − 1)α + (r − k)βd+g−1) .

The cone Mov(QL) = Eff(QL).
(C) (Theorem 6.10) QL is Fano iff r = 2k + 1.

2. Recollection of some results from [GS24]

Let C be a smooth projective curve over the field of complex numbers C. We shall denote
the genus of C by g(C). Throughout this article we shall assume that g(C) > 2. Let E be a
locally free sheaf on C of rank r and degree e. In the latter sections we will be considering
only the case E = O⊕r

C , whence, e = 0. Let k be an integer such that 0 < k < r. Throughout
this article

(2.1) QuotC/C(E, k, d)

will denote the Quot scheme of quotients of E of rank k and degree d. There is a map

(2.2) det : QuotC/C(E, k, d) → Picd(C) ,

see [GS24, equation (2.5)]. This map sends a closed point [E → F ] ∈ QuotC/C(E, k, d) to

[det(F )] ∈ Picd(C). Let L be a line bundle on C of degree d and let

QuotC/C(E, k, d)L := det−1([L])

https://pbelmans.ncag.info/blog/2022/11/09/fortnightly-links-160/
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be the scheme theoretic fiber over the point [L] ∈ Picd(C). We recall the main results in
[GS24].

Theorem 2.3. (A) [GS24, Theorem 3.3, Corollary 3.5]. First consider the case k = r−1.
Assume d > 2g − 2 + e − µmin(E). There is a locally free sheaf E on Pice−d(C)
such that the following holds. We have an isomorphism of schemes over Pice−d(C),

P(E∨)
∼
−→ QuotC/C(E, r − 1, d). In particular, under the above assumption on d, the

space QuotC/C(E, r−1, d) is smooth and Pic(QuotC/C(E, r−1, d)) ∼= Pic(Pic0(C))×Z.
Next we consider the case when k 6 r − 2. There is a number d0(E, k), which depends only
on E and k, such that the following statements hold. Let d > d0(E, k).

(1) [GS24, Theorem 6.3] Then det : QuotC/C(E, k, d) −→ Picd(C) is a flat map. Further,

QuotC/C(E, k, d) is local complete intersection scheme which is an integral and normal
variety and is locally factorial.

(2) [GS24, Theorem 9.1] Let k = 1 and r > 3 (the case k = 1 and r = 2 is dealt with in
the case k = r − 1 above). Then Pic(QuotC/C(E, k, d)) ∼= Pic(Picd(C))× Z× Z.

(3) [GS24, Theorem 8.7] Let k > 2, g(C) > 2. Then QuotC/C(E, k, d)L is a local complete
intersection scheme, which is also integral, normal and locally factorial.

(4) [GS24, Theorem 8.9] Assume one of the following two holds
• k > 2 and g(C) > 3, or
• k > 3 and g(C) = 2.

We have isomorphisms

Pic(QuotC/C(E, k, d)L) ∼= Pic(M s
k,L)× Z ∼= Z× Z .

(5) [GS24, Theorem 9.1] Let k = 1 and r > 3. Then Pic(QuotC/C(E, k, d)L) ∼= Z× Z.

In view of point (4), it becomes a particularly interesting question to investigate the nef
cone of the scheme QuotC/C(E, k, d)L. The purpose of this article is to investigate this
question when E is the trivial bundle of rank r. Before we proceed we mention a few points
from [GS24] which we shall use. The discussion in this paragraph assumes that d ≫ 0. The
“good locus” of the Quot scheme is defined to be the set of points (see [GS24, Definition 4.4])

QuotC/C(E, k, d)g := {[E → F ] |H1(E∨ ⊗ F ) = 0} .

Let A be a locally closed subset of the Quot scheme. Then the good locus of A, denoted Ag

is defined to be the subset A∩QuotC/C(E, k, d)g . An important property of the good locus is

that the morphism det in equation (2.2) restricted to the good locus is a smooth morphism.
In particular, taking A = QuotC/C(E, k, d)L, we get the locus QuotC/C(E, k, d)g,L. Another
subset of the Quot scheme which will be used is the locus of stable quotients, that is,

QuotC/C(E, k, d)s := {[E → F ] |F is stable} .

Similarly, we define QuotC/C(E, k, d)sL. We have inclusions

QuotC/C(E, k, d)sL ⊂ QuotC/C(E, k, d)g,L ⊂ QuotC/C(E, k, d)L .

If Y ⊂ X is locally closed, then we denote codim(Y,X) = dim(X)− dim(Y ). In the proof of
[GS24, Theorem 8.9], it is proved that

codim(QuotC/C(E, k, d)L \QuotC/C(E, k, d)sL,QuotC/C(E, k, d)L) > 2 .
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3. Notation

Fix a point [L] ∈ Picd(C). For the remainder of this article, we shall

• Denote by Q := QuotC/C(O
⊕r
C , k, d) and denote by QL := QuotC/C(O

⊕r
C , k, d)L.

• Assume one of the following two holds:
† g(C) > 3 and 2 6 k 6 r − 2, or
† g(C) = 2 and 3 6 k 6 r − 2.

• If Y ⊂ X is locally closed, then we denote codim(Y,X) = dim(X)− dim(Y ).
• For a scheme T , we shall denote by pC : C × T → C denote the projection. The
projection onto the second factor will be denoted by p2.

• Let

(3.1) 0 → K → p∗CO
⊕r
C → F → 0

denote the universal quotient on C × Q. We will abuse notation and use the same
notation to denote its restriction to C ×QL.

• We shall assume that d ≫ 0. In particular, d > d0(E, k).

Remark 3.2. At several places we will use the following easy consequence of cohomology
and base change. Let f : X → Y be a projective morphism and let F be a coherent sheaf on
X which is flat over Y . Suppose h1(Xy,Fy) = 0 for all closed points y ∈ Y . Then f∗(F) is
locally free. Let g : Y ′ → Y be a morphism and consider the Cartesian square

X ′
g′

//

f ′

��

X

��

Y ′
g

// Y

Then the natural map g∗f∗(F) → f ′
∗g

′∗(F) is an isomorphism. �

4. Nef cone of QL

Recall the universal sequence (3.1) on C×QL. Applying ∧r−k to the inclusion K ⊂ p∗CO
⊕r
C ,

we get an inclusion, which sits in a short exact sequence

(4.1) 0 → ∧r−kK → ∧r−k
(
p∗CO

⊕r
C

)
→ F ′ → 0 .

Let q ∈ QL be a closed point. The restriction of the map in (4.1) to C × q is the same
as restricting the map (3.1) to C × q and then applying ∧r−k. From this it easily follows
that the restriction of (4.1) to C × q is an inclusion. For each point q ∈ QL, the sheaf
∧r−kKq := ∧r−kK|C×q

∼= L−1. Thus, it follows that the rank and degree of F ′
q are constant.

As QL is an integral scheme, it follows that F ′ of (4.1) is flat over QL. The quotient

∧r−k
(
p∗CO

⊕r
C

)
→ F ′

on C ×QL gives rise to a morphism from QL to the quot scheme

QuotC/C

(
∧r−k

(
O⊕r

C

)
,

(
r

r − k

)
− 1, d

)
.
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Moreover, for each q, the cokernel F ′
q has determinant L. It follows that the image of the

composite map

QL → QuotC/C

(
∧r−k

(
O⊕r

C

)
,

(
r

r − k

)
− 1, d

)
det
→ Picd(C)

is, at least set theoretically, the closed point [L]. As QL is an integral scheme, it follows that

the image lands in the scheme theoretic fiber QuotC/C

(
∧r−k

(
O⊕r

C

)
,
(

r
r−k

)
− 1, d

)
L
. By (A)

(that is, [GS24, Theorem 3.3, Corollary 3.5]) it follows that we get a map from

(4.2) f : QL → P(E∨
L−1)

(note that e = 0). For ease of notation we denote P(E∨
L−1) by P. Define

(4.3) α := f∗OP(1) .

Proposition 4.4. The line bundle α is nef but not ample.

Proof. It is clear that α is nef. To show it is not ample, it suffices to find a curve D1 ⊂ QL

such that the restriction of α to D1 is trivial.
We begin with describing the map f in (4.2) in some more detail. Let p2 : C ×QL → QL

denote the projection. By the Seesaw Theorem, there is a line bundle M on QL such that
∧r−kK ∼= p∗CL

−1 ⊗ p∗2M . Tensoring (4.1) with p∗CL we get the following exact sequence of
sheaves on C ×QL

0 → p∗2M →
[
∧r−k

(
p∗CO

⊕r
C

)]
⊗ p∗CL → F ′ ⊗ p∗CL → 0 .

Applying p2∗ we get the following exact sequence of sheaves on QL

0 → M → H0(C,
[
∧r−k

(
O⊕r

C

)]
⊗ L)⊗OQL

→ p2∗(F
′ ⊗ p∗CL) → H1(C,OC )⊗M → 0 .

The last term on the right is 0 as the degree of L is d, which is assumed to be very large.
It follows that p2∗(F

′ ⊗ p∗CL) is locally free. Taking dual of the above sequence, we get a
surjection

H0(C,∧r−k
[
∧r−k

(
O⊕r

C

)]
⊗ L)∨ ⊗OQL

→ M−1 ,

which defines the map f to

P(H0(C,∧r−k
[
∧r−k

(
O⊕r

C

)]
⊗ L)∨) .

It is clear that the pullback of OP(1) is M
−1. Thus, α = M−1.

To construct the curve D1, fix a closed point x ∈ C and a subsheaf K ′ ⊂ O⊕r
C with

det(K ′) = L−1 ⊗OC(x). Let D1 ⊂ P(K ′
x) be a line in the projective space associated to the

vector space K ′
x. Let ιx : D1 → C ×D1 denote the map t 7→ (x, t). On C ×D1 we have the

surjection

p∗CK
′ → ιx∗ι

∗
xp

∗
CK

′ = ιx∗(K
′
x ⊗OD1

) → ιx∗(OD1
(1)) .

Let K̃1 be the kernel of this surjection. As ιx∗(OD1
(1)) is flat over D1, it follows that K̃1 is

flat over D1. We have the following commutative diagram over C × D1 in which all three
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term sequences are exact

(4.5) 0 // K̃1
//

��

p∗CO
⊕r // G1

//

��

0

0 // p∗CK
′ //

��

p∗CO
⊕r // p∗CF

′ // 0

ιx∗(OD1
(1))

It follows easily that for t ∈ D1, the rank and degree of G1,t are independent of t. Thus, G1

is flat over D1. Note that

∧r−kK̃1
∼= det(p∗CK

′)⊗ det(ιx∗(OD1
(1)))−1

∼= p∗C(L
−1 ⊗OC(x)) ⊗ p∗COC(−x)

∼= p∗CL
−1 .

It easily follows that we get a morphism D1 → QL, which is an inclusion on closed points.
As p∗CL

−1 = p∗CL
−1 ⊗ p∗2OD1

, from the description of the morphism f , it is clear that the
restriction of f∗(OP(1)) to D1 is the trivial bundle. This shows that α is not ample. �

Let Qs
L denote the locus of quotients [O⊕r

C → F ] such that F is a stable bundle. To con-
struct our second nef class, we shall first construct a vector bundle on Qs

L. The determinant of
this gives a line bundle on Qs

L. Under our hypothesis, it follows that codim(QL \Q
s
L,QL) > 2

(see the discussion before equation (8.10) in [GS24]). Thus, the line bundle constructed on
Qs

L extends uniquely to a line bundle on QL. We will show that this line bundle is nef.
Let M be a line bundle on C of degree m such that

(4.6)
d

k
+m > 2g − 2 .

Recall the universal sheaf F from (3.1). Let p2 denote the projection C × Qs
L → Qs

L.
Consider the sheaf p2∗(F ⊗ p∗CM) on Qs

L. For a point q ∈ Qs
L, we have h1(C,Fq ⊗M) = 0 iff

hom(Fq ⊗M,ωC) = 0. Assume µmin(Fq ⊗M) > µmax(ωC), that is, if (4.6) holds. By [HL10,
Lemma 1.3.3], it follows that hom(Fq ⊗M,ωC) = 0. Thus, if m is such that this inequality
holds, then it follows easily, using cohomology and base change [Har77, Theorem 12.11], that
the sheaf p2∗(F ⊗p∗CM) on Qs

L is locally free. The determinant of this locally free sheaf gives
a line bundle on Qs

L, which extends uniquely to a line bundle on QL. We denote this line
bundle by βM .

Lemma 4.7. Let M and M ′ have the same degree m such that (4.6) holds. Then βM is
numerically equivalent to βM ′.

Proof. Let P be a Poincare bundle on C × Picm(C). Let pij denote the projection maps
from C × Qs

L × Picm(C). Consider the sheaf p23∗(F ⊗ p∗13P) on Qs
L × Picm(C). For a

point (q,M) ∈ Qs
L × Picm(C), we have h1(C,Fq ⊗M) = 0. It follows easily that the sheaf

p23∗(F ⊗ p∗13P) on Qs
L ×Picm(C) is locally free. Let us denote the determinant of this sheaf

by R. It can be easily seen, for example, using similar reasoning as in [GS24, Proposition
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8.1], that QL × Picm(C) is locally factorial. It easily follows that the line bundle R extends
uniquely to a line bundle on QL × Picm(C), which we continue to denote by R.

It is also easily seen, using Remark 3.2, that the restriction of p23∗(F ⊗ p∗13P) to Qs
L× [M ]

equals p2∗(F ⊗ p∗CM). Thus, it easily follows that R restricted to QL × [M ] equals βM .
Similarly, it follows that R restricted to QL × [M ′] equals βM ′ . It easily follows that βM is
numerically equivalent to βM ′ . This completes the proof of the Lemma. �

Remark 4.8. In view of the above Lemma, when m satisfies (4.6), we shall denote the
corresponding numerical class by βm.

It is easily checked that when d ≫ 0 then m = d+ g − 1 satisfies (4.6).

Proposition 4.9. The class βd+g−1 is globally generated and hence nef. This class is not
ample.

Proof. We will show that for any point q ∈ QL, there is a line bundle M on C of degree
d+ g − 1, such that the line bundle βM on QL has a global section which does not vanish at
q. This will show that βd+g−1 is globally generated. As a globally generated line bundle is
nef, it follows that βd+g−1 is nef.

Consider the action of C∗ on Cr given by t · (a1, . . . , ar) = (a1, ta2, . . . , t
r−1ar). This action

gives rise to an action of C∗ on O⊕r
C and so also on QL. Indeed, this action sends an inclusion

ϕ to the inclusion ϕ ◦ t−1, in the following commutative diagram

K
ϕ◦t−1

// O⊕r
C

//

t
��

F ′

��

K
ϕ

// O⊕r
C

// F

Thus, given any point q ∈ QL, we may find a C∗ equivariant morphism h : C∗ → QL such
that h(1) = q. Note that for t ∈ C∗, the kernel sheaf in h(t) is the same as the kernel sheaf
in q. The morphism h extends to a morphism C → QL and the point h(0) is fixed under the
action of C∗ on QL. Thus, h(0) is a quotient q0 whose kernel equals

K0 =

r−k⊕

i=1

OC(−Di) ,

where each Di is an effective divisor of degree di, and the di satisfy
∑

i di = d. See, for
example, [BGL94, §3]. Let M be a general line bundle of degree d+g−1. ThenM⊗OC(−Di)
is a general line bundle of degree d−di+g−1 > g−1. In particular, h1(C,M⊗OC (−Di)) = 0.
It follows that h1(C,M ⊗K0) = 0 and so this vanishing holds for the kernels in an open set
containing q0. In particular, it follows that

(4.10) h1(C,M ⊗K) = 0 ,

where K is the kernel of the quotient q we started with.
Since d ≫ 0, we have d + g − 1 > 2g − 2 and so h1(C,M) = 0. If q′ is any point in QL,

then the cohomology long exact sequence of the short exact sequence

0 → Kq′ ⊗M → (O⊕r
C )⊗M → Fq′ ⊗M → 0
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shows that h1(C,Fq′ ⊗ M) = 0. In particular, it follows that the sheaf p2∗(F ⊗ p∗CM) is
locally free on all of QL. Applying p2∗(− ⊗ p∗CM) to (3.1), and using (4.10), it follows that
on an open set containing the point q, the map

p2∗(p
∗
C(O

⊕r
C )⊗ p∗CM) → p2∗(F ⊗ p∗CM)

is a surjection. Applying ∧k we get that the map

∧k
(
H0(C,M)⊕r

)
→ βM

is surjective on an open set containing q. It follows that βd+g−1 is globally generated and so
nef.

To show that βd+g−1 is not ample, we will construct a curve D2 ⊂ QL such that [D2] ·
[βd+g−1] = 0. Let D2 be a line in P(H0(C,L)∨). Then on C × D2 we have a short exact
sequence

0 → p∗CL
−1 ⊗ p∗2OD2

(−1) → p∗COC → G2 → 0 .

“Adding” to this, identity maps of the type p∗CO
⊕l
C → p∗CO

⊕l
C , we get the quotient

0 →
(
p∗CL

−1⊗p∗2OD2
(−1)

)⊕(
p∗CO

⊕(r−k−1)
C

)
(4.11)

→ p∗COC

⊕
p∗CO

⊕(r−k−1)
C

⊕(
p∗CO

⊕k
C

)
→ G2

⊕(
p∗CO

⊕k
C

)
→ 0 .

This defines a morphism
f ′ : D2 → QL ,

which is clearly injective on closed points. Let M be a line bundle of degree d + g − 1 such
that h1(C,L−1 ⊗M) = 0. Again, as d ≫ 0, we have h1(C,M) = 0. It easily follows that for
each t ∈ D2,

h1(C,
[
G2,t

⊕(
O⊕k

C

)]
⊗M) = 0

It follows easily using Remark 3.2 that f ′∗βM = det(p2∗((G
⊕

p∗CO
⊕k
C ) ⊗ p∗CM)). We claim

that p2∗((G
⊕

p∗CO
⊕k
C )⊗ p∗CM) is the trivial bundle. To see this, note that

Rip2∗

[{(
p∗CL

−1 ⊗ p∗2OD2
(−1)

)⊕(
p∗CO

⊕(r−k−1)
C

)}
⊗ p∗CM

]
= 0 ,

for i = 0, 1. It follows that when we apply p2∗(−⊗ p∗CM) to the sequence (4.11), we get the
following exact sequence in which the first two terms are trivial bundles,

0 → H0(C,M)⊕(r−k−1) ⊗OD2
→ H0(C,M)⊕r ⊗OD2

→ p2∗((G
⊕

p∗CO
⊕k
C )⊗ p∗CM) → 0 .

Thus, it follows that the last bundle is also trivial, and so f ′∗βM is the trivial bundle. This
shows that [D2] · [βd+g−1] = 0. �

Lemma 4.12. [D2] · [α] = [D1] · [βd+g−1] = 1.

Proof. To compute [D2] · [α] we shall use the description of the map f in the proof of Propo-
sition 4.4. The kernel in the family of sheaves defining D2 (see (4.11)) is

(
p∗CL

−1 ⊗ p∗2OD2
(−1)

)⊕(
p∗CO

⊕(r−k−1)
C

)
.

Taking ∧r−k of this sheaf gives the line bundle p∗CL
−1⊗ p∗2OD2

(−1). Thus, the pullback of α
to D2 is OD2

(1). The degree of this line bundle is 1. Thus, [D2] · [α] = 1.
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Recall the family of quotients (4.5) which defines a morphismD1 → QL. Using cohomology
and base change, it easily follows that the pullback of βd+g−1 to D1 is det(p2∗(G1⊗M)), where
M is any line bundle of degree d+ g − 1. From the short exact sequence (see (4.5))

0 → ιx∗(OD1
(1)) → G1 → p∗CF

′ → 0

it easily follows that det(p2∗(G1 ⊗M)) = OD1
(1). Thus, [D1] · [βd+g−1] = 1. �

Remark 4.13. As a Corollary of [D2] · [α] = 1, we see that α and βd+g−1 are not numerically
equivalent. Thus, it follows that the natural map Pic(QL) → N1(QL) is an isomorphism. �

Putting together the above results, we have the following Theorem.

Theorem 4.14. Assume one of the following two holds:

• g(C) > 3 and 2 6 k 6 r − 2, or
• g(C) = 2 and 3 6 k 6 r − 2.

Let d ≫ 0. Then Pic(QL) is generated by the line bundles α, βd+g−1. Both these are globally
generated and so nef, but not ample. In particular, they are the boundaries of the nef cone.
The boundaries of the cone of effective curves are given by the classes of D1 and D2.

Proof. Given an integral curve C ′ ⊂ QL, let us write [C ′] = a[D1] + b[D2] in N1(QL).
Intersecting with α and βd+g−1 we easily see that a > 0 and b > 0. �

5. Effective cone

In this section we shall determine the cone of effective divisors in the Picard group of QL.
Let

(5.1) Q′
L = {[O⊕r

C

q
−→ F ] ∈ Qs

L |Ker(q) is stable} .

denote the open set consisting of quotients such that both F and Ker(q) are stable.

Lemma 5.2. codim(QL \ Q′
L,QL) > 2.

Proof. LetQtf
L ⊂ QL denote the locus of quotients [O⊕r

C → F ] such that F is torsion free. Note

that Qs
L ⊂ Qtf

L . For ease of notation, let us denote the Quot scheme QuotC/C(O
⊕r
C , r − k, d)

by Q̃. There is an isomorphism of schemes ϕ : Qtf
L → Q̃tf

L which sends a quotient

[Ker(q) ⊂ O⊕r
C

q
−→ F ] 7→ [F∨ ⊂ O⊕r

C → Ker(q)∨] .

The open set Q′
L is precisely the intersection Qs

L∩ϕ
−1(Q̃s

L). By the discussion before equation

(8.10) in [GS24], it follows that codim(QL \Q
s
L,QL) > 2. Similarly, codim(Q̃tf

L \Q̃s
L, Q̃

tf
L ) > 2.

Thus, it follows that the codimension of Qtf
L \ϕ−1(Q̃s

L) in Qtf
L is at least 2. The Lemma now

follows easily. �

We will use the above Lemma to write down another curve D3 → QL such that the image
lies in Q′

L. Let E be a stable bundle of rank r − k with det(E) = L−1. Consider the

space P(Hom(E,O⊕r
C )∨). The closed points of this space are in bijection with nonzero maps

O⊕r
C → E∨. The locus of points in P(Hom(E,O⊕r

C )∨) corresponding to non-surjective maps

O⊕r
C → E∨ has codimension at least 2, see the proof in [GS24, Lemma 7.12]. Let

UE∨ ⊂ P(Hom(O⊕r
C , E∨)∨) = P(Hom(E,O⊕r

C )∨)
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denote the locus parametrizing surjective maps O⊕r
C → E∨. Let M s

r−k,L denote the moduli
space of stable bundles of rank r − k and determinant L. Consider the natural map

(5.3) π : Q̃s
L → M s

r−k,L ,

which sends [O⊕r
C → F ] 7→ [F ]. The fiber over the point [F ] is precisely the set UF . Let T

denote the closed subset Q̃s
L \ Q̃′

L.

Lemma 5.4. For general F ∈ M s
r−k,L, codim(T ∩ UF , UF ) > 2.

Proof. If codim(T ∩ UF , UF ) 6 1 for general [F ] ∈ M s
r−k,L, then it follows that

dim(T ) = dim(M s
r−k,L) + dim(π−1([F ])) − 1 = dim(Q̃s

L)− 1 .

This contradicts Lemma 5.2, which says that codim(T, Q̃s
L) > 2. �

Thus, it follows that for general E, the locus of points in UE∨, such that the kernel of
O⊕r

C → E∨ is not stable, has codimension > 2. In other words, if U ′ ⊂ P(Hom(E,O⊕r
C )∨)

denotes the set of points corresponding to inclusions E → O⊕r
C such that the cokernel is

torsion free and stable, then for general E,

codim(P(Hom(E,O⊕r
C )∨) \ U ′,P(Hom(E,O⊕r

C )∨)) > 2 .

If W ⊂ Pn is a closed subset such that codim(W,Pn) > 2, then the general line in Pn

does not meet W . This is easily seen by projecting from a point outside W . Thus, we can
find a line D3 ⊂ P(Hom(E,O⊕r

C )∨), which is completely contained in U ′. We get a family of
quotients on C ×D3

(5.5) 0 → p∗CE ⊗ p∗2OD3
(−1) → p∗CO

⊕r
C → G3 → 0 ,

such that for each t ∈ D3, the sheaf G3,t is stable. The above family defines a morphism
D3 → QL, which is injective on closed points. Clearly, the image of D3 lands in Q′

L.

Lemma 5.6. [α] · [D3] = r − k and [βd+g−1] · [D3] = d(r − k − 1).

Proof. To compute [α] · [D3] we follow the description of the map f (see (4.2)) given in
Proposition 4.4.

∧r−k(p∗CE ⊗ p∗2OD3
(−1)) = p∗CL

−1 ⊗ p∗2OD3
(−(r − k)) .

Thus, it follows that [α] · [D3] = r − k.
Let M be a line bundle of degree d + g − 1. By Serre duality, we have, h1(C,E ⊗M) =

h0(E∨ ⊗M∨ ⊗ ωC). Note E is stable and

µ(E∨ ⊗M∨ ⊗ ωC) =
d

r − k
− (d+ g − 1) + 2g − 2 .

The slope is < 0 for d ≫ 0 as r − k > 2. Thus, h0(E∨ ⊗ M∨ ⊗ ωC) = h1(C,E ⊗ M) = 0.
Thus, applying p2∗(−⊗ p∗CM) to (5.5), we get the short exact sequence

0 → H0(C,E ⊗M)⊗OD3
(−1) → H0(C,M)⊗OD3

→ p2∗(G3 ⊗ p∗CM) → 0 .
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It follows that

[D3] · [βd+g−1] = deg(p2∗(G3 ⊗ p∗CM))

= h0(C,E ⊗M) = χ(E ⊗M)

= d(r − k − 1) .

This completes the proof of the Lemma. �

Consider the map π : Qs
L → M s

k,L, where M s
k,L denotes the moduli space parametrizing

stable bundles of rank k and determinant L. The map π sends a quotient [O⊕r
C → F ] to

[F ]. The fiber of π over the point [F ] is the subset UF ⊂ P(Hom(O⊕r
C , F )∨) corresponding

to surjective maps. Let U ′
F ⊂ UF be the subset corresponding to maps for which the kernel

is also a stable bundle. Arguing as in the construction of the curve D3, we see that for a
general stable bundle F , one has

codim(P(Hom(O⊕r
C , F )∨) \ U ′

F ,P(Hom(O⊕r
C , F )∨)) > 2 .

Thus, taking F general stable and taking D4 to be a general line in P(Hom(O⊕r
C , F )∨), to get

a family

(5.7) 0 → K4 → p∗CO
⊕r
C → p∗CF ⊗ p∗2OD4

(1) → 0

on C ×D4. Again, this family has the property that for each t ∈ D4, the sheaf K4,t is stable.

Lemma 5.8. [α] · [D4] = k and [βd+g−1] · [D4] = d(k + 1).

Proof. Note that ∧r−kK4 = (p∗CL ⊗ p∗2OD4
(k))−1. Using the description in Proposition 4.4,

it follows that [α] · [D4] = k. Let M be a line bundle of degree d+ g − 1. Since

p2∗(p
∗
C(F ⊗M)⊗ p∗2OD4

(1)) = H0(C,F ⊗M)⊗OD4
(1) ,

and H1(C,F ⊗M) = 0, it follows that [βd+g−1] · [D4] = χ(F ⊗M) = d(k + 1). �

Lemma 5.9. Let a and b be integers such that aα + bβd+g−1 is an effective divisor. Then
ak + bd(k + 1) > 0.

Proof. Let Y ⊂ QL be an effective divisor. Then Y cannot contain all the fibers of the map
π : Qs

L → M s
k,L. Thus, for general F , the intersection Y ∩ U ′

F $ U ′
F . In particular, Y does

not contain the general line in U ′
F , that is, Y does not contain D4. Thus, [Y ] · [D4] > 0.

Letting the class of Y to be aα+ bβd+g−1, the Lemma follows easily. �

Let Pic(Mk,L) = Pic(M s
k,L) = Z[Θ], where Θ is the unique ample generator.

Lemma 5.10. Let λ0 := gcd(k, d(k+1)) = gcd(k, d). Then π∗Θ = 1
λ0
(d(k+1)α−kβd+g−1).

Proof. Let us write π∗Θ = aα+ bβd+g−1. Clearly, [π
∗Θ] · [D4] = 0 as π(D4) = [F ]. This gives

ak + bd(k + 1) = 0 .

Thus, π∗Θ = λ′(−d(k + 1)α+ kβd+g−1), for some rational number λ′. We claim that λ′ 6= 0.
This is clear from the point (4), which says that the pullback of Θ is not trivial.
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Note that [π(D3)] · [Θ] > 0 and so we get [π∗Θ] · [D3] > 0. Using Lemma 5.6 we get

[π∗Θ] · [D3] = λ′(−d(k + 1)α + kβd+g−1) · [D3]

= λ′(−d(k + 1)(r − k) + kd(r − k − 1))

= λ′(−dr)

The condition that [π∗Θ] · [D3] > 0 now forces that λ′ < 0. Thus, we get that π∗Θ =
λ(d(k + 1)α − kβd+g−1), where λ > 0 is a rational number.

We can determine the precise value of λ as follows. First we need to recall some facts from
[GS24]. In the proof of [GS24, Theorem 8.9], it is shown that there is a commutative diagram

1 // Pic(M s
k,L⊗OC(knP ))

// Pic(Qs
L)

// Z //
� _

��

1

1 // Pic(M s
k,L⊗OC(knP ))

// Pic(Qs
L)

// Pic(θ−1[F ⊗OC(nP )]) ∼= Z

in which the rows are exact sequences. We recall the map θ : Qs
L → M s

k,L⊗OC(knP ) is defined

as θ([O⊕r
C → F ]) = [F ⊗ OC(nP )]. The existence of the above diagram is proved using the

same method as described in the second paragraph of the proof of [GS24, Theorem 7.17]. Fix
a point P ∈ C and let n ≫ 0 be a fixed integer, as in the discussion in the beginning of §7 in
[GS24]. Consider the isomorphism δ : M s

k,L → M s
k,L⊗OC(knP ) given by [F ] 7→ [F ⊗OC(nP )].

Then θ = δ ◦ π and so θ−1([F ⊗ OC(nP )]) = π−1([F ]) = UF . Thus, the lower row in the
above diagram is identified with

1 → Pic(M s
k,L) → Pic(Qs

L) → Pic(UF ) ∼= Z .

Given an element γ ∈ Pic(Qs
L), its image in Pic(UF ) ∼= Z is the intersection of a general

line in UF with γ, that is, [γ] · [D4]. Thus, to compute π∗Θ in terms of α and βd+g−1, we

need to compute the generator of the kernel of the map Z⊕2 ϕ
−→ Z which sends ϕ(1, 0) = k

and ϕ(0, 1) = d(k + 1). Let λ0 := gcd(k, d(k + 1)) = gcd(k, d). It is easily checked that this
generator, that is, π∗Θ, equals

π∗Θ =
d(k + 1)

λ0
α−

k

λ0
β .

This completes the proof of the Lemma. �

Remark 5.11. As a corollary, we also get the following. Since Pic(Qs
L) is generated by α

and βd+g−1, it follows that the image of the restriction map Pic(Qs
L) → Pic(UF ) is generated

by gcd(k, d(k + 1)) = gcd(k, d). �

As a corollary of Lemma 5.9 and Lemma 5.10 we get the following Corollary.

Corollary 5.12. The class π∗Θ is a boundary of the effective cone.

Proof. It is clear that π∗Θ is an effective divisor. By Lemma 5.9, if aα+ bβd+g−1 is effective,
then a and b satisfy the inequality ak + bd(k + 1) > 0. It is clear that the coefficients a and
b in π∗Θ satisfy the equality ak + bd(k + 1) = 0. Thus, the Corollary follows. �
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Recall the space Q′
L defined before Lemma 5.2. On Q′

L we have the map π′ : Q′
L → M s

r−k,L,

which sends a quotient [O⊕r
C

q
−→ F ] to [Ker(q)]. Arguing as in Lemma 5.9, we have the

following Lemma.

Lemma 5.13. Let a and b be integers such that aα+ bβd+g−1 is an effective divisor. Then
a(r − k) + bd(r − k − 1) > 0.

Proof. The proof is the same as that of Lemma 5.9, except that we use the map π′ now. In
this case we will have the condition [Y ] · [D3] > 0. The Lemma easily follows using Lemma
5.6. �

Let Pic(Mr−k,L) = Pic(M s
r−k,L) = Z[Θ′], where Θ′ is the unique ample generator. Similar

to Lemma 5.10, we have the following Lemma.

Lemma 5.14. Let λ1 := gcd(r − k, d(r − k − 1)) = gcd(r − k, d). Then

π′∗Θ′ =
1

λ1
(d(r − k − 1)α− (r − k)βd+g−1) .

Proof. Let us write π′∗Θ′ = aα+bβd+g−1. Recall the curve D3 defined using the family (5.5).
Clearly, [π′∗Θ′] · [D3] = 0 as π′(D3) = [E]. This gives

a(r − k) + bd(r − k − 1) = 0 .

Thus, π′∗Θ′ = λ′(−d(r−k−1)α+(r−k)βd+g−1), for some rational number λ′. As in Lemma
5.10, we have that λ′ 6= 0. Note that [π′(D4)] · [Θ

′] > 0 and so we get [π′∗Θ′] · [D4] > 0. Using
Lemma 5.8 we get

[π′∗Θ′] · [D4] = λ′(−d(r − k − 1)α+ (r − k)βd+g−1) · [D4]

= λ′(−d(r − k − 1)k + (r − k)d(k + 1))

= λ′(dr)

The condition that [π′∗Θ′] · [D4] > 0 now forces that λ′ > 0. Thus, we get that π′∗Θ′ =
λ(−d(r− k− 1)α+ (r− k)βd+g−1), where λ > 0 is a rational number. Arguing as in Lemma
5.10, we get

π′∗Θ′ =
−d(r − k − 1)

λ1
α+

r − k

λ1
βd+g−1 .

This completes the proof of the Lemma. �

As a corollary of Lemma 5.13 and Lemma 5.14 we get the following Corollary.

Corollary 5.15. The class π′∗Θ′ is a boundary of the effective cone.

Thus, combining the above results, we have the following Theorem.

Theorem 5.16. Assume one of the following two holds:

• g(C) > 3 and 2 6 k 6 r − 2, or
• g(C) = 2 and 3 6 k 6 r − 2.

Let d ≫ 0. The effective cone of QL is spanned by non-negative linear combinations of the
classes d(k+1)α−kβd+g−1 and −d(r−k−1)α+(r−k)βd+g−1. Further, Mov(QL) = Eff(QL).
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Proof. Clearly, Mov(QL) ⊂ Eff(QL). Since the boundaries of Eff(QL), namely π∗Θ and
π′∗Θ′, define morphisms on the open subset Q′

L, whose complement in QL has codimension
> 2, it follows that these boundaries are in Mov(QL). Thus, equality follows. �

6. Canonical divisor

In this section we shall determine the canonical divisor of QL in terms of α and β.
Let ωC denote the canonical divisor of C. Consider the open subset Qg ⊂ Q consisting of

quotients [O⊕r
C → F ] for which h1(C,F ) = 0. If h1(C,F ) = 0, then applying Hom(−, F ) to

the short exact sequence 0 → K → O⊕r
C → F → 0, it follows that ext1(K,F ) = 0. Thus, Qg

is contained in the smooth locus of Q. Recall that Qs denoted the open subset consisting of
quotients [O⊕r

C → F ] for which F is stable. Clearly, Qs ⊂ Qg as d ≫ 0. Using Lemma 2.7

and equation (6.4) in [GS24], it follows that the morphism det : Qg → Picd(C) is a smooth
morphism. It follows that the locus Qg,L = QL ∩ Qg is is contained in the smooth locus
of QL. As codim(QL \ Qs

L,QL) > 2, it follows that codim(QL \ Qg,L,QL) > 2. Thus, to
determine the canonical divisor of QL, it suffices to determine the canonical divisor of Qg,L.

As the morphism det is smooth on Qg, and the canonical divisor of Picd(C) is trivial, it
follows easily from the exact sequence (det being the morphism in (2.2))

0 → det∗ΩPicd(C) → ΩQg → Ωdet → 0

that

(6.1) det(ΩQg,L
) = det(Ωdet|Qg,L

) = det(ΩQg)|Qg,L
.

Recall the universal sequence (3.1) on C×Q. Using the same method as in [Str87, Theorem
7.1], we may show that the tangent bundle on Qg equals p2∗(K

∨ ⊗F). It easily follows that

(6.2) ΩQg |Qg,L
= (p2∗(K

∨ ⊗F))∨ ,

where we use the same notation to denote the restriction of the sheaves K,F to C × Qg,L.
Thus, the canonical divisor of Qg,L equals the determinant of the locally free sheaf (p2∗(K

∨⊗
F))∨.

To compute the canonical divisor in terms of α and β, we need two curves in Qg,L. One
of these is the curve D1, given by the family (4.5). Let us check that the image of D1 is
contained in Qg,L. Recall from [PR03, Corollary 6.3] that when d ≫ 0, and K ′ is a general
stable bundle, then the cokernel of the general inclusion K ′ → O⊕r

C is a stable bundle. In
particular, we may assume that both K ′ and F ′ in (4.5) are stable bundles. For each t ∈ D1,
the quotient G1,t

∼= F ′ ⊕ Cx and so

h1(C,G1,t) = 0 .

It follows that the image of D1 is contained in Qg,L.
Our second curve is the curve D3 given by the family (5.5). Recall the space Q′

L from (5.1).
We had seen that the image of D3 → QL is contained in Q′

L. Also note that Q′
L ⊂ Qg,L.

Thus, the curves D1 and D3 are contained in Qg,L. Next we will compute the degree of the
line bundle det(p2∗(K

∨ ⊗F)) restricted to D1 and D3.

Lemma 6.3. The degree of det(p2∗(K
∨ ⊗F)) restricted to D1 is r − 2k.



NEF AND EFFECTIVE CONES OF SOME QUOT SCHEMES 15

Proof. As ext1(K,F ) = 0 for a point [K ⊂ O⊕r
C → F ] ∈ Qg, it follows easily that (see (4.5))

p2∗(K
∨ ⊗F)|D1

= p2∗(K̃
∨
1 ⊗ G1) .

From (4.5) it follows that we have the following short exact sequence on C ×D1

0 → ιx∗(OD1
(1)) → G1 → p∗CF

′ → 0 .

For ease of notation, let T denote the sheaf ιx∗(OD1
(1)). Applying p2∗(K̃

∨
1 ⊗−) we get the

short exact sequence

(6.4) 0 → p2∗(K̃
∨
1 ⊗ T ) → p2∗(K̃

∨
1 ⊗ G1) → p2∗(K̃

∨
1 ⊗ p∗CF

′) → 0 .

Let us first compute determinant of the sheaf p2∗(K̃
∨
1 ⊗T ). Apply H om(−,T ) to the short

exact sequence 0 → K̃1 → p∗CK
′ → T → 0 (see (4.5)) yields the long exact sequence

(6.5) 0 → H om(T ,T ) → T ⊕(r−k) → K̃∨
1 ⊗ T → E xt1(T ,T ) → 0 .

Applying H om(−,T ) to the short exact sequence

(6.6) 0 → p∗COC(−x)⊗ p∗2OD1
(1) → p∗2OD1

(1) → T → 0 ,

one easily checks that the sheaves H om(T ,T ) and E xt1(T ,T ) are isomorphic to ιx∗(OD1
).

As all the sheaves in (6.5) are coherent over D1, applying p2∗ we get the following exact
sequence of sheaves on D1

0 → OD1
→ T ⊕(r−k) → p2∗(K̃

∨
1 ⊗ T ) → OD1

→ 0 .

From this it follows that

(6.7) det(p2∗(K̃
∨
1 ⊗ T )) ∼= OD1

(r − k) .

Next let us compute the determinant of the sheaf p2∗(K̃
∨
1 ⊗ p∗CF

′). For this we apply
H om(−, p∗CF

′) to the short exact sequence

0 → K̃1 → p∗CK
′ → T → 0 .

We get the following long exact sequence on C ×D1

(6.8) 0 → p∗CK
′∨ ⊗ p∗CF

′ → K̃∨
1 ⊗ p∗CF

′ → E xt1(T , p∗CF
′) → 0 .

The last term equals

E xt1(T , p∗CF
′) ∼= E xt1(T ⊗ p∗CF

′,OC×D1
)

∼= E xt1(T ,OC×D1
)⊕k

Applying H om(−,OC×D1
) to (6.6) one easily sees that E xt1(T ,OC×D1

) ∼= ιx∗(OD1
(−1)).

Note that h1(K ′∨ ⊗ F ′) = 0 as both K ′ and F ′ are stable. Applying p2∗ to (6.8), we get the
following exact sequence

0 → Hom(K ′, F ′) → p2∗(K̃
∨
1 ⊗ p∗CF

′) → OD1
(−1)⊕k → 0 .

It follows that det(p2∗(K̃
∨
1 ⊗ p∗CF

′)) ∼= OD1
(−k). Using this and equation (6.7) in (6.4), we

get det(p2∗(K̃
∨
1 ⊗ G1)) = OD1

(r − 2k). �

Lemma 6.9. The degree of det(p2∗(K
∨ ⊗F)) restricted to D3 is r(d+ (r − k)(1− g)).
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Proof. Recall from (5.5) the family parameterized by D3. It follows that

p2∗(K
∨ ⊗F)|D3

= p2∗(p
∗
CE

∨ ⊗OD3
(1) ⊗ G3) .

Note that as E∨ is a stable bundle of degree d ≫ 0, we have H1(C,E∨) = 0. Tensoring (5.5)
with p∗CE

∨ ⊗ p∗2OD3
(1) and applying p2∗ yields the long exact sequence

0 → Hom(E,E) ⊗OD3
→ [H0(C,E∨)⊗OD3

(1)]⊕r →

p2∗(p
∗
CE

∨ ⊗OD3
(1) ⊗ G3) → Ext1(E,E) ⊗OD3

→ 0 .

It follows that

det(p2∗(p
∗
CE

∨ ⊗OD3
(1)⊗ G3)) ∼= OD3

(rh0(C,E∨))

= OD3
(rχ(E∨))

= OD3
(r(d+ (r − k)(1− g))) .

This completes the proof of the Lemma. �

Theorem 6.10. Assume one of the following two holds:

• g(C) > 3 and 2 6 k 6 r − 2, or
• g(C) = 2 and 3 6 k 6 r − 2.

Let d ≫ 0. Let ωQL
denote the canonical divisor of QL. Then

ωQL
= [d(r − 2k − 2) + r(g − 1)]α + (2k − r)βd+g−1 .

In particular, QL is Fano iff r = 2k + 1.

Proof. Let us write ωQL
= aα + bβd+g−1. Recall ωQL

= det(p2∗(K
∨ ⊗ F))∨. It follows from

Lemma 6.3 and Lemma 6.9 that

[ωQL
] · [D1] = 2k − r ,

[ωQL
] · [D3] = −r(d+ (r − k)(1− g)) .

The proof of Proposition 4.4 shows that [α] · [D1] = 0. Using Lemma 4.12 and Lemma 5.6,
we get the following two equations in a and b

b = 2k − r ,

a(r − k) + bd(r − k − 1) = −r(d+ (r − k)(1 − g)) .

One easily computes that a = d(r − 2k − 2) + r(g − 1). Thus,

ωQL
= [d(r − 2k − 2) + r(g − 1)]α + (2k − r)βd+g−1 .

For QL to be Fano, we need that d(r − 2k − 2) + r(g − 1) < 0 and 2k − r < 0. Since
d ≫ 0, this happens iff r− 2k − 2 < 0 and 2k − r < 0, that is, iff 2k < r < 2k + 2, that is, iff
r = 2k + 1. �
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